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1. Riemann’s zeta function, Bernoulli numbers, and multiple zeta
values

In the region Re s > 1, the Riemann zeta function may be defined by the conver-
gent series

ζ(s) =
∞∑

n=1

1

ns
. (1.1)

One of interesting and still unsolved problems is the problem of determining poly-
nomial relations over Q for the numbers ζ(s), s = 2, 3, 4, . . . .

The first breakthrough in this direction is due to Euler, who showed that ζ(2k) is
always a rational multiple of π2k, where

π = 4
∞∑

n=0

(−1)n

2n+ 1
= 3.14159265358979323846 . . . .

Although we do not follow Euler’s original method (but its variation), the derivation
is worth reproducing here.

The Bernoulli numbers Bs ∈ Q, s = 2, 3, 4, . . . , are defined by the generating
function

t

et − 1
= 1− t

2
+

∞∑
s=2

Bs
ts

s!
.

Using
t

et − 1
+
t

2
=
t

2
· e

t + 1

et − 1
=
t

2
· e

t/2 + e−t/2

et/2 − e−t/2

and taking t = 2iz, where, of course, i =
√
−1, we obtain

z
cos z

sin z
= 1 +

∞∑
s=2

Bs
(2iz)s

s!
. (1.2)

Since the function on the left-hand side of (1.2) is even, we arrive at the following
result.

Lemma 1.1. For each integer k ≥ 1, we have B2k+1 = 0.

Recall now the infinite product expansion of the sine function,

sin z = z

∞∏
n=1

(
1− z2

n2π2

)
. (1.3)

Computing its logarithmic derivative we find that

z
cos z

sin z
= 1 + 2

∞∑
n=1

z2

z2 − n2π2
= 1− 2

∞∑
n=1

∞∑
k=1

(
z2

n2π2

)k

= 1− 2
∞∑

k=1

z2kζ(2k)

π2k
. (1.4)

Comparing the right-hand sides of (1.2) and (1.4) results in the following statement.

Lemma 1.2. For each integer k ≥ 1, we have

2ζ(2k) = (−1)k+1 B2k

(2k)!
(2π)2k.
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In particular,

ζ(2) =
π2

2 · 3
, ζ(4) =

π4

2 · 32 · 5
, ζ(6) =

π6

33 · 5 · 7
, ζ(8) =

π8

2 · 33 · 52 · 7
,

ζ(10) =
π10

35 · 5 · 7 · 11
, ζ(12) =

691π12

36 · 53 · 72 · 11 · 13
, ζ(14) =

2π14

36 · 52 · 7 · 11 · 13
,

and so on.
Lemma 1.2 gives us the expression of the values of the zeta function at even inte-

gers in terms of π and the (rational) Bernoulli numbers. It implies the coincidence
of the rings Q[ζ(2), ζ(4), ζ(6), ζ(8), . . . ] and Q[π2]. Lindemann’s theorem from 1882
asserts the transcendence of π, therefore we may conclude that each of the rings has
transcendence degree 1 over the field of rational numbers.

Much less is known on the arithmetic nature of the values of the zeta function at
odd integers s = 3, 5, 7, . . . : in 1978, Apéry has proved the irrationality of the num-
ber ζ(3) and there are more recent but partial linear independence results of Rivoal
and Zudilin. Rivoal’s theorem settles the infiniteness of the set of irrational numbers
among ζ(3), ζ(5), ζ(7), . . . . Conjecturally, each of these numbers is transcendental,
and the full answer on the above-stated question, about polynomial relations over Q
for the values of series (1.1) with s ≥ 2 integer, looks very simple.

Conjecture 1. The numbers

π, ζ(3), ζ(5), ζ(7), ζ(9), . . .

are algebraically independent over Q.

This conjecture may be regarded as a mathematical folklore. It seems to be
unattainable by the present methods. In this course, a certain generalization of
the problem of algebraic independence for the values of the Riemann zeta function
at positive integers (zeta values) is discussed. Namely, we will speak on the object
that is extensively studied during the last decade in connection with problems of not
only number theory but also of combinatorics, algebra, analysis, algebraic geometry,
quantum physics, and many other branches of mathematics.

Series (1.1) enables the following multidimensional generalization. For positive
integers s1, s2, . . . , sl with s1 > 1, consider the values of the l-tuple zeta function

ζ(s) = ζ(s1, s2, . . . , sl) :=
∑

n1>n2>···>nl≥1

1

ns1
1 n

s2
2 · · ·n

sl
l

; (1.5)

the corresponding multi-index s = (s1, s2, . . . , sl) will be further regarded as ad-
missible. The quantities (1.5) are called the multiple zeta values (and abbreviated
MZVs), or the multiple harmonic series, or the Euler sums. The sums (1.5) for
l = 2 rise from Euler, who has obtained a family of identities connecting double and
ordinary zeta values (which we discuss below). In particular, had Euler proved the
identity

ζ(2, 1) = ζ(3), (1.6)

which was several times rediscovered after.

Exercise 1.1. Find your own (elementary) proof of (1.6).
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The quantities (1.5) were introduced in the 1990s by Hoffman and, independently,
by Zagier (with the opposite order of summation on the right-hand side of (1.5)).
Those very first papers produced some Q-linear and Q-polynomial relations as well
as indicated a series of conjectures (that has been partly resolved later) on the
structure of algebraic relations for the family (1.5). Hoffman also suggests the
alternative definition

ζ?(s) = ζ?(s1, s2, . . . , sl) :=
∑

n1≥n2≥···≥nl≥1

1

ns1
1 n

s2
2 · · ·n

sl
l

(1.7)

of the Euler sums, with non-strict inequalities in summation. These are nowadays
known as multiple zeta star values.

Exercise 1.2. For any admissible index s = (s1, s2, . . . , sl), we have the (dual) rela-
tions

ζ?(s) =
∑

p

ζ(p) and ζ(s) =
∑

p

(−1)σ(p)ζ?(p),

where p runs through all indices of the form (s1◦s2◦· · ·◦sl) with ‘◦’ being either the
symbol ‘,’ or the sign ‘+’, and the exponent σ(p) denotes the number of signs ‘+’
in p. (The total number of such indices p is 2l−1.)

Although all relations of series (1.7) may be rewritten with the help of Exercise 1.2
for series (1.5), several identities possess a compact form by means of (1.7); for
example,

ζ?({2}k, 1) := ζ?(2, . . . , 2︸ ︷︷ ︸
k times

, 1) = 2ζ(2k + 1), k = 1, 2, . . . . (1.8)

To each number (1.5) (or (1.7)), assign the two characteristics: the weight (or
degree) |s| := s1 + s2 + · · · + sl and the length (or depth) `(s) := l. Note that all
relations known so far for the MZVs (1.5) and (1.7) are weight-preserving.

2. The partial-fraction method

This elementary analytic method is a powerful source of identities for multiple
zeta values.

Theorem 2.1 (Hoffman’s relations). For any admissible multi-index s = (s1, s2, . . . , sl),
the identity

l∑
k=1

ζ(s1, . . . , sk−1, sk + 1, sk+1, . . . , sl)

=
l∑

k=1
sk≥2

sk−2∑
j=0

ζ(s1, . . . , sk−1, sk − j, j + 1, sk+1, . . . , sl) (2.1)

holds.
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Proof. For any k = 1, 2, . . . , l we have∑
nk>nk+1>···>nl≥1

1

nsk+1
k n

sk+1

k+1 · · ·n
sl
l

+
∑

nk>m>nk+1>···>nl≥1

1

nsk
k mn

sk+1

k+1 · · ·n
sl
l

=
∑

nk≥m>nk+1>···>nl≥1

1

nsk
k mn

sk+1

k+1 · · ·n
sl
l

=
∑

nk>nk+1>···>nl≥1

nk∑
m=nk+1+1

1

mnsk
k n

sk+1

k+1 · · ·n
sl
l

,

hence

ζ(s1, . . . , sk−1, sk + 1, sk+1, . . . , sl) + ζ(s1, . . . , sk−1, sk, 1, sk+1, . . . , sl)

=
∑

n1>···>nk>nk+1>···>nl≥1

1

ns1
1 · · ·n

sk+1
k n

sk+1

k+1 · · ·n
sl
l

+
∑

n1>···>nk>m>nk+1>···>nl≥1

1

ns1
1 · · ·n

sk
k mn

sk+1

k+1 · · ·n
sl
l

=
∑

n1>···>nk>nk+1>···>nl≥1

nk∑
m=nk+1+1

1

mns1
1 · · ·n

sk
k n

sk+1

k+1 · · ·n
sl
l

=
∑

n1>n2>···>nl≥1

1

ns1
1 n

s2
2 · · ·n

sl
l

nk∑
m=nk+1+1

1

m
.

Therefore

l∑
k=1

(
ζ(s1, . . . , sk−1, sk + 1, sk+1, . . . , sl) + ζ(s1, . . . , sk−1, sk, 1, sk+1, . . . , sl)

)
=

∑
n1>n2>···>nl≥1

1

ns1
1 n

s2
2 · · ·n

sl
l

n1∑
m=1

1

m

=
∑

m1,m2,...,ml≥1

1

msl
1 (m1 +m2)sl−1 · · · (m1 + · · ·+ml)s1

m1+···+ml∑
m=1

1

m

=
∑

m1,m2,...,ml≥1

1

M sl
1 M

sl−1

2 · · ·M s1
l

∑
ml+1≥1

(
1

ml+1

− 1

Ml+1

)
, (2.2)

where we introduce the notation Mk = m1 + m2 + · · · + mk for k = 1, . . . , l + 1
(clearly, Mk = nl+1−k for k = 1, . . . , l). Notice now the following partial-fraction
expansion (in terms of the parameter u):

1

u(u+ v)s
=

1

vsu
−

s−1∑
j=0

1

vj+1(u+ v)s−j
, u, v ∈ R; (2.3)
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for the proof, it is sufficient to use the fact that a geometric progression is summed
on the right-hand side. Taking u = ml+1, v = Ml, and s = s1 in (2.3), we obtain

1

ml+1M
s1
l+1

=
1

ml+1(ml+1 +Ml)s1
=

1

M s1
l ml+1

−
s1−1∑
j=0

1

M j+1
l M s1−j

l+1

,

hence

1

M s1
l

(
1

ml+1

− 1

Ml+1

)
=

s1−2∑
j=0

1

M j+1
l M s1−j

l+1

+
1

ml+1M
s1
l+1

.

Going on equality (2.2), we find that

l∑
k=1

(
ζ(s1, . . . , sk−1, sk + 1, sk+1, . . . , sl) + ζ(s1, . . . , sk−1, sk, 1, sk+1, . . . , sl)

)
=

s1−2∑
j=0

∑
m1,m2,...,ml+1≥1

1

M sl
1 M

sl−1

2 · · ·M s2
l−1M

j+1
l M s1−j

l+1

+
∑

m1,m2,...,ml+1≥1

1

M sl
1 M

sl−1

2 · · ·M s2
l−1ml+1M

s1
l+1

=

s1−2∑
j=0

ζ(s1 − j, j + 1, s2, . . . , sl) +
∑

m1,m2,...,ml+1≥1

1

M sl
1 M

sl−1

2 · · ·M s2
l−1mlM

s1
l+1

(2.4)

(in the last tuple sum we interchange the indices ml and ml+1). Using now iden-
tity (2.3) with u = mk+1, v = Mk = Mk+1 − mk+1, and s = sl+1−k, we find out
that

1

M
sl+1−k

k mk+1

=

sl+1−k−1∑
j=0

1

M j+1
k M

sl+1−k−j
k+1

+
1

mk+1M
sl+1−k

k+1

, k = 1, 2, . . . , l − 1,

therefore ∑
m1,m2,...,ml+1≥1

1

M sl
1 · · ·M

sl+1−k

k mk+1M
sl−k

k+2 · · ·M
s1
l+1

=

sl+1−k−1∑
j=0

∑
m1,m2,...,ml+1≥1

1

M sl
1 · · ·M

sl+2−k

k−1 M j+1
k M

sl+1−k−j
k+1 M

sl−k

k+2 · · ·M
s1
l+1

+
∑

m1,m2,...,ml+1≥1

1

M sl
1 · · ·M

sl+2−k

k−1 mk+1M
sl+1−k

k+1 · · ·M s1
l+1
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=

sl+1−k−1∑
j=0

ζ(s1, . . . , sl−k, sl+1−k − j, j + 1, sl+2−k, . . . , sl)

+
∑

m1,m2,...,ml+1≥1

1

M sl
1 · · ·M

sl+2−k

k−1 mkM
sl+1−k

k+1 · · ·M s1
l+1

, (2.5)

for k = 1, 2, . . . , l − 1. Applying consequently, in inverse order (i.e., starting from
k = l− 1 and ending on k = 1), identities (2.5) for the tuple sum on the right-hand
side of equality (2.4), we obtain

l∑
k=1

(
ζ(s1, . . . , sk−1, sk + 1, sk+1, . . . , sl) + ζ(s1, . . . , sk−1, sk, 1, sk+1, . . . , sl)

)
=

s1−2∑
j=0

ζ(s1 − j, j + 1, s2, . . . , sl)

+
l−1∑
k=1

sl+1−k−1∑
j=0

ζ(s1, . . . , sl−k, sl+1−k − j, j + 1, sl+2−k, . . . , sl)

+
∑

m1,m2,...,ml+1≥1

1

m1M
sl
2 M

sl−1

3 · · ·M s1
l+1

=
l∑

k=1

sk−2∑
j=0

ζ(s1, . . . , sk−1, sk − j, j + 1, sk+1, . . . , sl)

+
l∑

k=1

ζ(s1, . . . , sk−1, sk, 1, sk+1, . . . , sl). (2.6)

Realizing all necessary reductions of the left-hand and right-hand sides of equal-
ity (2.6), we finally arrive at the desired identity (2.1). �

If l = 1, the statement of Theorem 2.1 can be written in the following form.

Theorem 2.2 (Euler’s theorem). For any integer s ≥ 3, the identity

ζ(s) =
s−1∑
j=2

ζ(j, s− j) (2.7)

holds.

Note also that, in the case s = 3, identity (2.7) becomes nothing else but rela-
tion (1.6).

Exercise 2.1 (Weighted analogue of Euler’s formula). (a) Show that, for any s ≥ 3,

s−1∑
j=2

2jζ(j, s− j) = (s+ 1)ζ(s). (2.8)

(b) Generalize identity (2.8) to higher lengths.
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Hint for part (a). Use the double-shuffle relations given below in the form (13.2),
(13.3). �

In 2000, Hoffman and Ohno proved the following result also by means of the
partial-fraction method. A somewhat simpler proof was later given by Ohno and
Wakabayashi.

Theorem 2.3 (Cyclic sum theorem). For any admissible multi-index s = (s1, s2, . . . ,
[2]sl), the identity

l∑
k=1

ζ(sk + 1, sk+1, . . . , sl, s1, . . . , sk−1)

=
l∑

k=1
sk≥2

sk−2∑
j=0

ζ(sk − j, sk+1, . . . , sl, s1, . . . , sk−1, j + 1)

holds.

Theorem 2.3 directly yields the result that the sum of all multiple zeta values of
fixed length and fixed weight does not depend on the length; this statement, as well
as Theorem 2.1, generalizes Euler’s theorem.

Theorem 2.4 (Sum theorem). For any integers s > 1 and l ≥ 1, the identity∑
s1>1,s2≥1,...,sl≥1
s1+s2+···+sl=s

ζ(s1, s2, . . . , sl) = ζ(s)

holds.

Theorem 2.1 and 2.4 are particular instances of Ohno’s relations, which will be
discussed later (see Theorem 8.4 and its proof in Section 9).

3. Algebra of multiple zeta values

In this part, we expose the standard algebraic setup of the MZVs. It is expected
that all known algebraic relations (i.e., numerical identities) over Q for the quanti-
ties (1.5) are produced by the so-called double shuffle relations which we describe
below.

It is useful to represent ζ as a linear map of a certain polynomial algebra into
the field of real numbers. Consider coding of multi-indices s by words (i.e., by
monomials in non-commutative variables) over the alphabet X = {x0, x1} by the
rule

s 7→ xs = xs1−1
0 x1x

s2−1
0 x1 · · ·xsl−1

0 x1.

Set
ζ(xs) := ζ(s) (3.1)

for all admissible (starting with x0 and ending on x1) words; then the weight (or
degree) |xs| := |s| coincides with the total degree of the monomial xs, while the
length `(xs) := `(s) expresses the degree with respect to the variable x1.
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Let Q〈X〉 = Q〈x0, x1〉 be the graded by degree Q-algebra (where the degree of
each variable x0 and x1 is agreed to be 1) of polynomials in the two non-commutative
variables; we identify the algebra Q〈X〉 with the graded Q-vector space H spanned
over monomials in the variables x0 and x1. Define as well the graded Q-vector spaces
H1 = Q1⊕ Hx1 and H0 = Q1⊕ x0Hx1, where 1 denotes the unit (the empty word
of weight 0 and length 0) of the algebra Q〈X〉. Then H1 may be regarded as the
subalgebra of Q〈X〉 generated by the words ys = xs−1

0 x1, while H0 is the Q-vector
space spanned over all admissible words. Now, we may view the function ζ as the
Q-linear map ζ : H0 → R defined by the relations ζ(1) = 1 and (3.1).

Define the multiplications tt (the shuffle product) on H and ∗ (the harmonic or
stuffle product) on H1 by the rules

1ttw = wtt1 = w, 1 ∗ w = w ∗ 1 = w (3.2)

for any word w, and

xjuttxkv = xj(uttxkv) + xk(xjuttv), (3.3)

yju ∗ ykv = yj(u ∗ ykv) + yk(yju ∗ v) + yj+k(u ∗ v) (3.4)

for any words u, v, any letters xj, xk, and any generators yj, yk of the subalgebra H1,
respectively, distributing then rules (3.2)–(3.4) on the whole algebra H and the
whole subalgebra H1 by linearity. Sometimes it becomes useful to spread the stuffle
product on the whole algebra H, formally adding the rule

xj
0 ∗ w = w ∗ xj

0 = wxj
0 (3.5)

for any word w and integer j ≥ 1, to rule (3.4).

Exercise 3.1. Compute x0x1ttx0x1 and x0x1 ∗ x0x1.

Exercise 3.2. Use the inductive argument to prove commutativity and associativity
of each of the multiplications.

The corresponding algebras Htt := (H,tt), H1
∗ := (H1, ∗) (and also H∗ := (H, ∗))

are examples of so-called Hopf algebras.
The following two statements motivate consideration of the introduced multipli-

cations tt and ∗.

Theorem 3.1. The map ζ is a homomorphism of the shuffle algebra H0
tt := (H0,tt)

into R, i.e.,
ζ(w1ttw2) = ζ(w1)ζ(w2) for all w1, w2 ∈ H0. (3.6)

Theorem 3.2. The map ζ is a homomorphism of the stuffle algebra H0
∗ := (H0, ∗)

into R, i.e.,
ζ(w1 ∗ w2) = ζ(w1)ζ(w2) for all w1, w2 ∈ H0. (3.7)

Later we give detailed proofs of the two theorems using the differential-difference
origin of the multiplications tt and ∗ in suitable functional models of the alge-
bras Htt and H0

∗.
One more family of identities is given by the following statement whose proof is

deduced later.
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Theorem 3.3. The map ζ satisfies the relations

ζ(x1ttw − x1 ∗ w) = 0 for all w ∈ H0 (3.8)

(in particular, the polynomials x1ttw − x1 ∗ w belong to H0).

All (rigorously and experimentally) known identities for the multiple zeta values
(are expected to) “follow” from identities (3.6)–(3.8)— the double shuffle relations.
Therefore the following conjecture looks rather truthful.

Conjecture 2. All linear relations over Q of multiple zeta values are generated by
identities (3.6)–(3.8); equivalently,

ker ζ = {uttv − u ∗ v : u ∈ H1, v ∈ H0}.
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4. Shuffle algebra of generalized polylogarithms. Duality theorem

In order to prove shuffle relations (3.6) for multiple zeta values, let us define the
generalized polylogaithms

Lis(z) :=
∑

n1>n2>···>nl≥1

zn1

ns1
1 n

s2
2 · · ·n

sl
l

, |z| < 1, (4.1)

for any collection of positive integers s1, s2, . . . , sl. By definition,

Lis(1) = ζ(s), s ∈ Zl, s1 ≥ 2, s2 ≥ 1, . . . , sl ≥ 1. (4.2)

Taking, as before for multiple zeta values,

Lixs(z) := Lis(z), Li1(z) := 1, (4.3)

let us extend action of the map Li : w 7→ Liw(z) by linearity on the graded algebra H1

(not H, since multi-indices are coded by words in H1).

Lemma 4.1. Let w ∈ H1 be an arbitrary non-empty word and xj the first letter in
its record (that is, w = xju for some word u ∈ H1). Then

d

dz
Liw(z) =

d

dz
Lixju(z) = ωj(z) Liu(z), (4.4)

where

ωj(z) = ωxj
(z) :=


1

z
if xj = x0,

1

1− z
if xj = x1.

(4.5)

Proof. Assuming w = xju = xs for some multi-index s, we have

d

dz
Liw(z) =

d

dz
Lis(z) =

d

dz

∑
n1>n2>···>nl≥1

zn1

ns1
1 n

s2
2 · · ·n

sl
l

,

=
∑

n1>n2>···>nl≥1

zn1−1

ns1−1
1 ns2

2 · · ·n
sl
l

.

Therefore, in the case s1 > 1 (corresponding to the letter xj = x0), we obtain

d

dz
Lix0u(z) =

1

z

∑
n1>n2>···>nl≥1

zn1

ns1−1
1 ns2

2 · · ·n
sl
l

=
1

z
Lis1−1,s2,...,sl

(z) =
1

z
Liu(z)

and, in the case s1 = 1 (corresponding to the letter xj = x1), we get

d

dz
Lix1u(z) =

∑
n1>n2>···>nl≥1

zn1−1

ns2
2 · · ·n

sl
l

=
∑

n2>···>nl≥1

1

ns2
2 · · ·n

sl
l

∞∑
n1=n2+1

zn1−1

=
1

1− z

∑
n2>···>nl≥1

zn2

ns2
2 · · ·n

sl
l

=
1

1− z
Lis2,...,sl

(z) =
1

1− z
Liu(z),

and the result follows. �
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Lemma 4.1 motivates another definition of the generalized polylogarithms, now
defined for all elements of the algebra H. As before, it is sufficient to give it for
words w ∈ H only, distributing then over all algebra by linearity; set Li1(z) = 1 and

Liw(z) =


logs z

s!
if w = xs

0 for some s ≥ 1,∫ z

0

ωj(z) Liu(z) dz if w = xju contains the letter x1.
(4.6)

Evidently, Lemma 4.1 remains true for this extended version (4.6) of the polylog-
arithms (the fact yields coincidence of the newly-defined polylogarithms with the
‘old’ ones (4.3) for words w in H1); in addition,

lim
z→0+0

Liw(z) = 0 if the word w contains the letter x1.

An easy verification shows that the generalized polylogarithms are continuous real-
valued function in the interval (0, 1).

Lemma 4.2. The map w 7→ Liw(z) is a homomorphism of the algebra Htt into
C((0, 1); R).

Proof. We have to verify the equalities

Liw1ttw2(z) = Liw1(z) Liw2(z) for all w1, w2 ∈ H; (4.7)

it is sufficient to do this job for words w1, w2 ∈ H. We will prove equality (4.7) by
induction on the quantity |w1| + |w2|. If w1 = 1 or w2 = 1, relation (4.7) becomes
tautological by (3.2). Otherwise, w1 = xju and w2 = xkv, hence by Lemma 4.1 and
the inductive hypothesis we have

d

dz

(
Liw1(z) Liw2(z)

)
=

d

dz

(
Lixju(z) Lixkv(z)

)
=

d

dz
Lixju(z) · Lixkv(z) + Lixju(z) ·

d

dz
Lixkv(z)

= ωj(z) Liu(z) Lixkv(z) + ωk(z) Lixju(z) Liv(z)

= ωj(z) Liuttxkv(z) + ωk(z) Lixjuttv(z)

=
d

dz

(
Lixj(uttxkv)(z) + Lixk(xjuttv)(z)

)
=

d

dz
Lixjuttxkv(z)

=
d

dz
Liw1ttw2(z).

Thus

Liw1(z) Liw2(z) = Liw1ttw2(z) + C, (4.8)

and letting z → 0 + 0 if at least one of the words w1, w2 contains letter x1, or
substituting z = 1 if the records of w1, w2 consist of letter x0 only, gives the relation
C = 0. Therefore, equality (4.8) becomes the required relation (4.7), and the lemma
follows. �
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Proof of Theorem 3.1. Theorem 3.1 follows from Lemma 4.2 and relations (4.2). �

Explicit computation of the monodromy group for the system of differential equa-
tions (4.4) allows to Minh, Petitot, and van der Hoeven to prove that the homomor-
phism w 7→ Liw(z) of the shuffle algebra Htt over C is bijective, i.e., all C-algebraic
relations for generalized polylogarithms are originated by shuffle relations (4.7) only;
in particular, generalized polylogarithms are linearly independent over C. A much
simpler proof of the linear independence of functions (4.1), as a consequence of el-
egant identities for the functions, is due to Ulanskĭı. On the other hand, Sorokin
proved the linear independence result for the values of generalized polylogarithms
(for rational z from a neighbourhood of the origin); this also implies the indepen-
dence of the functions themselves.

By Lemma 4.1, the following integral representation is valid for the word w =
xε1xε2 · · ·xεk

∈ H1:

Liw(z) =

∫ z

0

ωε1(z1) dz1

∫ z1

0

ωε2(z2) dz2 . . .

∫ zk−1

0

ωεk
(zk) dzk

=

∫
· · ·

∫
z>z1>z2>···>zk−1>zk>0

ωε1(z1)ωε2(z2) · · ·ωεk
(zk) dz1 dz2 · · · dzk (4.9)

if 0 < z < 1. When xε1 6= x1, i.e., w ∈ H0, the integral in (4.9) converges in the
region 0 < z ≤ 1, hence, in accordance with (4.2), we reduce representation for the
multiple zeta values

ζ(w) =

∫
· · ·

∫
1>z1>···>zk>0

ωε1(z1) · · ·ωεk
(zk) dz1 · · · dzk (4.10)

in a form of Chen’s iterated integrals. The following result is evident application of
the integral representation (4.10).

Remark. There is a simple mnemonic way to write down the integral representa-
tion (4.10):

ζ(xε1xε2 · · ·xεk
) =

∫ 1

0

xε1xε2 · · ·xεk
, (4.11)

where (with a definite ambiguity!) x0 and x1 denote the corresponding differential
forms ω0(z) dz and ω1(z) dz.

Denote by τ the anti-automorphism of the algebra H = Q〈x0, x1〉, interchanging x0

and x1; for example, τ(x2
0x1x0x1) = x0x1x0x

2
1. Clearly, τ is an involution preserving

weight. It can be easily seen that τ is also the automorphism of the subalgebra H0.

Theorem 4.1 (Duality theorem). For any word w ∈ H0, the relation

ζ(w) = ζ(τw)

holds.
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Proof. To prove the theorem, it is sufficient to do the change of variable z′1 = 1− zk,
z′2 = 1 − zk−1, . . . , z

′
k = 1 − z1, and apply relations ω0(z) = ω1(1 − z) followed

from (4.5). �

As the simplest consequence of Theorem 4.1, notice (again) identity (1.6), which
follows for the word w = x2

0x1, as well as the general identity

ζ(n+ 2) = ζ(2, 1, . . . , 1︸ ︷︷ ︸
n times

), n = 1, 2, . . . , (4.12)

for the words w = xn+1
0 x1. In the remaining part of the course, we will keep the

compact notation {s}n for the multi-index consisting of n copies of the multi-index s.
Then (4.12) can be written as ζ(n + 2) = ζ(2, {1}n), and the notation has been
already used in (1.8).

Exercise 4.1. Show that

ζ({2, 1}n) = ζ({3}n), n = 1, 2, . . . . (4.13)

The iterated integral representations of MZVs and generalized polylogarithms
motivate considering a slightly general than (1.5) version of MZVs, namely, the
(alternating or alternative) Euler sums

ζ(s1, . . . , sl;σ1, . . . , σl) :=
∑

n1>n2>···>nl≥1

σn1
1 σ

n2
2 · · ·σnl

l

ns1
1 n

s2
2 · · ·n

sl
l

, (4.14)

where σj ∈ {±1} are ‘signs’ and sj, as before, are positive integers. It is customary
to shortcut the notation by combining strings of exponents and signs and replacing
sj by sj in the multi-index string if and only if the corresponding σj = −1. Thus,
ζ(1) = ζ(1;−1) = Li1(−1) = − log 2 and ζ(2, 1) = ζ(2, 1;−1, 1).

Exercise 4.2. Show that

(a) ζ(1, {1}n−1) = Li{1}n(−1) =
(− log 2)n

n!
, n = 1, 2, . . . ; (b) ζ(2, 1) =

ζ(3)

8
.

In what follows we will see that the standard algebraic setup for the Euler sums
is an extension of the non-commutative algebra Q〈x0, x1〉 to Q〈x0, x1, x1〉, and gen-
eralization of the integral in (4.11) by allowing the three differential forms

x0 7→ a = ω0(z) dz =
dz

z
, x1 7→ b = ω1(z) dz =

dz

1− z
,

and x1 7→ c = ω1(z) dz =
−dz

1 + z
.

(4.15)

5. The generating-function method

Another application of differential equations for generalized polylogarithms, de-
duced in Lemma 4.1, is the generating-function method.

Let us first remark that, for an admissible multi-index s = (s1, . . . , sl), the corre-
sponding set of periodic polylogarithms

Li{s}n(z), where {s}n = ( s, s, . . . , s︸ ︷︷ ︸
n times

), n = 0, 1, 2, . . . ,
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possesses the generating function

Ls(z, t) :=
∞∑

n=0

Li{s}n(z)tn|s|,

which satisfies an ordinary differential equation with respect to the variable z. For
instance, if `(s) = 1 that is s = (s), the corresponding differential equation, by
Lemma 4.1, has the form((

(1− z)
d

dz

)(
z

d

dz

)s−1

− ts
)
Ls(z, t) = 0,

and its solution may be written explicitly by means of generalized hypergeometric
series.

In order to show any reasonable result for MZVs using generating functions, we
have to be familiar Euler’s gamma function Γ(s) and its properties as well as with
the Euler–Gauss hypergeometric function (or hypergeometric series)

F (a, b; c; z) = 2F1

(
a, b
c

∣∣∣∣ z)
=

∞∑
n=0

(a)n(b)n

n!(c)n

zn

= 1 +
a · b
1 · c

z +
a(a+ 1) · b(b+ 1)

1 · 2 · c(c+ 1)
z2

+
a(a+ 1)(a+ 2) · b(b+ 1)(b+ 2)

1 · 2 · 3 · c(c+ 1)(c+ 2)
z3 + · · · ,

where

(a)n =
Γ(a+ n)

Γ(a)
=

{
1 if n = 0,

a(a+ 1) · · · (a+ n− 1) if n ≥ 1,

abbreviates the product of n consecutive numbers starting from a, the so-called
Pochhammer’s symbol or shifted factorial (because in case a = 1 we clearly get the
standard factorial (1)n = n!).

The convergence of the series can be determined by the ratio test. If we denote

an =
(a)n(b)n

n!(c)n

the nth coefficient of the hypergeometric series F (a, b; c; z), then

an+1

an

=
(a+ n)(b+ n)

(1 + n)(c+ n)
→ 1 as n→∞,

hence the series converges in the unit disc, |z| < 1. In several cases, depending
on the parameters a, b, c, the series may converge on the boundary of the disc, for
example, at z = 1. We will examine the latter situation.

Because of the relation

(1 + n)(c+ n) · an+1 = (a+ n)(b+ n) · an for n = 0, 1, 2, . . . ,
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we have

z

(
z

d

dz
+ a

)(
z

d

dz
+ b

)
F (a, b; c; z) = z

(
z

d

dz
+ a

)(
z

d

dz
+ b

) ∞∑
n=0

(a)n(b)n

n!(c)n

zn

= z

∞∑
n=0

(a)n(a+ n) · (b)n(b+ n)

n!(c)n

zn =
∞∑

n=0

(a)n+1(b)n+1

n!(c)n

zn+1

=
∞∑

n=1

(a)n(b)n

(n− 1)!(c)n−1

zn =
∞∑

n=0

(a)n(b)n · n(c+ n)

n!(c)n

zn

=

(
z

d

dz

)(
z

d

dz
+ c− 1

) ∞∑
n=0

(a)n(b)n

n!(c)n

zn

=

(
z

d

dz

)(
z

d

dz
+ c− 1

)
F (a, b; c; z).

Lemma 5.1. The hypergeometric function F (a, b; c; z) satisfies the differential equa-
tion (

z

(
z

d

dz
+ a

)(
z

d

dz
+ b

)
−

(
z

d

dz

)(
z

d

dz
+ c− 1

))
y = 0;

in equivalent form,

z(1− z)
d2y

dz2
+ (c− (a+ b+ 1)z)

dy

dz
− aby = 0.

Lemma 5.2 (Pochhammer’s integral). If Re c > Re b > 0 and |z| < 1, then

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

xb−1(1− x)c−b−1(1− zx)−a dx.

Note that for a = 0 the integral on the right-hand side reduces to Euler’s integral
of the first kind B(b, c− b).

Proof. The conditions Re b > 0 and Re(c− b) > 0 ensure convergence of the integral

I(a, b; c; z) =

∫ 1

0

xb−1(1− x)c−b−1(1− zx)−a dx.

Furthermore, for |z| < 1,

(1− zx)−a =
∞∑

n=0

(a)n

n!
znxn.
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Therefore,

I(a, b; c; z) =

∫ 1

0

∞∑
n=0

(a)nz
n

n!
xb+n−1(1− x)c−b−1 dx

=
∞∑

n=0

(a)nz
n

n!

∫ 1

0

xb+n−1(1− x)c−b−1 dx

=
∞∑

n=0

(a)nz
n

n!

Γ(b+ n)Γ(c− b)

Γ(c+ n)

=
Γ(b)Γ(c− b)

Γ(c)
F (a, b; c; z),

and the result follows. �

As a corollary of this result and Abel’s theorem on power series, we deduce

Lemma 5.3 (Gauss’ summation formula). If Re c > Re(a+ b), then

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
.

Proof. The result follows, whenever Re c > Re b > 0 and Re(c−a−b) > 0, by taking
the limit z → 1 in Lemma 5.2 and using the beta integral evaluation of the resulted
definite integral:

F (a, b; c; 1) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

xb−1(1− x)c−b−a−1 dx

=
Γ(c)

Γ(b)Γ(c− b)
· Γ(b)Γ(c− a− b)

Γ(c− a)
.

To get rid of restriction Re c > Re b > 0, note that the formula is valid for Re(c −
a− b) > 0 and use the theory of analytic continuation. �

Remark. When a is a negative integer −m, the theorem becomes
m∑

n=0

(
m

n

)
(b)n

(c)n

(−1)n = F (−m, b; c; 1) =
(c− b)m

(c)m

,

the result known as the Chu–Vandermonde summation. With the help of the latter
formula one can show the following binomial evaluation:

m∑
n=0

(
p

n

)(
q

m− n

)
=

(
p+ q

m

)
.

Exercise 5.1. (a) Show that

F (a, b; 1 + b− a;−1) =
Γ(1 + b− a)Γ(1 + 1

2
b)

Γ(1 + b)Γ(1 + 1
2
b− a)

.

(b) Give a gamma-function evaluation of the hypergeometric series F (a, 1−a; c; 1
2
).
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It is now a good time to go back to the MZV story.

Lemma 5.4. The following equality holds:

L(3,1)(z, t) = F
(

1
2
(1 + i)t,−1

2
(1 + i)t; 1; z

)
· F

(
1
2
(1− i)t,−1

2
(1− i)t; 1; z

)
, (5.1)

where F (a, b; c; z) denotes the hypergeometric function and i =
√
−1.

Proof. Routine verification (with a help of Lemma 4.1 for the left-hand side) shows
that the both sides of the required equality are annihilated by action of the differ-
ential operator (

(1− z)
d

dz

)2(
z

d

dz

)2

− t4;

in addition, the first terms in z-expansions of the both sides in (5.1) coincide:

1 +
t4

8
z2 +

t4

18
z3 +

t8 + 44t4

1536
z4 + · · · .

Thus the statement of the lemma follows. �

Exercise 5.2. Fill in the missing details.

The following result was conjectured by Zagier in his pioneering talk at the Eu-
ropean Congress of Mathematics in 1994. The proof was given some years later in
joint work of Borwein, Bradley, Broadhurst and Lisoněk.

Theorem 5.1. For any integer n ≥ 1, the identity

ζ({3, 1}n) =
2π4n

(4n+ 2)!
(5.2)

holds.

Proof. By Lemma 5.3 (Gauss’ summation formula),

F (a,−a; 1; 1) =
1

Γ(1− a)Γ(1 + a)
=

sin πa

πa
, (5.3)

substituting z = 1 into equality (5.1) yields

∞∑
n=0

ζ({3, 1}n)t4n = L(3,1)(1, t) =
sin 1

2
(1 + i)πt

1
2
(1 + i)πt

·
sin 1

2
(1− i)πt

1
2
(1− i)πt

=
1

2π2t2
·
(
e(1+i)πt/2 − e−(1+i)πt/2

)(
e(1−i)πt/2 − e−(1−i)πt/2

)
=

1

2π2t2
·
(
eπt + e−πt − eiπt − e−iπt

)
=

1

2π2t2

∞∑
m=0

(1 + (−1)m − im − (−i)m)
(πt)m

m!
=

∞∑
n=0

2π4nt4n

(4n+ 2)!
.

Comparison of the coefficients in the same powers of t gives the desired identity. �
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Identity (5.2) is not the unique example of application of generating functions.
We present more identities of Borwein, Bradley and Broadhurst, similar to (5.2), for
which the above method is also effective:

ζ({2}n) =
2(2π)2n

(2n+ 1)!

(
1

2

)2n+1

, ζ({4}n) =
4(2π)4n

(4n+ 2)!

(
1

2

)2n+1

,

ζ({6}n) =
6(2π)6n

(6n+ 3)!
, ζ({8}n) =

8(2π)8n

(8n+ 4)!

((
1 +

1√
2

)4n+2

+

(
1− 1√

2

)4n+2)
,

ζ({10}n) =
10(2π)10n

(10n+ 5)!

(
1 +

(
1 +

√
5

2

)10n+5

+

(
1−

√
5

2

)10n+5)
,

(5.4)
where n = 1, 2, . . . . Identities

ζ(m+ 2, {1}n) = ζ(n+ 2, {1}m), m, n = 0, 1, 2, . . . ,

may be derived by the generating-function method (as well as by straightforward
application of Theorem 4.1).

Exercise 5.3. Prove (some) identities in (5.4).

Exercise 5.4. Show that

ζ({3, 1}n) =
1

2n+ 1
ζ({2}2n).

The family of identities

ζ({2, 1}n) =
1

8n
ζ({3}n), n = 1, 2, . . . , (5.5)

conjectured by Borwein, Bradley and Broadhurst in 1996, generalises Exercises 4.1
and 4.2 (b) and looks very similar to that in Theorem 5.1. It was proven only
recently by Zhao using the standard relations for the alternating Euler sums; a
proof by generating functions is still wanted.

Another family

ζ({2}n+3) + 2ζ({2}n, 3, 3) = ζ(2, 1, {2}n, 3), n = 1, 2, . . . , (5.6)

conjectured by Hoffman, is shown to be true by Vermaseren for n ≤ 8. The general
case remains a conjecture.

An example of other-type generating functions relates to generalization of Apéry’s
identity

ζ(3) =
5

2

∞∑
k=1

(−1)k−1

k3
(
2k
k

) ;
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namely, the following expansions are valid:
∞∑

n=0

ζ(2n+ 3)t2n =
∞∑

k=1

1

k3(1− t2/k2)

=
∞∑

k=1

(−1)k−1

k3
(
2k
k

) (
1

2
+

2

1− t2/k2

) k−1∏
l=1

(
1− t2

l2

)
,

∞∑
n=0

ζ(4n+ 3)t4n =
∞∑

k=1

1

k3(1− t4/k4)
=

5

2

∞∑
k=1

(−1)k−1

k3
(
2k
k

) 1

1− t4/k4

k−1∏
l=1

1 + 4t4/l4

1− t4/l4
.

(5.7)
Their proofs as well as proofs of several other identities is based on transforma-
tion and summation formulae of generalized hypergeometric functions, similar to
application of formula (5.3) in deducing Theorem 5.1.

Identities (5.7) can be used in fast computation of the Riemann zeta function at
odd integers. To see that note that they both come as special cases (s = 0 and
t = 0) of the bivariate generating function identity

∞∑
n=0

∞∑
m=0

(
n+m

n

)
ζ(2n+ 4m+ 3)s2nt4m

=
∞∑

k=1

k

k4 − s2k2 − t4
=

1

2

∞∑
k=1

(−1)k−1

k
(
2k
k

) 5k2 − s2

k4 − s2k2 − t4

k−1∏
m=1

(m2 − s2)2 + 4t4

m4 − s2m2 − t4
,

which was conjectured by Cohen and proved independently by Bradley and Rivoal.
Recently, applying the so-called Markov–WZ algorithm, Hessami Pilehroods gave a
different identity

∞∑
k=1

k

k4 − s2k2 − t4
=

1

2

∞∑
n=1

(−1)n−1r(n)

n
(
2n
n

) ∏n−1
m=1((m

2 − s2)2 + 4t4)∏2n
m=n(m4 − s2m2 − t4)

, (5.8)

where

r(n) = 205n6−160n5+(32−62s2)n4+40s2n3+(s4−8s2−25t4)n2+10t4n+t4(s2−2).

Formula (5.8) generates (Apéry-like) series for all ζ(2n+ 4m+ 3), n,m ≥ 0, conver-
gent at the geometric rate with ratio 2−10. For example, if s = t = 0 one gets the
Amdeberhan–Zeilberger series for ζ(3),

ζ(3) =
1

2

∞∑
n=1

(−1)n−1(205n2 − 160n+ 32)

n5
(
2n
n

)5 .

Exercise 5.5. Using (5.8), find fast converging series for ζ(5) and ζ(7).

6. Quasi-shuffle products

The following construction, due to Hoffman, allows one to consider each of the
algebras Htt and H1

∗ as a particular case of some general algebraic structure. De-
scription of the structure is the subject of the section.
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Consider the non-commutative, graded by degree, polynomial algebra A = K〈A〉
over the field K ⊂ C; here A denotes a locally finite set of generators (i.e., the set of
generators of fixed positive degree is finite). As usual, elements of the set A are said
to be letters and monomials in these letters are words. To any word w, assign its
length (the number of letters in the record) `(w) and its weight (the sum of degrees
of the letters) |w|. The unique word of length 0 and weight 0 is the empty word,
which is denoted by 1; this word is the unit of the algebra A. The neutral (zero)
element of the algebra A is denoted by 0.

Now, define the product ◦, additively distributing it over the whole algebra A, by
the following rules:

1 ◦ w = w ◦ 1 = w (6.1)

for any word w, and

aju ◦ akv = aj(u ◦ akv) + ak(aju ◦ v) + [aj, ak](u ◦ v) (6.2)

for any words u, v and letters aj, ak ∈ A, where the functional

[ · , · ] : Ā× Ā→ Ā (6.3)

(Ā := A ∪ {0}) satisfies the properties

(S0) [a,0] = 0 for any a ∈ Ā;
(S1) [[aj, ak], al] = [aj, [ak, al]] for any aj, ak, al ∈ Ā;
(S2) either [aj, ak] = 0 or |[ak, aj]| = |aj|+ |ak| for any aj, ak ∈ A.

Then A◦ := (A, ◦) becomes an associative graded K-algebra and, if the additional
property

(S3) [aj, ak] = [ak, aj] for any aj, ak ∈ Ā
holds, then it is the commutative K-algebra (the result of Hoffman).

If [aj, ak] = 0 for all letters aj, ak ∈ A, then (A, ◦) is the standard shuffle algebra;
in particular case A = {x0, x1}, we obtain the shuffle algebra A◦ = Htt of the
multiple zeta values (or of the polylogarithms). The stuffle algebra H1

∗ corresponds
to the choice of the generators A = {yj}∞j=1 and the functional

[yj, yk] = yj+k for integers j ≥ 1 and k ≥ 1.

On the algebra A with the given functional (6.3), define the dual product ◦̄ by
the rules

1◦̄w = w◦̄1 = w,

uaj ◦̄vak = (u◦̄vak)aj + (uaj ◦̄v)ak + (u◦̄v)[aj, ak]

in place of (6.1) and (6.2), respectively. Then A◦̄ := (A, ◦̄) is a (commutative, if
property (S3) holds) graded K-algebra as well.

Theorem 6.1. The algebras A◦ and A◦̄ coincide.

Proof. It is sufficient to prove the relation

w1 ◦ w2 = w1◦̄w2 (6.4)
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for all words w1, w2 ∈ K〈A〉. We will proceed the proof by induction on the quantity
`(w1) + `(w2). If `(w1) = 0 or `(w2) = 0, then relation (6.4) becomes the evident
identity. If `(w1) = `(w2) = 1, i.e., w1 = a1 and w2 = a2 are letters, then

a1 ◦ a2 = a1a2 + a2a1 + [a1, a2] = a1◦̄a2.

If `(w1) > 1 and `(w2) = 1, then writing w1 = a1ua2 and w2 = a3 ∈ A and applying
the inductive hypothesis we deduce that

a1ua2 ◦ a3 = a1(ua2 ◦ a3) + a3a1ua2 + [a1, a3]ua2

= a1(ua2◦̄a3) + a3a1ua2 + [a1, a3]ua2

= a1((u◦̄a3)a2 + ua2a3 + u[a2, a3]) + a3a1ua2 + [a1, a3]ua2

= a1((u ◦ a3)a2 + ua2a3 + u[a2, a3]) + a3a1ua2 + [a1, a3]ua2

= (a1(u ◦ a3) + a3a1u+ [a1, a3]u)a2 + a1ua2a3 + a1u[a2, a3]

= (a1u ◦ a3)a2 + a1ua2a3 + a1u[a2, a3]

= (a1u◦̄a3)a2 + a1ua2a3 + a1u[a2, a3]

= a1ua2◦̄a3.

In the same vein (but with more cumbersome computations), we proceed in the
remaining case `(w1) > 1 and `(w2) > 1. Namely, writing w1 = a1ua2, w2 = a3va4

and applying the inductive hypothesis we obtain

a1ua2 ◦ a3va4 = a1(ua2 ◦ a3va4) + a3(a1ua2 ◦ va4) + [a1, a3](ua2 ◦ va4)

= a1(ua2◦̄a3va4) + a3(a1ua2◦̄va4) + [a1, a3](ua2◦̄va4)

= a1((u◦̄a3va4)a2 + (ua2◦̄a3v)a4 + (u◦̄a3v)[a2, a4])

+ a3((a1u◦̄va4)a2 + (a1ua2◦̄v)a4 + (a1u◦̄v)[a2, a4])

+ [a1, a3]((u◦̄va4)a2 + (ua2◦̄v)a4 + (u◦̄v)[a2, a4])

= a1((u ◦ a3va4)a2 + (ua2 ◦ a3v)a4 + (u ◦ a3v)[a2, a4])

+ a3((a1u ◦ va4)a2 + (a1ua2 ◦ v)a4 + (a1u ◦ v)[a2, a4])

+ [a1, a3]((u ◦ va4)a2 + (ua2 ◦ v)a4 + (u ◦ v)[a2, a4])

= (a1(u ◦ a3va4) + a3(a1u ◦ va4) + [a1, a3](u ◦ va4))a2

+ (a1(ua2 ◦ a3v) + a3(a1ua2 ◦ v) + [a1, a3](ua2 ◦ v))a4

+ (a1(u ◦ a3v) + a3(a1u ◦ v) + [a1, a3](u ◦ v))[a2, a4]

= (a1u ◦ a3va4)a2 + (a1ua2 ◦ a3v)a4 + (a1u ◦ a3v)[a2, a4]

= (a1u◦̄a3va4)a2 + (a1ua2◦̄a3v)a4 + (a1u◦̄a3v)[a2, a4]

= a1ua2◦̄a3va4.

This concludes the proof. �

Remark. If the graded algebras possess property (S3), the above proof may be es-
sentially simplified. Nevertheless, we find the fact of coincidence of the algebras A◦
and A◦̄ in the most general settings, i.e., when the functional (6.3) satisfies properties
(S0)–(S2), to be rather important.
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In conclusion of the section, we will proof an auxiliary statement.

Lemma 6.1. For any letter a ∈ A and any words u, v ∈ A, the following identity
holds:

a ◦ uv − (a ◦ u)v = u(a ◦ v − av). (6.5)

Proof. We will prove the statement by induction on the number of letters in the
word u. If the word u is empty, then identity (6.5) is evident. Otherwise, write the
word u as u = a1u1, where a1 ∈ A and the word u1 consists of less number of letters,
hence the identity

a ◦ u1v − (a ◦ u1)v = u1(a ◦ v − av)

holds. Then

a ◦ uv − (a ◦ u)v = a ◦ a1u1v − (a ◦ a1u1)v

= aa1u1v + a1(a ◦ u1v) + [a, a1]u1v

− (aa1u1 + a1(a ◦ u1) + [a, a1]u1)v

= a1(a ◦ u1v − (a ◦ u1)v) = a1u1(a ◦ v − av)

= u(a ◦ v − av),

which is the desired result. �

7. Functional model of stuffle algebra

The functional model of the stuffle algebra H∗ cannot be described in the full anal-
ogy with the polylogarithmic model of the shuffle algebra Htt, since rule (3.4) has no
differential interpretation as (3.3). Therefore we shall use a difference interpretation
of rule (3.4), namely, the (simplest) difference operator

Df(t) = f(t− 1)− f(t).

It can be easily verified that

D
(
f1(t)f2(t)

)
= Df1(t) · f2(t) + f1(t) ·Df2(t) +Df1(t) ·Df2(t), (7.1)

and that inverse mapping

Ig(t) =
∞∑

n=1

g(t+ n),

hence D(Ig(t)) = g(t), is defined up to an additive constant provided some addi-
tional restrictions on the function g(t) as t→ +∞, for instance g(t) = O(t−2).
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Remark. The operator D can be related to the differential operator d/dt as follows:

D = e−d/dt − 1 =
∞∑

n=1

(−1)n

n!

dn

dtn
.

The above indicated equality is justified by formal application of the Taylor expan-
sion:

f(t− 1) = f(t) +
∞∑

n=1

(−1)n

n!

dn

dtn
f(t);

however the formula is valid for an entire function. Exponentiating derivations (in
word algebras), in connection with generalization of Theorem 3.1, is discussed below.

A natural analogy with Lemmas 4.1 and 4.2, by (3.4) and (7.1) provides the
existence of functions ωj(t) satisfying the properties

ωj(t)ωk(t) = ωj+k(t) for integers j ≥ 1 and k ≥ 1.

The simplest choice is given by the formulae

ωj(t) =
1

tj
, j = 1, 2, . . . ,

and yields us to the functions

Ris(t) = Ris1,...,sl−1,sl
(t) := I

(
1

tsl
Ris1,...,sl−1

(t)

)
, Ri1(t) := 1,

defined by induction on the length of multi-index. Thanks to the definition, we have

DRiuyj
(t) =

1

tj
Riu(t) (7.2)

that, in some sense, is a discrete analogue of formula (4.4).

Lemma 7.1. The following identity holds:

Ris(t) =
∑

n1>···>nl−1>nl≥1

1

(t+ n1)s1 · · · (t+ nl−1)sl−1(t+ nl)sl
; (7.3)

in particular,

Ris(0) = ζ(s), s ∈ Zl, s1 ≥ 2, s2 ≥ 1, . . . , sl ≥ 1, (7.4)

lim
t→+∞

Ris(t) = 0, s ∈ Zl, s1 ≥ 2, s2 ≥ 1, . . . , sl ≥ 1. (7.5)
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Proof. By definition, we find that

Ris(t) = I

(
1

tsl
Ris1,...,sl−1

(t)

)
= I

(
1

tsl

∑
n1>···>nl−1≥1

1

(t+ n1)s1 · · · (t+ nl−1)sl−1

)

=
∞∑

n=1

1

(t+ n)sl

∑
n1>···>nl−1≥1

1

(t+ n1 + n)s1 · · · (t+ nl−1 + n)sl−1

=
∑

n′
1>···>n′

l−1>n≥1

1

(t+ n′1)
s1 · · · (t+ n′l−1)

sl−1(t+ n)sl
,

and this implies the required formula (7.3). �

Define now the multiplication ∗̄ on the algebra H1 (and, in particular, on the
subalgebra H0) by the rules

1∗̄w = w∗̄1 = w, (7.6)

uyj ∗̄vyk = (u∗̄vyk)yj + (uyj ∗̄v)yk + (u∗̄v)yj+k

instead of (3.2) and (3.4).

Lemma 7.2. The map w 7→ Riw(t) is a homomorphism of the algebra (H0, ∗̄) into
C([0,+∞); R).

Proof. It is sufficient to verify the relations

Riw1∗̄w2(t) = Riw1(t) Riw2(t) for all w1, w2 ∈ H0; (7.7)

without loss of generality we may assume that w1, w2 are polynomials of the alge-
bra H0. We will prove relation (7.7) by induction on the quantity `(w1) + `(w2); if
w1 = 1 or w2 = 1, then validity of (7.7) is evident due to (7.6). Otherwise, write
w1 = uyj, w2 = vyk and apply formulae (7.1), (7.2) and the inductive hypothesis:

D
(
Riw1(t) Riw2(t)

)
= D

(
Riuyj

(t) Rivyk
(t)

)
= DRiuyj

(t) · Rivyk
(t) + Riuyj

(t) ·DRivyk
(t)

+DRiuyj
(t) ·DRivyk

(t)

=
1

tj
Riu(t) Rivyk

(t) +
1

tk
Riuyj

(t) Riv(t) +
1

tj+k
Riu(t) Riv(t)

=
1

tj
Riu∗̄vyk

(t) +
1

tk
Riuyj ∗̄v(t) +

1

tj+k
Riu∗̄v(t)

= D
(
Ri(u∗̄vyk)yj

(t) + Ri(uyj ∗̄v)yk
(t) + Ri(u∗̄v)yj+k

(t)
)

= DRiuyj ∗̄vyk
(t)

= DRiw1∗̄w2(t).

Therefore

Riw1(t) Riw2(t) = Riw1∗̄w2(t) + C, (7.8)
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and letting t tend to +∞, by (7.5) we obtain C = 0. Thus, relation (7.8) becomes
the required equality (7.7), and the lemma follows. �

Proof of Theorem 3.2. By (7.4), Theorem 3.2 follows from Lemma 7.2 and Theo-
rem 6.1. �

Another way to prove Theorem 3.2 (and Lemma 7.2 as well) is due to Hoffman’s
homomorphism φ : H1 → Q[[t1, t2, . . . ]], where Q[[t1, t2, . . . ]] is the Q-algebra of for-
mal power series in the countable set of (commuting) variables t1, t2, . . . . Namely,
the Q-linear map φ is defined by setting φ(1) := 1 and

φ(ys1ys2 · · · ysl
) :=

∑
n1>n2>···>nl≥1

ts1
n1
ts2
n2
· · · tsl

nl
, s ∈ Zl, s1 ≥ 1, . . . , sl ≥ 1.

The image of the homomorphism (actually, the monomorphism) φ is the algebra
QSym of quasi-symmetric functions. A formal power series (of bounded degree) in
t1, t2, . . . is called here a quasi-symmetric function if the coefficients of ts1

n1
ts2
n2
· · · tsl

nl

and ts1

n′
1
ts2

n′
2
· · · tsl

n′
l
are the same whenever n1 > n2 > · · · > nl and n′1 > n′2 > · · · > n′l.

By the above means the homomorphism w 7→ Riw(t) in Lemma 7.2 is defined as
restriction of the homomorphism φ on H0 by setting tn = 1/(t+ n), n = 1, 2, . . . .

Another approach to showing the stuffle relations for multiple zeta values was
recently proposed by Cartier. Slightly modifying the original scheme of Cartier, we
will expose main ideas of the approach for proving Euler’s identity

ζ(s1)ζ(s2) = ζ(s1 + s2) + ζ(s1, s2) + ζ(s2, s1), s1 ≥ 2, s2 ≥ 2, (7.9)

as an example. In order to do this, we require the integral representation

ζ(s) =

∫
· · ·

∫
[0,1]|s|

l−1∏
j=1

t1t2 · · · ts1+···+sj

1− t1t2 · · · ts1+···+sj

·
dt1 dt2 · · · dt|s|

1− t1t2 · · · ts1+s2+···+sl

, l = `(s), (7.10)

for admissible multi-indices s, which differs from that in (4.10). This representation
may be proved by straightforward integrating the series

1

1− t
=

∞∑
n=0

tn.

Substituting u = t1 · · · ts1 , v = ts1+1 · · · ts1+s2 in the elementary identity

1

(1− u)(1− v)
=

1

1− uv
+

u

(1− u)(1− uv)
+

v

(1− v)(1− uv)

and integrating over the hypercube [0, 1]s1+s2 in accordance with (7.10), we arrive
at identity (7.9).

8. Ihara–Kaneko derivations and Ohno’s relations

As in Section 6, consider the graded non-commutative polynomial algebra A =
K〈A〉 over the field K of characteristic 0 with the locally finite set of generators A.
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By a derivation of the algebra A we mean a linear map δ : A → A (of the graded
K-vector spaces) that satisfies the Leibniz rule

δ(uv) = δ(u)v + uδ(v) for all u, v ∈ A. (8.1)

The commutator of two derivations [δ1, δ2] := δ1δ2 − δ2δ1 is a derivation, hence the
set of all derivations of the algebra A forms the Lie algebra Der(A) (naturally graded
by degree).

It can be easily seen that, for defining a derivation δ ∈ Der(A), it is sufficient to
give its image on the generators A and distribute then over the whole algebra by
linearity and in accordance with rule (8.1).

The nest assertion gives examples of derivations of A, when the algebra possesses
an additive multiplication ◦ with the properties (6.1) and (6.2).

Theorem 8.1. For any letter a ∈ A, the map

δa : w 7→ aw − a ◦ w (8.2)

is a derivation.

Proof. Linearity of the map δa is clear. By Lemma 6.1, for any words u, v ∈ A we
have

δa(uv) = auv − a ◦ uv = auv − (a ◦ u)v − u(a ◦ v − av)

= (δau)v + u(δav),

thus (8.2) is actually a derivation. �

Theorem 8.1 implies that the maps δtt : H → H and δ∗ : H1 → H1, defined by the
formulae

δtt : w 7→ x1w − x1ttw, δ∗ : w 7→ y1w − y1 ∗ w = x1w − x1 ∗ w, (8.3)

are derivations; thanks to rule (3.5), the map δ∗ is a derivation on the whole al-
gebra H. We mention the action of derivations (8.3), obtained in accordance with
(3.2)–(3.5), on the generators of the algebra:

δttx0 = −x0x1, δttx1 = −x2
1, δ∗x0 = 0, δ∗x1 = −x2

1 − x0x1. (8.4)

For any derivation δ of the algebra H (or of the subalgebra H0), define the dual
derivation δ = τδτ , where τ is the anti-automorphism of the algebra H (and H0) in
Section 4. A derivation δ is said to be symmetric if δ = δ, and anti-symmetric if
δ = −δ. Since τx0 = x1, an (anti-)symmetric derivation δ is uniquely determined
by its value on one of the generators x0 or x1, while an arbitrary derivation requires
its values on the both generators.

Define now the derivation D of the algebra H by setting Dx0 = 0, Dx1 = x0x1

(i.e., Dys = ys+1 for the generators ys of the algebra H1) and write the statement of
Theorem 2.1 (Hoffman’s relations) in the following form.

Theorem 8.2 (Derivation theorem). For any word w ∈ H0, the identity

ζ(Dw) = ζ(Dw) (8.5)

holds.
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Proof. Expressing a word w ∈ H0 as w = ys1ys2 · · · ysl
(with s1 > 1), note that the

left-hand side of equality (2.1) corresponds to the element

Dw = D(ys1ys2 · · · ysl
) = ys1+1ys2 · · · ysl

+ ys1ys2+1ys3 · · · ysl
+ · · ·+ ys1 · · · ysl−1

ysl+1

(8.6)
of the algebra H0. On the other hand,

Dw = τD
(
x0x

sl−1
1 x0x

sl−1−1
1 · · ·x0x

s2−1
1 x0x

s1−1
1

)
= τ

l∑
k=1
sk≥2

sk−2∑
j=0

x0x
sl−1
1 · · ·x0x

sk+1−1
1 x0x

j
1x0x

sk−j−1
1 x0x

sk−1−1
1 · · ·x0x

s1−1
1

=
l∑

k=1
sk≥2

sk−2∑
j=0

xs1−1
0 x1 · · ·xsk−1−1

0 x1x
sk−j−1
0 x1x

j
0x1x

sk+1−1
0 x1 · · ·xsl−1

0 x1 (8.7)

that corresponds to the right-hand side in (2.1). Applying now the map ζ to the
both sides of obtained equalities (8.6) and (8.7), by Theorem 2.1 we deduce the
required identity (8.5). �

Remark. The condition w ∈ H0 in Theorem 8.2 cannot be weakened; equality (8.5)
is false for the word w = x1:

ζ(Dx1) = ζ(x0x1) 6= 0 = ζ(Dx1).

Proof of Theorem 3.3. Comparing action (8.4) of derivations (8.3) with those ofD,D
on the generators of the algebra H,

Dx0 = 0, Dx1 = x0x1, Dx0 = x0x1, Dx1 = 0,

we see that δ∗ − δtt = D − D. Therefore application of Theorem 8.2 to the word
w ∈ H0 leads to the required equality:

ζ(x1ttw − x1 ∗ w) = ζ
(
(δ∗ − δtt)w

)
= ζ

(
(D −D)w

)
= ζ(Dw)− ζ(Dw) = 0.

This completes the proof. �

Remark. Another proof of Theorem 3.3, based on the shuffle and stuffle relations
for the so-called coloured polylogarithms

Lis(z) = Li(s1,s2,...,sl)(z1, z2, . . . , zl) :=
∑

n1>n2>···>nl≥1

zn1
1 zn2

2 · · · znl
l

ns1
1 n

s2
2 · · ·n

sl
l

, (8.8)

is given by Waldschmidt. (As it is easily seen, specializing z2 = · · · = zl = 1
functions (8.8) become generalized polylogarithms (4.1).) We do not however have
a goal to expose properties of the functional model (8.8) in these lectures.

Theorem 8.2 has a natural generalization. For any n ≥ 1, define the anti-
symmetric derivation ∂n ∈ Der(H) by the rule ∂nx0 = x0(x0+x1)

n−1x1; as mentioned
in the proof of Theorem 3.3, we have ∂1 = D −D = δ∗ − δtt. The following result
is valid.
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Theorem 8.3. For any n ≥ 1 and any word w ∈ H0, the identity

ζ(∂nw) = 0 (8.9)

holds.

In what follows, we describe a scheme of the proof of the theorem given in a
preprint by Kaneko and Ihara (the proof of Hoffman and Ohno is based on a different
method).

The following result, proved by Ohno by means of the partial-fraction method,
contains as particular cases Theorems 2.1, 2.4, and 4.1 (corresponding implications
are also given by Ohno).

Theorem 8.4 (Ohno’s relations). Let a word w ∈ H0 and its dual w′ = τw ∈ H0

have the following records in terms of the generators of the algebra H1:

w = ys1ys2 · · · ysl
, w′ = ys′1

ys′2
· · · ys′k

.

Then, for any integer n ≥ 0, the identity∑
e1,e2,...,el≥0

e1+e2+···+el=n

ζ(ys1+e1ys2+e2 · · · ysl+el
) =

∑
e1,e2,...,ek≥0

e1+e2+···+ek=n

ζ(ys′1+e1
ys′2+e2

· · · ys′k+ek
)

holds.

For each integer n ≥ 1 define the derivation Dn ∈ Der(H) setting Dnx0 = 0
and Dnx1 = xn

0x1. It may be easily justified that the derivations D1, D2, . . . pair-
wise commute; this holds for the dual derivations D1, D2, . . . as well. Consider a

completion of H, namely the algebra Ĥ = Q〈〈x0, x1〉〉 of formal power series in non-
commutative variables x0, x1 over the field Q. Action of the anti-automorphism τ

and of derivations δ ∈ Der(H) is naturally extended to the whole algebra Ĥ. For
simplicity, the record w ∈ ker ζ will mean that all homogeneous components of the

element w ∈ Ĥ belongs to ker ζ. The maps

D =
∞∑

n=1

Dn

n
, D =

∞∑
n=1

Dn

n

are derivations of the algebra Ĥ, and the standard relation of a derivation and
homomorphism implies that the maps

σ = exp(D), σ = τστ = exp(D)

are automorphisms of the algebra Ĥ. By the above means, Ohno’s relations may be
stated as follows.

Theorem 8.5. For any word w ∈ H0, the inclusion

(σ − σ)w ∈ ker ζ (8.10)

holds.
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Proof. Since Dx0 = 0 and

Dx1 =

(
x0 +

x2
0

2
+
x3

0

3
+ · · ·

)
x1 = (− log(1− x0))x1,

we may conclude that Dnx0 = 0 and Dnx1 = (− log(1 − x0))
nx1, hence σx0 = x0

and

σx1 =
∞∑

n=0

1

n!
(− log(1− x0))

nx1 = (1− x0)
−1x1 = (1 + x0 + x2

0 + x3
0 + · · · )x1.

Therefore, for the word w = ys1ys2 · · · ysl
∈ H0, we have

σw = σ(xs1−1
0 x1x

s2−1
0 x1 · · ·xsl−1

0 x1)

= xs1−1
0 (1 + x0 + x2

0 + · · · )x1x
s2−1
0 (1 + x0 + x2

0 + · · · )x1 · · ·
· · ·xsl−1

0 (1 + x0 + x2
0 + · · · )x1

=
∞∑

n=0

∑
e1,e2,...,el≥0

e1+e2+···+el=n

xs1−1+e1
0 x1x

s2−1+e2
0 x1 · · ·xsl−1+el

0 x1;

thus σw − στw ∈ ker ζ by Theorem 8.4. Applying now Theorem 4.1, we arrive at
the desired inclusion (8.10). �

Recalling ∂1, ∂2, . . . , consider the derivation

∂ =
∞∑

n=1

∂n

n
∈ Der(Ĥ).

Lemma 8.1. The following equality holds:

exp(∂) = σ · σ−1. (8.11)

Proof. First of all, let us note pairwise commutativity of the operators ∂n, n =
1, 2, . . . . Indeed, since ∂n(x0 + x1) = 0 for any n ≥ 1, it is sufficient to verify the
equality ∂n∂mx0 = ∂m∂nx0 for n,m ≥ 1. Taking in mind ∂n(x0 + x1)

k = 0, for any
n ≥ 1 and k ≥ 0 we obtain the desired property:

∂n∂mx0 = ∂n(x0(x0 + x1)
m−1x1)

= x0(x0 + x1)
n−1x1(x0 + x1)

m−1x1 − x0(x0 + x1)
m−1x0(x0 + x1)

n−1x1

= x0(x0 + x1)
n−1(x0 + x1 − x0)(x0 + x1)

m−1x1

− x0(x0 + x1)
m−1(x0 + x1 − x1)(x0 + x1)

n−1x1

= −x0(x0 + x1)
n−1x0(x0 + x1)

m−1x1 + x0(x0 + x1)
m−1x1(x0 + x1)

n−1x1

= ∂m∂nx0.

Consider the family ϕ(t), t ∈ R, of automorphisms of the algebra ĤR = R〈〈x0, x1〉〉,
defined on the generators x′0 = x0 + x1 and x1 by the rules

ϕ(t) : x′0 7→ x′0, ϕ(t) : x1 7→ (1− x′0)
tx1

(
1− 1− (1− x′0)

t

x′0
x1

)−1

, t ∈ R.
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Routine verification shows that

ϕ(t1)ϕ(t2) = ϕ(t1 + t2), ϕ(0) = id,
d

dt
ϕ(t)

∣∣∣
t=0

= ∂, ϕ(1) = σ · σ−1;

hence ϕ(t) = exp(t∂) and substitution t = 1 leads to the required result (8.11). �

Proof of Theorem 8.3. Now let us show how Theorem 8.3 follows from Theorem 8.5
and Lemma 8.1. First we have

∂ = log(σ · σ−1) = log(1− (σ − σ)σ−1) = −(σ − σ)
∞∑

n=1

((σ − σ)σ−1)n−1

n
σ−1

and secondly

σ − σ = (1− σ · σ−1)σ = (1− exp(∂))σ = −∂
∞∑

n=1

∂n−1

n!
σ,

hence ∂H0 = (σ − σ)H0, and Theorem 8.5 yields the required identities (8.9). �

Does there exist a simpler way of proving relations (8.9)? Explicit computations
show that ∂1 = δ∗ − δtt,

∂2 = [δ∗, δ∗],

∂3 =
1

2
[δ∗, [∂1, δ∗]]−

1

2
[δ∗, ∂2]−

1

2
[δ∗, ∂2],

∂4 =
1

6
[δ∗, [∂1, [∂1, δ∗]]]−

1

6
[δ∗, [δ∗, [∂1, δ∗]]] +

1

6
[∂1, [∂2, δ∗]] +

1

3
[∂3, δ∗] +

1

3
[∂3, δ∗]

and, in addition, δ∗ + δ∗ = δtt + δtt; therefore cases n = 1, 2, 3, 4 in Theorem 8.3
are served by induction (with Theorem 8.2 as inductive base). This circumstance
motivates the following hypothesis.

Conjecture 3. For any n ≥ 1, the above-defined anti-symmetric derivation ∂n is
contained in the Lie subalgebra of Der(H) generated by the derivations δ∗, δ∗, δtt,
and δtt.

Note also that the preprint of Ihara and Kaneko includes some other (in com-
parison with Conjecture 2) ideas of total description of identities for multiple zeta
values in terms of shuffle-stuffle relations.
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9. Proof of Ohno’s relations

In this section, we will discuss the original proof of Theorem 8.4 given by Y. Ohno.
For an admissible multi-index s = (s1, s2, . . . , sl) and an integer n ≥ 0, denote

Z(s;n) :=
∑

e1,e2,...,el≥0
e1+e2+···+el=n

ζ(s1 + e1, s2 + e2, . . . , sl + el)

=
∑

e1,e2,...,el≥0
e1+e2+···+el=n

ζ(xs1+e1−1
0 x1x

s2+e2−1
0 x1 · · ·xsl+el−1

0 x1),

the sum which occurs on the both sides of Ohno’s relations. If we express

xs1−1
0 x1x

s2−1
0 x1 · · ·xsl−1

0 x1 = xµ1

0 x
ν1
1 x

µ2

0 x
ν2
1 · · ·xµk

0 x
νk
1 , (9.1)

where all the exponents are positive integers, then

Z(s;n) =
∑

q1,...,qk≥0
q1+···+qk=n

∑
εi,1+···+εi,νi+qi

=νi

εi,j∈{0,1}, εi,νi+qi
=1, i=1,...,k

ζ
(
xµ1

0 xε1,1 · · ·xε1,ν1+q1
xµ2

0 xε2,1 · · ·xε2,ν2+e2

· · ·xµk
0 xεk,1

· · ·xεk,νk+qk

)
=

∑
q1,...,qk≥0

q1+···+qk=n

Σs(ν1, . . . , νk; q1, . . . , qk)

in notation

Σs(λ1, . . . , λk; q1, . . . , qk)

=
∑

εi,1+···+εi,νi+qi
=λi

εi,j∈{0,1}, εi,νi+qi
=1, i=1,...,k

ζ
(
xµ1

0 xε1,1 · · ·xε1,ν1+q1
xµ2

0 xε2,1 · · ·xε2,ν2+e2

· · ·xµk
0 xεk,1

· · ·xεk,νk+qk

)
.

Furthermore, we have

νi+qi∑
λi=1

i=1,...,k

Σs(λ1, . . . , λk; q1, . . . , qk)T
λ1−1
1 · · ·T λk−1

k

= ζ
(
xµ1

0 (x0 + T1x1)
ν1+q1−1x1 · · ·xµk

0 (x0 + Tkx1)
νk+qk−1x1

)
.

To compute the latter expression, we use the integral representation from (4.10);
performing the integration for each subword xµi−1

0 x0(x0+Tix1)
νi+qi−1x1, i = 1, . . . , k,
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we obtain ∫
· · ·

∫
t2i−2>z1>···>zµi−1>t2i−1>z′1>···>z′νi+qi−1>t2i

dz1

z1

· · · dzµi−1

zµi−1

dt2i−1

t2i−1

×
(

dz′1
z′1

+ Ti
dz′1

1− z′1

)
· · ·

(
dz′νi+qi−1

z′νi+qi−1

+ Ti

dz′νi+qi−1

1− z′νi+qi−1

)
dt2i

1− t2i

=
1

(µi − 1)! (νi + qi − 1)!

∫∫
t2i−2>t2i−1>t2i

(
log

t2i−2

t2i−1

)µi−1
dt2i−1

t2i−1

×
(

log
t2i−1

t2i

− Ti log
1− t2i−1

1− t2i

)νi+qi−1
dt2i

1− t2i

,

so that, with the help of the binomial theorem, the coefficient of T νi−1
i in the latter

expression is equal to

1

(µi − 1)! qi! (νi − 1)!

∫∫
t2i−2>t2i−1>t2i

(
log

t2i−2

t2i−1

)µi−1
dt2i−1

t2i−1

(
log

t2i−1

t2i

)qi

×
(
− log

1− t2i−1

1− t2i

)νi−1
dt2i

1− t2i

and we finally arrive at

Σs(ν1, . . . , νk; q1, . . . , qk) =
1∏k

i=1(µi − 1)! qi! (νi − 1)!

∫
· · ·

∫
1>t1>···>t2k>0

k∏
i=1

(
log

t2i−2

t2i−1

)µi−1
dt2i−1

t2i−1

×
(

log
t2i−1

t2i

)qi
(

log
1− t2i

1− t2i−1

)νi−1
dt2i

1− t2i

and

Z(s;n) =
∑

q1,...,qk≥0
q1+···+qk=n

Σs(ν1, . . . , νk; q1, . . . , qk)

=
1

n!
∏k

i=1(µi − 1)! (νi − 1)!

∫
· · ·

∫
1>t1>···>t2k>0

( k∑
i=1

log
t2i−1

t2i

)n

×
k∏

i=1

(
log

t2i−2

t2i−1

)µi−1
dt2i−1

t2i−1

(
log

1− t2i

1− t2i−1

)νi−1
dt2i

1− t2i

with the convention t0 = 1.
In the latter integral we introduce the change of variables

u2i−1 = log
t2i−2

t2i−1

, u2i = log
1− t2i

1− t2i−1

, i = 1, . . . , k,
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so that
k∏

i=1

dt2i−1

t2i−1

dt2i

1− t2i

= du1 du2 · · · du2k

and the expression( k∏
i=1

t2i−1

t2i

)−1

=
k∏

i=1

t2i−2

t2i−1

· t2k

= exp

( k∑
i=1

u2i−1

)
·

2k∑
j=0

(−1)j exp

( 2k∑
i=j+1

(−1)iui

)
=: f(u1, u2, . . . , u2k−1, u2k)

satisfies the symmetry relation

f(u1, u2, . . . , u2k−1, u2k) = f(u2k, u2k−1, . . . , u2, u1).

Then

Z(s;n) =
1

n!
∏k

i=1(µi − 1)! (νi − 1)!

∫
· · ·

∫
ui>0, i=1,...,2k
f(u1,...,u2k)>0

(
− log f(u1, . . . , u2k)

)n

×
k∏

i=1

uµi−1
2i−1u

νi−1
2i du1 du2 · · · du2k,

and the change of variables

(u1, u2, . . . , u2k−1, u2k) ↔ (u2k, u2k−1, . . . , u2, u1)

swaps the roles of µi and νi, i = 1, . . . , k, and reverses them; in other words, as the
record (9.1) shows, it reduces the resulting expression to Z(s′;n). This completes
the proof of Theorem 8.4.

It is straightforward that case n = 0 in Theorem 8.4 is the duality theorem
(Theorem 4.1).

Exercise 9.1. (a) Show that the choice n = 1 in Theorem 8.4 corresponds to Hoff-
man’s relations (Theorem 2.1).

(b) Show that, if multi-index s in Theorem 8.4 is one-component (that is, s = (s)),
then the theorem reduces to the sum theorem (Theorem 2.4).

10. The identity of Borwein, Bradley and Broadhurst

In this section we will sketch Zhao’s proof of identity (5.5); this is the only proof
known so far.

We have already settled standard setup for the (alternating) Euler sums: the non-
commutative algebra Q〈x0, x1〉 is extended to the algebra H = Q〈x0, x1, x1〉, and the
subalgebra H1 = Q1 ⊕ Hx1 is generated by words ys := xs−1

0 x1 and ys := xs−1
0 x1

(those not ending with x0). The subalgebra H0 of admissible words is generated by
words not beginning with x1 and not ending with x0.
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By assigning the three differential forms

x0 7→ ω0(z) dz =
dz

z
, x1 7→ ω1(z) dz =

dz

1− z
,

and x1 7→ ω1(z) dz =
−dz

1 + z
.

(cf. (4.15)) to the three letters, for a word w ∈ H1 we define the evaluation zeta map
by

ζ(w) :=

∫ 1

0

w

(with the convention used in (4.11)). Then, of course, ζ(s) = ζ(ys1 · · · ysl
) if the

multi-index s = (s1, . . . , sl) does not involve bars (so that the corresponding word
does not contain letter x1). For example,

({3}n) 7→ yn
3 = (x2

0x1)
n.

If however the multi-index s involves bars, then the rule of assigning the word is
as follows. Going for s1 to sl, as soon as we see the first signed entry si we change
every y after ysi

(inclusive) to y until the next signed entry sj occur. We then leave
all the y’s after ysj

(again inclusive) until we see the next signed entry when we start
toggling again, and so on. In other words, we can thin of the bars as of switches
between y and y.

Exercise 10.1. Write the word which corresponds to the multi-index (2, 1, 2, 3, 4, 5).

Exercise 10.2. Prove the following correspondence:

({2, 1}n) 7→ (x0x
2
1x0x

2
1)
bn/2c(x0x

2
1)

2{n/2} =

{
(x0x

2
1x0x

2
1)

k(x0x
2
1) if n = 2k + 1,

(x0x
2
1x0x

2
1)

k if n = 2k.

The shuffle and stuffle products in (3.2)–(3.4) are extended to the algebra H0 as
well. In fact, the shuffle product uses the old rules, now allowing one extra letter x1

for either xj or xk in (3.3). As for the stuffle product, to complement rule (3.4) we
use

yju ∗ ykv = yjγyj
(γyj

u ∗ ykv) + ykγyk
(yju ∗ γyk

v) + [yj, yk]γ[yj ,yk](γyj
u ∗ γyk

v), (10.1)

where γyj
w = w for yj = xj−1

0 x1 and γyj
w is the word with all y and y toggled,

[yj, yk] = [yj, yk] = yj+k, [yj, yk] = [yj, yk] = yj+k.

Then

ζ(w1ttw2) = ζ(w1 ∗ w2) = ζ(w1)ζ(w2).

For a word w = a1a2 · · · am over the alphabet {x0, x1, x1}, define the ith shuffle
iteration by

ttiw :=

{
a1a2 · · · aittai+1 · · · am if i is odd,

ai · · · a2a1ttai+1 · · · am if i is even,
i = 0, 1, . . . ,m.
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Similarly, but considering a word over the infinite alphabet {y0, y1, y1, . . . }, define
the ith harmonic (stuffle) iteration ∗i. Finally, define the ?-concatenation by settling
w1 ? w2 = w1w2 except that

x1 ? x1 = x1x1 and x1 ? x1 = x1x1.

Exercise 10.3. Prove by induction that for every positive n,

2n∑
i=0

(−1)i ∗i

(
(x1z)

?n
)

= (−1)n
(
x2

0(x1 + x1)
)n
,

where z = x0(x1 + x1) is regarded as one letter when the ith harmonic iteration is
preformed, retaining the ?-concatenation. Note that z?x1 = z?x1 = x0(x1x1+x1x1).

Exercise 10.4. Prove by induction that for every positive n,

2n∑
i=0

(−1)itti

(
(x1z)

?n
)

= (−2)n(x0x
2
1x0x

2
1)
bn/2c(x0x

2
1)

2{n/2}

and
2n∑
i=0

(−1)itti

(
(x1z)

?n
)

= (−2)n(x0x
2
1x0x

2
1)
bn/2c(x0x

2
1)

2{n/2}.

Exercise 10.5 (Distribution relation). Show that for every positive n,

ζ
((
x2

0(x1 + x1)
)n)

=
1

4n
ζ
(
(x2

0x1)
n
)

=
1

4n
ζ({3}n

)
.

Hint. Perform the substitution z 7→ z2 into Chen’s iterated integral for ζ
(
(x2

0x1)
n
)
.

�

Using Exercises 10.2–10.5, we deduce identity (5.5).

11. Open questions

In addition to Conjectures 1–3 indicated in Section 3, we mention a series of other
important conjectures concerning the structure of the subspace ker ζ ⊂ H. Denote
by Zk the Q-vector space in R spanned by multiple zeta values of weight k; in
particular, Z0 = Q and Z1 = {0}. Then the Q-subspace Z ∈ R spanned by all
multiple zeta values is the subalgebra of R over Q graded by weight.

Conjecture 4. As a Q-algebra, the algebra Z is the direct sum of the subspaces Zk,
k = 0, 1, 2, . . . .

It can be easily seen that relations (3.6)–(3.8) for multiple zeta values are homo-
geneous in weight, hence Conjecture 4 follows from Conjecture 2.

Denoting by dk the dimension of the Q-space Zk, k = 0, 1, 2, . . . , note that d0 = 1,
d1 = 0, d2 = 1 (since ζ(2) 6= 0), d3 = 1 (since ζ(3) = ζ(2, 1) 6= 0) and d4 = 1 (since
Z4 = Qπ4 by (4.12), (5.2), and (5.4)). For k ≥ 5, above-deduced identities allow to
compute the upper bounds; for instance, d5 ≤ 2, d6 ≤ 2, and so on.
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Conjecture 5. For k ≥ 3, the recurrent relations

dk = dk−2 + dk−3

hold; equivalently,
∞∑

k=0

dkt
k =

1

1− t2 − t3
.

Note that the estimates dimQZk ≤ dk for all k ≥ 2 have been recently shown by
Terasoma and, independently, by Deligne and Goncharov.

Even if Conjectures 4 and 5 are confirmed, the question of choosing a tran-
scendence basis of the algebra Z and (or) a rational basis of the Q-spaces Zk,
k = 0, 1, 2, . . . , is still open. Concerning this problem, we find the next conjecture
of Hoffman rather curious.

Conjecture 6. For any k = 0, 1, 2, . . . , a basis of the Q-spaces Zk is given by the
set of numbers {

ζ(s) : |s| = k, sj ∈ {2, 3}, j = 1, . . . , `(s)
}
. (11.1)

A serious argument for Conjecture 6 to be valid, is not only experimental confir-
mation for k ≤ 16 (under the hypothesis of Conjecture 2) but also agreement of the
dimension of the Q-space spanned by the numbers (11.1) with the dimension dk of
the spaces Zk in Conjecture 5. The last fact is proved by Hoffman. In his recent
work, F. Brown shows that Conjecture 6 is true for the ‘motivic’ version of MZVs;
in particular, that all usual MZVs can be expressed by means of the elements (11.1)
of Hoffman’s basis. In the heart of the proof, there is a remarkable identity of MZVs
which was shown to be true by D. Zagier. It is this identity which we discuss in the
next section.
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Exercise 11.1. (a) How many different MZVs of given weight k exists?

(b) Compute the limit of d
1/k
k as k → ∞ for the sequence dk constructed in

Conjecture 5.
(c) Any polynomial in single zeta values,

(π2)s0ζ(3)s1ζ(5)s2 · · · ζ(2l + 1)sl , s0, s1, s2, . . . , sl ∈ Z≥0,

belongs to the linear space Zk of MZVs of weight

k = 2s0 + 3s1 + 5s2 + · · ·+ (2l + 1)sl.

Assuming Conjecture 1, all these polynomials are linearly independent over Q. De-
note by ck the total number of such polynomials of given weight k. Compute ck for
small values of k (namely, for k ≤ 12) and show that ck < dk for k ≥ 8. (In other
words, the algebra of MZVs cannot be fully generated by single zeta values.)

(d) For the sequence ck from part (c), find a general analytic formula and compute

the limit of c
1/k
k as k →∞.

Although proving Conjectures 4–6 in the form they are given is hopeless at the
present time, the ‘true’ MZVs in R are the images under a Q-linear map of cer-
tain ‘motivic’ MZVs which are defined purely algebraically. The Terasoma and
Goncharov–Deligne bound dimQZk ≤ dk, as well as Conjecture 4 about disjointness
of the subspaces Zk, are shown to be true for this algebraic version of MZVs. Tera-
soma and Goncharov established the bound by showing that all MZVs are periods
of so-called mixed Tate motives that are unramified over Z. Another well-known
conjecture in the area states the converse, that is, that all periods of mixed Tate
motives over Z can be expressed as linear combinations (over Q[(2πi)±1]) of MZVs.
Equivalently, this says that the dimension of the space of motivic MZVs of weight k
is exactly dk.

The result obtained by Brown was a proof of the latter conjecture and also of the
fact that the motivic MZVs from Hoffman’s conjectural basis in Conjecture 6 form
a basis of the corresponding Zk. In his proof Brown assumes certain quite specific
properties of certain coefficients occurring in the relations over Q of some special
MZVs. Specifically, he shows that the special MZVs

ξ(m,n) := ζ({2}m, 3, {2}n), n,m ≥ 0, (11.2)

which are part of Hoffman’s basis, are Q-linear combinations of products π2µζ(2ν+1)
with µ + ν = m + n + 1. His proof, which used motivic ideas, did not yield an
explicit formula for these linear combinations, but numerical evidence suggested
several properties satisfied by their coefficients (and, in particular, of the coefficient
of ζ(2m + 2n + 3)) which he could show were sufficient to imply the truth of both
Hoffman’s conjecture and the statement about motivic periods. The next section
contains a statement and proof of an explicit formula expressing the numbers (11.2)
in terms of single zeta values, as well as confirmation of the numerical properties
that were required for Brown’s proof.
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12. Zagier’s identity for ξ(m,n)

Before giving the formula for the numbers ξ(m,n), we first recall the much easier
formula from the family (5.4),

ξ(n) := ζ({2}n) =
π2n

(2n+ 1)!
, n ≥ 0, (12.1)

for the simplest of the Hoffman basis elements.

Theorem 12.1 (Zagier). For all integers m,n ≥ 0, we have

ξ(m,n) = 2
m+n+1∑

r=1

(−1)r−1

((
1− 1

22r

)(
2r

2m+ 1

)
−

(
2r

2n+ 2

))
ξ(m+n−r+1)ζ(2r+1),

(12.2)
where the value of ξ(m + n − r + 1) is given by (12.1). Conversely, each product
ξ(µ)ζ(k − 2µ) of odd weight k is a rational combination of numbers ξ(m,n) with
m+ n = (k − 3)/2.

Remark. The second part of the theorem, which we only discuss as Exercise 12.6
below, gives rise to several other open questions.

The coefficients in the expressions for the products ξ(µ)ζ(k − 2µ) as linear com-
binations of the numbers ξ(m,n) do not seem to be given by any simple formula.
For example, the inverse of the 5× 5 matrix

3 −15
2

189
16

−255
16

4603
256

0 −15
2

315
8

−1753
16

9585
64

0 0 157
16

−889
16

10689
128

0 2 −30 1985
16

−11535
64

−2 12 −30 56 −17925
256


expressing the vector {ξ(m,n) : m+ n = 4} in terms of the vector {ζ(2m+ 3)ξ(n) :
m+ n = 4} is

1

2555171


11072595 19354609 23488575 22114173 15331307
59984880 122931470 160083660 147349978 89977320
246001728 508012288 669540272 613537008 369002592
494939520 1022542528 1349936640 1236102000 742409280
300405248 620662272 819546624 750355968 450607872

 ,

in which no simple pattern can be discerned and in which even the denominator
(prime 2555171) cannot be recognised. This shows that the Hoffman basis, although
it works over Q, is very far from giving a basis over Z of Z-linear span of MZVs,
and suggests the question of finding better basis elements.

The following question is supported by numerical data form+n ≤ 30, but remains
open.
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Exercise 12.1. Denote Mk the matrix from (12.2) expressing the vector {ξ(m,n) :
m+ n = k} in terms of the vector {ζ(2m+ 3)ξ(n) : m+ n = k}, that is,

Mk =

(
2(−1)µ

((
1− 1

22µ+2

)(
2µ+ 2

2m+ 1

)
−

(
2µ+ 2

2k − 2m+ 2

)))
0≤m,µ≤k

. (12.3)

Show that all the entries of the inverse matrix M−1
k are strictly positive.

The strategy to prove Theorem 12.1 is to compare the two generating functions

F (x, y) =
∑

m,n≥0

(−1)m+n+1ξ(m,n)x2m+1y2n+2 (12.4)

and

F̂ (x, y) =
∑

m,n≥0

(−1)m+n+1ξ̂(m,n)x2m+1y2n+2, (12.5)

where

ξ̂(m,n) = 2
m+n+1∑

r=1

(−1)r−1

((
1− 1

22r

)(
2r

2m+ 1

)
−

(
2r

2n+ 2

))
ξ(m+n−r+1)ζ(2r+1)

denotes the expression occurring on the right-hand side of (12.2). Of course, if the
two expressions were the same, we would be done, but in fact they are completely
different, one involving a generalized hypergeometric function

p+1Fp

(
a0, a1, . . . , ap

b1, . . . , bp

∣∣∣∣ z) =
∞∑

n=0

(a0)n(a1)n · · · (ap)n

(b1)n · · · (bp)n

zn

n!
(12.6)

(cf. Section 5), and the other a complicated linear combination of the digamma
functions, ψ(x) = Γ′(x)/Γ(x). We therefore have to proceed indirectly, showing

that both F and F̂ are entire functions (of order 1) in x and y and that they agree
whenever x = y or x or y is an integer (the details of this comparison will be however

skipped). This will imply the equality F = F̂ , and hence Theorem 12.1. There is
however a belief (that is, an open problem!) that the use of known hypergeometric

identities could lead to a direct proof of F = F̂ ; this would considerably simplify
Brown’s proofs mentioned above.

Lemma 12.1. The generating function F (x, y) can be expressed as the product of a
sine function and a hypergeometric function:

F (x, y) =
sin πx

π

∂

∂z
3F2

(
y, −y, z

1 + x, 1− x

∣∣∣∣ 1

)∣∣∣∣
z=0

. (12.7)
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Proof. The proof is similar to that for (12.1):

F (x, y) =
∑

m,n≥0

(−1)m+n+1ζ({2}m, 3, {2}n)x2m+1y2n+2

= −xy2

∞∑
r=1

r−1∏
k=1

(
1− y2

k2

)
· 1

r3
·

∞∏
l=r+1

(
1− x2

l2

)

=
sin πx

π

∞∑
r=1

(−y)r(y)r

(1− x)r(1 + x)r

1

r
,

and this formula is seen to be equivalent to (12.7). �

Lemma 12.2. The generating function F̂ (x, y) can be expressed as an integral linear
combination of fourteen functions of the form

ψ

(
1 +

u

2

)
sin πv

2π
with u ∈ {±x± y,±2x± 2y,±2x}, v ∈ {x, y}.

Proof. From the definition of F̂ (x, y) and (12.1) we find

F̂ (x, y) = 2
∑

m,n≥0

(−1)m+nx2m+1y2n+2

m+n+1∑
r=1

(−1)r

(
(1− 2−2r)

(
2r

2m+ 1

)

−
(

2r

2n+ 2

))
π2(m+n−r+1)

(2(m+ n− r + 1) + 1)!
ζ(2r + 1)

=
2

π

∞∑
s=0

∞∑
r=1

(−1)sπ2s+1

(2s+ 1)!
ζ(2r + 1)

( r−1∑
n=0

(
2r

2n+ 2

)
x2(s+r−n)−1y2n+2

− (1− 2−2r)
r−1∑
m=0

(
2r

2m+ 1

)
x2m+1y2(s+r−m)

)

=
2 sin πx

π

∞∑
r=1

ζ(2r + 1)
r−1∑
n=0

(
2r

2n+ 2

)
x2(r−n−1)y2(n+1)

− 2 sin πy

π

∞∑
r=1

(1− 2−2r)ζ(2r + 1)
r−1∑
m=0

(
2r

2m+ 1

)
x2m+1y2(r−m)−1

=
sin πx

π

∞∑
r=1

ζ(2r + 1)
(
(x+ y)2r + (x− y)2r − 2x2r

)
− sin πy

π

∞∑
r=1

(1− 2−2r)ζ(2r + 1)
(
(x+ y)2r − (x− y)2r

)
=

sin πx

π

(
A(x+ y) + A(x− y)− 2A(x)

)
− sin πy

π

(
B(x+ y)−B(x− y)

)
,
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where (cf. the final part of Section 5)

A(t) =
∞∑

r=1

ζ(2r + 1)t2r =
∞∑

r=1

∞∑
n=1

t2r

n2r+1
=

∞∑
n=1

t2

n(n2 − t2)
,

B(t) =
∞∑

r=1

(1− 2−2r)ζ(2r + 1)t2r =
∞∑

r=1

∞∑
n=1

(−1)n−1 t2r

n2r+1
=

∞∑
n=1

(−1)n−1t2

n(n2 − t2)
.

Decomposing the summands into partial fractions allows us to represent the gener-
ating functions A and B in terms of the digamma function:

A(t) =
1

2

∞∑
n=1

(
1

n− t
+

1

n+ t
− 2

n

)
= ψ(1)− 1

2

(
ψ(1 + t) + ψ(1− t)

)
,

B(t) =
1

2

∞∑
n=1

(−1)n−1

(
1

n− t
+

1

n+ t
− 2

n

)
= A(t)− A

( t
2

)
.

Substituting these expressions into the previous derivation gives an expression for

F̂ of the form stated in the lemma. �

Exercise 12.2. Show the equality F (x, y) = F̂ (x, y) directly by using the represen-
tations in Lemmas 12.1 and 12.2.

As mentioned above, Exercise 12.2 is an open problem.
The following change of exercises sketches the remaining ingredients of the proof

of Theorem 12.1.

Exercise 12.3. Show that both F (x, y) and F̂ (x, y) are entire functions on C2 and
are bounded by a constant multiple of eπX logX as X = max{|x|, |y|} → ∞, and
also by a multiple (depending on y) of eπ| Im x| as |x| → ∞ with y ∈ C fixed.

Remark. The derivation makes use of analytic estimates of the coefficients of both

F (x, y) and F̂ (x, y) but also of certain ‘standard’ theorems of complex analysis, like
the Phragmén–Lindelöf theorem (an extension of the maximum modulus principle
to functions which are analytic in sector domains and strips).

Exercise 12.4. Show that for x ∈ C the following equality holds:

F (x, x) = −sin πx

π
A(x) = F̂ (x, x),

where A(x) is the meromorphic function defined in the proof of Lemma 12.2.

Exercise 12.5. (a) Prove that for all n ∈ Z>0 and x ∈ C,

F (x, n) =
sin πx

π

∑∗

|k|≤n

sgn k

x− k
= F̂ (x, n),

where the asterisk means that the terms k = ±n are to be weighted with a factor
1/2.
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(b) Prove that for all m ∈ Z>0 and y ∈ C,

F (m, y) = (−1)m +
sin πy

π

∑∗

|k|≤m

(−1)m−k

k − y
= F̂ (m, y),

with the same convention about the asterisk.

Finally, we make use of the following result.

Lemma 12.3. An entire function f : C → C that vanishes at all integers and sat-
isfies f(z) = O(eπ| Im z|) as |z| → ∞ is a constant multiple of sin πz.

Proof. Because | Im z| ≤ |z|, the estimate implies f(z) = O(eπ|z|) as |z| → ∞; in
particular, f(z) has order 1, and so does the function g(z) = f(z)/ sin πz (which is
indeed entire as it does not have poles). The growth hypothesis on f implies that
g is bounded outside a strip of finite width around the real axis, and then it follows
from the Phragmén–Lindelöf theorem that it is also bounded inside this strip (since
it has finite order), so that g is constant by Liouville’s theorem. �

Proof of Theorem 12.1. We can now complete the proof of the main equality 12.2

as follows. We have shown that F (x, y) and F̂ (x, y) are entire functions of x and y
satisfying certain (same) estimates, and that they agree whenever x = y or either
x or y is an integer. (The latter fact follows from Exercise 12.5 and the fact that

both F (x, y) and F̂ (x, y) are odd functions of x and even functions of y and vanish

when y = 0.) It follows that, for fixed y, the function f(x) = F (x, y) − F̂ (x, y) is
an entire function which vanishes at all integers and satisfies f(x) = O(eπ| Im x|) as
|x| → ∞, so that by Lemma 12.3 it is a multiple of sin πx,

F (x, y)− F̂ (x, y) = h(y) sinπx,

for a certain entire function h(y). Substituting y = x into the equality we get

h(x) = 0 identically, so that indeed F (x, y)− F̂ (x, y) = 0 for all x and y, implying

ξ(m,n) = ξ̂(m,n) as required. �

Exercise 12.6. Prove the second statement of the theorem (that is, the invertibility
of matrix Mk in (12.3)) by computing the 2-adic valuation of the entries of the
matrix.

13. Double zeta values and products of single zeta values

In this section we fix an odd number k = 2l + 1 ≥ 3 and discuss the relationship
between the double zeta values ζ(m,n), the zeta products ζ(m)ζ(n), and our latest
heroes ξ(µ, ν), all of weight m+ n = 2(µ+ ν) + 3 = k.

It was already found by Euler (explicitly for k up to 13) that all double zeta values
of odd weight are rational linear combinations of products of single zeta values.

Theorem 13.1. The double zeta value ζ(m,n) (with m ≥ 2 and n ≥ 1) of weight
m+n = k = 2l+1 is given in terms of the products ζ(2s)ζ(k−2s), s = 0, 1, . . . , l−1,
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by

ζ(m,n) = (−1)n

l−1∑
s=0

((
k − 2s− 1

m− 1

)
+

(
k − 2s− 1

n− 1

)
−δm,2s+(−1)nδs,0

)
ζ(2s)ζ(k−2s).

(13.1)

Proof. The harmonic and shuffle products in the case of single zeta values result in

ζ(r)ζ(s) = ζ(r, s) + ζ(s, r) + ζ(k), where r + s = k, r, s ≥ 2, (13.2)

ζ(r)ζ(s) =
k−1∑
m=2

((
m− 1

r − 1

)
+

(
m− 1

s− 1

))
ζ(m, k −m), where r + s = k, r, s ≥ 2,

(13.3)

In both cases we can suppose without loss of generality that r ≤ s, since both sides
of the equations are symmetric in r and s. This will give us only 2(l− 1) equations
for the 2l−1 unknowns ζ(m, k−m), 2 ≤ m ≤ k−1. However, both (13.2) and (13.3)
remain true if we fix any value T (that is, any regularization) for the divergent zeta
value ζ(1) (here 0 or Euler’s constant γ would be natural choices but we can also
simply take T to be an indeterminate) and use one of them to define the divergent
double zeta value ζ(1, k− 1), so that this gives 2l− 1 equations in 2l− 1 unknowns.
To solve them, we introduce the generating functions

P (x, y) =
∑
r,s≥1
r+s=k

ζ(r)ζ(s)xr−1ys−1 and Q(x, y) =
∑

m,n≥1
m+n=k

ζ(m,n)xm−1yn−1,

with the convention ζ(1) = T and ζ(1, k− 1) = ζ(k− 1)T − ζ(k)− ζ(k− 1, 1). Then
the (double shuffle) relations (13.2) and (13.3) translate into equations

P (x, y) = Q(x, y) +Q(y, x) + ζ(k)
xk−1 − yk−1

x− y

= Q(x, x+ y) +Q(y, x+ y).

Using Q(−x,−y) = −Q(x, y) (for k odd), allows us to solve for Q:

Q(x, y) = R(x, y) +R(x− y,−y) +R(x− y, x),

where R(x, y) =
1

2

(
P (x, y) + P (−x, y)− ζ(k)

xk−1 − yk−1

x− y

)
.

This is equivalent (because of ζ(0) = −1
2
) to (13.1). �

Either of the double shuffle relations (13.2) and (13.3) permits us to express the
single zeta products ζ(2r)ζ(k − 2r) in terms of all double zeta values of weight k,
but we would like to do this using

(a) only the ‘odd-even’ values ζ(k − 2r, 2r), where we also include ζ(k) to have
the right number of quantities, or

(b) only the ‘even-odd’ double zeta values ζ(k − 2r − 1, 2r + 1).
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This turns out to be possible only in case (a), as we now show.
Since in case (a) we have taken ζ(k) as one of the basis elements, we can omit

it from the basis and work modulo ζ(k) in the right-hand side of (13.1), which
simplifies to

ζ(k − 2r, 2r) ≡
l−1∑
s=1

((
2l − 2s

2l − 2r

)
+

(
2l − 2s

2r − 1

))
ζ(2s)ζ(k − 2s), 1 ≤ r ≤ l − 1,

(13.4)
where the congruence is modulo Qζ(k).

Theorem 13.2. For odd k = 2l+1 ≥ 3, the products ζ(2s)ζ(k− 2s), 1 ≤ s ≤ l− 1,
are expressible in terms of double zeta values ζ(k − 2r, 2r), 1 ≤ r ≤ l − 1.

Proof. Let Nk be the (l−1)×(l−1) matrix whose (r, s)-entry is the sum of binomials
in (13.4). It is sufficient to show that the determinant of the matrix is non-zero.

Any binomial coefficient
(

m
n

)
with m even and n odd is even, because in this case(
m

n

)
=
m

n

(
m− 1

n− 1

)
.

Thus, the matrix Nk is congruent modulo 2 to a unipotent triangular matrix and
hence has odd determinant. �

Remark. The immediate consequence of Theorems 12.1 and 13.2 is the following
result. For each odd k = 2l + 1 ≥ 3, the l numbers ζ(k) and ζ(k − 2r, 2r), 1 ≤ r ≤
l − 1, span the same space over Q as the l numbers

{ξ(m,n) : m+ n = l − 1} or {π2rζ(k − 2r) : 0 ≤ r ≤ l − 1}.

Zagier made several experimental observations about the matrix Nk which we give
here as open problems.

Exercise 13.1. For k = 2l + 1 ≥ 3 and the matrix N = Nk defined above, show the
following.

(a) detN = ±(k−2)!!, where (k−2)!! = 1 ·3 ·5 · · · (k−2) is the ‘double factorial’
and the sign is −1 if l ≡ 3 (mod 4) and +1 otherwise.

(b) The entries of the inverse matrix N−1 are explicitly given by either of the two
expressions

(N−1)s,r =
−2

2s− 1

k−2s∑
n=0

(
k − 2r − 1

k − 2s− n

)(
n+ 2s− 2

n

)
Bn

=
2

2s− 1

k−2s∑
n=0

(
2r − 1

k − 2s− n

)(
n+ 2s− 2

n

)
Bn, 1 ≤ s, r ≤ l − 1,

where Bn denotes the nth Bernoulli number (see Section 1).
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14. The two-one (conjectural) formula

In the introductory section the following alternative version of the multiple zeta
values with non-strict inequalities was mentioned (see (1.7)):

ζ?(s) = ζ?(s1, s2, . . . , sl) :=
∑

n1≥n2≥···≥nl≥1

1

ns1
1 n

s2
2 · · ·n

sl
l

.

Exercise 1.2 gives a simple recipe to pass from one model to the other.
Relation (1.8) is an example of simple relations for the multiple zeta star values;

its companion is

ζ?({2}k) = 2(1− 21−2k)ζ(2k) = 2
∞∑

n=1

(−1)n−1

n2k
.

(This expression can be compared with the one for ζ({2}k) given in (5.4) and (12.1).)
The starting goal of our joint project with Y. Ohno was finding a general form

of the two families of identities for the MZSVs. On this way, we only succeeded in
generalising (1.8) but conjecturally. The particular cases of our conjecture (which we
dubbed as the ‘two-one formula’) were established by ourselves; there are some recent
publications with some other particular instances proven. One of lucky accidents of
our proofs is the weighted version (2.8) of Euler’s original formula (2.7) (the sum
formula of depth 2 in the modern terminology).

Conjecture 7 (Two-one formula). For k = 0, 1, 2, . . . , denote µ2k+1 = ({2}k, 1).
Then for any admissible index s = (s1, s2, . . . , sl) with odd entries s1, . . . , sl, the
following identities are valid:

ζ?(µs1 , µs2 , . . . , µsl
) =

∑
p

(−1)σ(p)2l−σ(p)ζ?(p) (14.1)

=
∑

p

2l−σ(p)ζ(p), (14.2)

where, as in Exercise 1.2, p runs through all indices of the form (s1 ◦ s2 ◦ · · · ◦ sl)
with ‘◦’ being either the symbol ‘,’ or the sign ‘+’, and the exponent σ(p) denotes
the number of signs ‘+’ in p.

Proof of the equality of the right-hand sides in (14.1) and (14.2). By Exercise 1.2 for
the right-hand side in (14.1) we have∑

{2 = , or +}

(−1)#{2 =+}2l−#{2 =+}ζ?(s12s22 · · ·2sl)

=
∑

{2 = , or +}

∑
{◦=+ or 2}

(−1)l−#{◦= 2}−12#{◦= 2}+1ζ(s1 ◦ s2 ◦ · · · ◦ sl)
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which in the notation r = #{◦ = 2}+ 1 turns out to be

=
l∑

n=1

( l∑
r=n

(
l − n

l − r

)
(−1)l−r2r

) ∑
l−#{◦=+}=n

ζ(s1 ◦ s2 ◦ · · · ◦ sl)

=
l∑

n=1

( l−n∑
m=0

(
l − n

l − n−m

)
(−1)l−n−m2n+m

) ∑
#{◦=+}=l−n

ζ(s1 ◦ s2 ◦ · · · ◦ sl)

=
l∑

n=1

2n
∑

#{◦=+}=l−n

ζ(s1 ◦ s2 ◦ · · · ◦ sl)

=
∑

{◦= , or +}

2l−#{◦=+}ζ(s1 ◦ s2 ◦ · · · ◦ sl),

and this is exactly the right-hand side of (14.2). �

On the right-hand side of (14.1) and (14.2) we have MZSVs and MZVs of length at
most l, while the left-hand side involves a single zeta star attached to an index with
entries 2 and 1 only (and the number of 1’s is equal to l); the latter circumstance is
the reason of dubbing the formula as the two-one formula.

We stress that neither the two-one formula nor its special cases treated in Theo-
rems 14.1 and 14.2 below are specializations of identities for polylogarithms (4.1).

In spite of a nicely simple (but somehow unusual) form of the two-one formula
we cannot yet prove it in the full generality. Besides the case l = 1 given in (1.8),
the following two particular cases (l = 2, and s1 = 3, s2 = · · · = sn−2 = 1 with
n = l + 2 ≥ 3 arbitrary) as well as our experimental results (for cases not included
in the theorems below) strongly support the validity of identities (14.1), (14.2).

Theorem 14.1. For any n ≥ 1 and 1 ≤ i ≤ n,

ζ?( 2, . . . , 2︸ ︷︷ ︸
i

, 1, 2, . . . , 2︸ ︷︷ ︸
n−i

, 1) = 4ζ?(2i+ 1, 2n− 2i+ 1)− 2ζ(2n+ 2). (14.3)

Theorem 14.2. For any n ≥ 3,

ζ?(2, 1, . . . , 1︸ ︷︷ ︸
n−2

) =
∑

{◦= , or +}

2n−2−#{◦=+}ζ(3 ◦ 1 ◦ · · · ◦ 1︸ ︷︷ ︸
n−3

)

=
n−1∑
i=2

2n−i
∑

e1+e2+···+en−i=i−2

ζ(3 + e1, 1 + e2, 1 + e3, . . . , 1 + en−i),

(14.4)

where all ej are non-negative integers.

Before giving some details of proofs of the theorems, let us make some comments
on the two-one formula.

The formula

ζ?({2, {1}m−1}n, 1) = (m+ 1)ζ((m+ 1)n+ 1)
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for any positive integers m,n is known (two different proofs are given by Zlobin
and Ohno–Wakabayashi). If m = 1 it is nothing but formula (1.8), while if m ≥ 2
then its left-hand side equals ζ?({µ3, {µ1}m−2}n, µ1). This together with the two-
one formula mean that the corresponding right-hand side in (14.1) (equivalently,
in (14.2)) is expected to have a closed-form evaluation by means of the single zeta
value (m+ 1)ζ((m+ 1)n+ 1), where the integers m ≥ 2 and n ≥ 1 are arbitrary.

Using the integral representation of MZSVs,

ζ?(s) =

∫
· · ·

∫
[0,1]s1+···+sl

dt1 · · · dts1+···+sl∏l
i=1(1− t1 · · · ts1+···+si

)

(cf. (7.10)) valid for any admissible index s = (s1, . . . , sl), we can write the right-
hand side of (14.1) as follows:

2

∫
· · ·

∫
[0,1]s1+···+sl

∏l−1
i=1(1 + t1 · · · ts1+···+si

)∏l
i=1(1− t1 · · · ts1+···+si

)
dt1 · · · dts1+···+sl

. (14.5)

The change of variable uj = t1 · · · tj for j = 1, . . . , s1 + · · ·+ sl gives the integral

2

∫
· · ·

∫
1>u1>···>us1+···+sl

>0

l−1∏
i=1

( s1+···+si−1∏
j=s1+···+si−1+1

duj

uj

· (1 + us1+···+si
) dus1+···+si

(1− us1+···+si
)us1+···+si

)

×
s1+···+sl−1∏

j=s1+···+sl−1+1

duj

uj

· dus1+···+sl

1− us1+···+sl

, (14.6)

where the empty sum s1+· · ·+si−1 for i = 1 is interpreted as 0. Therefore, any of the
two integrals in (14.5), (14.6) may replace the right-hand sides of (14.1) or (14.2).

The case l = 2 (Theorem 14.1) reads as

ζ?({2}s1 , 1, {2}s2 , 1) = 2ζ(2s1 + 2s2 + 2) + 4ζ(2s1 + 1, 2s2 + 1).

In particular, the latter identity implies

ζ?({2}s1 , 1, {2}s2 , 1) + ζ?({2}s2 , 1, {2}s1 , 1)

= 4ζ(2s1 + 2s2 + 2) + 4ζ(2s1 + 1, 2s2 + 1) + 4ζ(2s2 + 1, 2s1 + 1)

= 4ζ(2s1 + 1)ζ(2s2 + 1) = ζ?({2}s1 , 1)ζ?({2}s2 , 1)

whenever s1 ≥ 1 and s2 ≥ 1. However, no further generalizations to cases l > 2 can
be derived from Conjecture 7.

The proof of Theorem 14.1 from the joint paper with Y. Ohno is an elaborate
descending inductive argument on i. The following two exercises represent the sum-
mary of this proof (given in eight lemmas).

Exercise 14.1. For a ≥ c > 0, define the harmonic sum

H(a, c) =
c∑

j=1
j 6=a

1

a− j

and interpret both H(∞, c) and H(a, 0) as zeroes.
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(a) If B ≥ C, we have∑
A≥a≥B
C≥c≥D

1

a2c
=

∑
C≥c≥D

H(B, c)−H(A+ 1, c)

c2

−
∑

A≥a≥B

H(a, C)−H(a,D − 1)

a2
+ δB,C

2

B3
,

where δB,C stands for Kronecker’s delta.
(b) For positive integers L and M satisfying L > M , the following identity is

valid:
M∑

b=1

H(L, b)

l − b
=

∞∑
a=l

(
1

a−M
− 1

a

)
H(a+ 1,M + 1).

Solution of part (a). It follows that∑
C≥c≥D

c 6=a

1

a− c
= H(a, C)−H(a,D − 1)

whenever a ≥ C, and∑
A≥a≥B

a 6=c

(
1

a− c
− 1

a

)
= H(B, c)−H(A+ 1, c) + δc,B

1

c

whenever c ≤ B. Furthermore, for a 6= c the following partial fraction decomposition
is valid:

1

a2c
=

(
1

a− c
− 1

a

)
· 1

c2
− 1

a− c
· 1

a2
.

Thus, under the condition B ≥ C, we get∑
A≥a≥B
C≥c≥D

1

a2c
=

∑
A≥a≥B
C≥c≥D

a 6=c

((
1

a− c
− 1

a

)
· 1

c2
− 1

a− c
· 1

a2

)
+ δB,C

1

B3

=
∑

C≥c≥D

H(B, c)−H(A+ 1, c)

c2

−
∑

A≥a≥B

H(a, C)−H(a,D − 1)

a2
+ δB,C

2

B3
.

which is the desired statement. �

Remark. The proof of the cyclic sum theorem (Theorem 2.3) given by Ohno and
Wakabayashi exploits the general forms of above partial-fraction identities:

m−1∑
l=1

1

am+1−lcl
=

(
1

a− c
− 1

a

)
· 1

cm
− 1

a− c
· 1

am
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and ∑
A≥a≥B
C≥c≥D

m−1∑
l=1

1

am+1−lcl
=

∑
C≥c≥D

H(B, c)−H(A+ 1, c)

cm

−
∑

A≥a≥B

H(a, C)−H(a,D − 1)

am
+ δB,C

m

Bm+1
,

respectively, although the function H(a, c) was not used there in an explicit form
(it was introduced later by Zagier in his unpublished note on the proof of Ohno–
Wakabayashi). It is an open question whether the two-one formula may be general-
ized further to some ‘multiple cyclic’ level.

Exercise 14.2. (a) For i ≥ 1 and j ≥ 0,

ζ?(2i+ 1, 2, . . . , 2︸ ︷︷ ︸
j

, 1) = −
∑

a0≥a1≥···≥aj≥1

H(a0 + 1, aj)

a2i+1
0 a2

1 · · · a2
j

+ 2ζ?(2i+ 1, 2j + 1).

(b) For i ≥ 1 and j ≥ 0,∑
a0>a1≥···≥aj+1≥1

(
1

a0 − aj+1

− 1

a0

)
1

a2i−1
0 a2

1 · · · a2
j+1

= 2ζ(2i+ 1, 2j + 1).

(c) Given n ≥ 1, for any i in the range 1 ≤ i ≤ n,

ζ?( 2, . . . , 2︸ ︷︷ ︸
i

, 1, 2, . . . , 2︸ ︷︷ ︸
n−i

, 1) = 4ζ?(2i+ 1, 2n− 2i+ 1)

+
∑

a0≥···≥an≥1

H(a0, ai − 1)

a2
0 · · · a2

n−1an

− 2
∑

a0≥ai+1≥···≥an≥1

H(a0 + 1, an)

a2i+1
0 a2

i+1 · · · a2
n

. (14.7)

(d) We have

ζ?( 2, . . . , 2︸ ︷︷ ︸
n

, 1, 1) = 4ζ?(2n+ 1, 1)− 2ζ(2n+ 2).

(e) For 1 ≤ i < n,∑
a0≥···≥an≥1

H(a0, ai − 1)−H(a0, ai+1 − 1)

a2
0 · · · a2

n−1an

= 2
∑

a0>ai+1≥···≥an≥1

H(a0, an)

a2i+1
0 a2

i+1 · · · a2
n

−
∑

a0≥···≥an≥1

(
H(a0, an)

a2
0 · · · a2

i−1aia2
i+1 · · · a2

n

− H(a0, an)

a2
0 · · · a2

i ai+1a2
i+2 · · · a2

n

)
.

(f) For 0 ≤ i < n,∑
a0≥···≥an≥1

(
H(a0, an)

a2
0 · · · a2

i−1aia2
i+1 · · · a2

n

− H(a0, an)

a2
0 · · · a2

i ai+1a2
i+2 · · · a2

n

)
= ζ?( 2, . . . , 2︸ ︷︷ ︸

i+1

, 1, 2, . . . , 2︸ ︷︷ ︸
n−i−1

, 1)− 2ζ(2n+ 2).
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Proof of Theorem 14.1. We will use the descending induction on i = n, n− 1, . . . , 1.
In the case i = n (induction base) the identity of the theorem is shown in Exer-
cise 14.2 (d). Therefore, we assume that i < n and that identity (14.3) is proved
with i replaced by i+ 1, that is,

ζ?( 2, . . . , 2︸ ︷︷ ︸
i+1

, 1, 2, . . . , 2︸ ︷︷ ︸
n−i−1

, 1) = 4ζ?(2i+ 3, 2n− 2i− 1)− 2ζ(2n+ 2). (14.8)

We substitute expressions∑
a0>ai+1≥···≥an≥1

H(a0, an)

a2i+1
0 a2

i+1 · · · a2
n

=
∑

a0>ai+1≥···≥an≥1

H(a0 + 1, an)

a2i+1
0 a2

i+1 · · · a2
n

+
∑

a0>ai+1≥···≥an≥1

(
1

a0 − an

− 1

a0

)
1

a2i+1
0 a2

i+1 · · · a2
n

=
∑

a0>ai+1≥···≥an≥1

H(a0 + 1, an)

a2i+1
0 a2

i+1 · · · a2
n

+ 2ζ(2i+ 3, 2n− 2i− 1),

followed from Exercise 14.2 (b), and∑
a0≥···≥an≥1

(
H(a0, an)

a2
0 · · · a2

i−1aia2
i+1 · · · a2

n

− H(a0, an)

a2
0 · · · a2

i ai+1a2
i+2 · · · a2

n

)
= 4ζ?(2i+ 3, 2n− 2i− 1)− 4ζ(2n+ 2) = 4ζ(2i+ 3, 2n− 2i− 1),

followed from Exercise 14.2 (f) and (14.8), into the identity of Exercise 14.2 (e) to
get ∑

a0≥···≥an≥1

H(a0, ai − 1)−H(a0, ai+1 − 1)

a2
0 · · · a2

n−1an

= 2
∑

a0>ai+1≥···≥an≥1

H(a0 + 1, an)

a2i+1
0 a2

i+1 · · · a2
n

= 2
∑

a0≥ai+1≥···≥an≥1

H(a0 + 1, an)

a2i+1
0 a2

i+1 · · · a2
n

− 2
∑

a0≥ai+2≥···≥an≥1

H(a0 + 1, an)

a2i+3
0 a2

i+2 · · · a2
n

.

The last identity may be written as∑
a0≥···≥an≥1

H(a0, ai − 1)

a2
0 · · · a2

n−1an

− 2
∑

a0≥ai+1≥···≥an≥1

H(a0 + 1, an)

a2i+1
0 a2

i+1 · · · a2
n

=
∑

a0≥···≥an≥1

H(a0, ai+1 − 1)

a2
0 · · · a2

n−1an

− 2
∑

a0≥ai+2≥···≥an≥1

H(a0 + 1, an)

a2i+3
0 a2

i+2 · · · a2
n

,

where the right-hand side equals −2ζ(2n + 2) by Exercise 14.2 (c) applied to i + 1
instead of i and (14.8), so does the left-hand side:∑

a0≥···≥an≥1

H(a0, ai − 1)

a2
0 · · · a2

n−1an

− 2
∑

a0≥ai+1≥···≥an≥1

H(a0 + 1, an)

a2i+1
0 a2

i+1 · · · a2
n

= −2ζ(2n+ 2). (14.9)
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Finally, from (14.7) and (14.9) we obtain identity (14.3) for the given i, completing
the proof of Theorem 14.1. �

Proof of Theorem 14.2. For each i = 2, . . . , n− 1, the sum∑
e1+e2+···+en−i=i−2

ζ(3 + e1, 1 + e2, 1 + e3, . . . , 1 + en−i)

can be written as ∑
e1+e2=i−2

ζ(n− i+ 1 + e1, 1 + e2) =
i−1∑
l=1

ζ(n− l, l)

by Theorem 8.4 (Ohno’s relations). Therefore,

2n−2ζ(3, 1, . . . , 1︸ ︷︷ ︸
n−3

) + 2n−3
∑

e1+e2+···+en−3=1

ζ(3 + e1, 1 + e2, . . . , 1 + en−3) + · · ·

+ 2n−i
∑

e1+e2+···+en−i=i−2

ζ(3 + e1, 1 + e2, . . . , 1 + en−i) + · · ·+ 2ζ(n)

=
n−1∑
i=2

2n−i

i−1∑
l=1

ζ(n− l, l) =
n−2∑
l=1

n−l−1∑
i=2

2iζ(n− l, l)

=
n−2∑
l=1

(2n−l − 2)ζ(n− l, l).

Applying Euler’s formula (2.7) and its weighted version (2.8), the latter sum becomes

n−2∑
l=1

2n−lζ(n− l, l)− 2
n−2∑
l=1

ζ(n− l, l) = (n− 1)ζ(n).

Finally, we use the formula

(n− 1)ζ(n) = ζ?(2, 1, 1, . . . , 1︸ ︷︷ ︸
n−2

)

which follows from Exercise 1.2 and the sum theorem (Theorem 2.4). This im-
plies (14.4) and completes our proof of Theorem 14.2. �

15. Reduction of double Euler sums

Euler’s original motivation to study double zeta sums was a possibility to reduce
them to single zeta values. We have already discussed this problem in Section 13
for the standard multiple zeta values. Here we reproduce a result of Kentaro Ihara
which addresses the alternating double Euler sums

ζ(r, s; 1, σ) =
∑

n>m≥1

σm

nrms
,
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which in fact works for any choice of σ on the unit circle |σ| = 1 (not just for
σ ∈ {±1}). First note the iterated integral representation

ζ(r, s; 1, σ) =

∫
· · ·

∫
1>t1>···>tr+s>0

dt1
t1
· · · dtr−1

tr−1

dtr
1− tr

dtr+1

tr+1

· · · dtr+s−1

tr+s−1

σdtr+s

1− σtr+s

=

∫ 1

0

dt

t
· · · dt

t︸ ︷︷ ︸
r−1 times

dt

1− t

dt

t
· · · dt

t︸ ︷︷ ︸
s−1 times

σdt

1− σt
, (15.1)

which is given in the mnemonic form (like in (4.11)) in the second line.

Theorem 15.1. For k ≥ 2 and σ 6= 1,

ζ(k, 1; 1, σ) + ζ(k, 1; 1, σ−1) = ζ(k)
(
ζ(1;σ) + ζ(1;σ−1)

)
+ kζ(k + 1)

−
k∑

j=1

ζ(j;σ)ζ(k − j + 1;σ−1). (15.2)

The particular case σ = −1 corresponds to the identity

2ζ(k, 1) = 2
∑

n>m≥1

(−1)m

nkm
= 2ζ(k)ζ(1) + kζ(k + 1)−

k∑
j=1

ζ(j)ζ(k − j + 1)

= −4(1− 2−k)ζ(k) log 2 + kζ(k + 1)

−
k−1∑
j=2

(1− 21−j)(1− 2j−k)ζ(j)ζ(k − j + 1), (15.3)

where we use

ζ(k) =

{
− log 2 if k = 1,

−(1− 21−k)ζ(k) if k > 1.

Exercise 15.1. Show that the limit of the right-hand side in (15.2) as σ → 1, |σ| = 1,
exists and deduce the corresponding identity (due to Euler)

2ζ(k, 1) = kζ(k + 1)−
k−1∑
j=2

ζ(j)ζ(k − j + 1). (15.4)

In order to prove Theorem 15.1 we use the shuffle and stuffle relations for the
corresponding alternating double sums.

Lemma 15.1. We have

ζ(k)
(
ζ(1;σ) + ζ(1;σ−1)

)
=

k∑
j=1

(
ζ(j, k + 1− j;σ, σ−1) + ζ(k + 1− j, j;σ−1, σ)

)
+ ζ(k, 1; 1, σ) + ζ(k, 1; 1, σ−1).
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Proof. The shuffle product of ζ(1;σ) and ζ(k) reads

ζ(1;σ)ζ(k) =

∫ 1

0

σdt

1− σt
·
∫ 1

0

dt

t
· · · dt

t︸ ︷︷ ︸
k−1 times

dt

1− t

=
k∑

j=1

∫ 1

0

dt

t
· · · dt

t︸ ︷︷ ︸
j−1 times

σdt

1− σt

dt

t
· · · dt

t︸ ︷︷ ︸
k−j times

dt

1− t

+

∫ 1

0

dt

t
· · · dt

t︸ ︷︷ ︸
k−1 times

dt

1− t

σdt

1− σt

=
k∑

j=1

ζ(j, k + 1− j;σ, 1/σ) + ζ(k, 1; 1, σ).

It remains to add the equation obtained by replacing σ with σ−1. �

Lemma 15.2. The following identity is valid:
k∑

j=1

ζ(j;σ)ζ(k+1−j;σ−1) =
k∑

j=1

(
ζ(j, k+1−j;σ, σ−1)+ζ(k+1−j, j;σ−1, σ)

)
+kζ(k+1).

Proof. By the shuffle product (that is, term-by-term multiplication of the corre-
sponding series),

ζ(j;σ)ζ(k + 1− j; ε) = ζ(j, k + 1− j;σ, ε) + ζ(k + 1− j, j; ε, σ) + ζ(k + 1;σε).

Putting ε = σ−1 and summing for j from 1 to k, the result follows. �

Proof of Theorem 15.1. The identity follows by applying Lemmas 15.1 and 15.2. �



54 JONATHAN M. BORWEIN AND WADIM ZUDILIN

16. q-Analogues of MZVs

The classical idea of introducing an additional parameter to an expression or
formula we wish to deal with, is quite fruitful in many situations. This may simplify
a proof of the corresponding identity or lead to a more general identity which have
several other useful specializations of the introduced parameter. We have already
experienced the usefulness of the method on the example of functional models of
generalised polylogarithms in Section 4 and of (no name) function in Section 7. They
were used for proving the shuffle and stuffle relations of MZVs, respectively. Because
they (are expected to) satisfy only ‘half’ of relations of MZVs, we can hardly use
them as a live imitation of the latter numbers.

The story of introducing the parameter q (or, the ‘quantum’ parameter) often has
a different flavor. Note that the basic idea is simply to replace a number n (not
necessarily an integer!) by the function [n] = [n]q := (1 − qn)/(1 − q); this is, of
course, nothing else but a polynomial for positive n ∈ Z. The actual motivation of
the replacement has strong analytic grounds:

lim
q→1

0<q<1

[n]q = n,

so that the (sometimes formal) limit as q → 1 produces back the original limits.
Note however that this is only a part of the recipe, as multiplying the ‘q-number’
[n]q by any power of q makes exactly the same job as q → 1. Getting the right
exponents of q is an art.

The main requirement from a q-model of MZVs (or MZSVs) is a better under-
standing of the structure of linear and algebraic relations between the corresponding
numbers. An important advantage of the q-model is that proving the absence of such
relations and guessing their existence are usually a much easier task: for example,
the linear independence of any version of q-MZVs (and much more) is known, while
just the irrationality of odd single zeta values seems to be hard. On the other hand,
showing that some relations hold is normally easier for numbers than for functions.
The main problem here is finding an appropriate q-analogue which is often dictated
by already existing proofs of the corresponding original identities.

An unfortunate thing about MZVs is that there is no uniform q-generalization of
the multiple zeta (star) values. Having however several q-analogues in mind and a
simple way to pass from one q-model to another gives one a very natural parallel
between the numbers and their q-analogues.

There are very good reasons to believe that the most perfect q-extension of MZVs
is given by

ζq(s1, s2, . . . , sl) =
∑

n1>n2>···>nl≥1

qn1(s1−1)+n2(s2−1)+···+nl(sl−1)

[n1]s1 [n2]s2 · · · [nl]sl
, (16.1)

where conditions on the multi-index s = (s1, . . . , sl) are exactly the same as for the
MZVs (1.5) (that is, the multi-index is admissible). The corresponding q-analogues
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of the values of Riemann’s zeta function are in this case as follows:

ζq(s) =
∑
n≥1

qn(s−1)

[n]s
.

The q-model (16.1) inherits many relations available for MZVs ζ(s). There is a
version of stuffle relations, which is based on the identity

qn(s−1)

[n]sq

qm(r−1)

[m]rq

∣∣∣∣
m=n

= (1− q)
qn(s+r−2)

[n]s+r−1
q

+
qn(s+r−1)

[n]s+r
q

;

there is however no reasonably nice version of shuffle relations. The following result
of Okuda and Takeyama, which includes numerous implications, is a convincing
argument to count the q-MZVs (16.1) appropriate enough. In order to state it, we
define the height m = m(s) of a multi-index s = (s1, . . . , sl) to be the number of
components satisfying sj > 1; for an admissible s we have s1 > 1, so that m(s) ≥ 1.
Denote the set of admissible multi-indices of fixed weight w = |s|, length l = `(s)
and height m = m(s) by I0(w, l,m), and set

Φq(x, y, z) :=
∞∑

w,l,m=0

xw−l−myl−mzm−1
∑

s∈I0(w,l,m)

ζq(s).

Theorem 16.1. The generating function Φq is given by

1 + (z − xy)Φq(x, y, z) =
∞∏

n=1

([n]q − αqn)([n]q − βqn)

([n]q − xqn)([n]q − yqn)

= exp

( ∞∑
k=2

xk + yk − αk − βk

k

k∑
j=2

(q − 1)k−jζq(j)

)
, (16.2)

where α and β are determined by

α+ β = x+ y + (q − 1)(z − xy), αβ = z.

In particular, the sum of the multiple q-zeta values of fixed weight, length and height
is a polynomial in q and single q-zeta values.

The limiting case q → 1 was established earlier by Ohno and Zagier.

Corollary 1. We have the generating function identity
∞∑

s,r=0

xs+1yr+1ζq(s+ 2, {1}r)

= exp

( ∞∑
k=2

xk + yk − (x+ y + (1− q)xy)k

k

k∑
j=2

(q − 1)k−jζq(j)

)
.

In particular, because of the symmetry in x and y,

ζq(s+ 2, {1}r) = ζq(r + 2, {1}s).

Proof. The identity follows by taking z = 0 in (16.2). �
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Corollary 2 (Sum theorem). The sum of all admissible multiple q-zeta values of
fixed weight w and fixed length is equal to ζq(w),∑

s:|s|=w, `(s)=l

ζq(s) = ζq(w).

Proof. This derivation is more subtle. Taking the limit as z → xy in (16.2) gives

Φq(x, y, xy) =
∞∑

r=1

qr

([r]q − xqr)([r]q − yqr)

=
∞∑

r=1

qr

[r]2q

(
1− xqr

[r]q

)−1(
1− yqr

[r]q

)−1

=
∞∑

m,n=0

xmynζq(m+ n+ 2) =
∑

w>l≥1

xw−l−1yl−1ζq(w).

On the other hand, it follows directly from definition that

Φq(x, y, xy) =
∞∑

w,l=0

xw−l−1yl−1
∑

s:|s|=w, `(s)=l

ζq(s).

It remains to compare the coefficients in the two representations of Φq(x, y, xy). �

Exercise 16.1. For an indeterminate z, show∑
n1>···>nl≥1

qn1

[n1]q

l∏
j=1

1

[nj]q − zqnj
=

∞∑
n=1

qln

[n]lq([n]q − zqn)
.

Hint. This is equivalent to the sum theorem in Corollary 2. �

In spite of the above ‘naturalness’ of the q-MZVs (16.1), there are other variations,
and we indicate more in what follows. The main difficulty of all these q-models
occurs when we look for a reasonable q-generalization of the shuffle product from
Theorem 3.1, the product originated from the differential equations for the multiple
polylogarithms (4.1). Lemma 4.1 tells us that

d

dz
Lis1,s2,...,sl

(z) =


1

z
Lis1−1,s2,...,sl

(z) if s1 ≥ 2,

1

1− z
Lis2,...,sl

(z) if s1 = 1,
(16.3)

and this comes from the fundamental theorem of calculus,

d

dz

(
f(z)g(z)

)
=

d

dz
f(z) · g(z) + f(z) · d

dz
g(z). (16.4)

The differential equations (16.3) give rise to an integral representation of the polylog-
arithms (4.1) (hence, of the multiple zeta values), where the participating differential
forms dz/z and dz/(1− z) are assigned as two non-commutative letters, so that the
integrals themselves are interpreted as words on these letters.
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The q-analogue of (16.4) reads as

Dq

(
f(z)g(z)

)
= Dqf(z) · g(z) + f(z) ·Dqg(z)− (1− q)z ·Dqf(z) ·Dqg(z), (16.5)

where

Dqf(z) =
f(z)− f(qz)

(1− q)z
.

Defining a q-analogue of the multiple polylogarithms (4.1) as

Lis1,...,sl
(z; q) =

∑
n1>···>nl≥1

zn1

[n1]s1 · · · [nl]sl
, (16.6)

from (16.5) we deduce the following analogue of (16.3):

Dq Lis1,s2,...,sl
(z; q) =


1

z
Lis1−1,s2,...,sl

(z; q) if s1 ≥ 2,

1

1− z
Lis2,...,sl

(z; q) if s1 = 1.

This q-model of the multiple polylogarithms, together with classical formulae in the
theory of basic hypergeometric series (which we ‘touch’ below), were used in the
derivation of Theorem 16.1 by Okuda and Takeyama. This is a reason to believe
that the q-multiple polylogarithms (16.6) are ‘motivated’ q-analogues of (4.1), and
that their values at z = q,

zq(s1, s2, . . . , sl) = (1− q)−|s| Lis1,s2,...,sl
(q; q)

=
∑

n1>n2>···>nl≥1

qn1

(1− qn1)s1(1− qn2)s2 · · · (1− qnl)sl
, (16.7)

are reasonable q-analogues of multiple zeta values. Note the normalization factor
(1− q)−|s| in the latter specialization; it makes many formulae for q-MZVs ‘cleaner’
and could be also used for the q-model (16.1).

Although the rule (16.5) might be interpreted as a shuffle product of a suitable
functional q-model of the multiple polylogarithms and the corresponding q-MZVs,
these models are different from and even ‘incompatible’ with already given models.
For example, the q-analogue of the formula

Li1(z)
r = r! Li{1}r(z)

(cf. Exercise 4.2 (a)) in terms of (16.6) involve certain undesired ‘parasites’: if r = 2,
from

Dq

(
Li1(z; q) Li1(z; q)

)
=

1

1− z
Li1(z; q) + Li1(z; q)

1

1− z
− (1− q)

z

(1− z)2

we have

Li1(z; q)
2 = 2 Li1,1(z; q)− (1− q)

∞∑
n=1

(n− 1)zn

[n]
,

where the latter series cannot be expressed by means of (16.6).
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A related problem is a q-generalization of Euler’s decomposition formula

ζ(r)ζ(s) =
r−1∑
i=0

(
s− 1 + i

i

)
ζ(s+ i, r − i) +

s−1∑
i=0

(
r − 1 + i

i

)
ζ(r + i, s− i) (16.8)

(which follows from the double shuffle relations (13.2), (13.3)), since the known
proofs make use (explicitly or not) of the shuffle relations. It seems that a way to
overcome this difficulty is to extend the algebra of q-MZVs differentially, that is,
to consider a differential algebra of q-MZVs and all their δ-derivatives of arbitrary
order, where δ = q d

dq
. Although it is hard to justify this claim, let us see how the

problem may be fixed on the example of a q-analogue of (16.8) when r = s = 2,

ζ(2)2 = 2ζ(2, 2) + 4ζ(3, 1), (16.9)

by means of (16.7). As Bradley shows, even this particular case involves something,
which is not expressible by means of q-MZVs (16.1).

We start with the partial-fraction identity

1

(1− x)(1− y)
=

1

2

(
f(x, y) + f(y, x)

)
, where f(x, y) =

1 + x

(1− x)(1− xy)
,

and differentiate both sides with respect to x and y,

∂f(x, y)

∂x ∂y
=

2

(1− x)2(1− xy)2
+

4

(1− x)(1− xy)3
− 4

(1− x)(1− xy)2
− 1 + xy

(1− xy)3
.

Multiplying the result by xy, substituting x = qn and y = qm, and using

∞∑
n,m=1

xy(1 + xy)

(1− xy)3

∣∣∣∣
x=qn, y=qm

=
∞∑
l=1

(l − 1)
ql(1 + ql)

(1− ql)3

= δ
∞∑
l=1

ql

(1− ql)2
−

∞∑
l=1

ql(1 + ql)

(1− ql)3
= δzq(2)− 2zq(3) + zq(2),

we finally arrive at

zq(2)2 + δzq(2) = 2zq(2, 2) + 4zq(3, 1)− 4zq(2, 1) + 2zq(3)− zq(2),

which is the desired q-analogue of (16.9).
One can also use Ramanujan’s system of differential equations (16.11) to get rid

of the term δzq(2). Namely, using

δzq(2) = zq(2)− 5zq(3) + 5zq(4)− 2zq(2)2

we obtain

zq(2)2 = −2zq(2, 2)− 4zq(3, 1) + 4zq(2, 1) + 5zq(4)− 7zq(3) + 2zq(2),

which is also a q-analogue of (16.9). But for a general q-analogue of (16.8) we do
expect terms involving δzq(s) and δzq(t), hence working in the δ-differential algebra
generated by the multiple q-zeta values (16.7). Is there a nice form of double shuffle
relations in this differential algebra?
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There is also an arithmetically motivated q-model, but for single (non-multiple)
zeta values:

ζ̃q(s) =
∞∑

n=1

σs−1(n)qn =
∞∑

n=1

ns−1qn

1− qn
, s = 1, 2, . . . , (16.10)

where σs−1(n) =
∑

d|n d
s−1 denotes the sum of powers of the divisors. These can

be readily recalculated in terms of the q-zeta values (16.1) and (16.7) with l = 1,
because

ζ̃q(1) =
∞∑

n=1

qn

1− qn
, ζ̃q(2) =

∞∑
n=1

qn

(1− qn)2
, ζ̃q(3) =

∞∑
n=1

qn(1 + qn)

(1− qn)3
,

ζ̃q(4) =
∞∑

n=1

qn(1 + 4qn + q2n)

(1− qn)4
, ζ̃q(5) =

∞∑
n=1

qn(1 + 11qn + 11q2n + q3n)

(1− qn)5

and, in general,

ζ̃q(k) =
∞∑

n=1

qnρk(q
n)

(1− qn)k
, k = 1, 2, 3, . . . ,

where the polynomials ρk(x) ∈ Z[x] are determined recursively by the formulae

ρ1 = 1, ρk+1 = (1 + (k − 1)x)ρk + x(1− x)ρ′k for k = 1, 2, . . . .

The latter imply ρk+1(1) = k! that results in the limiting relations

lim
q→1

0<q<1

(1− q)sζ̃q(s) = (s− 1)! · ζ(s), s = 2, 3, . . . .

If s ≥ 2 is even, then the series Es(q) = 1 − 2sζq(s)/Bs, where the Bernoulli
numbers Bs ∈ Q are defined in (1.2), are known as the Eisenstein series. This
circumstance allows to prove the coincidence of the rings

Q[q, ζ̃q(2), ζ̃q(4), ζ̃q(6), ζ̃q(8), ζ̃q(10), . . . ] and Q[q, ζ̃q(2), ζ̃q(4), ζ̃q(6)];

the fact can be viewed as a q-analogue of the coincidence of the numerical rings

Q[ζ(2), ζ(4), ζ(6), ζ(8), ζ(10), . . . ] and Q[ζ(2)] = Q[π2]

which we proved in Lemma 1.2. Even more, the ring Q[q, ζ̃q(2), ζ̃q(4), ζ̃q(6)] is dif-
ferentially stable because of Ramanujan’s system of differential equations

δE2 =
1

12
(E2

2 − E4), δE4 =
1

3
(E2E4 − E6), δE6 =

1

2
(E2E6 − E2

4), (16.11)

where, as before, δ = q d
dq

.

There are other examples of q-generalizations of both MZVs and generalised poly-
logarithms, motivated by the theory of modular forms, basic (q-) hypergeometric
series and mathematical physics. They are not yet systematically investigated. A
basic example here is related to the q-exponential function

e(z) = eq(z) =
1∏∞

m=0(1− zqm)
=

1

(z; q)∞
, (16.12)
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where z ∈ C, |z| < 1. Here we use the standard q-Pochhammer notation (cf.
Section 5)

(a; q)n =

{
1 if n = 0,∏n−1

m=0(1− aqm) if n ≥ 1,

which, of course, has perfect sense for n = ∞ as well, because |q| < 1. The similarity
with the classical exponential function comes from the expansion

eq(z) =
∞∑

n=0

zn

(q; q)n

,

which is the special case x = 0, y = z of the q-binomial theorem
∞∑

n=0

(x; q)n

(q; q)n

yn =
(xy; q)∞
(y; q)∞

. (16.13)

The q-polynomials

[n]q! =
n∏

k=1

[k]q =
n∏

k=1

1− qk

1− q
=

(q; q)n

(1− q)n
,

and so the product (q; q)n, are regarded as natural q-extensions of n!. Moreover, the
function e(z) satisfies the ‘standard’ exponential functional identity

e(X + Y ) = e(X)e(Y ),

if e(X) = eq(X), e(Y ) = eq(Y ) and e(X + Y ) = eq(X + Y ) are viewed as elements
in the algebra Cq[[X, Y ]] of formal power series in two elements X, Y linked by the
commutation relation XY = qY X. This noncommutative combinatorial interpreta-
tion was given by Schutzenberger in the 1950s.

On the other hand, from (16.12) we have the asymptotic behaviour

log e(z) =
∞∑

n=0

(
− log(1− qnz)

)
=

∞∑
n=0

∞∑
m=1

qmnzm

m
=

∞∑
m=1

zm

m(1− qm)

=
1

1− q

∞∑
m=1

zm

m[m]q
∼ −1

log q

∞∑
m=1

zm

m2
as q → 1 (16.14)

(known already to Ramanujan), since − log q ∼ 1− q as q → 1. This allows to think
of log e(z) as of a q-analogue of the dilogarithm function

Li2(z) =
∞∑

m=1

zm

m2
,

the quantum dilogarithm. This analogy is much deeper than just the asymptotics
above because it is not hard to check that the q-binomial theorem (16.13) is equiv-
alent to the so-called quantum pentagonal identity

e(X)e(Y ) = e(Y )e(−Y X)e(X), (16.15)

where as before e(X) = eq(X), e(Y ) = eq(Y ) and e(−Y X) = eq(−Y X) are elements
in the algebra Cq[[X, Y ]] of formal power series in two elements X, Y linked by the
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commutation relation XY = qY X. It seems that Richmond and Szekeres were
the first to realise that the limiting case q → 1 of certain q-hypergeometric identi-
ties (actually, they considered the Andrews–Gordon generalisation of the Rogers–
Ramanujan identities) produces non-trivial identities for the dilogarithm values; the
argument was later exploited by Loxton and rediscovered in the context of (16.13),
(16.15) by Faddeev and Kashaev.

Theorem 16.2. The limiting case q → 1 of the q-binomial theorem (16.13) is the
equality

Li2(x) + Li2(y) = Li2

(
x

1− y

)
+ Li2

(
y

1− x

)
− Li2

(
xy

(1− x)(1− y)

)
− log(1− x) log(1− y), 0 < x < 1, 0 < y < 1. (16.16)

Remark. Although we prove relation (16.16) for x and y restricted to the interval
(0, 1), and this positivity is always crucial in application of the allied asymptotical
formulae, the identity remains valid for x, y ∈ C \ (1,+∞) by analytic continuation.

Formula (16.16) is due to Abel but an equivalent formula was published by Spence
nearly twenty years earlier. Another equivalent form of (16.16) (see (16.27) below)
was given by Rogers.

Proof. Without loss of generality assume that q is sufficiently close to 1, namely,
that

max{x, y, 1− y(1− x)} < q < 1.

The easy part of the theorem is the asymptotics of the right-hand side in (16.13):

log
(xy; q)∞
(y; q)∞

= log
e(y)

e(xy)
∼ 1

log q

(
Li2(xy)− Li2(y)

)
as q → 1, (16.17)

which is obtained on the basis of (16.14).
For the left-hand side of (16.13), write

∞∑
n=0

(x; q)n

(q; q)n

yn =
∞∑

n=0

cn, where cn =
(x; q)n

(q; q)n

yn > 0. (16.18)

Then the sequence

dn =
cn+1

cn
=

1− xqn

1− qn+1
y > 0, n = 0, 1, 2, . . . , (16.19)

satisfies

dn+1

dn

=
(1− xqn+1)(1− qn+1)

(1− xqn)(1− qn+2)
= 1− qn(1− q)(q − x)

(1− xqn)(1− qn+2)

< 1− qn(1− q)(q − x), n = 0, 1, 2, . . . (16.20)

(we use 0 < x < q < 1), hence it is strictly decreasing. On the other hand,
1− y(1− x) < q implies

d0 =
c1
c0

=
1− x

1− q
y > 1,
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while

lim
n→∞

dn = lim
n→∞

1− xqn

1− qn+1
y = y < 1;

thus, there exists the unique index N ≥ 1 such that

dN−1 =
cN
cN−1

≥ 1 and dN =
cN+1

cN
< 1. (16.21)

Solving the inequality cn+1/cn < 1 or, equivalently, (1− xqn)y < 1− qn+1 we obtain
n > T , where

T =
1

log q
· log

1− y

q − xy
, (16.22)

hence N = bT c, the integral part of T . From (16.19)–(16.21) we conclude that cN
is the main term contributing the sum in (16.18), namely,

1 <

∑∞
n=0 cn
cN

< const .

This implies

log
∞∑

n=0

cn ∼ log cN = log

(
e(q)e(xqN)

e(x)e(qN+1)
yN

)
∼ log

(
e(q)e(xqT )

e(x)e(qT+1)
yT

)
as q → 1. (16.23)

Note now that from (16.22)

qT =
1− y

q − xy
,

whence the asymptotics in (16.23) may be continued as follows:

log
∞∑

n=0

cn ∼ log e(q) + log e

(
x

1− y

q − xy

)
− log e(x)− log e

(
q

1− y

q − xy

)
+

log y

log q
· log

1− y

q − xy

∼ 1

log q

(
Li2(x) + Li2

(
1− y

1− xy

)
− Li2(1)− Li2

(
x

1− y

1− xy

)
+ log y · log

1− y

1− xy

)
as q → 1, (16.24)

where (16.14) is used.
Comparing the asymptotics (16.17) and (16.24) of the both sides of (16.13) we

arrive at the identity

Li2(x) + Li2

(
1− y

1− xy

)
− Li2(1)− Li2

(
x

1− y

1− xy

)
+ log y · log

1− y

1− xy

= Li2(xy)− Li2(y). (16.25)

Take x = 0 in (16.25) to get

Li2(y) + Li2(1− y)− Li2(1) + log y · log(1− y) = 0.
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This identity, in particular, implies

Li2

(
1− y

1− xy

)
−Li2(1) = −Li2

(
1− 1− y

1− xy

)
−log

1− y

1− xy
·log

(
1− 1− y

1− xy

)
. (16.26)

Substituting (16.26) into (16.25) results in

Li2(xy) + Li2

(
x(1− y)

1− xy

)
+ Li2

(
y(1− x)

1− xy

)
+ log

1− y

1− xy
· log

1− x

1− xy

= Li2(x) + Li2(y). (16.27)

Finally, changing variable x̃ = x(1− y)/(1− xy), ỹ = y(1− x)/(1− xy), hence

1− x̃ =
1− x

1− xy
, 1− ỹ =

1− y

1− xy
, x =

x̃

1− ỹ
, y =

ỹ

1− x̃
,

reduces identity (16.27) to the required form (16.16). �

A similar ‘mixed’ q-extension of the multiple zeta values might be possible. The
following example is due to Zagier.

Theorem 16.3. The following identity is valid:
∞∑

m=1

∞∑
n=1

1

mn(m+ n)

qm+n

(1− qm)(1− qn)(1− qm+n)
=

∞∑
m=1

1

6m3

q2m(3− qm)

(1− qm)3
. (16.28)

Remark. The limiting case as q → 1 of the identity reads
∞∑

m=1

∞∑
n=1

1

m2n2(m+ n)2
=

1

3

∞∑
m=1

1

m6
=

π6

2835
.

Although the left-hand side here is not a standard MZV, the identity reduces it to
a single zeta value.

By comparing the coefficients of qN , we see that (16.28) is equivalent to the
number-theoretic identity∑

m,n,r,s>0
mr+ns=N

min(r, s)

mn(m+ n)
=
σ5(N)− σ3(N)

6N3
, N ∈ N.

Lemma 16.1. Let {α(m,n)}m,n∈N be a collection of complex numbers which can be
written in the form

α(m,n) = β(m,n)− β(m+ n, n)− β(m,m+ n), m, n ∈ N, (16.29)

where
∑

m,n>0 β(m,n) is absolutely convergent. Then

∞∑
m=1

∞∑
n=1

α(m,n) =
∞∑

m=1

β(m,m).

Proof. It follows from (16.29) that∑
m,n>0

α(m,n) =

( ∑
m,n>0

−
∑

m>n>0

−
∑

n>m>0

)
β(m,n) =

∑
m=n>0

β(m,n),

which is the wanted identity. �
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Proof of Theorem 16.3. It is interesting that the summand on the left-hand side
of (16.28) cannot be given in the form (16.29). However, there is an identity of this
type at the level of derivatives, namely

q
d

dq

(
1

mn(m+ n)

qm+n

(1− qm)(1− qn)(1− qm+n)

)
= β(m,n)−β(m+n, n)−β(m,m+n)

with

β(m,n) =
1

m

qm

(1− qm)2
· 1

n

qn

(1− qn)2
,

and now the required identity follows from Lemma 16.1 and

β(m,m) = q
d

dq

(
q2m(3− qm)

6m3(1− qm)3

)
after integration. �
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