ON THE EXISTENCE OF SUPPORT MAPS WITH DENSE IMAGES

BRAILEY SIMS

(Received 18 August 1975; revised 17 August 1976)

Abstract

For a normed linear space X we investigate conditions for the existence of support maps under which the image of X is a dense subset of the dual. In the case of finite-dimensional spaces a complete answer is given. For more general spaces some sufficient conditions are obtained.

Throughout we will use $\| \cdot \|$ for the norm function of a normed linear space X, X' for its dual space and $S(X)$ to denote its unit sphere \(\{ x \in X : \| x \| = 1 \} \).

We will be particularly interested in $S(X')$ regarded as a metric space under the metric $d(f, g) = \| f - g \|$ for all $f, g \in S(X')$.

Unless otherwise stated, by the interior, int A, or the boundary, bdry A, of a subset $A \subseteq S(X')$ we mean in the context of $(S(X'), d)$. Thus, for example, $f \in \text{int } A$ if there exists $r > 0$ such that $B_r(f) = \{ g \in S(X') : \| f - g \| < r \} \subseteq A$.

It is a simple consequence of the Hahn–Banach Theorem that we may define a set valued map \mathcal{D} from $S(X)$ into the non-trivial subsets of $S(X')$ by

$$ f \in \mathcal{D}(x) \text{ if } f(x) = 1. $$

This map is frequently termed the duality map of X. When we want to emphasize the underlying space X we will write $\mathcal{D}_X(x)$ in place of $\mathcal{D}(x)$.

A support map is a selector for \mathcal{D}, that is a function

$$ \phi : S(X) \rightarrow S(X') : x \mapsto \phi_x \in \mathcal{D}(x). $$

The important property of subreflexivity, as established by Bishop and Phelps (1961), states that for a Banach space X, $\bigcup_{x \in S(X)} \mathcal{D}(x)$ is a dense subset of $S(X')$. We will be interested in the geometry of spaces which have a support
map \(\phi \) with \(\phi(S(X)) = S(X') \). Such a support map will be referred to as having \textit{dense image.}

Not every Banach space has a support map with dense image, a fact amply demonstrated by the space \(l_2^\infty(\mathbb{R}) \).

Recalling that a Banach space \(X \) is \textit{smooth} at \(x \in S(X) \) if \(\mathcal{D}(x) \) is a singleton set, we see that subreflexivity establishes that for every smooth Banach space the unique support map has dense image. So a sufficient condition for a Banach space to have a support map with dense image would be the existence of a lower semi-continuous support map (norm to weak*, Cudia (1964)).

That the requirement of smoothness is over strong may be seen from the example of \(\mathbb{R}^3 \) equipped with norm the gauge of the "lens-shaped" set

\[
\{ x : \| x - (0, \frac{1}{2}, 0) \|_2 \leq 1 \ \text{and} \ \| x + (0, \frac{1}{2}, 0) \|_2 \leq 1 \}.
\]

In this space the selection of a support map with dense image follows from the existence of a function \(f : \mathbb{R} \to \mathbb{R} \) under which the image of an open neighbourhood is a dense subset of \(\mathbb{R} \). Accordingly we seek weaker conditions than smoothness which will ensure the existence of support maps with dense images.

The following equivalence is an obvious consequence of subreflexivity.

Proposition 1. A support map \(\phi \) of the Banach space \(X \) has dense image if and only if for each \(x \in S(X) \) and \(f \in \mathcal{D}(x) \) there exists a sequence \(\{ x_n \} \) of points in \(S(X) \) with \(\phi(x_n) \to f \).

As a consequence of this proposition we have:

If for any \(x \in S(X) \), \(\text{int} \mathcal{D}(x) \neq \emptyset \) and

\[
[\text{int} \mathcal{D}(x)] \cap \bigcup_{x \in S(X) \setminus \{ x \}} \mathcal{D}(y) = \emptyset,
\]

then \(X \) does not have a support map with dense image.

The next lemma shows that the second (underlined) condition is redundant.

Lemma 2. In the normed linear space \(X \), if \(f \in \text{int} \mathcal{D}(x) \) for some \(x \in S(X) \), then \(f \notin \mathcal{D}(y) \) for any \(y \in S(X) \setminus \{ x \} \).

Proof. Assume the contrary, that there exists \(y \in S(X) \setminus \{ x \} \) with \(f \in \mathcal{D}(y) \). Let \(Y \) be the two-dimensional subspace of \(X \) spanned by \(x \) and \(y \). Then \(f|_Y \in \mathcal{D}_Y(y) \) and further in \(S(Y') \), \(f|_Y \in \text{int} \mathcal{D}_Y(x) \) which clearly cannot be the case in a two-dimensional space unless \(x = y \), a contradiction.
Corollary 3. If the normed linear space X has a support map with dense image, then $\text{int} \mathcal{D}(x) = \emptyset$ for all $x \in S(X)$.

We now develop some partial converses to Corollary 3.

Lemma 4. For the Banach space X, if $\text{int} \mathcal{D}(x) = \emptyset$ for all $x \in E$ a countable subset of X, then

$$\text{int} \left(\bigcup_{x \in E} \mathcal{D}(x) \right) = \emptyset.$$

Proof. Assume the contrary, then there exists $f_0 \in S(X')$ and $r > 0$ with $B_r(f_0) = \{f \in S(X'): \|f - f_0\| < r\} \subseteq \text{int} \left[\bigcup_{x \in E} \mathcal{D}(x) \right]$. Now the closed subset $B_{r/2}[f_0] = \{f \in S(X'): \|f - f_0\| \leq \frac{1}{2}r\}$ is a complete metric space. However,

$$B_{r/2}[f_0] = \bigcup_{x \in E} (\mathcal{D}(x) \cap B_{r/2}[f_0])$$

and for each $x \in E$, $\mathcal{D}(x) \cap B_{r/2}[f_0]$ is nowhere dense, since $\mathcal{D}(x)$ is closed and in $B_{r/2}[f_0]$, $\text{int} (\mathcal{D}(x) \cap B_{r/2}[f_0]) = \emptyset$, contradicting the Baire Category Theorem.

For any normed linear space X denote by $\lambda(X)$ the set of non-smooth points of the unit sphere $S(X)$ and let $\Delta = \bigcup \{\mathcal{D}(x): x \in S(X)\}$ and $\Lambda = \bigcup \{\mathcal{D}(x): x \in \lambda(X)\}$.

Lemma 5. Every support map of the Banach space X has dense image in $S(X')\backslash \text{int} \Lambda$.

Proof. For $f \in S(X')\backslash \text{int} \Lambda$, either $f \in S(X')\backslash \Lambda$ or $f \in \text{bdry} \Lambda$. If f belongs to the open set $S(X')\backslash \Lambda$, then by the subreflexivity of X there exists a sequence $\{f_n\}$ of functionals in $\Delta \backslash \Lambda$ convergent to f. Now each $f_n \in \mathcal{D}(x_n)$ for some $x_n \in S(X)\backslash \lambda(X)$ in which case $\mathcal{D}(x_n)$ is the singleton set $\{\phi_{x_n}\}$ and so we have a sequence $\{x_n\}$ in $S(X)$ with $\phi_{x_n} \to f$.

On the other hand, if $f \in \text{bdry} \Lambda$, then by definition there exists a sequence $\{f_n\}$ of elements in $S(X')\backslash \Lambda$ with $f_n \to f$. From the first half of the proof we can choose an $x_n \in S(X)$ with $\|\phi_{x_n} - f_n\| < 1/n$ in which case

$$\|f - \phi_{x_n}\| \leq \|f - f_n\| + \|f_n - \phi_{x_n}\| \to 0$$

and again we have established the existence of a sequence $\{x_n\}$ in $S(X)$ with $\phi_{x_n} \to f$, thus establishing the result.

Corollary 6. Let X be a Banach space and suppose Λ is nowhere dense. Then every support map on X has dense image.

Lemma 7. Let X be a normed linear space. If Λ has empty interior in the metric subspace Δ, then every support map has dense image in Δ.
PROOF. If \(f \in \Delta \) then, for any \(\varepsilon > 0 \), \(B_\varepsilon(f) \) contains a point \(g \in \Delta \setminus A \).

Since \(g = \phi_x \) for some \(x \in S(X) \), \(\| f - \phi_x \| < \varepsilon \) so the image of \(\phi \) is dense in \(\Delta \).

Theorem 8. Let \(X \) be a Banach space with separable dual, then \(X \) has a support map with dense image if and only if \(\text{int} \, \mathcal{D}(x) = \emptyset \) for each \(x \in S(X) \).

Proof. Necessity has already been proved in Corollary 3.

To prove sufficiency, by Lemma 5, we need only ensure the image of \(\phi \) is dense in \(\text{int} \, \mathcal{A} \).

Since \(\text{int} \, \mathcal{A} \) is an open subset of \(S(X') \) we may choose \(\{ f_1, f_2, \ldots, f_n, \ldots \} \) to be a countable, dense subset of \(\text{int} \, \mathcal{A} \).

Now let \(\theta : n \mapsto (\theta_1(n), \theta_2(n)) \) be a 1–1 map from the set of natural numbers \(\mathbb{N} \) onto \(\mathbb{N} \times \mathbb{N} \), and inductively select \(x_n \) from

\[
\{ x \in \lambda(X); \{ x_1, x_2, \ldots, x_{n-1} \}; \mathcal{D}(x) \cap B_{\varepsilon_\theta(n)}(f_{\theta_1(n)}) \neq \emptyset \text{ where } r_n = \theta_1(n)^{-1} \}
\]

and \(\phi_{x_n} \) from \(\mathcal{D}(x_n) \cap B_{\varepsilon_\theta(n)}(f_{\theta_1(n)}) \).

Such a selection is possible since \(\text{int} \, \mathcal{A} \) is an open subset of \(\mathcal{A} \), and for any \(n \in \mathbb{N} \)

\[
\bigcup_{x \in \lambda(X) \setminus \{ x_1, x_2, \ldots, x_{n-1} \}} \mathcal{D}(x)
\]

is a dense subset of \(\mathcal{A} \) as \(\mathcal{D}(x) = \emptyset \), \(\mathcal{D}(x) \) is closed, and so \(\bigcup_{i=1}^{\infty} \mathcal{D}(x_i) \) is nowhere dense by Lemma 4.

It is clear from the above selection procedure that \(\{ \phi_{x_n}; n \in \mathbb{N} \} \) is dense in \(\text{int} \, \mathcal{A} \). Thus assigning \(\phi_{x_n} \) arbitrarily for \(x \in \lambda(X) \setminus \{ x_1, x_2, \ldots, x_{n-1} \} \) we arrive at a support map with dense image.

We now investigate some conditions under which \(\text{int} \, \mathcal{D}(x) = \emptyset \). From the convexity of the norm in the normed linear space \(X \) it follows that for any \(\alpha, y \in S(X) \) and \(\alpha \) real

\[
g^+(x; y) = \text{Limit}_{\alpha \to 0^+} \alpha^{-1}(\| x + \alpha y \| - 1) \quad \text{and}
\]

\[
g^-(x; y) = \text{Limit}_{\alpha \to 0^-} \alpha^{-1}(\| x + \alpha y \| - 1)
\]

exist.

It is well known that

\[
g^-(x; y) = \inf \{ \text{Re} \, f(y); f \in \mathcal{D}(x) \} \\
\leq \sup \{ \text{Re} \, f(y); f \in \mathcal{D}(x) \} \\
= g^+(x; y).
\]
The norm is differentiable at \(x \in S(X) \) in the direction \(y \) if \(g^- (x ; y) = g^+ (x ; y) \), in which case we will denote the common value of these two limits by \(g(x; y) \).

If the norm is differentiable at \(x \in S(X) \) in some direction \(y \in S(X) \setminus \{ x, -x \} \) we say the norm is differentiable at \(x \) in a non-radial direction, \(y \).

Lemma 9. In the normed linear space \(X \), if the norm is differentiable at \(x \in S(X) \) in a non-radial direction \(y \), then the real linear hull of \(D(x) \) is a proper subset of \(X' \).

Proof. It suffices to observe that \(z = y - g(x; y)x \) is a non-zero element of \(X \) for which \(\text{Re} f(z) = 0 \) for all \(f \in D(x) \), and so should the real linear hull of \(D(x) \) equal \(X' \) we would contradict the Hahn–Banach Theorem.

As a partial converse to this result we offer the following.

Lemma 10. If \(X \) is a finite-dimensional normed linear space and \(x \in S(X) \) is such that the real linear hull of \(D(x) \) is a proper subset of \(X' \), then the norm is differentiable at \(x \) in a non-radial direction.

Proof. Let \(D \) be the real linear hull of \(D(x) \) then \(D \) is a proper closed subspace of \((X')_\mathbb{R} \) — the dual of \(X \) regarded as a linear space over \(\mathbb{R} \). So by the Hahn–Banach Theorem there exists \(F \in (X')_\mathbb{R} \) with \(\|F\| = 1 \) and \(F(D) = \{0\} \).

Form \(F' \) by \(F'(f) = F(f) - iF(if) \) for all \(f \in X' \) then \(F' \in X'' \) and so by the reflexivity of \(X \), \(F' = \hat{y} \) for some \(y \in S(X) \), where \(\hat{y}(f) = f(y) \). Clearly \(y \neq x, -x \) as \(f(x) = -f(-x) = 1 \) for all \(f \in D(x) \) while \(\text{Re} f(y) = \text{Re} \hat{y}(f) = F(f) = 0 \) for all \(f \in D(x) \). From this it also follows that \(g^-(x; y) = g^+(x; y) = 0 \) and so \(g(x; y) \) exists.

Lemma 11. If, in the normed linear space \(X \), \(x \in S(X) \) has \(\text{int} D(x) \neq \emptyset \), then \(X' \) is the real linear hull of \(D(x) \).

Proof. Choose \(f \in \text{int} D(x) \), then, for \(g \in X' \) either \(g = kf \) for some \(k \in \mathbb{R} \) or \(\{ f \} \subset \langle \langle f, g \rangle \rangle \) where \(\langle f, g \rangle \rangle \) is the real linear hull of \(\{ f, g \} \). So there exists \(f' \in \langle \langle D(x) \rangle \rangle \cap \langle f, g \rangle \rangle \) and further \(f' \neq kf \) \((k \in \mathbb{R}) \) since \(|k| = 1 \) so \(k = \pm 1 \) but if \(f' = -f \) then \(0 = \frac{1}{2} f + \frac{1}{2} f' \in D(x) \) which is impossible. Thus \(f, f' \) form a basis of \(\langle f, g \rangle \rangle \) and so \(g \) is a real linear combination of \(f \) and \(f' \) as required.

Lemma 12. Let \(X \) be a normed linear space. If the norm is differentiable at \(x \in S(X) \) in a non-radial direction, then \(\text{int} D(x) = \emptyset \).

Proof. The result follows from Lemmas 9 and 11.

Whether this requirement of differentiability is also a necessary condition
is not known. Since in general the converse of Lemma 11 may be untrue, a
reversal of the above line of reasoning cannot be attempted. However in the
case of finite-dimensional spaces we have the following result.

Lemma 13. Let X be a normed linear space of finite dimension n. If $x \in S(X)$ is such that the real linear hull of $D(x)$ is X', then $\text{int } D(x) \neq \emptyset$.

Proof. Let $f_1, f_2, \ldots, f_n \in D(x)$ have X' as their real linear hull. Form $f = \sum_{k=1}^{n} (1/n)f_k \in D(x)$ by its convexity. From the continuity of the natural projections $\pi_k : X' \to \langle f_k \rangle$ we can choose an $\varepsilon > 0$ so that, if $g = \sum_{k=1}^{n} \mu_k f_k$ $\mu_k \in \mathcal{R}$ has $\|g - f\| < \varepsilon$ then $|\mu_k - 1/n| < 1/2n$ and so $\mu_k > 0$ for each k. Form $g' = g/\sum_{k=1}^{n} \mu_k$ is a convex combination of the $\{f_k\}$ and so belongs to $D(x)$. Consequently g' has norm 1, whence $\sum_{k=1}^{n} \mu_k = 1$ and so $g = g' \in D(x)$. That is $\{g \in S(X); \|g - f\| < \varepsilon\} \subseteq D(x)$ and so $f \in \text{int } D(x)$.

Combining this partial converse to Lemma 11 with Lemma 10 and Theorem 8 we arrive at the following characterization in finite-dimensional spaces.

Theorem 14. Let X be a finite-dimensional normed linear space. Then the norm is differentiable at $x \in S(X)$ in a non-radial direction if and only if $\text{int } D(x) = \emptyset$. Therefore X has a support map with dense image if and only if at each point of $S(X)$ the norm is differentiable in a non-radial direction.

Proof. Lemmas 10, 12 and 13 establish the first equivalence, while the second equivalence follows from the first and Theorem 8.

Theorem 15. Let X be a Banach space with $\lambda(X)$ finite. If at each $x \in \lambda(X)$ the norm is differentiable in some non-radial direction, then every support map has dense image.

Proof. Applying Lemma 12 then Lemma 4 shows that λ is nowhere dense. Hence the conclusion follows from Corollary 6.

Theorem 16. Let X be a reflexive space and $\lambda(X)$ countable. If at each $x \in \lambda(X)$ the norm is differentiable in some non-radial direction, then every support map has dense image.

Proof. Since X is reflexive, $S(X') = \Delta$, so the result follows from the successive application of Lemmas 12, 4 and 7.

Theorem 17. Let X be a Banach space with separable dual. If at each $x \in S(X)$ the norm is differentiable in some non-radial direction, then X has a support map with dense image.
PROOF. The conclusion follows from Lemma 12 and Theorem 8.

A considerable improvement in the organisation and presentation of the above material resulted from the referee's constructive criticism of the original manuscript for which the author expresses his indebtedness.

References

University of New England,
Armidale, N.S.W. 2351,
Australia.