accepted calculation with incommensurate but expected - as numbers, integrated squares, rules of number geometrically as areas, volumes etc. and gave geometric arguments to support the validity of manipulations but had no well developed sense of proof.

Their algebra was entirely devoid of symbols, being purely rhetorical though it covered quadratic & some cubic equations.

N.B. al-jabr → algebra

restoring, in the case the balance of an equation.

was also applied to the art of foreshadow.

Separate single symbols for the numbers 1 to 9. Introduced a base 10 positional notation. Wrote fractions as we do, without the bar & had rules much like ours "to divide by a fraction, invert & multiply." introduced 0 v - as Rāsūl al-Debāī's rules to calculate with them. Abbreviations gave rise to some algembolism eg. ka $\sqrt{\text{b}}$

This led them to reckon with incommensurables "like they were integers"

$\sqrt{a} + \sqrt{b} = \frac{a+b}{1(a+b)+2\sqrt{ab}}$ as would be the case if a power product squa