ON MULTIPLICATION OF CESARO SUMMABLE SERIES

D. BORWEIN and Y. MATSUOKA

1. Introduction

Throughout this paper $\sum_0^\infty c_n$ denotes the Cauchy product of the series $\sum_0^\infty a_n$ and $\sum_0^\infty b_n$, i.e.

$$c_n = \sum_{r=0}^n a_r b_{n-r};$$

and (C, α), $[C, \alpha]$, $|C, \alpha|$ denote respectively ordinary, strong and absolute Cesàro summability methods. The method $[C, \alpha]$, previously defined only for $\alpha \geq 0$, is defined in a natural way for $\alpha < 0$ in §2.

It is known (see [1] and the references there given) that if $\sum_0^\infty a_n$ is summable $(C, -\mu)$ to A and $\sum_0^\infty b_n$ is summable $(C, -\mu)$ to B, where $\mu \geq 0$,

then $\sum_0^\infty c_n$ is summable $(C, -\mu)$ to AB.

As a companion to this result we prove:

THEOREM 1. If $\mu \geq 0$ and $\sum_0^\infty a_n$, $\sum_0^\infty b_n$ are summable $(C, -\mu)$ to A, B respectively, then $\sum_0^\infty c_n$ is summable $(C, -\mu)$ to AB.

The case $\mu = 0$ of this theorem has been established by Boyd [4]. We also prove the following two theorems.

THEOREM 2. There are series $\sum_0^\infty a_n$, $\sum_0^\infty b_n$, respectively summable $(C, -1)$ and absolutely convergent, for which $\sum_0^\infty c_n$ is not summable $(C, 0)$.

THEOREM 3. Given $\alpha \geq -1$, there are series $\sum_0^\infty a_n$, $\sum_0^\infty b_n$, respectively summable $(C, -1)$ and (C, α), for which $\sum_0^\infty c_n$ is not summable $(C, \alpha + 1)$.

The cases $\alpha = -1$ and $\alpha = 0$ of Theorem 3 have been proved by Boyd [4]. Immediate consequences of Theorems 2 and 3 respectively (see inclusion IV in §2) are:

COROLLARY 1. There are series $\sum_0^\infty a_n$, $\sum_0^\infty b_n$, respectively summable $(C, 0)$ and absolutely convergent, for which $\sum_0^\infty c_n$ is not summable $(C, 0)$.

Received 27 January, 1962; revised 14 March, 1962.

[JOURNAL LONDON MATH. SOC. 38 (1963), 393–400]
Corollary 2. Given \(t \geq 0 \), there are series \(\sum a_n \sum b_n \), respectively summable \([C, 0]\) and \([C, t]\), for which \(\sum a_n \) is not summable \([C, t]\).

We state next three known propositions, the first due to Boyd [4] and the others to Wiss [7].

(a) If \(\sum a_n \) is summable \([C, k]\) to \(A \), where \(k > 0 \), and \(\sum b_n \) is absolutely convergent with sum \(B \), then \(\sum c_n \) is summable \([C, k]\) to \(AB \).

(b) If \(\sum a_n \) is summable \([C, k]\) to \(A \) and \(\sum b_n \) is summable \([C, 0]\) to \(B \), where \(k > 0 \), \(l > 0 \), then \(\sum c_n \) is summable \([C, k+l]\) to \(AB \).

(c) If \(\sum a_n \) is summable \([C, k]\) to \(A \) and \(\sum b_n \) is summable \([C, l]\) to \(B \), where \(k > 0 \), \(l > 0 \), then \(\sum c_n \) is summable \([C, k+l]\) to \(AB \).

Corollary 1 shows that proposition (a) fails when \(k > 0 \) is replaced by \(k = 0 \). Boyd [4] has demonstrated the falsity of (b) with \(k = l = 0 \) in place of \(k > 0 \), \(l > 0 \), and of (c) with \(k = 0 \), \(l = 0 \) or \(l > 1 \) in place of \(k > 0 \), \(l > 0 \).

Corollary 2 shows that for every \(k > 0 \), (c) is false when \(k > 0 \), \(l > 0 \) is replaced by \(k = 0 \), \(l = l_0 \).

2. Notation, definitions and preliminary results.

Let \(a_n = \sum_{n} a_n \) \((n = 0, 1, \ldots) \).

Given matrices \(M = (a_{n,m}) \), \(P = (p_{n,r}) \) \((n, r = 0, 1, \ldots) \) with \(p_{n,0} > 0 \), the strong summability method \([P, Q]\) is defined (see [3]) as follows. Let \(a_n = Q(a_n) = \sum_{n} p_{n,r} a_r \).

Then \(\sum a_n \) is summable \([P, Q]\) to \(s \) and we write \(a_n \rightarrow_s [P, Q] \).

is defined for each \(n \) and tends to \(0 \) as \(n \rightarrow \infty \).

We use the notation:

\[
\xi_n = \left(\frac{a_n}{n} \right), \quad \Delta^n \eta_n = \sum_{k=0}^{n-1} \xi_{n-k} \quad (n = 0, 1, \ldots) \quad \text{any real } s.
\]

Denote by \(C_{\alpha, \beta} \) the matrix of the linear transformation from \([a_n] \) to \([c_n] \) given by

\[
c_n = \sum_{m=0}^{n} \frac{\xi_{n-m}}{\eta_m} \xi_m \Delta^\alpha \xi \xi_m \Delta^\beta \xi_m (\alpha = -1, \beta = -1);
\]

It is known (see [2], Theorem 8) that \(C_{\alpha, \beta} \) is the Haudorff matrix generated by the sequence \((\xi_n, \Delta^n \eta_n) \).

Define \(C_{\alpha, \beta} \) to be the matrix \(C_{\alpha, \beta} \) when \(\alpha > 0 \), \(\beta > 0 \), \(C_{\alpha, \beta} \) when \(\alpha < 0 \), \(\beta < 0 \).

Then, for any real \(s \), the statement

\[
\sum a_n \text{ is summable \([C, \alpha]\) to } A
\]

can be interpreted (see [1], 443) as

\[
a_n = C_{\alpha, \beta} a_n \rightarrow A.
\]

We define, for every real \(s \), the strong Cesàro method \([C, \alpha]\) to be \([C, \alpha + 1] \). The definition is standard for \(\alpha > 0 \); for \(\alpha < 0 \), the method \([C, \alpha]\) does not appear to have been defined explicitly before. The following proposition, which is a special case of a known result (3, III) with \(X = C_{\alpha - 1} \), shows that our definition of \([C, 0]\) is equivalent to one framed by Hyslop [6].

3. The series \(\sum a_n \) is summable \([C, 0]\) to \(A \) if and only if it is convergent with sum \(A \) and

\[
\sum_{n=0}^{\infty} p_{n,r} a_r = o(n).
\]

Given summability methods \(X, Y \) we say that \(X \) is included in \(Y \) and write \(X \preceq Y \) if every series summable \(X \) is also summable \(Y \) to the same sum; \(X \) and \(Y \) are said to be equivalent and we write \(X \asymp Y \) if each is included in the other.

We list next some inclusions, which hold for every real \(s \), together with references to results of which they are immediate consequences.

II. \([C, s] \preceq [C, \alpha] (\alpha > 0, \beta > 0) \).

\((3, 3) \); and \([2], \text{ Theorem } 9) \).

III. \([C, s] \preceq [C, \alpha + s] (\alpha > 0) \).

\((3, 3) \); and \([2], \text{ Theorem } 6) \).

IV. \([C, s] \preceq [C, \alpha] \preceq [C, \alpha] \).

\((3, 3) \); and \([2], \text{ Theorem } 7) \).

V. \([C, s] \preceq [C, \alpha] \).

\((3, 3) \); and \([1], \text{ Theorem } 7) \).

That III, IV and V hold for \(s > 0 \) was known before (see [4], [6], [7]). Inclusion V is listed for interest only and is not used in the rest of this paper.
3. **Proofs of the theorems.**

In order to prove Theorem 1 we require a lemma which is similar to one proved by Winn (17), 483-484.

Lemma. If \(W_n = \sum_{i=0}^{n} w_i = o(n) \) then, for \(a < 1 \), \(\sum_{n=0}^{\infty} e_n^{-a} w_n = o(e_n^{-a} + 1) \).

Proof. By partial summation we have

\[
\sum_{n=0}^{\infty} e_n^{-a} w_n = \sum_{n=0}^{\infty} W_n (e_n^{-a} - e_{n+1}^{-a}) = \sum_{n=0}^{\infty} e_n^{-a} W_{n+1} + o(e_n^{-a} + 1).
\]

Since \(W_n/(r+1) \rightarrow 0 \) and \(\sum_{n=0}^{\infty} e_n^{-a} = e_n^{-a} + 1 \), the required result can now be obtained by an application of Toeplitz's theorem.

Proof of Theorem 1.

Case (i). Suppose \(A = B = 0 \).

Let \(\mu = m + n \), where \(m \) is a non-negative integer and \(0 \leq a < 1 \); and let

\[
s_n = \sum_{b=0}^{n} a_b, \quad t_n = \sum_{b=0}^{n} b_b.
\]

It has been shown (11, 447) that a necessary and sufficient condition for \(\sum_{n=0}^{\infty} s_n \) to be summable \((C, -\mu)\) to 0 is that

\[
X + Y + Z = o(1),
\]

where

\[
X_n = \sum_{i=0}^{n} \frac{1}{e_{i+1}^{-a} - e_i^{-a}} \Delta^{n+1} x_i (e_i^{-a} - e_{i+1}^{-a}),
\]

when \(m \geq 1 \) and \(X_n = 0 \) when \(m = 0 \), and

\[
Y_n = \frac{1}{e_{n+1}^{-a} - e_n^{-a}} \sum_{b=0}^{n} b_b \Delta^{n+1} (e_n^{-a} - e_{n+1}^{-a}),
\]

and

\[
Z_n = \frac{1}{e_{n+1}^{-a} - e_n^{-a}} \sum_{b=0}^{n} a_b \Delta^{n+1} (e_n^{-a} - e_{n+1}^{-a}).
\]

By hypothesis, \(s_n \rightarrow 0 \) \((C, -\mu)\), \(t_n \rightarrow 0 \) \((C, -\mu)\), so that by the second inclusion in IV (12),

\[
s_n \rightarrow 0 \quad (C, -\mu), \quad t_n \rightarrow 0 \quad (C, -\mu);
\]

and a known consequence (11, 447-448) is that

\[
X_n = o(1).
\]

Now let

\[
y_n = \Delta^{n+1} (e_n^{-a} - e_{n+1}^{-a}) = e_n^{-a} C_{a+1} - e_{n+1}^{-a} (e_n^{-a}).
\]

From the hypothesis \(s_n \rightarrow 0 \) \((C, -\mu)\) we deduce, by II, that

\[
\sum_{n=0}^{\infty} \frac{1}{e_{n+1}^{-a} - e_n^{-a}} y_n = o(1)
\]

and hence, by the Lemma, that

\[
\sum_{n=0}^{\infty} \frac{1}{e_{n+1}^{-a} - e_n^{-a}} y_n = o(1).
\]

Next, since \(t_n \rightarrow 0 \) \((C, -\mu)\) we have, by III, that \(t_n = o(1) \) and it follows that

\[
Y_n = \frac{1}{e_{n+1}^{-a} - e_n^{-a}} t_n \rightarrow Z_n = o(1).
\]

Similarly \(Z_n = o(1) \); and the proof of Case (i) is complete.

Case (ii). Suppose now that there are no restrictions on \(A, B \). Let \(a'_n = a_n - A, b'_n = b_n - B, a'_n - a_n, b'_n - b_n \), \((r > 0)\) and let

\[
c'_n = \sum_{r=0}^{n} a'_r b'_r.
\]

Since \(\sum_{n=0}^{\infty} a'_n, \sum_{n=0}^{\infty} b'_n \) are summable \((C, -\mu)\) to \(A, B \) respectively, it is readily seen that \(\sum_{n=0}^{\infty} b'_n \) and \(\sum_{n=0}^{\infty} b'_n \) are summable \((C, -\mu)\) to 0, from which it follows, by Case (i), that \(\sum_{n=0}^{\infty} c'_n \) is summable \((C, -\mu)\) to 0.

But

\[
\sum_{n=0}^{\infty} c'_n = \sum_{n=0}^{\infty} a_n b_n + \sum_{n=0}^{\infty} A b_n + \sum_{n=0}^{\infty} b_n A - AB,
\]

and \(\sum_{n=0}^{\infty} b_n \) are summable \((C, -\mu)\) to \(A, B \) respectively. Hence \(\sum_{n=0}^{\infty} c_n \) is summable \((C, -\mu)\) to \(A + B \). This completes the proof.

Proof of Theorem 2. For convenience we divide the proof into three parts.

Part (i). Let \(s_n \geq 0, s_n \geq 0, U_n = \sum_{n=0}^{m} s_n, V_n = \sum_{n=0}^{m} s_n (n = 0, 1, \ldots) \), and let \(a_n = (-1)^n a_n, b_n = (-1)^n b_n \). Then

\[
c_n = \sum_{n=0}^{m} a_n b_n = (-1)^n \sum_{n=0}^{m} s_n s_{n-r},
\]

and hence (14, 30)

\[
\sum_{n=0}^{m} |c_n| = \sum_{n=0}^{m} \sum_{n=0}^{m} s_n s_{n-r} = \sum_{n=0}^{m} r_n U_{m-r} + \sum_{n=0}^{m} r_n U_{2n-r}
\]

\[
\geq \sum_{n=0}^{m} r_n U_{2n-r} \geq U_n \sum_{n=0}^{m} r_n.
\]
Part (ii). We show now that given any unbounded sequence of positive numbers \(\{U_n\} \), there is a sequence \(\{v_n\} \) such that
\[
v_n \geq 0, \sum_n v_n = \infty \quad \text{and} \quad U_n \sum_n v_n \neq o(n).
\] (2)

Let \(\{\beta_n\} \) be a sequence not converging to 0 such that
\[
\beta_n > 0 \quad \text{and} \quad \sum_n \frac{\beta_n}{U_n} < \infty;
\]
a suitable sequence can be constructed by first defining an increasing sequence of positive integers \(\{n_k\} \) for which
\[
U_{n_k} > \beta_k^2,
\]
and then taking \(\beta_n \) to be 1 whenever \(n = n_k \) and 0 otherwise.

Let \(x_n = 0, x_n = \frac{\beta_{n-1}}{U_n} - \frac{1}{n} \beta_{n-1} \quad (n \geq 1). \)

Then
\[
U_N n_n \sum_n x_n = n_n \beta_n
\]
and
\[
\sum_n |x_n| < \infty.
\]

Setting \(v_n = |x_n| \), we have
\[
U_n \sum_n v_n \geq n \beta_n
\]
and so the sequence \(\{v_n\} \) satisfies (2) as required.

Part (iii). To prove our theorem take \(a_n = (-1)^n w_n \) where \(w_n > 0 \), \(n w_n = o(1) \) and \(\sum_n (-1)^n w_n \) is conditionally convergent; e.g. \(w_n = 1 / (n + 2) \log (n + 2) \). Then \(U_n = \sum_n w_n \) is positive and tends to infinity, and \(\sum v_n = \sum_n a_n \) is summable \((C,-1)\). Let \(b_n = (-1)^n v_n \) where \(\{v_n\} \) is a sequence satisfying (2); then \(\sum b_n \) is absolutely convergent.

In virtue of I, the Cauchy product \(\sum_n c_n \) of the above series \(\sum_n a_n \sum_n b_n \) is not summable \((C,0)\), since, by (1) and (2),
\[
\sum_{n=0}^\infty |c_n| \neq o(n).
\]
ON MULTIPLICATION OF CESÁRO SUMMABLE SERIES

It follows that
\[\sum_{n=0}^{m} \epsilon_n^2 |\sigma_n| \neq o(m^{m+1}) \]

and hence, by our Lemma, that
\[\sum_{n=0}^{\infty} |\sigma_n| \neq o(m) \]

Consequently \(\sum_0^\infty c_n \) is not summable \([C, \alpha+1]\) to 0. However, by a standard result ([5], Theorem 164), \(\sum_0^\infty c_n \) is summable \([C, \alpha+1]\) to 0 and so, by the second inclusion in IV (§2), the series cannot be summable \([C, \alpha+1]\) to any number other than 0. Hence \(\sum_0^\infty c_n \) is not summable \([C, \alpha+1]\).

Remark. It is known ([5], Theorem 166) that, given \(\alpha \geq -1 \), there are series \(\sum_0^\infty a_n \), \(\sum_0^\infty b_n \), respectively summable \([C, -1]\) and \([C, \alpha]\), for which \(\sum_0^\infty c_n \) is not summable \([C, \alpha]\).

Our Theorem 3 is stronger than this result, since \([C, \alpha]\) is included in, but is not equivalent to, \([C, \alpha+1]\).

References.

St. Salvator’s College,
University of St. Andrews.