ON CERTAIN SEQUENCES OF PLUS AND MINUS ONES
D. BORWEIN AND W. Gawronski

1. Suppose throughout that \(c \) is a fixed positive integer, that
\[
a = 1 - c + \sqrt{c^2 + 1},
\]
and that
\[
\sigma_n = (-1)^{\lfloor x \rfloor}, \quad S_n = \sum_{k=1}^{n} \sigma_k, \quad T_n = \sum_{k=1}^{n} S_k \quad \text{for} \quad n = 1, 2, \ldots,
\]
where \([x]\) is defined to be the largest integer not exceeding \(x \). The following expansions of \(a \) and \(a/2 \) as simple continued fractions are easily verified:
\[
a = \{1, 2a, 2a, \ldots \} \quad \text{if} \quad c = 1
\]
\[
a/2 = \left\{0, 1, 2, 2, \ldots \right\} \quad \text{if} \quad c > 1.
\]
In a recent issue of the American Mathematical Monthly [86, 1976, No. 7, p. 573] H. Rudman posed the problem of proving the convergence of the series \(\sum_{n=1}^{\infty} \sigma_n/n \) in the special case \(a = \sqrt{2} \), and asked for an estimate of its sum. To prove convergence we note that, by Abel's partial summation formula,
\[
\sum_{n=1}^{\infty} \frac{\sigma_n}{n^2} = \sum_{n=1}^{\infty} \frac{S_n}{n^2} \sum_{k=1}^{n} \frac{1}{k} + \sum_{n=1}^{\infty} \frac{S_n}{n^2} \sum_{k=n+1}^{\infty} \frac{1}{k}.
\]
Furthermore we have \(S_n = 2a - 1, \) where \(a \) is the number of positive integers \(k \leq n \) for which \([ak]\) is even, or, equivalently, for which the fractional part of \(ak/2 \) is in the interval \((0, 1/2)\). The familiar result that the sequence \((\sigma_n/2)^2 \) is uniformly distributed modulo 1 when \(a \) is irrational, yields only that \(\sigma_n/n \rightarrow 1/2 \) as \(n \rightarrow \infty \), and hence that \(S_n = o(n) \); but this is insufficient to establish the convergence of \(\sum_{n=1}^{\infty} \sigma_n/n \). A better estimate of \(S_n \) is obtained, however, from a known result on the discreteness of the sequence \((\sigma_n/2)^2 \) [3, Theorem 3.4, p. 125] which yields
\[
S_n = 2a - 1, \quad \frac{S_n - 1}{n^2} \leq 6 + 2M_n, \quad n \geq 1.
\]

Received January 6, 1977. This research was supported in part by the National Research Council of Canada, Grant A-2083.
Let
\[n_k = \frac{1}{2}(p_k - 1), \quad k \geq 0. \]
It is easily verified that \(n_k \) is an integer, that
\[a_\beta = 2\alpha, \quad -1/2 < 1 - \alpha < 0, \quad \alpha = (-1)^{n_k} \]
and that, for \(k \geq 0 \),
\[2p_k \sqrt{d} = a(1 + \beta)^{2k+1} + \beta(1 - \alpha)^{2k+1}, \]
\[2p_k \sqrt{d} = (1 + \beta)^{2k+1} - (1 - \alpha)^{2k+1}, \]
\[p_k - a_\beta = (1 - \alpha)^{2k+1}, \quad n_k + \alpha = n_{k+1}, \quad n_k + p_{k+1} = n_{k+2}. \]

The first lemma is concerned with some basic identities involving the sequences \((s_\gamma), (S_\gamma)\) and \((T_\gamma)\).

Lemma 1. The following identities hold for \(k \geq 1 \).

(a) \(s_{2k} = (-1)^{2k+1} \).
(b) \(s_{2k+1} = (-1)^{2k+2} \) if \(1 \leq j \leq 2k \).
(c) \(r_{2k} = (-1)^{2k+1} \) if \(1 \leq j \leq 2k+1 \).
(d) \(r_{2k+1} = (-1)^{2k+2} \) if \(j = 2k+1, \quad 1 \leq i \leq 1 + r \).
(e) \(s_{k+1} = r_k = 0 \) if \(1 \leq j \leq 2k+1 \).
(f) \(s_{k+1} = r_k = 0 \) if \(1 \leq j \leq 2k \).
(g) \(r_{2k+1} = (-1)^{2k+1} \) if \(j = 2k+1, \quad 1 \leq i \leq 1 + r \).
(h) \(S_{2k+1} = S_{k+1} = -k \), \(S_{2k+2} = k \).

(i) For \(i + j = 1, \quad 0 \leq i, j \leq k \), \(S_{k+i} = 0 \) if \(k \) is even,
\[1 \] otherwise.

(j) For \(1 \leq r \leq 2k+1 \), \(S_{k+i} = \begin{cases} 1 & \text{if } k \text{ is even, } r \text{ is odd} \\ 0 & \text{otherwise} \end{cases} \)

(k) For \(j = r_k, \quad 0 \leq i < q_k, \quad 1 \leq r \leq 2k \), \(S_{k+i} = 1 \), \(S_{k+i} = -k \) if \(k \) is even and \(r \) is odd.

(l) For \(j = r_k, \quad 0 \leq i < q_k, \quad 1 \leq r \leq 2k \), \(S_{k+i} = 1 \), \(S_{k+i} = -k \) if \(k \) is even and \(r \) is odd.

(m) For \(j = r_k, \quad 0 \leq i < q_k, \quad 1 \leq r \leq 2k \), \(T_{k+i} = T_{k+i} = 0 \) if \(k \) is odd and \(r \) is odd.

(n) For \(1 \leq r \leq 2k+1 \), \(T_{k+i} = \begin{cases} 0 & \text{if } k \text{ is odd} \\ -r_{k+i} / 2 & \text{if } r \text{ is odd} \end{cases} \)
\[(r - 1)q_{k+i} / 2 - 1 \text{ if } r \text{ is odd} \]
\[k \text{ is odd} \]

\[k \text{ is even} \]

Proof. (a) We have \(\beta \beta = 2q_\beta + (1 - \alpha)^{2k+1} \) and thus, since \(0 < \beta(1 - \alpha)^{2k+1} < 1 \) and \(-1 < 1 - \alpha < 0 \),
\[[\beta] \beta = \beta 2q_\beta, \quad \text{if } \beta \text{ is odd} \]
and this implies that \(e_{2k} = (-1)^{n_k+1} = (-1)^{2k+1} \).
(b) For \(1 \leq j \leq 2k \), we have \([\alpha] = [j/\sqrt{d}] + j \) which implies that \(e_j = (-1)^{j-1} \).
(c) Starting from the identity \(\alpha p_{2k} = p_{2k} - j(1 - \alpha)^{2k+1} \) we get, since \(0 < j(1 - \alpha)^{2k+1} \leq (2k+1)/\sqrt{d} < 1 \), that
\[\alpha p_{2k} = \begin{cases} 1 \quad \text{if } k \text{ is odd} \\ 0 \quad \text{if } k \text{ is even} \end{cases} \]
Further \(p_{2k} \) is odd and hence \(e_{2k} = (-1)^{2k+1} \).
(d) For \(j = p_k + 1, \quad 1 \leq p_k < q_k \), we have
\[\beta = \alpha p_k + \beta(1 - a)^{2k+1} + a^2 + 2(1 - a) \]
\[= 2q_k + 2(1 - a)^{2k+1} + a + \delta, \quad a = [\alpha] \]
Since \(i < q_k \), it follows that \(\delta = q_k - a \geq [\alpha] - p_k - [\alpha] = (a - 1)^k \) by standard theory. (See e.g. p.167, Theorem 7.1S.) Further \(0 < \beta(1 - a) < 2\sqrt{d}/(1 - \alpha) < 1 \) and so \(\delta > (\alpha - 1)^{2k+1} \). Likewise we obtain \(1 - \delta = 1 + a - a > (\alpha - 1)^{2k+1} \) and so
\[[\delta] = 2q_k + 2(1 - a)^{2k+1} + [\alpha] \]
from which it follows that \(e_k = e_k \).
(e) Let \(i + j = p_k, \quad 1 \leq i < p_k/2 \). Since \(1 < \alpha < 3/2 \), we have
\[\frac{p_k - 1}{2} \leq \frac{p_k + 1}{2} \leq q_k \leq q_k - (1 - \alpha)^{2k+1} + a - 1 \]
and by the same argument as in the proof of (d) it follows that \([\beta] = 2q_k - 2(1 - a)^{2k+1} + 1 - [\alpha] \) and thus that \(e_k = e_k \).
(f) For \(j = q_k - 1, \quad 1 \leq i < q_k \), we have \(a_\gamma = p_k - (1 - a)^{2k+1} + a - 1 \), where \(a = [\alpha] \) and as above \(\delta > (\alpha - 1)^{2k+1} \) and \(1 - \delta > (\alpha - 1)^{2k+1} \). Hence \([\alpha] = p_k - 1 - [\alpha] \), and so, since \(p_k - 1 \) is even, \(e_k = e_k \).
(g) For \(j = p_k + 1, \quad 1 \leq i < q_k, \quad 1 \leq r \leq 2k \), we have
\[a_\gamma = p_k + r(1 - a)^{2k+1} + a + 1 \]
where \(a = [\alpha] \) and as above \(\delta \geq (\alpha - 1)^{2k+1} + r(1 - a)^{2k+1} \) and \(1 - \delta > (\alpha - 1)^{2k+1} \). Thus \([\alpha] = p_k + [\alpha] \) and so \(e_k = (-1)^{n_k+1} \) since \(p_k \) has the same parity as \(r \).
(1) By (c) we have, for \(i + 1 + j = p_n, \ 0 \leq i < j, \) that
\[
S_j = S_i + \sum_{k=i+1}^{j} x_k - S_n,
\]
since \(j - 1 \) is even.

(1) By (b), \(S_{n+1} = 0 \) and so, by (a), \(S_k = s_k = (-1)^{k+1}. \) Next, since \(q_i + q_{i+1} = s_{i+1} \) and \(q_i < q_{i+1}, \) we have, by (d), that
\[
S_{n+i} - S_{n+i+1} = \sum_{k=i+1}^{n+i} x_k = S_n
\]
and so \(S_{n+i} - S_n = S_{n+i+1} = (-1)^i \) for \(i \geq 0. \) Hence
\[
S_{n+i} = \sum_{k=1}^{i} (S_{n+k} - S_{n+k-1}) = k
\]
and
\[
S_{n+i+1} = \sum_{k=1}^{i+1} (S_{n+k} - S_{n+k-1}) + S_n = -(-k - 1) - 1 = -k
\]
since \(n_i = 1 \) and \(S_1 = -1. \)

(1) By (i) we have, for \(i + 1 + j = q_k, \ 0 \leq i \leq j, \) that \(S_i = S_k - S_j; \) and hence that \(S_i + S_j = S_k - S_j - S_k + (-1)^j \) by (c). Next, since \(q_i + q_{i+1} = n_{i+1} \) and \(q_i < q_{i+1} \) it follows, by (g) with \(r - 1, \) that \(S_{n+i} - S_{n+i+1} = -S_n \) and so, by (i),
\[
S_i = S_k + S_{n+i+1} = 0 \text{ when } k \text{ is odd};
\]
Hence
\[
S_i + (-1)^j = 0 \text{ when } k \text{ is even}\]
and this completes the proof.

(1) Let \(j = r_n + i, \ 0 \leq i < q_r, \ 1 \leq r \leq 2r. \) Applying (a) we get \(S_j - S_{r_n} = (-1)^{r+1} \) for \(i < q_r \) and hence
\[
S_k = S_{r_n+i+1} = (-1)^{r+i} S_{r_n+i+1} = (-1)^{r+i} S_{k+i} + (-1)^r q_r
\]
\[
= (-1)^{r+i} S_{k+i} + (-1)^r q_r, \text{ by (c)}.
\]
Consequently
\[
S_{r_n+i} = \sum_{k=1}^{i} (S_{r_n+k} - S_k) + S_k = S_k \sum_{k=1}^{i} (-1)^k + S_k
\]
\[\begin{cases}
10 & \text{when } r \text{ is odd}, \\
1 & \text{when } r \text{ is even}.
\end{cases}\]
Our next lemma shows that n_{k-1} is the first value of n for which S_n attains the value $-k$.

Lemma 2. If $k \geq 1$ and $n < n_{k-1}$, then $|S_n| < k$.

Proof. We proceed by induction with respect to k. The proposition that $|S_1| < k - 1$ for $n < n_{k-1}$ holds for $k = 2$. Assume it to be true for a given $k \geq 2$. Suppose first that $k \geq 3$. We proceed from the induction hypothesis as follows. Since $q_{n-1} \leq n_{k-1}$, we have, for $j = r_{q_{n-1}} + i$, $0 \leq i < q_{n-1}$, $1 \leq r \leq 2n$, by (0), that

\[S_j = \begin{cases} S_i & \text{if r is even} \\ -S_i - 1 & \text{if r is odd} \end{cases} \]

Also, by (0), $S_i = -1$ for $i = (2c + 1)q_{n-1}$. Thus

\[-k < S_i < k - 1 \quad \text{for} \quad i \leq (2c + 1)q_{n-1}. \]

Further, $q_{n-1} < (2c + 1)q_{n-1}$ and $n_{k-1} - q_{n-1} = n_{k-2}$ and so, by (1), we have, for $j = q_{n-1} + i$, $0 \leq i < n_{k-1}$, that

\[|S_j| = |S_i| < k - 1, \]

since $n_{k-1} < q_{n-1}$. Therefore

\[-k < S_i < k - 1 \quad \text{for} \quad i < n_{k-1}. \]

But, by (b), the final inequalities also hold for $k = 2$, since $n_1 = 2c + 1$. In what follows we suppose $k \geq 2$. By (1) again, we have, for $j = r_{q_{n-1}} + i$, $0 \leq i < n_{k-1}$, that $S_j = S_i$ and so, since $q_{n-1} < n_{k-1}$,

\[-k < S_i < k - 1 \quad \text{for} \quad i < (2c + 1)q_{n-1}. \]

Finally, the relations $q_{n-1} < (2c + 1)q_{n-1}$ and $n_{k-1} - q_{n-1} = n_{k-2}$ imply, by (1), that

\[-S_i = S_i + 1 \quad \text{for} \quad j = q_{n-1} + i, 0 \leq i < n_{k-1}. \]

Hence

\[-k < S_i < k - 1 \quad \text{for} \quad q_{n-1} < j < n_{k-1}. \]

Since $q_{n-1} < (2c + 1)q_{n-1}$, we have established that

\[|S_j| < k \quad \text{for} \quad i < n_{k-1}. \]

This completes the proof.

Similar considerations show that n_{k-1} is the first value of n for which S_n attains the value k.

Theorem 1. If $n \geq 1$, then

\[|S_n| < \frac{2}{\log (1 + \beta)} \frac{(2cn + 1)\sqrt{d}}{2}. \]
Also,

\[T_j = T_{j\alpha} - T_i - i \geq \frac{(r - 1)\alpha}{2} - 1 + \frac{i + 1}{2} = \frac{i}{2} \]

Case 3: \(r \) and \(\alpha \) are odd. Then

\[T_j + j/2 = T_{j\alpha} - T_i + j/2 > -q_j/2 + r_q/2 \geq 0 \]

and

\[T_i = T_{j\alpha} - T_i \leq -q_j/2 + (i + 1)/2 \leq -q_j/2 + q_j/2 = 0. \]

Hence we have in every case that \(0 \geq -T_j \leq (j + 1)/2 \) for \(j < (2\alpha + 1)q_\alpha \).

Since \(q_\alpha < (2\alpha + 1)q_\alpha \), the proof is complete.

It follows from Lemma 1, (k), (m), and (n) that if \(n = 2q_\alpha + 1 \), then \(T_n = T_{2q_\alpha + 1} = -q_\alpha - 1 = -(\alpha + 1)/2 \), whereas if \(n = 2q_\alpha - 1 \), then \(T_n = T_{2q_\alpha - 1} = T_{n - 1} - 1 = 0 \). This shows that the inequalities in Theorem 2 are sharp.

3. In this section we show how the preceding estimates can be used to determine the sum \(\sigma \) of the series \(\sum_{k=1}^{\infty} \epsilon_k/n \). In addition we contrast the behaviour of the series \(\sum_{k=1}^{\infty} \epsilon_k \) with that of \(\sum_{k=1}^{\infty} (-1)^k \) with regard to summability by certain standard methods.

The problem of estimating the sum of the series \(\sum_{k=1}^{\infty} \epsilon_k/n \) reduces to knowing how close its \(n \)-th partial sum \(\sigma_n \) is to \(\sigma \). Applications of Abel's partial summation formula yield

\[\sigma = \sigma_n + \frac{S_n}{n + 1} + \sum_{k=1}^{n} \frac{T_k}{k(k + 1)} = \sigma_n, \]

say, and

\[\sigma = \sigma_n + \frac{S_n}{n + 1} + \frac{T_n}{n(n + 1)} = 2 \sum_{k=1}^{n} \frac{T_k}{k(k + 1)(k + 2)} = \tau_n \]

say. It follows from (2) that

\[|\sigma_n| < \frac{6 + 2M_f(1 + \log n)}{n}, \]

and from (4) that

\[0 < \tau_n < \frac{1}{2(n + 1) + 1}. \]

Consider now the special case \(\sigma = \sqrt{2} \) (i.e., \(\alpha = 1 \)). We find that \(M_f < 3.9 \). For \(\alpha = q_\alpha = 1.0994428 \), we have, by Lemma 1 (k) and (m), that \(S_n = 0 \) and \(T_n = -n/2 \); and a computer yielded \(\sigma_n = -0.5154184531 \). Using the above

estimate for \(\sigma_n \) we get

\[-0.515428 < \sigma < -0.515409, \]

and using the estimate for \(\tau_n \) we get

\[-0.5154186 < \sigma < -0.5154184. \]

It is familiar that the series \(\sum_{k=1}^{\infty} (-1)^k \) is summable to \(-1/2\) by the Cesàro method \(C_1 \) and consequently by the Abel method \(A \). It is also summable to \(-1/2\) by the Borel method \(B \). We shall show, on the other hand, that the series \(\sum_{k=1}^{\infty} \epsilon_k \) is not summable by any of the above standard methods. Let \(U_n = \sum_{k=1}^{n} T_k \). Then, by Lemma 1 (m), we have \(T_j = T_{j\alpha} + T_i \) for \(j = 2q_j + i \), \(1 \leq i < q_j \), and so

\[U_{2q_j + i} - U_{2q_j} - U_{q_j - 1} = (q_j - 1)T_{2q_j}. \]

It follows, by Lemma 1 (n), that

\[U_{2q_j} - U_{2q_j - 1} = \frac{1}{n} \quad \text{when} \quad n = q_j - 1 \]

and

\[U_{2q_j + i} - U_{2q_j} - U_{q_j - 1} = \frac{1}{n} \quad \text{when} \quad n = q_j. \]

If we now suppose that \(U_n/n \) tends to a finite limit \(l \) as \(n \to \infty \), we get the contradictory conclusions that \(U_{2q_j} - U_{2q_j - 1} = 0 \) and \(U_{2q_j + i} - U_{2q_j} - U_{q_j - 1} = -1 \). Hence the sequence \((U_n/n) \) is not convergent and, equivalently, the sequence \((T_j/n) \) is not limitable \(C_1 \). Now it is known (see e.g. (1, p. 214)) that if \(\sum_{k=1}^{\infty} \epsilon_k \) is summable \(A \), then \((T_j/n) \) is limitable \(A \) and hence, by a familiar tauberian theorem, that \((T_j/n) \) is limitable \(C_1 \) since \(T_j/n \leq 0 \) (2, p. 154, Theorem 95). Thus \(\sum_{k=1}^{\infty} \epsilon_k \) is not summable \(A \) and, a fortiori, not summable \(C_1 \). Another familiar tauberian theorem (2, p. 210, Theorem 147) now shows that the series in question cannot be summable \(B \) for if it were, the order relation \(\epsilon_n = O(1) \) would imply it to be summable \(C_1 \) for every \(\sigma > 1 \).

References

University of Western Ontario, London, Ontario