AMSI Access Grid Seminar

11:30 am

Friday, 17th Jan 2014

V205, Mathematics Building

Prof Wendelin Werner

(ETH Z├╝rich)

Phase transitions and conformal invariance within planar fractal carpets

It is now known for a number of models of statistical physics in two dimensions (such as percolation or the Ising model) that at their critical point, they do behave in a conformally invariant way in the large-scale limit, and do give rise in this limit to random fractals that can be mathematically described via Schramm's Stochastic Loewner Evolutions.

The goal of the present talk will be to discuss some aspects of what remains valid or should remain valid about such models and their conformal invariance, when one looks at them within a fractal-type planar domain. We shall in particular describe (and characterize) a continuous percolation interface within certain particular random fractal carpets. Part of this talk will be based on joint work with Jason Miller and Scott Sheffield.