ON RIESZ SUMMABILITY FACTORS

by D. BORWEIN and B. L. R. SHAWYER

(Received 21 July, 1961, and in revised form 28 November, 1961)

1. Suppose throughout that \(a, k \) are positive numbers and that \(p \) is the integer such that \(k - 1 \leq p < k \). Suppose also that \(\phi(w), \psi(w) \) are functions with absolutely continuous \((p + 1)\)th derivatives in every interval \([a, W]\) and that \(\phi(w) \) is positive and unboundedly increasing. Let \(\lambda = \{ \lambda_j \} \) be an unboundedly increasing sequence with \(\lambda_j > 0 \).

Given a series \(\sum_{n=1}^{\infty} a_n \) and a number \(m \geq 0 \), we write

\[
A_m(w) = \begin{cases}
\sum_{n=m}^{\infty} \frac{(w - \lambda_n)^p \lambda_n}{w} a_n & \text{if } w > \lambda_n \\
0 & \text{otherwise},
\end{cases}
\]

and \(A(w) = A_0(w) \).

If \(w^{-m} A_m(w) \) tends to a finite limit as \(w \to \infty \), \(\sum_{n=1}^{\infty} a_n \) is said to be summable \((R, \lambda, m)\).

The object of this note is to obtain conditions sufficient to ensure, when \(k \) is not an integer, the truth of the proposition

\[P \quad \sum_{n=1}^{\infty} a_n \phi(\lambda_n) \text{ is summable } (R, \phi(\lambda), k) \quad \text{whenever} \quad \sum_{n=1}^{\infty} a_n \text{ is summable } (R, \lambda, k). \]

For integral values of \(k \), the following theorem is known \([1]\). \(T_1 \), if

\(\gamma(w) \) is positive and absolutely continuous in every interval \([a, W]\) and \(\gamma(w) = O(1) \) for \(w \geq a \).

\(w \gamma(w)^{k+1} = O \left(\frac{\gamma(w)}{w} \right)^{k+1} \); \(\gamma(w) \geq 0 \).

\(n = 0, 1, \ldots, k; \ w \geq a \).

\[
\begin{align*}
E_n & = \sum_{n=1}^{\infty} \frac{\gamma(n+1)}{\gamma(n)} \frac{\gamma(n)}{\gamma(n+1)} (n = 0, 1, \ldots, k; \ w \geq a) \\
E_n & = \sum_{n=1}^{\infty} \frac{\gamma(n+1)}{\gamma(n)} (n = 0, 1, \ldots, k; \ w \geq a).
\end{align*}
\]

then \(P \).

Other known theorems, which hold for all \(k \geq 0 \), are

\(T_2 \), if \(\phi(w) = e^w \) and \(\psi(w) = w^{-p} \), then \(P \);
It is evident that T_n, for non-integral k, is included in T_*, and it can readily be shown that, under the hypotheses of T_n, the hypotheses of T_* are satisfied with $\gamma(w) = \phi(w)\phi'(w)$ and $\phi(w), \phi'(w)$ as in T_*.

We are indebted to the referee for valuable suggestions which led to the above formulation of the results. In the original version of our manuscript we proved that P is a consequence of conditions $T_n(0)$ to $T_n(v)$ inclusive together with the condition that $k_*(w)$ is a positive monotonic non-decreasing function of w in the range $w \geq 0$ for $n = 0, 1, \ldots p$. The argument in §4 is due to the referee: it shows that the conditions of T_n are in fact more stringent than those of T_*.

2. The following lemmas are required.

Lemma 1. If $T_n(t)$ and $T_n(w)$, then for $n = 1, 2, \ldots, p + 1$ and $w \geq a$,

$$\int_{\gamma(t)}^{\gamma(w)} \phi^{(k)}(t) \, dt = O(\phi(w)).$$

(2.1)

and

$$\gamma(w) - \phi^{(k)}(w) = O(\phi(w)).$$

(2.2)

Proof. When $0 < k < 1$, (2.2) is the same as the operative hypothesis in $T_n(v)$ and (2.1) is a trivial consequence. Suppose that $k > 1$. Then (2.1) follows from the appropriate part of $T_n(v)$ by integration, hence

$$\gamma(w) - \phi^{(k)}(w) = \gamma(t) - \phi^{(k)}(t) - \int_{\gamma(t)}^{\gamma(w)} \phi^{(k+1)}(t) \, dt = O(\phi(w)),$$

since $\gamma(t) = O(1)$, and (2.2) is an immediate consequence. (Cf. [1, Lemma 2].)

Lemma 2. The nth derivative of $\gamma(t)$ is a sum of a number of terms like

$$A(n^{(k)}(t)),$$

where A is a constant, and a_1, a_2, \ldots, a_n are non-negative integers, such that

$$1 \leq \sum_{i=1}^n a_i \leq \sum_{i=1}^n a_i w_i = n.$$

This is a particular case of a theorem due to Faa di Bruno [5, 1, pp. 89–90].

Lemma 3. If a_i is real, $a_i \leq \xi \leq w_i$, then

$$\left| \frac{\Gamma(k+1)}{\Gamma(p+1)\Gamma(k-p)} \int_{\gamma(t)}^{\gamma(w)} A_p(t)(w - r)^{k-1} \, dt \right| \leq \max_{a_i \leq \xi \leq w_i} |A_i(\xi)|.$$

A proof of this lemma has been given by Hardy and Riesz [4, 28].

ON RIESZ SUMMABILITY FACTORS

Lemma 4.

$$\lim_{w \to w_0} \int_{a_0}^{a_0 + t} f(w(t)) \, dt = c \text{ and } \lim_{w \to w_0} \int_{a_0}^{a_0 + t} f(w(t)) \, dt = 0$$

for every finite $\gamma > a$, and if $f(t)$ is a bounded measurable function in (a, c) which tends to zero as $t \to 0$, then

$$\lim_{w \to w_0} \int_{a_0}^{a_0 + t} \frac{f(w(t))}{\phi(t)} \, dt = 0.$$

For a proof of this simple result see [3, 50] or [1, Lemma 3].

Lemma 5. If $T_n(v)$ and $T_*(w)$, then

$$g(t) = \frac{\phi(w) - \phi(0)}{w - t}$$

is a monotonic non-increasing function of t for $t \leq t < w$.

Proof. We have, for $a \leq t < w$,

$$\frac{\gamma'(t)}{\gamma(t)} = \frac{\phi^{(k)}(t) - \phi^{(k-1)}(t)}{\phi^{(k-1)}(t)} = \frac{\phi^{(k-1)}(t)}{\phi^{(k)}(t)} \left(\frac{\phi(w) - \phi(0)}{w - t} - \frac{\phi'(t)}{\phi(t)} \right).$$

Since $\gamma(t) \geq 0$, the result follows.

3. **Proof of T_*.** We assume, without loss of generality, that

$$A(w) = 0 \text{ for } 0 \leq w \leq a$$

and

$$A(w) = o(w^p),$$

(3.1)

and note that, for $w \geq a$, it is sufficient to prove that

$$\sum_{a_i \leq \xi \leq w_i} \left| \frac{\phi^{(k)}(w)}{\phi(w)} \right| \phi(\xi) \psi(\xi) \leq 0,$$

which is equal to

$$\int_{a}^{b} \left| \frac{\phi^{(k)}(w)}{\phi(w)} \right| \psi(t) \, dt \leq 0,$$

(3.2)
tends to a finite limit as $w \to \infty$. After $p + 1$ integrations by parts, (3.2) reduces to a constant multiple of

$$\int_a^b a_k(t) \left(\phi^{(n)}(t) \right)^2 dt$$

which, by Lemma 2 and Leibnitz's theorem on the differentiation of a product, can be expressed as a sum of constant multiples of integrals of the types

$$I_1 = \phi(w)^{-1} \int_a^b a_k(t) \phi(t)^r \left(\phi(w) - \phi(t) \right)^{k-1} dt,$$

$$I_2 = \phi(w)^{-1} \int_a^b a_k(t) \phi^{(r+1)}(t) \left(\phi(w) - \phi(t) \right)^r \prod\nolimits_{\ell=1}^{k-1} (\phi^{(\ell)}(t))^r \ dt$$

and

$$I_3 = \phi(w)^{-1} \int_a^b a_k(t) \phi(t) \left(\phi(w) - \phi(t) \right)^{k-1} \prod\nolimits_{\ell=1}^{k-1} (\phi^{(\ell)}(t))^r \ dt,$$

where $n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_{k-1}$ are non-negative integers such that

$$1 \leq \sum\nolimits_{i=1}^{n_i} n_i = \sigma \leq \sum\nolimits_{i=1}^{n_i} \ell_i = r \leq p,$$

$$1 \leq \sum\nolimits_{i=1}^{n_i} \ell_i = \rho \leq \sum\nolimits_{i=1}^{n_i} \ell_i = p + 1.$$

Consider first I_1. Integrate it by parts to obtain

$$I_1 = -\int_0^1 \rho^k I_{12} \ dt,$$

where

$$I_{11} = \phi(w)^{-1} \int_a^b a_k(t) \phi^{(r+1)}(t) \left(\phi(w) - \phi(t) \right)^r dt$$

and

$$I_{12} = \phi(w)^{-1} \int_a^b a_k(t) \phi^{(r+1)}(t) \left(\phi(w) - \phi(t) \right)^{r-1} dt.$$

Now, by a standard result [4, 28] and (3.1),

$$A_{p+1}(w) = o(w^{p+1}).$$

Hence, using (3.3) and \mathcal{A}_p, we obtain

$$\int_a^b \left(\phi^{(n+2)}(t) \right)^2 \ dt < \infty,$$

and so, by Lebesgue's theorem on dominated convergence, I_{11} tends to

$$l = \int_a^b \left(\phi^{(n+2)}(t) \right)^2 \ dt$$

as $w \to \infty$.

\[\frac{1}{m} \quad \text{being finite.} \]

For I_{12}, consider the function

$$f_1(w, t) = \phi(w)^{-1} \phi^{(r+1)}(t) \phi(t) \left(\phi(w) - \phi(t) \right)^{r-1}.$$

Using \mathcal{T}_p (iii), we note that, for $w > \epsilon > n$, \nexists M_1 such that $f_1(w, t) < M_1 \phi(w)^{-1} \phi(t) \left(\phi(w) - \phi(t) \right)^{r-1}$.

where M_1 is a constant. Hence $f_1(w, t)$ satisfies the hypotheses of Lemma 4, and so

$$\int_a^b f_1(w, t) \phi^{(r+1)}(t) \ dt \to 0 \quad \text{as} \quad w \to \infty.$$

That is, $I_{12} = 0$ and so

$$\lim_{w \to \infty} I_1 = L.$$

Considering now I_2, we see, on integrating by parts, that it is equal to the sum of constant multiples of integrals of the types

$$I_{21} = \phi(w)^{-1} \int_a^b a_k(t) \phi^{(r+1)}(t) \left(\phi(w) - \phi(t) \right)^r \prod\nolimits_{\ell=1}^{k-1} (\phi^{(\ell)}(t))^r \ dt,$$

$$I_{22} = \phi(w)^{-1} \int_a^b a_k(t) \phi^{(r+1)}(t) \left(\phi(w) - \phi(t) \right)^{r-1} \phi'(t) \prod\nolimits_{\ell=1}^{k-1} (\phi^{(\ell)}(t))^r \ dt$$

and

$$I_{23} = \phi(w)^{-1} \int_a^b a_k(t) \phi^{(r+1)}(t) \left(\phi(w) - \phi(t) \right)^{r-1} \phi''(t) \prod\nolimits_{\ell=1}^{k-1} (\phi^{(\ell)}(t))^r \ dt,$$

where $n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_{k-1}$ are non-negative integers, such that

$$1 \leq \sum\nolimits_{i=1}^{n_i} n_i = \sigma \leq \sum\nolimits_{i=1}^{n_i} \ell_i = r \leq p,$$

$$1 \leq \sum\nolimits_{i=1}^{n_i} \ell_i = \rho \leq \sum\nolimits_{i=1}^{n_i} \ell_i = p + 1.$$

For I_{21}, consider

$$f_2(w, t) = \phi(w)^{-1} \phi^{(r+1)}(t) \phi^{(r+2)}(t) \left(\phi(w) - \phi(t) \right)^{r-1} \prod\nolimits_{\ell=1}^{k-1} (\phi^{(\ell)}(t))^r.$$

Suppose that the non-vanishing n_i of highest suffix is n_r. Then

$$f_2(w, t) = \phi(w)^{-1} \phi^{(r+1)}(t) \phi^{(r+2)}(t) \left(\phi(w) - \phi(t) \right)^{r-1} \prod\nolimits_{\ell=1}^{k-1} (\phi^{(\ell)}(t))^r \phi^{(n_r)}(t) \left(\phi(w) - \phi(t) \right)^{n_r-1}$$

and

$$1 \leq \sum\nolimits_{i=1}^{n_i} n_i = \sigma \leq \sum\nolimits_{i=1}^{n_i} \ell_i = r.$$
Using (2.2) and \(T_\beta (v) \), we find that, for \(w > t \geq a \),
\[
I'(w, t) \leq M_3 \gamma(t)^{r-1} \left(\frac{\gamma(w)}{\gamma(t)} \right)^{r-1} \int f(w, t) \, dt \to 0 \quad \text{as} \quad w \to \infty.
\]
That is, \(\lim_{w \to \infty} I_1 = 0 \). Similarly \(\lim_{w \to \infty} I_2 = 0 \), and \(\lim_{w \to \infty} I_{12} = 0 \) in the case \(k - \sigma - 1 > 0 \). The remaining case of \(I_{12} \) is that in which \(r = \sigma = \rho \), and we write the integral as
\[
\left(\frac{\gamma(\psi)}{\gamma(t)} \right)^{r-1} \int \delta_{\psi+1}(t) \left(\frac{\psi(t)}{\gamma(t)} \right)^{r-1} \left(\frac{\psi(w)}{\gamma(t)} \right)^{r-1} \, dt.
\]
Consider
\[
I_2(w, t) = \int \left(\frac{\gamma(\psi)}{\gamma(t)} \right)^{r-1} \left(\frac{\psi(t)}{\gamma(t)} \right)^{r-1} \left(\frac{\psi(w)}{\gamma(t)} \right)^{r-1} \, dt.
\]
Using (2.2) and \(T_\beta (v) \), we find, for \(w > t \geq a \),
\[
I_2(w, t) \leq M_3 \left(\frac{\gamma(\psi)}{\gamma(t)} \right)^{r-1} \left(\frac{\psi(t)}{\gamma(t)} \right)^{r-1} \left(\frac{\psi(w)}{\gamma(t)} \right)^{r-1} \int f(w, t) \, dt \to 0 \quad \text{as} \quad w \to \infty.
\]
where \(M_3 \) is a constant. Hence \(I_2(w, t) \) satisfies the hypotheses of Lemma 4, and so
\[
\int_0^w \int f(w, t) \, dt \to 0 \quad \text{as} \quad w \to \infty.
\]
That is, \(\lim_{w \to \infty} I_{12} = 0 \). Hence \(I_2 = 0 \). Finally, consider \(I_3 \), which can be written in the form
\[
I_3 = \int \left(\frac{\gamma(\psi)}{\gamma(t)} \right)^{r-1} \left(\frac{\psi(t)}{\gamma(t)} \right)^{r-1} \left(\frac{\psi(w)}{\gamma(t)} \right)^{r-1} \, dt,
\]
where
\[
g(t) = \frac{\psi(t) - \psi(w)}{\gamma(\psi(t))^{r-1} \gamma(t)^{r-1}} \quad \text{for} \quad 0 \leq t < w, \quad g(w) = 1
\]
and
\[
H(t) = \sum_{i=1}^{\infty} \left(\frac{\gamma(t)^{r-1} \gamma(t)^{r-1}}{\gamma(t)^{r-1}} \right)^{\rho_i}.
\]
where \(\beta_1, \beta_2, \ldots, \beta_{p+1} \) are non-negative integers such that
\[
1 \leq \sum_{i=1}^{p+1} \beta_i = p \leq \sum_{i=1}^{p+1} \gamma_i = p + 1.
\]
Then \(H(t) \) is of bounded variation in \([a, \infty)\), because of \(T_\beta (v) \), and so can be expressed as the difference between two bounded monotonic non-increasing functions. Consequently, we can assume, without loss of generality, that \(H(t) \) is bounded and monotonic non-increasing. Also, \(\psi(t) - \psi(w) \lVert \psi \rVert_1 \), \(\gamma(t) \), and \(\gamma_{\beta+1} \) are monotonic functions of \(t \) in the range \(a \leq t \leq w \), the first being non-increasing since \(p+1-p \geq 0 \) and the second non-decreasing by Lemma 5. Using the second mean-value theorem for integrals twice, we now see that
\[
I_3 = \int \left(\frac{\gamma(\psi)}{\gamma(t)} \right)^{r-1} \left(\frac{\psi(t)}{\gamma(t)} \right)^{r-1} \left(\frac{\psi(w)}{\gamma(t)} \right)^{r-1} \, dt,
\]
where \(w \geq t \geq a \). Hence, by Lemma 3 and (3.1),
\[
I_3 = \int \left(\frac{\gamma(\psi)}{\gamma(t)} \right)^{r-1} \left(\frac{\psi(t)}{\gamma(t)} \right)^{r-1} \left(\frac{\psi(w)}{\gamma(t)} \right)^{r-1} \, dt.
\]
Now, by (2.2), and \(T_\beta (v) \),
\[
G(w, t) = \int \left(\frac{\gamma(\psi)}{\gamma(t)} \right)^{r-1} \left(\frac{\psi(t)}{\gamma(t)} \right)^{r-1} \left(\frac{\psi(w)}{\gamma(t)} \right)^{r-1} \, dt,
\]
and, by Lemma 3 and (3.1),
\[
G(w, t) = \int \left(\frac{\gamma(\psi)}{\gamma(t)} \right)^{r-1} \left(\frac{\psi(t)}{\gamma(t)} \right)^{r-1} \left(\frac{\psi(w)}{\gamma(t)} \right)^{r-1} \, dt.
\]
Hence, by Lemma 3 and (3.1),
\[
I_3 = \int \left(\frac{\gamma(\psi)}{\gamma(t)} \right)^{r-1} \left(\frac{\psi(t)}{\gamma(t)} \right)^{r-1} \left(\frac{\psi(w)}{\gamma(t)} \right)^{r-1} \, dt.
\]
Since \(p \geq 1 \). Hence
\[
\lim_{w \to \infty} I_3 = 0.
\]
Because of (3.4) and (3.5) and (3.6) we can deduce that (3.2) tends to a finite limit as \(w \) tends to infinity. This completes the proof of \(T_\beta (v) \).

4. Proof of \(T_\beta (v) \). Suppose that \(T_\beta (0) T_\beta (0)(v) \) and \(T_\beta (v) \) hold. It is clearly sufficient to show that \(T_\beta (v) \) is a consequence.

It follows from \(T_\beta (v) \) that, for \(w \geq a \),
\[
\psi(w) \lVert \psi \rVert_1 \lVert \psi \rVert_1 > c,
\]
where \(c \) is a positive constant; and hence, by \(T_\beta (v) \),
\[
\gamma(w) = O\left(\left(\frac{\gamma(w)}{\gamma(t)} \right)^{r-1} \right),
\]
and
\[
\gamma(w) = O\left(\left(\frac{\gamma(w)}{\gamma(t)} \right)^{r-1} \right).
\]
Consequently, by \(T_\beta (v) \).
and so
\[w^p = O\left(\{\psi(w)\}^{\lambda - p}\right). \]

Hence, for \(w \geq a, \psi'(w) > bw^\psi(a - p) \), where \(b \) is a positive constant, and \(T_A \) (viii) follows by integration.

REFERENCES