NOTE ON SUMMABILITY FACTORS

D. Borwein*

1. Introduction. It is assumed throughout that $\lambda > 0$ and that all functions are real. The main object of this paper is to establish version (a) of the following theorem.

Theorem 1. (a) In order that $\int_1^\infty x(t) k(t) dt$ be summable $|C, \lambda|$ whenever $\int_1^\infty x(t) dt$ is summable $|C, \lambda|$ it is necessary and sufficient that, for some constant $c \geq 1$,

(i) $k(t)$ be measurable and essentially bounded in $(1, c)$,

(ii) $\frac{k(t)}{t} = \frac{1}{\Gamma(\lambda)} \int_t^\infty (u-t)^{\lambda-1} h(u) du$ p.p. in (c, ∞),

where $u^{\lambda+1} h(u)$ is measurable and essentially bounded in (c, ∞).

(b) Replace $|C, \lambda|$ by (C, λ) and "essentially bounded" in (ii) by "of bounded variation".

Version (b) of the theorem has been proved by Sargent†. We shall, however, give a somewhat simpler proof of the necessity part of this result. There are results‡ similar to the above which involve the additional

* Received 14 July, 1953; read 19 November, 1953.
† The result as stated here follows from Lemma 5, Theorem 2 and the proof of Theorem 1 in Sargent (4).
‡ For a (C, λ) result see Borwein (2) where references are given to (C, λ) results and to series analogues. Further references appear in Sargent (4).
hypothesis that the λ-th derivative of $k(t)$ exists and is absolutely continuous in $[1, w]$ for all $w \geq 1$.

2. Notation and some preliminary results. Let $x(u)$ be integrable L in every finite interval in $(1, \infty)$. Then, for $w > 1$,

$$\int_1^w \left(1 - \frac{w}{w'}\right)^{k(u)}du = \int_1^w \left(1 - \frac{w}{w'}\right)^{k-1} \frac{w}{w'} dt$$

$$- \lambda \int_1^w t^{k-1} dt \int_1^w \left(1 - w\right)^{k-1} x\left(u_t\right) du.$$

Hence $\int_1^w x(u) du$ is

(i) summable (C, λ) if and only if $\int_1^w t^{k-1} dt \int_1^w \left(1 - w\right)^{k-1} u x(u) du$ is convergent;

(ii) summable $[C, \lambda]$ if and only if $\int_1^w t^{k-1} dt \int_1^w \left(1 - w\right)^{k-1} u x(u) du < \infty$;

(iii) bounded (C) if and only if $\int_1^w t^{k-1} dt \int_1^w \left(1 - w\right)^{k-1} u x(u) du$ is bounded in $(1, \infty)$ for some $\mu > 0$.

We shall be concerned with the following function spaces (it is to be assumed that $1 \leq w \leq b < \infty$):

$M(a, b)$: the space of functions measurable and essentially bounded in (a, b).

$L(a, b)$: the normed vector space of functions $x(t)$ integrable L in (a, b), the norm being defined by the equation

$$\|x\| = \int_{a}^{b} |x(t)| dt.$$

The general linear functional in this space is given by an equation of the form

$$f(x) = \int_{a}^{b} x(t) s(t) dt,$$

where $s(t) \in M(a, b)$.

$BV(a, b)$: the space of functions having bounded variation in (a, b).

F: the normed vector space of functions $x(t)$ continuous in $[1, \infty)$ and tending to finite limits as $t \to \infty$, the norm being defined by the equation

$$\|x\| = \text{bound } |x(t)|.$$

Note on summability factors.

The general linear functional in this space is given by an equation of the form

$$f(x) = \int_{a}^{b} x(t) s(t) dt + \gamma \lim_{t \to \infty} x(t),$$

where $s(t) \in BV(a, b)$ and γ is a constant independent of x.

B: the space of functions $x(t)$ such that $\int_{a}^{b} x(t) dt$ is bounded (C).

S_{1}: the normed vector space of functions $x(t)$ such that $\int_{a}^{b} x(t) dt$ is summable (C, λ), the norm being defined by the equation

$$\|x\| = \text{bound } \int_{a}^{b} t^{k-1} dt \int_{a}^{b} \left(1 - w\right)^{k-1} u x(u) du.$$

S_{2}: the vector subspace of S_{1} which consists of all functions $x(t)$ such that $x(t) = 0$ for $t < a$ and $t x(t) \in L(a, \infty)$.

V_{1}: the normed vector space of functions $x(t)$ such that $\int_{a}^{b} x(t) dt$ is summable $[C, \lambda]$, the norm being defined by the equation

$$\|x\| = \int_{a}^{b} t^{k-1} dt \int_{a}^{b} \left(1 - w\right)^{k-1} u x(u) du.$$

V_{2}: the vector subspace of V_{1} which consists of all functions $x(t)$ such that $x(t) = 0$ for $t < a$ and $t x(t) \in L(a, \infty)$.

We shall require the following lemmas.

Lemma 1. (a) For $t \geq 1$, the general linear functional in the space V_{r} is given by an equation of the form

$$f(x) = \frac{1}{(r+1)(a)} \int_{a}^{b} u x(u) du \int_{a}^{b} \left(1 - w\right)^{r+1} h(t) dt,$$

where $t^{r+1} h(t) \in M(a, \infty)$.

(b) Replace V by S and M by BV.

Proof of (a). It is easily seen that the equation

$$y(t) = \int_{a}^{b} \left(1 - w\right)^{r+1} u x(u) du (t \geq 1)$$

* Banach (1), 65; see also Sagert (4), Lemma 1.

1 It is implicit in the definition of this space and of S_{1} and V_{1} that they are contained in $L(1, w)$ whenever $1 < w < \infty$.

$\int_{a}^{b} \left(1 - w\right)^{r+1} u x(u) du (t \geq 1)$
defines a linear and isometric transformation between all functions \(x \) of \(V_\varepsilon \) and a vector subspace of functions \(y \) of \(L(1, \infty) \). Hence, by the Hahn-Banach extension theorem, the general linear functional in \(V_\varepsilon \) is given by an equation of the form

\[
f(x) = \int_1^\infty a(t) t^{-1-\varepsilon} \int_1^{(t-u)^{-1}} u x(u) \, du,
\]

where \(a(t) \in M(1, \infty) \). Since \(\int_1^\infty |x(u)| \, du < \infty \) when \(x(u) \in \Gamma_\varepsilon \), we can change the order of integration and then obtain the required result by putting

\[
h(t) = \Gamma(h) t^{-1-\varepsilon} u x(u) \, du \quad (t \geq 1).
\]

Proof of (b). The equation

\[
y(w) = \int_1^w t^{-1-\varepsilon} \int_1^{(t-u)^{-1}} u x(u) \, du \quad (w \geq 1)
\]
defines a linear and isometric transformation between all functions \(x \) of \(S_\varepsilon \) and a vector subspace of functions \(y \) of \(F \). Hence the general linear functional in \(S_\varepsilon \) is given by an equation of the form

\[
f(x) = \int_1^\infty a(u) \int_1^{(t-u)^{-1}} u x(u) \, du
\]

\[
+ \gamma \int_1^\infty t^{-1-\varepsilon} \int_1^{(t-u)^{-1}} u x(u) \, du,
\]

where \(a(u) \in BF(1, \infty) \) and \(y \) is a constant. Since \(\int_1^\infty |x(u)| \, du < \infty \) when \(x(u) \in \Sigma_\varepsilon \), we can change the order of integration and then obtain the required result by putting

\[
h(t) = \Gamma(h) t^{-1-\varepsilon} \int_1^\infty a(u) \, du \quad (t \geq 1).
\]

Lemma 2. (a) If \(x(t) \in BF \) whenever \(x(t) \in V_\varepsilon \), then (i) \(h(t) \in M(1, \infty) \), (ii) the functional

\[
f(x) = \int_1^\infty x(t) h(t) \, dt
\]
is linear in \(V_\varepsilon \) for some \(c \geq 1 \).

(b) Replace \(V \) by \(S \).

Since \(S_\varepsilon \supseteq V_\varepsilon \), result (b) follows from a(i) which has been established elsewhere.

Proof of a(ii). Since \(k(t) \in M(1, \infty) \), \(f(x) \) is defined and additive in \(V_\varepsilon \) for all \(\varepsilon \geq 1 \). Suppose there is no \(c \geq 1 \) for which \(f(x) \) is linear in \(V_\varepsilon \).

Then we can define by induction a sequence of functions \(\{x_n\} \) and an increasing unbounded sequence of real numbers \(\{c_n\} \) as follows:

Let \(c_1 = 1 \) and suppose that \(c_1, c_2, \ldots, c_{n-1}, x_1, x_2, \ldots, x_{n-1} \) have been defined and that \(x_r \in F_{c_r} \) for \(r = 1, 2, \ldots, n-1 \). Since \(f(x) \) is not linear in \(F_{c_{n-1}} \), there is a function \(x_n \) such that

\[
x_n \in F_{c_{n-1}}, \quad ||x_n|| < 2^{-n} \quad \text{and} \quad f(x_n) > 1.
\]

Let

\[
c_n = 2c_{n-1} + \sum_{r=1}^{n-1} ||x_r|| \cdot k(t) \, du.
\]

Now define a function \(x(t) \) by putting

\[
x(t) = x_1(t) + x_2(t) + \ldots + x_n(t)
\]

when \(1 \leq t \leq c_n \) and \(n = 1, 2, \ldots, \).

Then, for any \(\mu \geq 1 \) and \(n = 1, 2, \ldots, \)

\[
\int_1^\infty t^{-1-\varepsilon} \int_1^{(t-u)^{-1}} u x(u) \, du \, dk(t) \, du
\]

\[
= \int_1^\infty t^{-1-\varepsilon} \int_1^{(t-u)^{-1}} u x(u) \, du \, dk(t) \, du
\]

\[
= \int_1^\infty t^{-1-\varepsilon} \int_1^{(t-u)^{-1}} u x(u) \, du \, dk(t) \, du
\]

\[
\geq \frac{1}{\mu} \int_1^\infty x_1(t) \, dt \quad \text{for any } \mu \geq 1 \quad \text{and so } x(t) \, dk(t)
\]

\[
is not bounded (C, \mu) \text{ for any } \mu \geq 1 \quad \text{and so } x(t) \, dk(t)
\]

is not in \(B \).

On the other hand, for \(n = 1, 2, \ldots, \)

\[
\int_1^\infty t^{-1-\varepsilon} \int_1^{(t-u)^{-1}} u x(u) \, du \, dk(t) \, du
\]

\[
= \int_1^\infty t^{-1-\varepsilon} \int_1^{(t-u)^{-1}} u x(u) \, du \, dk(t) \, du
\]

\[
\leq \sum_{r=1}^{n-1} \int_1^\infty t^{-1-\varepsilon} \int_1^{(t-u)^{-1}} u x(u) \, du \, dk(t) \, du
\]

\[
\leq \sum_{r=1}^{n-1} ||x_r|| \cdot k(t) \, du < 1,
\]

and hence \(x(t) \in F_{c_n} \).

Since this contradicts the hypothesis, the required result is established.

* Cf. Sargents (4), Lemma 3.
Proof of (b). We can proceed as above, with S in place of V, up to and including the statement:

$$x(u)k(u) \text{ is not in } B;$$

and then, to complete the proof, obtain a contradiction as follows.

Let s be an arbitrary positive integer. Then

$$\lim_{s \to \infty} \left| \int_{s}^{s+1} t^{-\alpha-1} d t \left(u-t \right)^{-\alpha} w \left(u \right) d u \right|$$

$$\leq \lim_{s \to \infty} \left(\frac{s}{s+1} \right) \left| \int_{s}^{s+1} t^{-\alpha-1} d t \left(u-t \right)^{-\alpha} u \left(u \right) d u \right|$$

$$+ \frac{s}{s+1} \left(\int_{s}^{s+1} t^{-\alpha-1} d t \left(u-t \right)^{-\alpha} w \left(u \right) d u \right)$$

$$\leq \frac{2}{s} \sum_{r=1}^{s} \left| x(r) \right| < 2 \sum_{r=1}^{s} \left| x(r) \right| < 2 s^{2-\alpha}.$$

Hence $x(t) \in S$.

Lemma 3. If $\alpha \geq 1$, $r > 0$ and $x(t) \in L(1, w)$ for all $w > 1$, then a necessary and sufficient condition for $x(t)$ to be in V_{r} is that

$$\int_{t}^{t+1} t^{-\alpha-1} d t \left(u-t \right)^{-\alpha} w \left(u \right) d u < \infty.$$

This follows from a result established elsewhere.

Lemma 4. If $\alpha > 1$ and $x(t) \in V_{r}$, then $t^{\alpha} \int_{t}^{t+1} \left(u-t \right)^{\alpha} x(u) d u \in V_{r-1}$.

This also follows from the above-mentioned result.

Lemma 5. If $x(t) \in V_{r}$, then $x(t) = x(1) / C \cdot t^{\alpha-1}$ as $t \to \infty$.

This well-known result follows from the identity

$$t^{-\alpha-1} \int_{t}^{t+1} \left(u-t \right)^{\alpha} x(u) d u = t^{-\alpha} \int_{t}^{t+1} \left(u-t \right)^{\alpha} x(u) d u - t^{\alpha} \int_{t}^{t+1} \left(u-t \right)^{\alpha-1} x(u) d u$$

$$\left(t \geq 1 \right).$$

We shall now prove two theorems; the first of these includes both necessity parts of Theorem 1 and the second is simply a restatement of the sufficiency part of Theorem 1(a).

* Borwein (3), Theorem 1 with $\rho = -r$, $\alpha = \lambda$.

** Theorem** 2. (a) If $x(t)k(t) \in B$ whenever $x(t) \in V_{r}$, then there is a number $c \geq 1$ such that

$$\left(i \right) k(t) \in M(1, c),$$

$$\left(ii \right) \frac{k(t)}{t} = \frac{1}{\Gamma(\alpha)} \int_{t}^{t+1} \left(u-t \right)^{\alpha-1} h(u) d u \text{ p.p. in } (c, \infty),$$

where $w^{\alpha+1} h(u) \in M(c, \infty)$.

(b) Replace V by S and M by $M(1, \infty)$.

Parts (a) and (b) follow from the corresponding parts of Lemma 2.

Proof of (a(ii)). In view of Lemmas 1(a) and 2(a) there is a number $c \geq 1$ such that, for all $x(t) \in V_{r}$,

$$\int_{c}^{\infty} x(t)k(t)d t = \frac{1}{\Gamma(\alpha)} \int_{c}^{\infty} \frac{x(t)k(t)d t}{t} \left(u-t \right)^{\alpha-1} h(u) d u,$$

where $w^{\alpha+1} h(u) \in M(1, \infty)$. The required result follows since, for arbitrary $w > c$, $V_{r}w$ contains the characteristic function of the interval $[c, w]$.

Proof of (b). Replace (a) by (b), V by S and M by $M(1, \infty)$ in the above proof.

** Theorem** 3. If $x(t) \in V_{r}$ and, for some number $c \geq 1$,

$$\left(i \right) k(t) \in M(1, c),$$

$$\left(ii \right) \frac{k(t)}{t} = \frac{1}{\Gamma(\alpha)} \int_{t}^{t+1} \left(u-t \right)^{\alpha-1} h(u) d u \text{ p.p. in } (c, \infty),$$

where $w^{\alpha+1} h(u) \in M(c, \infty)$, then $x(t)k(t) \in V_{r}$.

Write, for $t \geq c, p > 0$,

$$y(t) = \varphi(t),$$

$$\varphi(t) = \frac{1}{\Gamma(\alpha)} \int_{t}^{t+1} (u-t)^{\alpha-1} y(u) d u,$$

and let

$$H = \text{ess. bound } \left| x(t) \right|.$$

Note that $x(t)k(t) \in L(1, w)$ for all $w > 1$ and so, by Lemma 3, it is sufficient to prove that

$$\int_{c}^{\infty} x(t)^{-1} d t \left| \int_{c}^{\infty} \left(u-t \right)^{\alpha-1} \frac{x(t)}{x(u)} \left| k(t) \right| d u \right|$$

* Version (b) of this theorem is slightly more general than Theorem 1 in Segregat (4).
is finite. Further, since \(x(t) \in V_a \), we have, by Lemma 3, that
\[
\int t^{\lambda-2} |g(t)| dt < \infty.
\]

Case 1. Suppose that \(\delta < \lambda < 1 \), and write, for \(t > e > 0 \),
\[
Q(v, t) = \frac{1}{\Gamma(\lambda)} \int_t^e (u-t)^{\lambda-1} (u-v)^{\lambda-1} g(u) du.
\]
It has been shown* that, for almost all \(v \) in \((s, t)\),
\[
|Q(v, t)| \leq (t-v)^{\lambda-1}|g(v)| + (t-e)^{\lambda-1} \int_e^t (u-t)^{\lambda-1} |g(u)| du.
\]
Hence
\[
\int t^{\lambda-1} dt \left[\int (u-t)^{\lambda-1} g(u) \frac{d\lambda}{u} \right] \leq \frac{1}{\Gamma(\lambda)} \int_t^e (u-t)^{\lambda-1} g(u) du \int_t^e (u-v)^{\lambda-1} |g(v)| dv + \int_t^e (u-t)^{\lambda-1} |g(v)| dv \int_t^e (u-e)^{\lambda-1} |g(u)| du
\]
\[
 \leq H \int_t^e (u-t)^{\lambda-1} |g(u)| du + \frac{1}{\Gamma(\lambda-1)} \int_t^e (u-t)^{\lambda-1} Q(v, t) dt + H \int_t^e (u-t)^{\lambda-1} \int (u-v)^{\lambda-1} |Q(u, v)| dv dt
\]
\[
 \leq 2H \int_t^e (u-t)^{\lambda-1} |g(u)| du + \frac{1}{\Gamma(\lambda-1)} \int_t^e (u-t)^{\lambda-1} |Q(u, v)| dv dt
\]
\[
 \leq 2H \int_t^e (u-t)^{\lambda-1} |g(u)| du \left[(t-e)^{\lambda-1} + \frac{1}{\Gamma(\lambda)} \right]
\]
\[
 + 2H \int_t^e (u-t)^{\lambda-1} (u-v)^{\lambda-1} \int (u-v)^{\lambda-1} |g(v)| dv dt
\]
\[
 = 2H \frac{\lambda}{\lambda-1} (\lambda-1) (1-\lambda) \int \int \left[(u-t)^{\lambda-1} (u-v)^{\lambda-1} |g(v)| dv \right] dt
\]
\[
+ 2H \left[(\lambda-1) + B(1+1, \lambda) \right] B(1+1, \lambda) \int (u-v)^{\lambda-1} |g(v)| dv dt < \infty.
\]

The result in this case follows.

* Borwein (2), Inequality (6.7), note that this differs from the required inequality by a factor \(t^{-\lambda} \) in the left-hand side and that a suitable value for the constant \(\mathcal{M} \) is \(\max \{ t^{-\lambda}, (1-\lambda)/(\lambda-1) \} = t^{-\lambda} \) \((\delta < \lambda < 1) \).

Case 2. Suppose that \(\lambda = 1 \). The required result is now obtained from the following inequality:
\[
\int t^{\lambda-1} dt \left[\int (u-t)^{\lambda-1} g(u) \frac{d\lambda}{u} \right] = \int t^{\lambda-1} dt \left[\int g(u) du \right] \frac{1}{\lambda} \int g(v) dv
\]
\[
 \leq H \int t^{\lambda-1} dt \int (u-t)^{\lambda-1} |g(v)| dv + 2H \left[(\lambda-1) + B(1+1, \lambda) \right] B(1+1, \lambda) \int (u-v)^{\lambda-1} |g(v)| dv dt < \infty.
\]

Case 3. Suppose that \(\lambda > 1 \), and assume the result with \(\lambda \) replaced by \(\lambda-1 \). Suppose further, without any loss in genericity, that \(x(t) = 0 \) for \(1 < t < \infty \).

Let \(p(t) = \frac{1}{\Gamma(\lambda-1)} \int (u-t)^{\lambda-1} |g(u)| du \) when \(t \geq e \), \(p(t) = 0 \) when \(1 < t < e \), and note that, for almost all \(t > e \),
\[
k(t) = \frac{1}{\Gamma(\lambda-1)} \int (u-t)^{\lambda-1} |g(u)| du
\]

Then it is easily verified that, for \(t > e \),
\[
\int t^{\lambda-1} dt \left[\int (u-t)^{\lambda-1} g(u) \frac{d\lambda}{u} \right] = \int t^{\lambda-1} dt \left[\int p(u) u^{-\lambda} k(u) du \right]
\]
\[
 \leq t^{\lambda-\lambda} \int t^{\lambda-1} dt \left[\int p(u) u^{-\lambda} k(u) du \right] + \frac{1}{\Gamma(\lambda-1)} \int t^{\lambda-1} dt \left[\int u^{\lambda-1} |g(u)| du \right] \int t^{\lambda-1} dt \left[\int (u-t)^{\lambda-1} |k(u)| du \right] \int t^{\lambda-1} dt \left[\int (u-v)^{\lambda-1} |g(v)| dv \right] \int t^{\lambda-1} dt \left[\int (u-v)^{\lambda-1} |k(v)| dv \right] \int t^{\lambda-1} dt \left[\int (u-v)^{\lambda-1} |g(u)| dv \right] \int t^{\lambda-1} dt \left[\int (u-v)^{\lambda-1} |k(v)| dv \right]
\]

Now \(w, u, v, s \in \mathcal{M}(c, \infty) \), \(w, u, v, s \in \mathcal{M}(c, \infty) \) and so both \(k(t) \) and \(p(t) \) satisfy the hypotheses of \(k(t) \) with \(\lambda \) replaced by \(\lambda-1 \). Further, since \(x(t) \in V_a \), we have, by Lemma 4, that \(w^{\lambda-\lambda} \int t^{\lambda-1} dt \left[\int p(u) u^{-\lambda} k(u) du \right] \int t^{\lambda-1} dt \left[\int (u-t)^{\lambda-1} |k(u)| du \right]
\]

Thus, by the assumption, \(w^{\lambda-\lambda} \int t^{\lambda-1} dt \left[\int p(u) u^{-\lambda} k(u) du \right] \int t^{\lambda-1} dt \left[\int (u-t)^{\lambda-1} |k(u)| du \right]
\]

It follows that \(x(t) k(t) \in V_a \) and the result in this case is thus established by induction from the two previous cases.

This completes the proof of the theorem.

References.

The University,
St. Andrews.

F:\\C:\\PITTSBURGH\\PITTSBURGH\\UNIVERSITY\\UNITED\\DAMON\\32415\\BIBLIOGRAPHY