A CLASS OF SPACES WITH WEAK NORMAL STRUCTURE

Brailey Sims

It has recently been shown that a Banach space enjoys the weak fixed point property if it is ε_0-inquadrate for some $\varepsilon_0 < 2$ and has WORTH; that is, if $x_n \rightharpoonup x$ then, $\|x_n - x\| - \|x_n + x\| \to 0$, for all x. We establish the stronger conclusion of weak normal structure under the substantially weaker assumption that the space has WORTH and is ε_0-inquadrate in every direction for some $\varepsilon_0 < 2$.

A Banach space X is said to have the \textit{weak fixed point property} if whenever C is a nonempty weak compact convex subset of X and $T : C \to C$ is a \textit{nonexpansive mapping}; (that is, $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in C$), then T has a fixed point in C.

It is well known that if X fails to have the weak fixed point property then it fails to have \textit{weak normal structure}; that is, X contains a weak compact convex subset C with more than one point which is \textit{diametral} in the sense that, for all $x \in C$

$$\sup\{\|y - x\| : y \in C\} = \text{diam } C := \sup\{\|y - z\| : y, z \in C\}.$$

Further, if X fails to have weak normal structure then there exists a sequence, (x_n), satisfying;

(S1) \hspace{1cm} \lim_n \|x_n - x\| = \text{diam } C = 1, \hspace{1cm} \text{for all } x \in C.$$

That is, (x_n) is a non-constant weak null sequence which is 'diameterising' for its closed convex hull. In particular, since $0 \in C$, we have $\|x_n\| \to 1$.

Details of these and related results may be found in the monograph by Goebel and Kirk [7] for example.
For the Banach space X we define $\delta : [0, 2] \times X \setminus \{0\} \to \mathbb{R}$ by

$$
\delta(\varepsilon, x) := \inf \left\{ 1 - \left\| y + \frac{\varepsilon}{2\|x\|} x \right\| : \|y\| \leq 1 \text{ and } \left\| y + \frac{\varepsilon}{\|x\|} x \right\| \leq 1 \right\}.
$$

We refer to $\delta(\varepsilon, x)$ as the \textit{modulus of convexity in the direction} x. X is \textit{uniformly convex in every direction} (UCED) if $\delta(\varepsilon, x) > 0$, for all $x \neq 0$ and all $\varepsilon > 0$ (Day, James and Swaminathan [2]).

The \textit{modulus of convexity} of X is given by

$$
\delta(\varepsilon) := \inf_{x \neq 0} \delta(\varepsilon, x),
$$

and X is \textit{uniformly convex} if $\delta(\varepsilon) > 0$, for all $\varepsilon > 0$.

Following Day, given $\varepsilon_0 \in (0, 2]$ we say X is ε_0-\textit{inquadrate} if $\delta(\varepsilon_0) > 0$.

By analogue with this last definition, for $\varepsilon_0 \in (0, 2]$ we shall say X is ε_0-\textit{inquadrate in every direction} if $\delta(\varepsilon_0, x) > 0$, for all $x \neq 0$.

It is readily verified that X is ε_0-inquadrate in every direction if and only if whenever $\limsup_n \|x_n\| \leq 1$, $\limsup_n \|x_n + \lambda_n x\| \leq 1$, and $\|x_n + (\lambda_n/2)x\| \to 1$ we have $\limsup_n |\lambda_n| \|x\| \leq \varepsilon_0$.

Note there are also the weaker notions, of X being ε_0-inquadrate in some subset of directions, and for each $x \neq 0$ there being an $\varepsilon_x \in (0, 2]$ with $\delta(\varepsilon_x, x) > 0$, however; these will not concern us.

Garkavi [5] showed that spaces which are UCED have weak normal structure and hence enjoy the weak fixed point property. An essentially similar argument establishes the result for spaces which are ε_0-inquadrate in every direction for some $\varepsilon_0 \in (0, 1)$.

To see this, suppose that X fails weak normal structure and so contains a sequence (x_n) satisfying (S1) and (S2). Choose m so that $\|x_m\| > \varepsilon_0$, then putting $x = x_m$ we have $\|x_n\| \to 1$, $\|x_n - x\| \to 1$ and, since $0 \in C$, so $x/2 \in C$, $\|x_n - x/2\| \to 1$ contradicting the assumption that X is ε_0-inquadrate in every direction.

In general the situation when $1 \leq \varepsilon_0 < 2$ remains unresolved, even in the ε_0-inquadrate case.

Two other 'classical' conditions known to be sufficient for weak normal structure are:

1. \textit{The condition of Opial}, whenever $x_n \rightharpoonup 0$ and $x \neq 0$ we have

$$
\limsup_n \|x_n\| < \limsup_n \|x_n - x\|.
$$

The condition was introduced by Opial [10], and shown to imply weak normal structure by Gossez and Lami Dozo [8]. The condition is unchanged if both lim sups are
replaced by limifs. We say X satisfies the non-strict Opial condition if the condition holds with strict inequality replaced by `\leq'.

(2) ε_0-Uniform Radon-Reisz (ε_0-URR), for some $\varepsilon_0 \in (0, 1)$; there exist $\delta > 0$ so that whenever $x_n \rightharpoonup x$, with $\|x_n\| \leq 1$ and $\text{sep}(x_n) := \inf\{\|x_n - x_m\| : n \neq m\} > \varepsilon_0$ we have $\|x\| < 1 - \delta$. When the condition holds for all $\varepsilon_0 > 0$ we say X is URR. The condition is essentially due to Huff [9], and was shown to imply weak normal structure by van Dulst and Sims [4].

Gossez and Lami Dozo [8] showed that Opial's condition follows from the non-strict version in the presence of uniform convexity, however a careful reading of their argument establishes the following.

Proposition 1. If X is UCED and satisfies the non-strict Opial condition then X satisfies the Opial condition.

Proof: Suppose X fails the Opial condition, then there exists a sequence $x_n \rightharpoonup 0$ and $x \neq 0$ with

$$\liminf_n \|x_n\| \neq \liminf_n \|x_n - x\|.$$

By the non-strict Opial condition we must have equality, and without loss of generality we may assume that $\|x_n\| \rightarrow 1$. Let $y_n := x_n - x$, then $\|x_n\|, \|y_n\| \rightarrow 1$ and $x_n - y_n = x$. Thus, by UCED we must have that

$$\liminf_n \|x_n - x/2\| = \liminf_n \|(x_n + y_n)/2\| < 1 = \liminf_n \|x_n\|,$$

contradicting the non-strict Opial condition.

In Sims [12], the notion of weak orthogonality (WORTH); if $x_n \rightharpoonup 0$ then for all $x \in X$ we have

$$\|x_n - x\| - \|x_n + x\| \rightarrow 0,$$

was introduced (also see Rosenthal [11]), and it was asked whether spaces with WORTH have the weak fixed point property. WORTH generalises the lattice theoretic notion of 'weak orthogonality' introduced by Borwein and Sims [1] and shown to be sufficient for the weak fixed point property in Sims [12].

Proposition 2. The non-strict Opial condition is entailed by WORTH.

Proof: If $x_n \rightharpoonup 0$ then for any $x \in X$ we have

$$\limsup_n \|x_n\| \leq \frac{1}{2} \left(\limsup_n \|x_n - x\| + \limsup_n \|x_n + x\| \right)$$

$$= \limsup_n \|x_n - x\|,$$

as $\lim_n \|x_n - x\| - \|x_n + x\| = 0$, by WORTH.

Combining this with proposition 1 we obtain the following.
Corollary 3. A Banach space which has UCED and WORTH satisfies the Opial condition.

Recently García Falset [6] working through the intermediate notion of the ACM-property has shown that spaces which are ε_0-inquadrate for some $\varepsilon_0 < 2$ and have WORTH have the weak fixed point property.

We give a direct and elementary proof that the stronger conclusion of weak normal structure follows from the substantially weaker premises of WORTH and ε_0-inquadrate in every direction for some $\varepsilon_0 < 2$. That ε_0-inquadrate in every direction is genuinely weaker than ε_0-inquadrate follows since spaces which are ε_0-inquadrate, for an $\varepsilon_0 < 2$ are necessarily superreflexive (van Dulst [3]) while every separable Banach space has an equivalent norm which is UCED [2], and hence ε_0-inquadrate in every direction for $0 < \varepsilon_0 < 2$.

Definition: We say a Banach space X has property (k) if there exists $k \in [0, 1)$ such that whenever $x_n \rightharpoonup 0$, $\|x_n\| \to 1$ and $\liminf_n \|x_n - x\| < 1$ we have $\|x\| \leq k$. Note: By considering subsequences we see that the property remains unaltered if in the definition we replace \liminf by \limsup.

Property (k) is an interesting condition which clearly exposes the uniformity in Opial's condition. Indeed Opial's condition corresponds to property (k) with $k = 0$.

Proposition 4. If X has property (k) then X has weak normal structure.

Proof: Suppose X fails weak normal structure, then there is a sequence (x_n) satisfying (S1) and (S2). Choosing m sufficiently large so that $\|x_m\| > k$ (see the remark following S2) and taking $x := x_m$ we have that property (k) is contradicted by the sequence (x_n).

We now turn to conditions sufficient for property (k), and hence also for weak normal structure.

Proposition 5. If X is ε_0-URR, for some $\varepsilon_0 \in (0,1)$ then X has property (k).

Proof: Suppose $x_n \rightharpoonup x$, $\|x_n\| \to 1$ and $\limsup_n \|x_n - x\| \leq 1$. Choose m so that $\|x_m\| > \varepsilon_0$, then, since $\liminf_n \|x_n - x_m\| \geq \|x_m\|$, we may extract a subsequence, which we continue to denote by (x_n), with $\|x_n - x_m\| > \varepsilon_0$ for all n. Continuing in this way we obtain a subsequence, still denoted by (x_n), with $\text{sep}(x_n) > \varepsilon_0$. But, then $x_n - x \rightharpoonup x$ is a sequence in the unit ball with a separation constant greater than ε_0 and so $\|x\| \leq 1 - \delta$, where δ is given by the definition of ε_0-URR. Thus X has property (k) with $k = 1 - \delta$.

Proposition 6. If X is ε_0-inquadrate in every direction for some $\varepsilon_0 \in (0,1)$ and satisfies the non-strict Opial condition then X has property (k).
Weak normal structure

PROOF: Suppose $x_n \to 0$, $\|x_n\| \to 1$ and $\limsup_n \|x_n - x\| \leq 1$. If $x = 0$ there is nothing to prove, so we assume that $x \neq 0$. Then x_n and $y_n := x_n - x$ are two sequences in the unit ball with $x_n - y_n = x$ a fixed direction, so

$$
\left\|\frac{x_n + y_n}{2}\right\| \leq 1 - \delta(\|x\|, x) < 1, \quad \text{if } \delta(\|x\|, x) > 0.
$$

But, then $\limsup_n \|x_n - x/2\| < 1 = \limsup_n \|x_n\|$, contradicting the non-strict Opial condition. Thus we must have $\delta(\|x\|, x) = 0$ and this requires $\|x\| \leq \epsilon_0$. So X has property (k) with $k = \epsilon_0$.

The case when X is ϵ_0-inquadrate in every direction for an $\epsilon_0 \in [1, 2)$ is handled by the following proposition which in conjunction with proposition 3 yields our main result.

Proposition 7. If X is ϵ_0-inquadrate in every direction for some $\epsilon_0 \in (0, 2)$ and has WORTH then X has property (k).

Proof: Suppose $x_n \to 0$, $\|x_n\| \to 1$ and $\limsup_n \|x_n - x\| \leq 1$. Let $a_n := x_n - x$ and $b_n := x_n + x$. Then by WORTH $\|a_n\| - \|b_n\| \to 0$, so $\limsup_n \|a_n\| - \limsup_n \|x_n - x\| \leq 1$, and $b_n - a_n = 2x$. Therefore we have

$$
\limsup_n \|x_n\| = \limsup_n \|(a_n + b_n)/2\| \leq 1 - \delta(2\|x\|, x) < 1,
$$

a contradiction, unless $2\|x\| \leq \epsilon_0$. Thus X has property (k) with $k = \epsilon_0/2$.

If X is ϵ_0-inquadrate then the calculations of the previous proof allow some flexibility. If we measure the ‘degree of WORTHwhileness’ of a Banach space X by

$$
w := \sup\{\lambda : \liminf_n \|x_n + x\| \leq \liminf_n \|x_n - x\|, \text{ whenever } x_n \to 0 \text{ and } x \in X\},
$$

(so X has WORTH if and only if $w = 1$) then we can adapt the above calculations to verify the following.

Proposition 8. X has property (k) if

$$
w > \max\{\epsilon_0/2, 1 - \delta(\epsilon_0)\}
$$

for some positive ϵ_0.

We close by noting that many spaces have WORTH, including all Banach lattices which are ‘weakly orthogonal’ in the sense introduced by Borwein and Sims [1]. In particular for $0 < \alpha < 1$ the space ℓ_2 with the equivalent norm $\|x\| := \max\{\alpha \|x\|_2, \|x\|_\infty\}$

[5] Weak normal structure 527
has WORTH and hence satisfies the non-strict Opial condition, but fails to satisfy the Opial condition for any α.

However, many important spaces do not enjoy WORTH, for example with the exception of $p = 2$ all the spaces $L_p[0, 1]$ fail to satisfy the non-strict Opial condition (see the details of the example given in Opial [10]) and hence also fail to have WORTH. They do however enjoy property (k); for example, when $p > 2$ it follows from Clarkson’s inequality that we may take $k = (1 - 2^{-p})^{1/p}$.

REFERENCES

