ON STRONG AND ABSOLUTE SUMMABILITY

by D. Borwein

(Received 13 July, 1959; and in revised form 2 October, 1960)

1. Introduction. Suppose throughout that \(\lambda > 0, \kappa > 0, -1 < \gamma < 1, \) \(\gamma \) is real and that

\[s_n = \binom{n + \gamma}{\alpha}, \quad s_n = \sum_{r=0}^{n} r^n, \quad s_n = \frac{1}{\kappa} \sum_{r=0}^{n} r^n, \quad (n = 0, 1, \ldots). \]

The series \(\sum s_n \) is said to be

(i) summable \((C, \kappa) \) to \(s \) if \(s_n \to s \),

(ii) strongly summable \((C, \kappa + 1) \) with index \(\lambda \), or summable \((C, \kappa + 1) \) to \(s \) if

\[\lim_{n \to \infty} \left(\sum_{r=0}^{n} \left| s_n - s \right|^\kappa \right)^{1/\kappa} = \alpha(1), \]

(iii) absolutely summable \((C, \kappa) \) with indices \(\gamma, \lambda, \gamma \), or summable \((C, \kappa, \gamma) \), if

\[\sum_{n=1}^{\infty} n^n \left| s_n - s_{n-1} \right|^\lambda < \infty. \]

Definitions (ii) and (iii), for general \(\kappa, \lambda, \gamma \), are due respectively to Hyslop [11] and Flett [4].

Their papers contain references to special cases considered earlier.

Let \(Q = (a_{n,m}) \), \(n, r = 0, 1, \ldots \) be a \((C, \kappa) \) matrix, and let

\[s_n = Q(s_n) = \sum_{m=0}^{n} a_{n,m}s_m. \]

It is to be supposed that all matrices referred to in this paper are of the above type. The symbol \(P \) will be reserved for matrices \((p_{n,m}) \) with \(p_{n,m} > 0 \) \((n, r = 0, 1, \ldots) \). The series \(\sum s_n \) is said to be

(iv) summable \(Q \) to \(s \), and we write \(s_n \to s(Q) \), if \(s_n \) is defined for all \(n \) and tends to \(s \) as \(n \to \infty \).

We now generalize the above definitions of strong and absolute summability in a natural way as follows. We say that \(\sum s_n \) is

(v) summable \((P, Q) \) to \(s \), and we write \(s_n \to s(P, Q) \), if

\[P(s_n - s) = \sum_{m=0}^{n} p_{n,m}s_m - s \to 0 \]

is defined for each \(n \) and tends to 0 as \(n \to \infty \).

(vi) summable \((C, \kappa, \gamma) \), if

\[\sum_{n=1}^{\infty} n^n \left| s_n - s_{n-1} \right| \gamma < \infty. \]

ON STRONG AND ABSOLUTE SUMMABILITY 123

We also define "prolate" processes of the form \(Q R, [P, Q], \{ Q R \gamma \} \), where \(R \) is any matrix, by replacing \(Q \) in (iv), (v), (vi) by \(Q R \) and taking \(s_n \) to be \(Q R(s_n) \) ; i.e. \(s_n = Q R(s_n) \)

\[s_n = R(s_n). \]

Denoting by \(C \), the matrix of the transformation which changes \((a_{n,m}) \) into \((p_{n,m}) \), we observe that the summability processes \((C, \kappa + 1) \), and \((C, \kappa, \gamma) \), are respectively the same as \((C, \kappa) \), and \((C, \kappa, \gamma) \).

The unit matrix will be denoted by \(I \), so that \(I(s_n) = s_n \).

Let \(P \) and \(Q \) be summability processes (or matrices). We shall use the notation

\[P \equiv Q \]

to mean that any series summable \(V \) to \(s \) is necessarily summable \(W \) to \(s \) provided that neither \(V \) nor \(W \) is an absolute summability process ; otherwise we shall understand the notation to mean simply that every series summable \(V \) is also summable \(W \). In either case we say that \(V \) is included in \(W \). We say that \(V \) and \(W \) are equivalent and write

\[V \cong W \]

if each is included in the other, and we write \(V = W \) if \(V \) and \(W \) denote the same process (or matrix).

If \(f = V \) and \(f \) is not an absolute summability process, then \(V \) is said to be regular.

In this paper some of the properties of the strong and absolute summability defined above are investigated.

2. Simple inclusions.

Theorem 1. If \(Q \) is any matrix and \(P = (p_{n,m}) \), where

\[\sum_{m=0}^{n} p_{n,m} < M \quad (n = 0, 1, \ldots) \]

and if \(\lambda > \mu > 0 \), then \([P, Q], (P, Q) \), \((P, q) \).

In particular, the conclusion holds if \(\lambda > \mu > 0 \) and \(P \) is regular.

This generalizes a result proved by Hyslop [11, Theorem 1].

Proof. By Hölder's inequality,

\[\sum_{m=0}^{n} p_{n,m} |v_m|^\kappa \leq \left(\sum_{m=0}^{n} p_{n,m} |v_m|^\lambda \right)^{1/\lambda} M^{1-\lambda} \]

for any sequence \((v_m) \). The required inclusion follows.

To complete the proof we have only to note that (1) is a necessary condition for the regularity of \(P \) [7, Theorem 2].

Note. Here and elsewhere an inclusion involving an arbitrary matrix \(C \) is essentially no more general than the same inclusion with \(P \) in place of \(Q \), the former being an immediate consequence of the latter.

Theorem 2. If \(Q \) is any matrix and \(\lambda > \mu > 0, \beta > \alpha > 0 \), then \(\{ Q R \gamma \} \leq \{ C \} \).

Proof. Let \(p = \lambda/\mu, q = \mu/(p-1) \) and let \((v_m) \) be any sequence. Then, by Hölder's inequality (cf. Hyslop [11, Theorem 2]),

\[C \{ Q R \gamma \} \leq \left(\sum_{m=0}^{n} p_{n,m} |v_m|^\lambda \right)^{1/\lambda} \leq \left(\sum_{m=0}^{n} p_{n,m} |v_m|^\mu \right)^{1/\mu} \]
Theorem 3. If P, Q are matrices and P is regular, then

(i) $Q = (P, Q)_\lambda$ for $\lambda > 0$,

(ii) $(P, Q)_\lambda > PQ$ for $\lambda \geq 1$.

Proof. (i) If $s_\lambda \to s$, then, since P is regular, $P(s_\lambda - s) \to 0$, i.e. $I = (P, I)$, and inclusion (i) follows.

(ii) Suppose that $s_\lambda \to s(P, I)$. Then, by theorem 1, $s_\lambda \to s(P, I)$ and so

$P(s_\lambda - s) \to 0$.

Since P is regular, it follows that $P(s_\lambda) \to s$. Hence $(P, I) = P$ and inclusion (ii) is an immediate consequence.

As a corollary of part (i) of Theorem 3 we have

(iii) If P, Q are regular matrices and $\lambda > 0$, then $(P, Q)_\lambda$ is regular.

Theorem 4. If $\lambda > \mu > 0$, $\gamma > \delta$, then

(i) $\sum_{n=1}^{\infty} \gamma_{n+1} \to \left(\sum_{n=1}^{\infty} \gamma_{n+1} \right)^{1/\gamma}$,

where γ is independent of the sequence (γ_n).

Proof of (i). The case $\lambda = \mu$ is evident. Suppose therefore that $\lambda > \mu$.

Then, by Holder's inequality,

$\left(\sum_{n=1}^{\infty} \gamma_{n+1} \right)^{1/\gamma} \leq \left(\sum_{n=1}^{\infty} \gamma_{n+1} \right)^{1/\gamma}$,

where $s(1-\mu) = s - s(\lambda + 1 - (\gamma + \lambda - 1)h) = -\mu(y - 3) - (1 - 3/8)h$, so that $\gamma < -1$. The required inequality follows.

Result (ii) is an immediate consequence of (i).
Consequently, if $\sum a_n$ is summable $|Q^\ast|$, $\gamma |\lambda|$, then
$$\|x_n\|_{\ell^p} = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}$$
and so
$$\|x_n\|_{\ell^p} \leq \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} \leq \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p},$$
from which it follows that the series is summable $|Q^\ast|$, $\gamma |\lambda|$, provided $\lambda > \mu > 0$, i.e., $|Q^\ast|$, $\gamma |\lambda|$, for $\lambda > \mu > 0$.

3. Hausdorff matrices. Given a real sequence (ξ_n), let
$$x_{n,r} = \left\{ \begin{array}{ll}
\xi_n & \text{for } 0 \leq r < n, \\
0 & \text{otherwise},
\end{array} \right. $$
denote the matrix $(x_{n,r})$ by (h, ξ_n). Matrices of this type are said to be real Hausdorff matrices. We shall assume hereafter that all Hausdorff matrices considered are real.

Let $X = (h, \xi_n)$, $Y = (h, \xi_{n,r})$. Then it is known that $XY = YX = (h, \xi_{n,r})$. Consequently $X^{-1} = (h, 1/\xi_n)$ provided $\xi_n \neq 0$, and it is familiar and easily verified that in this case $X = Y$ if and only if XY^{-1} is regular.

Further, it is known that X is regular if and only if
$$\xi_n = \int \frac{dx}{x},$$
where χ is a real function of bounded variation in $[0, 1]$ such that
$$\chi(0^+) = \chi(0^-) = \chi(1^-) = 1, \quad \chi(0^-) = 0, \quad \chi(0^+) = 1,$$
and
$$\chi(n \cdot) = \chi(n \cdot) = \chi((n+1)^-) = 1, \quad \chi(n \cdot) = 0, \quad \chi((n+1)^-) = 1.$$
Theroll 6. If \(X = (\xi, \xi) \), where
\[
\xi = \int_0^\infty d^2(t) \quad (n = 0, 1, \ldots),
\]
\(\chi \) being a real function of bounded variation in \([0, 1] \), and if
\[
\int_0^\infty \gamma \cdot d^2(t) < \infty \quad \text{ .. (7)}
\]
and \(\lambda > 1 \), then
\[
(1) \quad \sum_{n=1}^{\infty} n^{\alpha-1} |X(na)|^\lambda \leq M \sum_{n=1}^{\infty} n^{\alpha-1} |na|^\beta,
\]
where \(M \) is independent of the sequence \(\{a_n\} \).

(iii) \(\sum_{n=1}^{\infty} n^{\gamma-1} |X(na)|^\lambda \leq M \sum_{n=1}^{\infty} n^{\gamma-1} |na|^\beta \),

where \(M \) is independent of the sequence \(\{a_n\} \).

When \(\gamma > 0 \) the integral in condition (7) should be interpreted in the Lebesgue-Stieltjes sense; when \(\gamma < 0 \) the condition is redundant.

Proof of (i). Suppose first that \(\gamma < 0 \). Then, by Lemma 1, since \(n^{\alpha} \leq n^\beta \) for \(n \geq 1 \),
\[
\sum_{n=1}^{\infty} n^{\alpha-1} |X(na)|^\lambda \leq \left(\sum_{n=1}^{\infty} n^{\alpha-1} |na|^\beta \right) \left(\sum_{n=1}^{\infty} n^{\gamma-1} |na|^\beta \right),
\]
and \(\lambda > 1 \).

The proof of part (ii) is thus complete.

It follows from (i) that \(|X| \gamma = |X|_\gamma \), and inclusion (ii) is an immediate consequence.

The next theorem generalises a result given by Hyslop [11, Theorem 3].

Theorem 7. If \(P \) is a regular matrix, \(Q \) is a matrix and \(\lambda > 1 \), then necessary and sufficient conditions for a series to be summable \(\{P \cdot Q \} \), to \(s \) are that it be summable \(\{P \cdot Q \} \) to \(s \) and summable \(\{P \cdot (P \cdot Q) \} \) to \(s \).

Proof. Let \(s_n = Q(a_n) \), \(s_n = P(a_n) \). We have to prove that
\[
P \left(\{ s_n - \gamma \} \right) = o(1) \quad(8)
\]
and if only if \(\gamma \rightarrow s \).

Suppose now that \(\gamma > 0 \), and let
\[
f_\gamma(t) = \sum_{n=1}^{\infty} \left(\frac{t}{n} \right)^{\alpha-1} |na|^\beta
\]
where \(0 < t < 1 \). Then, by Holder’s inequality,
\[
|f_\gamma(t)| \leq \sum_{n=1}^{\infty} n^{\alpha-1} |na|^\beta \left[\sum_{n=1}^{\infty} \left(\frac{t}{n} \right)^{\gamma-1} \right]^{\lambda-1}
\]
and so
\[
\sum_{n=1}^{\infty} n^{\alpha-1} |f_\gamma(t)| \leq M \sum_{n=1}^{\infty} n^{\alpha-1} \left(\frac{t}{n} \right)^{\gamma-1} |na|^\beta
\]
where \(M \) and \(M_1 \) are independent of \(\{a_n\} \).

Now
\[
X(na) = \int_0^\infty f_\gamma(t) \cdot d^2(t)
\]
and so, by a form of Minkowski’s inequality,
\[
\left(\sum_{n=1}^{\infty} n^{\alpha-1} |X(na)|^\lambda \right)^{\lambda/\lambda} \leq \sum_{n=1}^{\infty} |d^2(t)| \left(\sum_{n=1}^{\infty} n^{\alpha-1} |f_\gamma(t)|^\lambda \right)^{\lambda/\lambda}
\]
and
\[
\sum_{n=1}^{\infty} n^{\alpha-1} |X(na)|^\lambda \leq M \sum_{n=1}^{\infty} n^{\alpha-1} |na|^\beta
\]

The proof of the theorem is thus complete.
D. BORWEIN

Now by (11), \(C_{\alpha, n} \approx C_{\alpha} \) \((\alpha > 0)\), and so, by result (II), \([C_{\alpha} C_{\alpha + 1}] \approx [C_{\alpha}, C_{\alpha}]\) \((\alpha > 0, \lambda \geq 1)\).

Consequently, by (III), we have

(IV). If \(\lambda \gg 1, \alpha > 0, 0, \) then necessary and sufficient conditions for a series \(\sum b_n \) to be summable \([C, s] \) to \(s \) are that it be summable \([C, a] \) to \(a \) and that \(\sum b_n (a_n m)^{1/\alpha} = o(m) \).

This result has been proved directly by Hyslop [14] and it is suggested that the following definition of summability \([C, 0] \), to \(1 \) \(m \) if it is convergent with sum \(a \) and

\[\sum_{n \geq 0} |a_n|^{1/\alpha} = o(m) \]

4. Equivalence of Cesàro and Hölder summability processes. For any real \(\lambda \) \(\leq 0 \), let \(\lambda \) \((\alpha \gg 1)\). Then \(C_{\lambda, n} \approx H_{\lambda}, H_{\lambda} \approx H_{\lambda+1}\), and it is known [7, Theorem 211] that

\[C_{\lambda} \approx H_{\lambda} \approx H_{\lambda+1} \quad (\alpha \gg 1) \]

In conformity with the notation described in 1, we denote the Hölder type summability processes \(H_{\lambda}, (H_{\lambda}, H_{\lambda+1}) \), and \(H_{\lambda}, y \), \((y, y)\), \((H, y)\), \((H, y), (H, y), y\), \((y, y), y\), respectively.

We now prove two theorems.

Theorem 8. If \(\alpha > 0, \lambda \gg 1, \) then \([C, \alpha] \approx [H, \alpha]\).

For \(\alpha > 0 \) this follows from (13) by result (II), and for \(\alpha = 0 \) it is a consequence of (III) with \(X = H_{\alpha} \approx C_{\alpha}^{-1}\).

The next theorem is a generalisation of the known results (see Knopp and Lorentz [12] and Morley [14]) that

\[[C, \alpha, 0] \approx [H, \alpha, 0] \approx [C, \alpha, 0] \quad (\alpha > -1) \]

Theorem 9. (i) If \(\alpha > -1, \lambda \gg 1, y > \min 1, 1 + \alpha, \alpha > 0 \), then

\[[C, \alpha, y] \approx [H, \alpha, y] \approx [H, \alpha, y] \]

(ii) If either \(\alpha > -1, \lambda \gg 1, y \leq 1 + \alpha \), then \(\lambda \gg 1, y > 2, \) then

\[[H, \alpha, y] \approx [C, \alpha, y] \approx [H, \alpha, y] \]

In connection with the second part of (ii) it should be noted that

\[H_{\lambda}, y \approx C_{\lambda}, y \approx H_{\lambda+1}, y \]

The cases \(y < 0 \) of the propositions contained in Theorem 9 follow directly from (13) by Theorem 6(ii). To deal with the remaining cases we shall use

Lemma 2. If \(\alpha > \beta > 0 \) and \(g(\alpha) \) is an analytic function of \(s = \sigma + it \) in the region \(\sigma > \sigma_c \), and if, for \(\sigma > \sigma_c \) and large \(|t| \),

\[g(\sigma) = K + O(|t|^{-\beta}) \]

where \(K, \beta \) are constants and \(\beta > 0 \), then

\[g(\sigma) = \int_0^\sigma \phi(t) \, dt \quad (\sigma > 0) \]

ON STRONG AND ABSOLUTE SUMMABILITY

where \(\chi \) is a function of bounded variation in \([0, 1] \) such that

\[\int_0^1 |dx(t)| < \infty \]

for every \(c > \sigma_c \).

Proof. Let \(f(\sigma) = g(\sigma) - K_\sigma \). Then, for \(c > \sigma_c + c > \sigma_c \)

\[\int_0^c |f(c + it)|^2 \, dt \leq \mathcal{M}_c \]

where \(\mathcal{M}_c \) is a finite number independent of \(c \). Hence, by a result due to Rogosinski [14, 185-6],

\[f(\sigma) = \int_0^c \phi(t) \, dt \quad (\sigma > 0) \]

where \(\phi(t) \in L(0, 1) \) for every \(c > \sigma_c + c \) and so for every \(c > \sigma_c \).

Consequently

\[g(\sigma) = \int_0^c \phi(t) \, dt \quad (\sigma > 0) \]

It is evident that \(\int_0^c f(\sigma) \, d\sigma | < \infty \) for every \(c > \sigma_c \).

The lemma is thus proved.

Completion of the proof of Theorem 9. Let

\[w(\sigma) = (\sigma + 1)^{-1} \int_0^{\sigma + 1} \frac{1}{(\sigma + 1)^{1/\beta} + 1} \]

and let \(W \) be the Hausdorff matrix \((h, w) \), where \(w(\sigma) = w(\sigma) \).

(i) By Stirling's theorem, \(w(\sigma) \) satisfies the hypotheses of \(g(\sigma) \) in Lemma 2 with \(\delta = 1, \sigma_c = \max (-1, -1 - \sigma) \). Hence by Theorem 6(ii), with \(X = W, \)

\[C_{\lambda}, y \approx |W C_{\lambda}, y \]

for \(y > \sigma_c \) i.e. for \(y < \min 1, 1 + \alpha \). Since \(C_{\lambda}, y \approx H_{\lambda}, y \), the proof of part (i) is complete.

(ii) The function \(1(\phi(\sigma)) \) satisfies the hypotheses of \(g(\sigma) \) in Lemma 2 with \(\delta = 1, \sigma_c = -1 \) when \(\sigma > -1 \) and with \(\delta = 1, \sigma_c = -2 \) when \(\sigma = -2, \ldots \). Hence by Theorem 6(ii), with \(X = W^{-1} \)

\[W C_{\lambda}, y \approx |W^{-1} H_{\lambda}, y \]

for \(-y > -1 \) when \(\sigma > -1 \), and for \(-y > -2 \) when \(\sigma = -2, \ldots \). Since \(W C_{\lambda}, y \approx C_{\lambda}, y \), this completes the proof of part (ii).

5. Hausdorff matrices associated with functions of class \(L^p \). In this section we deal with Hausdorff matrices \((h, \xi) \) such that \(\xi = \int_0^1 \phi(t) \, dt \) where \(\phi(t) \in L(0, 1) \) and \(\phi(t) \in L^p(0, 1) \) for some real \(p \) and some \(p > 1 \). It is known [7, Theorem 215] that a Hausdorff matrix \((a_{n, m})\) satisfies these conditions with \(c < 0 \) if and only if
\[
\sum_{n=0}^{\infty} |x_n| \sigma < M (n+1)^{-p} \quad (n = 0, 1, \ldots),
\]
where \(M\) is independent of \(n\). Note that if \(\sigma(\theta)\) is in \(L^p(0,1)\) then it is necessarily in \(L^q(0,1)\).

We establish two theorems which augment Theorems 6 and 6. In the proof of the first of these we use

Lemma 3. Let \(\psi(t)\) be a real function in the class \(L^p(0,1)\), where \(p > 1\), and let

\[
\check{x}_{n} = \int_{0}^{1} \psi(t) \, dt, \quad \hat{x}_{n} = \int_{0}^{1} \tau \psi(t) \, dt \quad (n = 0, 1, \ldots, X = (\check{x}_n, \hat{x}_n), \quad \Xi^{(p)} = (0, \hat{x}_2),
\]

If \(\mu > \lambda + 1\) and \(1 + \mu - 1/\lambda = 1/p\), then, for any sequence \((w_n)\),

\[
|X(w_n)| \leq (p^{\mu-1})(\lambda^{\mu-1}) \sum_{n=0}^{\infty} (|w_n|^{\mu} + |w_n|^{\mu-1} X^{(p)}(w_n)).
\]

Proof. Let

\[
\check{x}_{n} = \sum_{r=1}^{n} \lambda^{r-1} \check{x}_r,
\]

where \(0 < r < 1\). Then, as in the proof of Theorem 6,

\[
|X(w_n)| = \sum_{n=0}^{\infty} (|w_n|^{\mu} + |w_n|^{\mu-1} X^{(p)}(w_n)),
\]

so that

\[
\int_{0}^{1} \check{x}_{n} \, dt = \frac{1}{n+1} \sum_{r=1}^{n} \check{x}_r \quad (n = 0, 1, \ldots, X = (\check{x}_n, \hat{x}_n), \quad \Xi^{(p)} = (0, \hat{x}_2),
\]

and

\[
\int_{0}^{1} \hat{x}_{n} \, dt = X^{(p)}(w_n).
\]

Further, using Hölder's inequality twice, we have

\[
|X(w_n)| \leq \left(\int_{0}^{1} \check{x}_{n} \, dt \right)^{\mu} \left(\int_{0}^{1} \check{x}_{n} \, dt \right)^{\mu-1} \left(\int_{0}^{1} \hat{x}_{n} \, dt \right)^{\mu} \left(\int_{0}^{1} \hat{x}_{n} \, dt \right)^{\mu-1}
\]

\[
\leq \left(\int_{0}^{1} \check{x}_{n} \, dt \right)^{\mu} \left(\int_{0}^{1} \hat{x}_{n} \, dt \right)^{\mu-1} \left(\int_{0}^{1} \check{x}_{n} \, dt \right)^{\mu-1} \left(\int_{0}^{1} \hat{x}_{n} \, dt \right)^{\mu-1}
\]

The required result follows from (14), (16), and (18).

Theorem 10. Let \(\mu > \lambda > 1\), \(1/p = 1 + \mu - 1/\lambda\), and let \(X = (\check{x}_n, \hat{x}_n)\), where

\[
\check{x}_{n} = \int_{0}^{1} \check{x}_{n} \, dt \quad \text{with} \quad \psi(t) \in L^p(0,1) \quad \text{and} \quad \hat{x}_{n} = 1.
\]

Then \(\mathcal{C}_p \Xi^{(p)} = \mathcal{C}_p \Xi^{(p)}\), for any matrix \(Q\).

Proof. Observe that \(X\) is a regular Hausdorff matrix and (in the notation of Lemma 3) that \(X^{(p)}\) is a Hausdorff matrix such that \(X^{(p)}(w_n) = 0\) whenever \(w_n \to 0\).
ON STRONG AND ABSOLUTE SUMMABILITY

(VI). If \(Q \) is any matrix and either (i) \(\mu \geq \lambda > 1 \), \(p > 1/2 - 1/\mu \), \(\alpha + 1 > \gamma > 0 \) or (ii) \(\mu > \lambda > 1 \), \(p = 1/2 - 1/\mu \), \(\alpha > \gamma > 0 \), then

\[
|C_V Q|_{\gamma} \leq |C_V C_V Q|_{\gamma}.
\]

Proposition (V) follows directly from the case \(s = 0 \) of a theorem on strong Cesàro summability given by Fleit (Theorem 2 in [8]), where the notation \(C_s \) is used with the same meaning as \(C_s \) in the present paper. The case \(s > -1/2 \) of this theorem is a corollary of an earlier result on strong Cesàro summability due to Gladsief ([6, Theorem 8]); see also [7 on p. 130 and the references there given]. Proposition (VI) can be immediately deduced from a result due to Fleit ([4, Theorem 1]).

To indicate the scope of Theorems 10 and 11 we shall employ them, together with (II) and Theorem 6 (ii), to give alternative proofs of (V) and (VI). Parts (ii) of propositions (V) and (VI) cannot be deduced from the general theorems of the present paper; the proofs of Fleit and Gladsief, pertaining to these parts of the propositions, depend ultimately on a deep but special inequality of Hardy, Littlewood and Polya ([9] see also [3, 230]).

Proof of (V) (i). The case \(\lambda = \mu \) is a direct consequence of result (II). Suppose therefore that \(\mu > \lambda > 1 \) and let \(1/p = 1 - 1/\mu - 1/\lambda \). Now \(C_{\lambda} = (b, 1, \infty)^{\alpha} \) and

\[
1/\lambda^\alpha = \int_0^1 \rho \phi(\rho) d\rho,
\]

where \(\phi(\rho) = \rho(1 - \rho)^{\gamma-1} \). Further, \(p - 1 > 1 - 1/\mu + 1/\lambda = -1/\mu \) so that \(\phi(\rho) > 1 \). Since \(\phi(\rho) \in L^p(0, 1) \), and the required inclusion follows by Theorem 10.

Proof of (V) (ii). Note that \(C_{\gamma} = C_\epsilon \epsilon' C_{\lambda} X_{\lambda} \), where \(X = (b, \epsilon' \epsilon'^{\gamma+2}) \), and that \(\epsilon' \epsilon'^{\gamma+2} = \int_0^1 \rho \phi(\rho) d\rho \), where

\[
\phi(\rho) = (\gamma + 2)/(\gamma + 1) \left[(1 - \rho)^{\gamma} - 1 \right].
\]

Suppose first that \(\lambda = \mu \). Then, since \(\gamma - 1 > 0 \), \(p > 0 \), we see that \(\phi(\rho) \in L^p(0, 1) \), and so, by Theorem 6 (ii), \(|C_{\gamma} y|_{\gamma} \leq |C_\epsilon y|_{\gamma} \). The required inclusion is then immediate consequence.

Suppose now that \(\mu > \lambda > 1 \) and let \(1/p = 1 - 1/\mu + 1/\lambda \). Then, as above, \(\phi(\rho) \in L^p(0, 1) \), and, since \(\epsilon' + 1/\lambda > 0 \), \(p(\epsilon' + 1/\lambda - 1/\rho) < 1 \). Hence \(\phi(\rho) \in L^p(0, 1) \) and

\[
\phi(\rho) \in L^p(0, 1),
\]

and the required inclusion follows by Theorem 10 (ii).

Many special inclusions can be established with the aid of the above results. As an illustration, we prove the following (cf. [5, Theorem 2]):

\[
|H_s|_{\gamma} \leq |H_s|_{\lambda}.
\]

If either \(\mu > \lambda > 1 \), \(\beta > 1/\mu = 1/\lambda \), or \(\mu > \lambda > 1 \), \(\beta > 1/\mu + 1/\lambda \), then \(|H_s|_{\gamma} \leq |H_s|_{\gamma} \).

By (13), \(C_V H_{\mu \lambda} \approx C_V H_{\mu \lambda} \) (\(p > -1 \)), and the result is therefore a consequence of (II) and (V). Note that \(s \) can be any real number.
6. Relations between summability processes of different types. We first prove

THEOREM 12. If $\lambda > 1$, $2 > \rho > -1$, X is a Hausdorff matrix, and if $\sum_{n=0}^{N} u_n$ is (i) summable
$|C_1, X, 0|$, and (ii) summable $AC_{\rho} X$ to s, then the series is summable $|C_1, X|$, to s.

When $\lambda = 1$ condition (ii) is not required.

Here A denotes the Abel method of summability and summable $AC_{\rho} X$ to be inter-
preted as follows: $s_n \rightarrow s (AC_{\rho} X)$ means that $s_n = C_1 (X) s_n \rightarrow s(A)$, i.e. that

$$\lim_{n \rightarrow \infty} (1 - x) \sum_{r=0}^{n} x^r s_n = s.$$

It is known (see [1] and the references there given) that

$$C_1 = AC_{\rho} = AC_{\rho} \quad (s > -1, \gamma > 0, \beta > -1).$$

Proof. Let $s_n = \sum_{r=0}^{n} x^r s_n = C_1 (X) s_n$. Then, by hypothesis (i),

$$\frac{1}{n+1} \sum_{r=0}^{n} |r^\mu| = \frac{1}{n+1} \sum_{r=0}^{n} (s+1-r)^\mu \left(\frac{1}{r^\mu} - \frac{1}{(n+1-r)^\mu}\right) = \Theta(1),$$

so that

$$s_n \rightarrow 0 |C_1, X|.$$

Hence, by result (III), we have only to show that

$$s_n \rightarrow s |C_1, X|.$$

in order to complete the proof.

When $\lambda = 1$, (20) is an immediate consequence of hypothesis (i), and so hypothesis (ii) is redundant in this case.

Suppose now that $\lambda > 1$ and that $2 > \rho > 1 + 1/\lambda$. In view of (19) the additional restric-

tion of ρ can be imposed without loss in generality. Let

$$C_1 (X) s_n = u_n = \sum_{r=0}^{n} u_r,$$

so that, by (5),

$$s_n \rightarrow s |C_1, X|.$$

Then, by (ii),

$$u_n \rightarrow s (A),$$

i.e., $\sum_{n=0}^{\infty} u_n$ is summable A to s.

Further, by result (VI),

$$|C_1, X, 0| = |C_1, X, 0| \quad (\mu > \lambda) \quad \text{since} \quad \rho - 1 > 1/\lambda - 1/\mu.$$

Hence, by (i),

$$\sum_{n=0}^{\infty} n^\mu |u_n|^r < \infty.$$

Now by a Tauberian theorem of Hardy and Littlewood [8] (see also Flett [3, Theorem 4]),

a consequence of (21) and (22) is that, for every $\delta > 1/\mu + 1$, $\sum_{n=0}^{\infty} u_n$ is summable $\{C, \delta\}$ to s, i.e. that

$$C_1 (X) s_n \rightarrow s.$$
D. BORWEIN

Proof. Let δ be a positive number such that $2 \geq \delta > \rho + 1 - \alpha$. Then, by (13), $H_1 = H_2 \simeq C_{\rho+1}$, and so, by a result due essentially to Hausdorff (9); see also

[Theorem 4],

\[AH_1 = AG_1.\]

Since $H_1 = C_{\rho+1}$, we obtain the required result by applying first Theorem 12 (with δ in place of ρ) and then Inclusion (24).

In the same way we can prove

(VII'). If $\lambda > 1, 1 + \alpha + \rho > 0, \beta > \alpha - 1 + 1/\lambda$, and if $\sum_1^\infty x_n$ is (i) summable \[C, \alpha, 0, \lambda\],

and (ii) summable AC_0, to α, then the series is summable \[(H, \beta)\] to α.

The case $\alpha = 0, \beta = 0$ of this result is effectively the theorem of Hardy and Littlewood used in the above proof of Theorem 12. The case $\beta = 1, \rho = 0, \alpha > -1/\lambda$, is due to Zygmund [18], and Flett [4] has established the case $\alpha > -1/\lambda, \rho = 0$.

(VIII). If $\lambda > 1, \gamma > 0, \beta > \alpha - 1 - \gamma + 1/\lambda$, then

\[|H, n, \gamma| = |H, x - y| \simeq (H, \beta).\]

Proof. Let $X = C_{\rho+1}H_1$ where $\rho > \gamma$. Then $C_{\rho+1}X - H_1$ and, by (13),

\[C_{\rho+1}X \simeq H_{\rho+1+1}\].

Consequently, by Theorem 13 and results (II) and (24),

\[|H, n, \gamma| = C_{\rho+1}X, |H| = |C_{\rho+1}X, |H| = |H, H_{\rho+1+1}| \simeq (H, \alpha - \gamma) \simeq (H, \beta).\]

A similar proof shows that

(VIII'). If $\lambda > 1, \alpha < -1, \gamma > 0, \beta > \alpha - 1 - \gamma + 1/\lambda$, then

\[C, \alpha, \gamma, \gamma = (H, \beta).\]

The case $\alpha > -1/\lambda$ of this result has been proved by Flett [4].

REFERENCES

5. T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series. Ibid. (3), 8 (1958), 357–387.