Murray Klamkin, Amer. Math. Monthly

Richard K. Guy

June 22, 2006

This is the third of a number of files listing problems, solutions and other writings of Murray Klamkin.

LAST UPDATED 2006-06-21 (Summer solstice)

The easiest way to edit is to cross things out, so I make no apology for the proliferation below. Just lift out what you want.

Summation, Binomial coefficients

4276 [1947,601]. Proposed by P. A. Pizá, San Juan, P.R.

Let the integers nK_c be defined by the relations

\[nK_1 = 1; \quad nK_m = 0, \ m > n; \quad n+1K_c = c(nK_c + nK_{c-1}), \ c > 1 \]

Prove the following summations

(A) \[x^n = \sum_{j=1}^{n} nK_j \binom{x}{j} \]

(B) \[\sum_{a=1}^{x-1} = \sum_{j=1}^{n} nK_j \binom{x}{j+1} \]
Solution by M. S. Klamkin, Brooklyn Polytechnic Institute, Brooklyn, N.Y.

On the assumption that (A) is true, we have

\[x^{n+1} = \sum_{j=1}^{n} nK_j \binom{x}{j} x = \sum_{j=1}^{n} nK_j \left[(j + 1) \binom{x}{j+1} + j \binom{x}{j} \right] \]

\[= nK_1 x + \sum_{j=2}^{n} \binom{x}{j} [j \cdot nK_j + j \cdot nK_{j-1}] + (n + 1) nK_n \binom{x}{n+1} \]

\[= n+1K_1 x + \sum_{j=2}^{n} n+1K_j \binom{x}{j} + n+1K_{n+1} \binom{x}{n+1} = \sum_{j=1}^{n+1} n+1K_j \binom{x}{j} \]

Since (A) is evidently true for \(n = 1 \), it is true for all \(n \) by induction.

(B) follows immediately from (A) by use of the familiar relation

\[\sum_{a=j}^{x-1} \binom{a}{j} = \binom{x}{j+1} \]

Thus

\[\sum_{a=1}^{x-1} a^n = \sum_{a=1}^{x-1} \sum_{j=1}^{n} nK_j \binom{a}{j} = \sum_{j=1}^{n} nK_j \sum_{a=1}^{x-1} \binom{a}{j} = \sum_{j=1}^{n} nK_j \binom{x}{j+1} \]

Solved also by [6 others, including] E. T. Frankel and Yu-shu Luan.

Frankel points out that (A) and (B) are special cases of general formulas in the calculus of finite differences which express the general term and the sum of a given number of terms of a rational integral function by means of its leading differences and binomial coefficients. (See Whittaker and Robinson, The Calculus of Observations, London, 1924, p.7.) The integers \(nK_1, nK_2, \ldots, nK_c \) are the leading differences of the \(n \)th powers of the natural numbers \(0^n, 1^n, 2^n, \ldots, c^n \).

In consequence, as noted by Yu-shu Luan, we have the following explicit expression for \(nK_c \)

\[nK_c = \sum_{j=1}^{n} (-1)^j \binom{c}{j} (c - j)^n \]
The Sum of a Series

E 844 [1949, 31]. Proposed by Orrin Frink, Pennsylvania State College

Sum the series

\[1 + \frac{1}{5!} + \frac{1}{10!} + \frac{1}{15!} + \cdots + \frac{1}{(5n - 5)!} + \cdots \]

II. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. Since the sum of the \(m \) th powers of the \(k \) \(k \) th roots of unity is zero unless \(m \) is a multiple of \(k \), in which case the sum is unity, we have, from the Maclaurin expansion of \(e^z \)

\[\sum_{j=1}^{k} \exp(w_j^k x) = k \sum_{n=0}^{\infty} \frac{x^{kn}}{(kn)!} \]

where \(w_k \) is a primitive \(k \) the root of unity. The required sum, obtained by taking \(x = 1, k = 5 \), is then

\[S = \frac{1}{5} \sum_{j=1}^{5} \exp w_j^5 \]

Also solved by [21 others]

Several solvers easily reduced the above sum to

\[S = \frac{1}{5} [e + 2e^{\cos 72^\circ} \cos(\sin 72^\circ) + 2e^{-\cos 36^\circ} \cos(\sin 36^\circ)] \]

If we are merely interested in obtaining a numerical result, however, there is little point of transforming the original series, which converges very rapidly. Thus four terms of the series gives \(S = 1.00833360890 \)

[F. C.]Smith picked up, as a by-product, the pretty summations

\[\sum_{n=0}^{\infty} \frac{x^n \cos n\theta}{n!} = e^{x \cos \theta} \cos(\sin \theta) \]

\[\sum_{n=0}^{\infty} \frac{x^n \sin n\theta}{n!} = e^{x \cos \theta} \sin(\sin \theta) \]

[[RKG notes that the above numerical value is given by three terms. Four terms give 1.008333608907290289 and five terms give 1.0083336089072902899764536]]
A series for π

E 854 [1949, 104]. Proposed by Jerome C. R. Li, Oregon State College

Show that $\pi = \sum_{n=0}^{\infty} (n!)^2 2^{n+1}/(2n+1)!$

[Five solutions were published, one by Ragnar Dybvik using the beta function, the second by Paul Carnahan using Wallis’s formula, the third by Murray below, the fourth by N. J. Fine using a differential equation, and the fifth by D. H. Browne using Euler’s transformation of series.]

III. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. (Using the Legendre polynomials). We have

$$a_n = (n!)^2 2^{n+1}/(2n+1)! = \int_{-1}^{1} z^n P_n(z) \, dz$$

where $P_n(z)$ is the Legendre polynomial of degree n. Therefore

$$\sum_{n=0}^{\infty} a_n = \int_{-1}^{1} \sum_{n=0}^{\infty} z^n P_n(z) \, dz = \int_{-1}^{1} (1 - z^2)^{-1/2} \, dz = \pi$$
Equivalent Concurrent Sections of a Tetrahedron

E 865 [1949, 263]. Proposed by Victor Thébault, Tennie, Sarthe, France

Find a point such that the planes drawn through this point parallel to the faces of a tetrahedron cut the opposite trihedrals in equivalent triangles. Express the common area of these triangles in terms of the areas of the faces of the tetrahedron.

Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. Denote the areas of the faces of the tetrahedron by A_i ($i = 1, 2, 3, 4$), the corresponding altitudes by H_i and the perpendicular distances from the corresponding vertices to the corresponding plane sections by h_i. Let V be the volume of the tetrahedron and A the common area of the parallel sections. Then

$$\sum (H_i - h_i)A_i = 3V + H_iA_i \quad h_i^2/H_i^2 = A/A_i$$

Therefore

$$3V = \sum \{H_iA_i - H_i(AA_i)^{1/2}\} = 12V - \sum H_i(AA_i)^{1/2}$$

or

$$A^{1/2} = 9V/\sum H_iA_i^{1/2} = 3/\sum A_i^{-1/2}$$

Also

$$h_i = 3H_iA_i^{-1/2}/\sum A_i^{-1/2}$$

The analogous problem for the plane was proposed by J. Neuberg as Question 30, Mathesis, 1881, p.148. For this case we have

$$2/k = 1/a + 1/b + 1/c$$

where a, b, c are the sides of the triangle and k is the common length of the concurrent lines which are drawn parallel to the sides of the triangle. This, and the result of the given problem, suggested to [N. D.] Lane for the corresponding problem of an n-dimensional simplex the formula

$$n/k = \sum 1/a$$

where k^{n-1} is the common content of the $(n - 1)$-dimensional cells parallel to the $(n - 1)$-dimensional cell “faces” of the simplex, and a^{n-1} is the content of a “face”.

[[I pause to note that Murray does not appear in the Author Index in Amer. Math. Monthly, 57 No.7, part 2: index of Vols. 1 to 56, Aug-Sep 1950.]]
If $S_n = \sum_{1}^{n} 1/r$, prove

$$\sum_{n=1}^{\infty} \frac{S_n}{n^2} = 2 \sum_{n=1}^{\infty} \frac{1}{n^3} = 2 \sum_{n=1}^{\infty} \frac{S_n}{(n+1)^2}$$

An interesting corollary may be obtained as follows. We have

$$\sum_{n=1}^{\infty} \frac{S_n}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} \sum_{r=1}^{n} \frac{1}{r} = \sum_{n=1}^{\infty} \frac{1}{n^2} \sum_{r=1}^{\infty} \left(\frac{1}{r} - \frac{1}{n+r} \right)$$

$$= \sum_{n=1}^{\infty} \sum_{r=1}^{\infty} \left(\frac{1}{r(n+r)^2} + \frac{1}{n(n+r)^2} \right) = 2 \sum_{n=1}^{\infty} \sum_{r=1}^{\infty} \frac{1}{r(n+r)^2}$$

by symmetry. Upon setting $r = R$ and $r + n = N + 1$, with appropriate changes in the limits of summation, this last form becomes $2 \sum_{1}^{\infty} S_N/(N+1)^2$ and the proof is complete.

An interesting corollary may be obtained as follows. We have

$$\sum_{n=1}^{\infty} \frac{S_n}{n^2} = \sum_{n=1}^{\infty} \sum_{r=1}^{n} \frac{1}{n^2 r}$$

If the indicated summation in the (n, r)-plane is carried out along rational rays through the origin, the first integral point on such a ray is a point (R, N) such that R and N are relatively prime and all other points on this ray are the integral multiples of (R, N). Thus the contribution of this ray to the sum is

$$\frac{1}{N^2 R} \sum_{n=1}^{\infty} \frac{1}{n^3}$$

The contribution of all rational rays with $0 < R \leq N$ is thus

$$\sum_{n=1}^{\infty} \frac{1}{n^3} \sum_{R=1}^{N} \frac{1}{N^2 R}$$

(1)
where the inner summation is made over all pairs of integers R and N such that $0 < R \leq N$ and R and N are relatively prime. Since the expression (1) is equal to $2 \sum_{i=1}^{\infty} \frac{1}{n^3}$ we get the desired result:

$$\sum' \frac{1}{N^2R} = 2.$$

[[Also solved by [5 others and] the proposer.]]

Editorial Note. [J.]Vales and [A.]Petracca obtain the following generalizations. Put

$$S(r, n) = \sum_{i=1}^{n} \frac{1}{i^r} \quad K(r, n) = \frac{1}{n + r - 1} \sum_{i=1}^{n} K(r - 1, i)$$

with $K(1, n) = 1/n$. Then

$$\sum_{n=1}^{\infty} \frac{1}{n^{h+2}} = \sum_{n=1}^{\infty} \sum_{i=1}^{h} \frac{S(i, n)}{(n + 1)^{h+2-i}} \quad \sum_{n=1}^{\infty} \frac{1}{n^{h+1}} = \sum_{n=1}^{\infty} \frac{K(h, n)}{h + n - 1}$$

[D. H.]Browne finds

$$\sum_{n=1}^{\infty} \frac{S_n}{n^3} = \sum_{n=1}^{\infty} \frac{1}{n^4} + \sum_{n=1}^{\infty} \frac{S_n}{(n + 1)^2} = 5 \sum_{n=1}^{\infty} \frac{S_n}{(n + 1)^3}$$

but further extensions do not assume so neat a form.
It had started snowing before noon and three snow plows set out at noon, 1 o’clock and 2 o’clock, respectively, along the same path. If at some later time they all came together simultaneously, find the time of meeting and also the time it started snowing.

A Variation of the Snow Plow Problem

Solution by L. A. Ringenberg, Eastern Illinois State College. Let \(n \) denote the number of hours before noon that it started to snow and let \(x, y, z \) denote the distances that the first, second and third snow plow travelled by \(t \) hours past noon. Assume that it snows at a constant rate. Then, if the length units are properly chosen, we have

\[
\frac{dt}{dx} = t + n, \quad x = 0 \quad \text{when} \quad t = 0
\]

with solution

\[
t = e^x n - n \quad \quad (1)
\]

Also

\[
\frac{dt}{dy} = t - (e^y n - n), \quad y = 0 \quad \text{when} \quad t = 1
\]

with solution

\[
t = e^y (n + 1 - ny) - n \quad \quad (2)
\]

Also

\[
\frac{dt}{dz} = t - [e^z (n + 1 - nz) - n] \quad z = 0 \quad \text{when} \quad t = 2
\]

with solution

\[
t = e^z (n + 2 - nz - z + nz^2/2) - n \quad \quad (3)
\]

Let \(d \) denote the common value of \(x, y \) and \(z \) when the plows meet and let \(T \) denote the value of \(t \) when the meeting occurs. It follows from (1), (2) and (3) that

\[
\frac{(T + n)}{e^d} = n = n + 1 - nd = n + 2 - nd - d + nd^2/2
\]

Solving we get \(n = 1/2 \) and \(T = 3.195 \). Therefore it began to snow at 11:30 and the plows met at about 3:12.

[[Solved by [5 others and] the proposer.]]
Tetrahedron and Concurrent Cevians

E 928 [1950, 483]. Proposed by Victor Thébault, Tennie, Sarthe, France

Given a tetrahedron $ABCD$ and a point O. Denote by $A′, B′, C′, D′$ the intersections of AO, BO, CO, DO with the corresponding faces of the tetrahedron, and set $x = AO/A′O, y = BO/B′O, z = CO/C′O, t = DO/D′O$. Show that

$$xyzt = 3 - 2(x + y + z + t) + (xy + xz + xt + yz + yt + zt).$$

Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. The altitude of $OBCD$ from O is easily shown to be $h_A/(1 - x)$, where h_A is the altitude of $ABCD$ from A. Therefore, if V is the volume of $ABCD$ and b_A is the area of the face opposite A,

$$V = \sum (h_A b_A) / 3(1 - x) = \sum V/(1 - x)$$

That is

$$1 = 1/(1 - x) + 1/(1 - y) + 1/(1 - z) + 1/(1 - t)$$

or

$$xyzt = 3 - 2(x + y + z + t) + (xy + xz + xt + yz + yt + zt).$$
Two summations

4356 [1949, 479]. Proposed by P. A. Piza, San Juan, Puerto Rico

Prove the relations

(a) \[x^{2n+1} - (x-1)^{2n+1} = \sum_{a=0}^{n} \left[\binom{n+a}{2a+1} + \binom{n+1+a}{2a+1} \right] (x^2 - x)^{n-a} \]

(b) \[x^{2n+2} - (x-1)^{2n+2} = (2n-1) \sum_{a=0}^{n} \binom{n+a}{2a+1} (x^2 - x)^{n-a} \]

[[The last binomial is misprinted \(\binom{n+1}{2a+1} \) in the original. — R.]]

II. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn, New York. Assume (b) is true for \(n = k \). Then by integrating between 1 and \(x \) we obtain

\[x^{2n+1} - (x-1)^{2n+1} = 1 + \sum_{a=0}^{k} \frac{2k+3}{k+1-a} \binom{k+1+a}{2a+1} (x^2 - x)^{k+1-a} \]

which is easily shown to be equivalent to (a) for \(n = k + 1 \). Further, upon multiplying (a) for \(n = k + 1 \) by \(2x + 1 \), multiplying (b) for \(n = k \) by \(x^2 - x \), and subtracting, we get exactly (b) for \(n = k + 1 \). Since (a) and (b) are obviously true for \(n = 0 \), it follows by induction that they are true for all integral \(n \).
solve for \(f(x) \) in terms of \(g(x) \) and for \(g(x) \) in terms of \(f(x) \). (This is an extension of one of the problems proposed for the 1951 William Lowell Putnam Prize Competition.)

Amer. Math. Monthly, 59(1952) 707.

Functions such that the Derivative of the Quotient is the Quotient of the Derivatives

Solution by E. J. Scott, University of Illinois. Using the abbreviations \(f, g, f', g' \) for \(f(x), g(x) \), etc., we have

\[
(gf' - fg'/g^2) = f'/g' \quad (1)
\]

from which

\[
f'/f - g'/g = [1 - g/g']^{-1}
\]

Integrating, we have

\[
\ln f/g = \int [1 - g/g']^{-1} dx
\]

whence

\[
f = g \exp \left\{ \int [1 - g/g']^{-1} dx \right\}
\]

Similarly, from (1) we obtain

\[
(g'/g)^2 - (f'/f)(g'/g) + f'/f = 0
\]

whence

\[
(g'/g)^2 = \frac{1}{2} \left[f'/f \pm \sqrt{(f'/f)^2 - 4(f'/f)} \right]
\]

Integrating and solving for \(g \), we get

\[
g = \sqrt{f} \exp \left[\pm \frac{1}{2} \int \sqrt{(f'/f)^2 - 4(f'/f)} \, dx \right]
\]

Also solved by [7 others] and the Proposer.
A Slow Ship Intercepting a Fast Ship

Two ships leave different points at the same time and steam on straight courses at constant but unequal speeds. Find the condition under which the slower ship can intercept (catch) the faster.

Solution by M. S. Klamkin, Brooklyn Polytechnic Institute. If the slower ship intercepts the faster ship then the ratio of the distances traversed is V_S/V_F, where V_S is the velocity of the slow ship and V_F is the velocity of the fast ship. But the locus of a point such that the ratios of its distances from two fixed points is constant, is a circle. Thus if the path of the faster ship intersects this circle it can be intercepted by the slower one.

Editorial Note. The circle is a circle of Apollonius of the two starting points. If θ is the angle between the faster ship’s course and the line joining the two starting points, then it is easily shown that the slower ship can set a course to intercept the faster ship if and only if

$$\theta \leq \arcsin(V_S/V_F).$$

If we have inequality here, then there are two courses that the slower ship may set. The problem become more interesting if the sphericity of the earth is taken into account.

An Approximation for $\sqrt[n]{a}$

(1) The approximation $\sqrt[n]{a} = 1 + (a - 1)/n$ for large n and a close to 1 is well known and frequently used. Show that for large n and all a

$$\sqrt[n]{a} = 1 + (\ln a)/n$$

is a good approximation.

(2) Find

$$\lim_{n \to \infty} \left\{ (k - 1 + \sqrt[n]{a})/k \right\}^n$$

Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. (1) For all $a > 0$

$$\sqrt[n]{a} = e^{(\ln a)/n} = 1 + (\ln a)/n + O(1/n^2)$$

(2) Using the preceding result we find

$$\lim_{n \to \infty} \left\{ (k - 1 + \sqrt[n]{a})/k \right\}^n = \lim_{n \to \infty} \left\{ 1 + (\ln a)/kn + O(1/n^2) \right\}^n = e^{(\ln a)/k} = a^{1/k}.$$
Let $x_0 \neq 0$ and $a > 0$ be two real numbers. Define

$$x_{n+1} = \frac{x_n}{2} + \frac{a}{2x_n} \quad n = 0, 1, 2, \ldots$$

Find all values of x_0 and a for which the sequence $\{x_n\}$ converges, and find the limits.

II. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. If we plot $y = \frac{x}{2} + \frac{a}{2x}$ and $y = x$ we get a geometric insight into the convergence process. The curve is a hyperbola with $x = 0$ and $y = x/s$ as the asymptotes. The intersections are (\sqrt{a}, \sqrt{a}) and $(-\sqrt{a}, -\sqrt{a})$. Also, the points of intersection are the maximum and minimum points of the hyperbola. From the plot it follows that the sequence converges for all values of $a > 0$ and $x_0 \neq 0$. If $x_0 > 0$, then $x_n \to \sqrt{a}$; if $x_0 < 0$, then $x_n \to -\sqrt{a}$.

Find a polynomial $F(x)$ of lowest degree such that $F(x) + \omega^s$ is divisible by $(x - \omega^s)^r$ for $s = 0, 1, 2, \ldots, p - 1$, where ω is a primitive pth root of unity and r is a given positive integer. (This generalizes a problem in Goursat-Hedrick, *A Course in Mathematical Analysis*, v.1, p.32.)

Solution by Chih-Yi Wang, University of Minnesota. Since $F'(x)$ is divisible by $(x^p - 1)^{r-1}$, and the binomials $x - \omega^s$ are relatively prime to one another, it is evident that the degree of the polynomial $F'(x)$ cannot be lower than $p(r - 1) + 1$. Let

$$F'(x) = a(x^p - 1)^{r-1}$$

where $a (\neq 0)$ is some constant which has to be determined. By integrating from 0 to x we get

$$F(x) - F(0) = a \int_0^x (t^p - 1)^{r-1} dt$$

But $F(\omega^s) + \omega^s = 0$ for $s = 0, 1, \ldots, p - 1$, so that

$$-\omega^s - F(0) = \int_0^{\omega^s} a (t^p - 1)^{r-1} dt$$

$$= \omega^s \left\{ a \sum_{k=0}^{r-1} (-1)^k \binom{r-1}{k} \frac{1}{p((r-1) - k) + 1} \right\}$$

$$= \omega^s \left\{ a \int_0^1 (t^p - 1)^{r-1} dt \right\} \quad s = 0, 1, \ldots, p - 1.$$

These p equations are satisfied if and only if

$$F(0) = 0, \quad a = -1 / \int_0^1 (t^p - 1)^{r-1} dt$$

Hence the required polynomial is

$$F(x) = -\int_0^x (t^p - 1)^{r-1} dt / \int_0^1 (t^p - 1)^{r-1} dt$$

[[Also solved by X, Y, M. S. Klamkin, Z, and the Proposer — who was Murray Klamkin!!]]
Polynomials with Positive Coefficients

If a polynomial equation $f(x) = 0$, with integral coefficients has no positive roots, there exists a polynomial $g(x)$ with integral coefficients such that all coefficients of $f(x) \cdot g(x)$ are positive.

Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. It will suffice to prove the theorem for $q(x) = x^2 - ax + b$, $(a, b > 0, a^2 < 4b)$. Let $p(x) = (1 + x)^k$. Then all the coefficients of $q(x) \cdot p(x)$ will be positive if

\[\binom{k}{r} - a \binom{k}{r-1} + b \binom{k}{r-2} > 0 \quad (1) \]

for $r = 1, 2, \ldots, k + 1$. This is always possible for k sufficiently large.

$f(x)$ can be factored into linear factors like $x + c$, $c \geq 0$, and quadratic factors like $q(x)$. We may then take $g(x)$ to be $(1 + x)^K$ where K is the sum of the ks determined as above for the individual quadratic factors of $f(x)$. Since the coefficients of $f(x)$ are integers, the coefficients of $f(x) \cdot g(x)$ will be positive integers.

Also solved by [5 others and] the Proposer

Editorial Note. The existence of suitable k may be seen as follows. (1) reduces to

\[(k - r + 2)(k - r + 1) - ar(k - r + 2) + br(r - 1) > 0 \]

which is true if

\[2k > (2 + a)r - 3 + \sqrt{1 + (2a + 4b)r - (4b - a^2)r^2} \quad (2) \]

and the radical is real; if the radical is imaginary (1) is true for all k. Evidently the right member of (2) has a maximum value and we need only choose k greater than this maximum.

[L. J.]Paige and George]Piranian refer to a proof by E. Meissner (Math. Annalen, v.70(1911) p.223) and to the following generalization by D. R. Curtiss (Math. Annalen, v.73(1913) p.424): If $f(x)$ is any polynomial with all its coefficients real, there exists polynomials $f_1(x)$ such that when the product $f_2(x) = f_1(x) \cdot f(x)$ is arranged according to ascending or descending powers of x, the number of variations of sign presented by its coefficients is exactly equal to the number of positive roots of $f(x)$. See also Pólya and Szegö, Aufgaben und Lehrsatze, v.II, problem 190, section 5.
A Diophantine Equation

4448 [1951, 343]. Proposed by Jekuthiel Ginsburg, Yeshiva College, New York City

Solve in positive integers

\[z^4 = \frac{ax^2 + by^2}{a + b} \]

where \(a\) and \(b\) are given integers.

I. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn, New York. The given equation will be satisfied if

\[
an(z^2 + x) = m(y - z^2) \quad m(z^2 - x) = bn(y + z^2)
\]

\(m\) and \(n\) being arbitrary integers. Therefore

\[
x : y : z^2 = \frac{|m^2 - 2bmn - abn^2|}{|m^2 + 2amn - abn^2|} : \frac{m^2 + 2amn - abn^2}{(m^2 + abn^2)}
\]

is a solution provided the constant of proportionality, \(k\), is so chosen that \(k(m^2 + abn^2)\) is a perfect square.

Other solutions may be obtained by solving \(z^2 = m^2 + abn^2\). See L. E. Dickson, History of the Theory of Numbers, v.2, p.425. One form of the solution is

\[
m : n : z = \frac{|p^2 - abq^2|}{2pq} : (p^2 + abq^2)
\]
4514. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

$\psi(t) = \text{constant}$ and $\psi(t) = |t|$ are solutions of the integral equation

$$2\psi(t) = \int_{-1}^{1} \psi(2tx) \, dx$$

as is easily verified. Are there any other solutions?

Solution by J. E. Wilkins, Jr., Nuclear Development Associates, Inc., White Plains, N.Y. There are others. To find additional solutions, substitute $|t|^a$ for $\psi(t)$. This function will satisfy the integral equation if and only if $2^a = a + 1$. This transcendental equation has exactly two real roots, namely 0 and 1, and has infinitely many complex roots

$$\alpha_n \pm i\beta_n(\log 2)^{-1}$$

such that

$$\alpha_n = -1 + \beta_n(\log 2)^{-1} \cot \beta_n$$

$$2\beta_n(\log 2)^{-1} \exp(-\beta_n \cot \beta_n) = \sin \beta_n$$

$$2n\pi < \beta_n < (4n + 1)\pi/2$$

($n = 1, 2, \ldots$). For example, $\beta_1 = 7.454087$, $\alpha_1 = 3.545368 \pm 10.75397i$.

Also solved by [7 others and] the Proposer.

Editorial Note. As shown also by the other solvers, there exist no real solutions of the integral equation, under the assumption that $\psi(x)$ is of class C^1 on $[0,1]$, other than linear combinations of the solutions cited by the Proposer.

E 1049. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

If a uniform thin rod of length L is perpendicular to and touching the earth’s surface at one end, find the distance between the centre of gravity and the centre of mass of the rod.

Centre of Gravity of a Vertical Rod

Solution by M. Morduchow, Polytechnic Institute of Brooklyn

Let x be distance measured along the rod from the earth’s surface. Also, let R be the radius and M the mass of the earth, while ρ is the mass per unit length of the rod. Then, by Newton’s inverse-square law, the total force (directed towards the earth’s centre) acting on the rod will be

$$F = \int_0^L GM \rho (R + x)^{-2} \, dx = GMm/R(R + L)$$

where G is the gravitational constant, and $m = \rho L$ is the mass of the rod. If the centre of gravity is at $x = x_g$, then by definition we require that $F = GMm/(R + x_g)^2$. Therefore $(R + x_g)^2 = R(R + L)$, whence

$$x_g = \sqrt{R(R + L)} - R$$

Since the centre of mass is at $x = x_m = L/2$, the centre of gravity will be below the centre of mass, and the distance between the two centres will be

$$x_m - x_g = L/2 - R[(1 + L/R)^{1/2} - 1]$$

If $L/R \ll 1$, then expansion by the binomial theorem to second powers of L/R yields the approximate result

$$x_m - x_g \approx (1/8)(L/R)L.$$

Also solved by [13 others and] the Proposer.

All of these solutions were not the same. [Julian] Braun, [A. R.] Hyde, [L. V.] Mead, [J. V.] Whittaker and the proposer took the distance x_g to be

$$x_g = \frac{\int_0^L x(R + x)^{-2} \, dx}{\int_0^L (R + x)^{-2} \, dx} = \frac{R/L}{(R + L) \ln(1 + L/R)} - R.$$

[Azriel] Rosenfeld took the centre of gravity of the rod as that point for which the weight of the portion of the rod above the point is equal to the weight of the portion of the rod below the point. He found

$$x_g = 2RL/(4R + L).$$
All other solutions were like Murdockow’s. Here, for a rod a mile long, the distance between the centres is about 2 inches.

[[There’s a Classroom Note, D. E. Whitford and M. S. Klamkin, On an elementary derivation of Cramer’s rule.]]

Amer. Math. Monthly, 60(1953) 188.

E 1057. Proposed by M. S. Klamkin, *Polytechnic Institute of Brooklyn*
Find the sum of the first \(n \) terms of the series

\[
\sec \theta + \left(\sec \theta \sec 2\theta \right)/2 + \left(\sec \theta \sec 2\theta \sec 4\theta \right)/4 + \cdots
\]

Solution by J. R. Hatcher, Fisk University. Using the identities \(\sec \alpha = 2 \sin \alpha/\sin 2\alpha \) and \(\csc \alpha = \cot \alpha/2 - \cot \alpha \), we conclude that the sum \(S_n(\theta) \) of the first \(n \) terms is

\[
S_n(\theta) = 2 \sin \theta \left(\csc 2\theta + \csc 4\theta + \cdots \csc 2^n\theta \right)
= s \sin \theta \left(\cot \theta - \cot 2^n\theta \right)
= [2 \sin(2^n - 1)\theta]/[\sin 2^n\theta].
\]

[F.]Underwood pointed out that the problem is essentially Ex.10, p.125 of *Plane Trigonometry, Part II*, by S. L. Loney (1908).
Evaluate
\[I = \int_0^\infty \frac{x^{m} \sin \frac{m+1}{2} x + 12 x}{x^2 \sin^2 \frac{x}{2} + n} \, dx \]
where \(m \) and \(n \) are integers and \(m \geq n \).

Solution by J. V. Whittaker, University of California, Los Angeles. This integral is merely
\[\int_0^\infty \frac{1}{x^2} \sum_{r=1}^{m} \sum_{s=1}^{n} \sin r x \sin s x \, dx \]
Integrating by parts and applying the sum and difference formulas, we obtain a known form:
\[\int_0^\infty \frac{\sin r x \sin s x}{x^2} \, dx = \int_0^\infty \frac{r \cos r x \sin s x + s \sin r x \cos s x}{x} \, dx = \pi s/2 \quad (r \geq s) \]
Summing over \(r \) and \(s \), we find the value of \(I \) to be \((\pi/12)n(n+1)(3m-n+1)\).
Also solved by [6 others and] the Proposer.
Prove
\[S_{2,p} + \sum_{n=1}^{p} \left[\frac{n^2 \binom{n+p}{p}}{n^2(n+1)} \right]^{-1} = S_{2,r} + \sum_{n=1}^{p} \left[\frac{n^2 \binom{n+r}{r}}{n^2(n+1)} \right]^{-1} \]
where \(S_{2,p} = \sum_{n=1}^{p} \frac{1}{n^2} \).

Solution by Leonard Carlitz, Duke University. Let \(p \) be an arbitrary, fixed integer. For \(r = 1 \), the proposed relation reduces to

\[S_{2,p} + \frac{1}{p+1} = 1 + \sum_{n=1}^{p} \frac{1}{n^2(n+1)} \]

which is evidently true since

\[\sum_{n=1}^{p} \frac{1}{n^2} - \sum_{n=1}^{p} \frac{1}{n^2(n+1)} = \sum_{n=1}^{p} \frac{1}{n(n+1)} = \sum_{n=1}^{p} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 1 - \frac{1}{p+1} \]

Assuming now that the stated result holds for \(r - 1 \), we have

\[S_{2,r} + \sum_{n=1}^{p} \left[\frac{n^2 \binom{n+r}{r}}{n^2(n+1)} \right]^{-1} - S_{2,r-1} - \sum_{n=1}^{p} \left[\frac{n^2 \binom{n+r-1}{r-1}}{n^2(n+1)} \right]^{-1} \]

\[= \frac{1}{r^2} - \sum_{n=1}^{p} \frac{(r-1)!n!}{n^2(n+r)!} = \frac{1}{r^2} - \sum_{n=1}^{p} \frac{(r-1)!}{n(n+1)(n+r)} \]

\[= \frac{1}{r^2} - \frac{(r-1)!}{r} \left\{ \frac{1}{r!} - \frac{1}{(p+1) \cdots (p+r)} \right\} \]

\[= \frac{(r-1)!}{r(p+1) \cdots (p+r)} = \left[\frac{r^2}{p} \right]^{-1} \]

This evidently completes the induction proof.

Also solved by [5 others and] the Proposer.
4552. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn, New York

What derangement of terms of

\[\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \]

will produce a sum which is rational?

Solution by V. C. Harris, San Diego State College, California. If neither the order in which the positive terms occur nor the order in which the negative terms occur is changed, but if the terms are rearranged so that \(k \) is the limit of the ratio of the number of positive terms to the number of negative terms in the first \(n \) terms, then the alteration \(L \) in the sum of the series is

\[L = \frac{1}{2} \log k. \]

(This result is due to Pringsheim; see Bromwich, *An Introduction to the Theory of Infinite Series*, Second Edition, Revised, p.76.) Since the sum of the given series is \(\log 2 \), the sum after alteration is \(\log 2 + \frac{1}{2} \log k \).

Setting \(k = K^2/4 \), the sum becomes \(\log K \). If this is rational, say \(m/n \), then \(k = K^2/4 = (1/4) \exp(2m/n) \). To effect the derangement, set up any sequence of rationals which has limit \((1/4) \exp(2m/n) \), e.g., convergents of its continued fraction expansion, and take a number of positive terms equal to the denominator, of the successive terms of the sequence. In particular, for \(k = 1/4 \), we have

\[0 = 1 - \frac{1}{2} - \frac{1}{4} - \frac{1}{6} - \frac{1}{8} + \frac{1}{3} - \frac{1}{10} - \frac{1}{12} - \frac{1}{14} - \frac{1}{16} + \cdots. \]

Also solved by [5 others and] the Proposer.
A Summation

Sum the series

\[\sum_{n=1}^{\infty} \frac{(n/e)^{n-1}}{n!} \]

III. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. If we expand \(e^{az} \) in powers of \(w \) where \(z = we^{bz} \) we obtain

\[\frac{e^{az} - 1}{aw} = \sum_{n=1}^{\infty} \frac{[(a + nb)w]^{n-1}}{n!} \]

(See Bromwich, *Infinite Series*, p.160, ex.4.) Letting \(z = 1 \), and then \(w = e^{-b} \), there results

\[\frac{e^a - 1}{ae^{-b}} = \sum_{n=1}^{\infty} \frac{[a + nb]^{n-1}}{e^{nb}} \frac{1}{n!} \]

The proposed problem is a special case of this where we let \(b = 1 \) and \(a \to 0 \).

N Objects in B Boxes

E 1051 [1953, 114]. Proposed by S. W. Golomb, Harvard University

Given \(N \) objects in \(B \) boxes, what is a necessary and sufficient condition for at least two boxes to contain the same number of objects?

Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. If no two of the boxes contain the same number of objects, then the total number of objects is

\[0 + 1 + 2 + \cdots + (B - 1) = B(B - 1)/2 \]

or any greater integer. Therefore a necessary and sufficient condition for at least two boxes to contain the same number of objects is that \(N < B(B - 1)/2 \).
Prove
\[\sum_{n=1}^{\infty} \frac{S_n}{n^3} = \frac{\pi^4}{72} \]
where \(S_n = \sum_{r=1}^{n} \frac{1}{r} \).

Solution by J. V. Whittaker, University of California, Los Angeles. We have, after rearrangement of the terms of the series,
\[S = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{mn^3} = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{1}{n(m+n)^3} \]
We first notice that
\[S = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^2(m+n)^2} - \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^2n^2} = \frac{\pi^4}{120} \]
Then
\[\sum_{n=1}^{\infty} \frac{1}{n(m+n)^3} = \sum_{n=1}^{\infty} \left\{ \frac{1}{m^3n} - \frac{1}{m^3(m+n)} - \frac{1}{m^2(m+n)^2} - \frac{1}{m(m+n)^3} \right\} \]
\[= \sum_{n=1}^{\infty} \frac{1}{m^3n} - \sum_{n=1}^{\infty} \left\{ \frac{1}{m^2(m+n)^2} + \frac{1}{m(m+n)^3} \right\} \]
Finally, summing over \(m \) from 1 to \(\infty \), we find
\[\left(S - \frac{\pi^4}{90} \right) = S - \frac{\pi^4}{120} - \left(S - \frac{\pi^4}{90} \right) \]
or \(S = \frac{\pi^4}{72} \).

II. Solution by the Proposer. This result is a special case of a theorem due to G. T. Williams (this MONTHLY, 1953, p.25) which may be put in the form
\[2 \sum_{n=1}^{\infty} \frac{S_n}{n^p} = (p+2)\zeta(p+1) - \sum_{j=1}^{p-2} \zeta(j+1)\zeta(p-j) \]
For \(p = 3 \) we have
\[\sum_{n=1}^{\infty} \frac{S_n}{n^3} = \frac{1}{2} \left\{ 5\zeta(4) - \zeta^2(2) \right\} = \frac{\pi^4}{72} \]
It may be obtained as easily from a result due to D. H. Browne in connection with Problem no.4431 [1952, 472].

4582. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Show that

(a) \[\sum_{n=1}^{p} \frac{S_{1,n}^2}{n} \sim \frac{5}{3} \sum_{n=1}^{\infty} \frac{1}{n^2} + \frac{1}{3} (\gamma + \log p)^2 \]

(b) \[\sum_{n=1}^{p} \frac{S_{2,n}}{n} \sim \frac{\pi^2}{6} (\gamma + \log p) - \sum_{n=1}^{\infty} \frac{1}{n^3} \]

where \(\gamma \) is Euler’s constant and

\[S_{m,n} = \sum_{r=1}^{n} \frac{1}{r^m}. \]

Solution by Leonard Carlitz, Duke University. We shall show that

\[A = \sum_{n=1}^{k} \frac{1}{n} S_{2,n} = \frac{\pi^2}{6} (\gamma + \log k) - \sum_{n=1}^{\infty} \frac{1}{n^3} + O \left(\frac{\log k}{k} \right) \]

(1)

\[B = \sum_{n=1}^{k} \frac{1}{n} S_{1,n}^2 = \frac{5}{3} \sum_{n=1}^{\infty} \frac{1}{n^3} + \frac{1}{3} (\gamma + \log k)^3 + O \left(\frac{\log k}{k} \right) \]

(2)

where \(S_{m,n} = \sum_{r=1}^{k} n^{-m} \).

We recall that

\[S_{1,k} = \log k + \gamma + O \left(\frac{1}{k} \right) \quad S_{2,k} = \frac{\pi^2}{6} + O \left(\frac{1}{k} \right) \]

(3)

We have

\[S_{1,k} S_{2,k} = A + C \]

(4)

where

\[C = \sum_{n=1}^{k} \frac{1}{n} \sum_{r=n+1}^{k} \frac{1}{r^2} \sum_{n=1}^{r-1} \frac{1}{n} = \sum_{r=2}^{k} \frac{1}{r^2} \sum_{n=1}^{r-1} \frac{1}{r - n} \]

Thus

\[2C = \sum_{r=2}^{k} \frac{1}{r^2} \sum_{n=1}^{r-1} \left(\frac{1}{n} + \frac{1}{r - n} \right) = \sum_{r=2}^{k} \frac{1}{r} \sum_{n=1}^{r-1} \frac{1}{n(r - n)} \]
\[2C + \sum_{r=2}^{k} \sum_{n=1}^{r-1} \frac{1}{r} \sum_{n=1}^{r-1} \frac{1}{n^2} = \sum_{r=2}^{k} \sum_{n=1}^{r-1} \frac{1}{n^2(r-n)} = \sum_{n=1}^{k-1} \frac{1}{n^2} \sum_{r=n+1}^{k} \frac{1}{r-n} = \sum_{n=1}^{k-1} \frac{1}{n^2} \sum_{r=1}^{k-n} \frac{1}{r}
\]
\[= \sum_{r=1}^{k-1} \frac{1}{r \sum_{n=1}^{k-r} \frac{1}{n^2}} = \sum_{r=1}^{k-1} \frac{1}{r} \left\{ \frac{\pi^2}{6} + O \left(\frac{1}{k-r} \right) \right\}
\]
\[= \frac{\pi^2}{6} S_{1,k-1} + \left(\sum_{r=1}^{k-1} \frac{1}{r(k-r)} \right)
\]

But
\[\sum_{r=1}^{k-1} \frac{1}{r(k-r)} = \frac{1}{k} \sum_{r=1}^{k-1} \left(\frac{1}{r^2} + \frac{1}{k-r} \right) = \frac{2}{k} S_{1,k-1} = O \left(\frac{\log k}{k} \right)
\]

so that
\[2C + A = \frac{\pi^2}{6} S_{1,k} + S_{2,k} + O \left(\frac{\log k}{k} \right)
\]

Thus (4) becomes
\[2S_{1,k} S_{2,k} = 2A + 2C = A + \frac{\pi^2}{6} S_{1,k} + S_{2,k} + O \left(\frac{\log k}{k} \right)
\]

Using (3) and
\[S_{2,k} = \sum_{n=1}^{\infty} \frac{1}{n^2} + O \left(\frac{1}{k^2} \right)
\]
we get
\[2 \left\{ \log k + \gamma + O \left(\frac{1}{k} \right) \right\} \left\{ \frac{\pi^2}{6} + O \left(\frac{1}{k} \right) \right\}
\]
\[= A + \frac{\pi^2}{6} \left\{ \log k + \gamma + O \left(\frac{1}{k} \right) \right\} + \sum_{n=1}^{\infty} \frac{1}{n^3} + O \left(\frac{\log k}{k} \right)
\]

which reduces to (1).

In the next place
\[S_{1,k}^3 = B + DS_{1,k} + E \quad \text{(5)}
\]

where
\[D = \sum_{n=1}^{k} \frac{1}{n} \sum_{s=n+1}^{k} \frac{1}{s} \quad E = \sum_{n=1}^{k} \frac{1}{n} \sum_{r=1}^{n} \frac{1}{r} \sum_{s=n+1}^{k} \frac{1}{s}
\]

Now
\[S_{1,k}^2 = 2D + S_{2,k} \quad \text{(6)}
\]
As for E, we have

$$E = \sum_{s=2}^{k} \frac{1}{s} \sum_{n=1}^{s-1} \frac{1}{n} \sum_{r=1}^{n} \frac{1}{r}$$

$$= \sum_{s=1}^{k} \frac{1}{s} \sum_{n=1}^{s} \frac{1}{n} \sum_{r=1}^{n} \frac{1}{r} - \sum_{s=1}^{k} \frac{1}{s^2} \sum_{r=1}^{s} \frac{1}{r}$$

$$= \sum_{s=1}^{k} \frac{1}{s} \sum_{r=1}^{s} \frac{1}{r} \sum_{n=r}^{s} \frac{1}{n} - \sum_{s=1}^{k} \frac{1}{s^2} \sum_{r=1}^{s} \frac{1}{r}$$

so that

$$2E = \sum_{s=1}^{k} \frac{1}{s} \left(\sum_{r=1}^{s} \frac{1}{r} \right)^2 + \sum_{s=1}^{k} \frac{1}{s} \sum_{r=1}^{s} \frac{1}{r^2} - 2 \sum_{r=1}^{k} \frac{1}{r} \sum_{s=r}^{k} \frac{1}{s^2}$$

$$= B - 2S_{1,k}S_{2,k} + 3A - 2S_{3,k} \quad (7)$$

Thus using (5), (6), (7) we get

$$S_{3,1}^3 = \frac{3}{2}B + \frac{1}{2}(S_{1,k}^2 - S_{2,k})S_{1,k} - S_{1,k}S_{2,k} + \frac{3}{2}A - S_{3,k}$$

which reduces to

$$S_{1,k}^3 = 3B - 3S_{2,k}S_{1,k} + 3A - 2S_{3,k}$$

$$= 3B - 3(S_{2,k}S_{1,k} - A - S_{3,k}) + 5S_{3,k}$$

Now using (1) and (3) we immediately get (2).

Also solved by the Proposer.
For \(a_n = 1, \ n = 1, 2, \ldots, \)

\[
S = \sum_{r=1}^{\infty} [r!]^{-a_r}
\]

is transcendental. Find other non-decreasing sequences \(\{a_n\} \) such that \(S \) is transcendental.

Solution by the Proposer. Let

\[
\sum_{r=1}^{n} [r!]^{-a_r}
\]

be an approximation to \(S \). If \(S \) is algebraic, then by the theorem of Liouville on algebraic numbers

\[
\sum_{r=n+1}^{\infty} [r!]^{-a_r} \geq [n!]^{-m(a_n)} \quad (1)
\]

must hold for \(m > 2 \) and \(n \) sufficiently large. If we take \(a_{j+1} > 1 + a_j \), (1) implies

\[
\frac{[(n+1)!]^{-a_{n+1}}}{1 - (n+1)!} \geq [n!]^{-m(a_n)}
\]

which, in turn, implies that

\[
2[n!]^{m(a_n)} \geq [(n+1)!]^{a_{n+1}} \quad (2)
\]

But (2) will not hold if we choose \(a_n \) of sufficiently high order in \(n \). In fact, since

\[
2[n!]^{m} < [(n+1)!]^{n+1}
\]

for \(n > m \), we have

\[
2^{n}[n!]^{m} \cdot n! \cdot (n+1)! \cdot \prod_{n+1}^{\infty} [(n+1)!]^{n}
\]

which contradicts (2) with \(a_n = n! \) and hence also contradicts (1). Thus \(S \) is transcendental for \(a_n = n! \) and also for any \(a_n \) of equivalent or higher order, such as \((n!)^p, n^n \), etc.
Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn, N.Y.

Find the sum
\[
\sum_{r=1}^{\infty} \frac{(-1)^{r+1} \log r}{r}
\]

Dirichlet Series

I. Solution by H. F. Sandham, Dublin Institute for Advanced Studies, Ireland. Write
\[
f(n) = \sum_{r=1}^{n} \frac{\log r}{r^2} - \frac{1}{2} \log^2 n
\]
then from Cauchy’s integral test it follows that \(f(n) \) tends to a limit as \(n \to \infty \); hence
\[
f(2n) - f(n) \to 0 \quad n \to \infty
\]
Now, since \(\log 2r = \log 2 + \log r \),
\[
\sum_{r=1}^{n} \frac{\log r}{r} = 2 \sum_{r=1}^{n} \frac{\log 2r}{2r} - \log 2 \sum_{r=1}^{n} \frac{1}{r}
\]
hence
\[
f(2n) - f(n) = \sum_{r=1}^{2n} \frac{(-1)^{r+1} \log r}{r} + \log 2 \left(\sum_{r=1}^{n} \frac{1}{r} - \log n \right) - \frac{1}{2} \log^2 2
\]
Thus, letting \(n \) tend to infinity, we have
\[
\sum_{r=1}^{\infty} \frac{(-1)^{r+1} \log r}{r} = \frac{1}{2} \log^2 2 - \gamma \log 2
\]
where \(\gamma \) denotes Euler’s constant.

II. Solution by M. R. Spiegel, Rensselaer Polytechnic Institute. Choose \(a > 0 \) and consider
\[
\int_{0}^{\infty} \frac{\log x}{e^{ax} + 1} \, dx = \sum_{r=1}^{\infty} (-1)^{r+1} \int_{0}^{\infty} e^{-rax} \log x \, dx
\]
\[
= \sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{ra} \int_{0}^{\infty} e^{-u} \log(u/ra) \, du
\]
\[
= \left\{ \int_{0}^{\infty} e^{-u} \log u \, du \right\} \left\{ \sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{ra} \right\} - \sum_{r=1}^{\infty} \frac{(-1)^{r+1} \log ra}{ra}
\]
Since
\[\int_0^\infty e^{-u} \log u \, du = \Gamma'(1) = -\gamma \]
\[\sum_{r=1}^\infty \frac{(-1)^{r+1}}{ra} = \frac{\log 2}{a} \]
\[\int_0^\infty \frac{\log x}{e^{ax} + 1} \, dx = -\frac{1}{2a} \log 2 \log 2a^2 \]

(see solution to problem 4394 [1951, 705]) we obtain
\[\sum_{r=1}^\infty \frac{(-1)^{r+1} \log ra}{ra} = \frac{1}{2a} \log 2 \log 2a^2 - \frac{\gamma \log 2}{a} \]

The present problem is the special case \(a = 1 \).

Editorial Note. In a note on *The Power Series Coefficients of \(\zeta(s) \)*, Briggs and Chowla obtain, among other results, formulas for the coefficients \(A_n \) in the expansion

\[\zeta(s) = \frac{1}{s - 1} + \sum_{n=0}^\infty A_n (s - 1)^n \]

Given a square $N \times N$ point lattice, show that it is possible to draw a polygonal path passing through all the N^2 lattice points and consisting of $2N - 2$ segments. Can it be done with less than $2N - 2$ segments?

Solution by the Proposer. Assume that it can be done for $N = K$ in such a fashion that we end up in position E as shown in Figure 1. Then, as shown in Figure 2, by drawing two more lines it can be done in the same fashion for $N = K + 1$. Figure 3 shows that it can be done in this fashion for $N = 3$. Thus, by induction, it can be done for all $N \geq 3$.

No one successfully answered the question at the end of the problem.

II. Addendum by John Selfridge, U.C.L.A. We answer the question at the end of the problem in the negative.

Let there be R rows and S columns which have none of the given segments lying on them. The $R \times S$ lattice formed by these has $2R + 2S - 4$ boundary points if R and S are each greater than 1. Each oblique line covers at most 2 of these boundary points. Thus in the polygonal covering there are at least $R + S - 2$ oblique segments, $N - R$ horizontal segments and $N - S$ vertical segments, or at least $2N - 2$ segments in all.

If R or S is 0 or 1 there are at least $2N - 1$ segments.
If

\[[xD]^n = \sum_{r=1}^{n} A_{r,n} x^{n-r+1} D^{n-r+1} \]

where \(D \) is the differential operator, determine \(A_{r,n} \).

Stirling Numbers of the Second Kind

Solution by A. S. Hendler, Rensselaer Polytechnic Institute, Troy N.Y. On writing

\[[xD]^n = x \cdot D[xD]^{n-1} \]

we see that the \(A_{r,n} \) must satisfy the equation of partial differences

\[A_{r,n} = A_{r,n-1} + (n-r+1)A_{r-1,n-1} \]

and the initial conditions are \(A_{1,n} = A_{n,n} = 1 \). Thus the \(A_{r,n} \) are completely determined.

However, if we take \(A_{n-k+1,n} = B_{k,n} \) \((k = 1, 2, \ldots, n)\) the equation of partial differences may be written

\[B_{k,n} = B_{k-1,n-1} + kB_{k,n-1} \]

with the initial conditions \(B_{n,n} = B_{1,n} = 1 \), But \(\mathcal{G}^1_n = \mathcal{G}^n_n = 1 \), where \(\mathcal{G}^k_n \) are the Stirling numbers of the second kind defined by

\[\mathcal{G}^k_n = \frac{1}{k!} \sum_{i=1}^{k} (-1)^{k-i} C_i i^n \]

Also, an easy calculation will verify that

\[\mathcal{G}^{k-1}_{n-1} + k \mathcal{G}^k_{n-1} = \mathcal{G}^k_n \]

Hence \(B_{k,n} = \mathcal{G}^k_n \) and

\[A_{r,n} = \mathcal{G}^{n-2+1}_n = \frac{1}{(n-r+1)!} \sum_{i=1}^{n-r+1} \sum_{i=1}^{n-r+1} (-1)^{n-r+1-i} n_{r+1} C_i i^n \]

Editorial Note. The problem has been treated in a number of places and the following references were cited by our correspondents: Jordan, *Calculus of Finite Differences*, pp.195–196, (See also pp.168–170 for the Stirling numbers.), Schwatt, *Introduction of Operations with Series* (1924) pp.86ff., and an article by L. Carlitz, *On a class of finite sums*, this Monthly 37(1930) 473–479.
E 1129. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Find an integral arithmetic progression with an arbitrarily large number of terms such that no term is a perfect rth power for $r = 2, 3, \ldots, N$. Is this still possible if $N = \infty$?

Solution by Azriel Rosenfeld, Columbia University. The progression $2, 6, 10, \ldots, 4k+2, \ldots$ can contain no perfect powers whatsoever. For, a power of an odd integer is odd, and a power of an even integer must be divisible by 4.

An obvious solution, pointed out by [A. R.] Hyde, is any arithmetic progression with common difference $d = 0$ and with the (invariant) term chosen so as not to be an integral power of an integer, for example the progression $3, 3, 3, \ldots$. Hyde, Leo Moser and [R. E.] Shafer offered deeper solutions to the problem.

Classroom Note: M. S. Klamkin, On the vector triple product.
Find the semi-vertical angle of a right circular cone if three generating lines make angles of 2α, 2β, 2γ with each other.

Solution by Leon Bankoff, Los Angeles, Calif. The sides of the base of the triangular pyramid determined by the three generating lines are $a = 2y \sin \alpha$, $b = 2y \sin \beta$, $c = 2y \sin \gamma$, where y is the slant height of the cone. The radius of the base of the cone is given by

$$R = \frac{abc}{4\sqrt{s(s-a)(s-b)(s-c)}}$$

where s is the semi-perimeter of the base of the pyramid. Since the semi-vertical angle ϕ is equal to $\arcsin \frac{R}{y}$, we obtain

$$\phi = \arcsin \frac{2 \sin \alpha \sin \beta \sin \gamma}{\sqrt{(\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma)^2 - 2(\sin^4 \alpha + \sin^4 \beta + \sin^4 \gamma)}}$$

[Hüseyin] Demir gave the equivalent answer

$$\sin^2 \phi = -\frac{16 \sin^2 \alpha \sin^2 \beta \sin^2 \gamma}{\begin{vmatrix} 0 & \sin \alpha & \sin \beta & \sin \gamma \\ \sin \alpha & 0 & \sin \gamma & \sin \beta \\ \sin \beta & \sin \gamma & 0 & \sin \alpha \\ \sin \gamma & \sin \beta & \sin \alpha & 0 \end{vmatrix}}$$

[R. L.] Helmbold considered the analogous problem in an n-dimensional vector space.
E 1153. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

For any angle \(\theta \), show that arbitrarily small constructible angles \(\phi \) exist such that \((\theta - \phi)\) can be trisected.

Trisection of Angles Arbitrarily Close to a Given Angle

Solution by C. S. Ogilvy, Hamilton College. Let \(\phi_n = \theta/4^n \), \(n = 1, 2, \ldots \). For all \(n \), \(\phi_n \) is certainly constructible. Obviously \(n \) can be selected so that \(\phi_n < \epsilon \) for any \(\epsilon \). But

\[
(\theta - \phi_n)/3 = \phi_1 + \phi_2 + \cdots + \phi_n
\]

Also solved by [5 others and] the proposer.

Amer. Math. Monthly, 63(1956) 263.

4627. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn, New York

In Chrystal, Textbook of Algebra, vol.2, p.225, there is the following theorem on the representation of an irrational number:

The number represented by the series

\[
\sum_{n=1}^{\infty} \frac{p_n}{r_1 r_2 \cdots r_n}
\]

is irrational provided that

(1) \(r_n \) and \(p_n \) are integers such that \(0 < p_n < r_n \)

(2) \(r_{n+1} > r_n > 1 \)

(3) the sequence \(\{r_1 r_2 \cdots r_n\} \) includes all powers of the primes.

(A) Construct a counter-example, i.e., a number of the stated form which is rational even though conditions (1), (2) and (3) are satisfied.

(B) Complete the list of conditions (1), (2) and (3) so that the theorem is indeed valid.

Amer. Math. Monthly, 63(1956) 263.

Solution by Ivan Niven, University of Oregon. (A) The following number is of the required form and is rational:

\[
\sum_{n=1}^{\infty} \frac{n}{(n+1)!} = \sum_{n=1}^{\infty} \frac{1}{n!} - \sum_{n=1}^{\infty} \frac{1}{(n+1)!} = 1
\]

(B) The theorem is valid if the following condition is also satisfied:
(4) \(p_n < r_n - 1 \) for infinitely many values of \(n \).

For if the series converged to a rational number, \(a/b \), then by condition (3) we could choose an integer \(m \) so that \(b \) is a divisor of \(r_1 r_2 \cdots r_m \). When we multiply the equation

\[
\frac{a}{b} = \sum_{n=1}^{\infty} \frac{p_n}{r_1 r_2 \cdots r_n}
\]

by \(r_1 r_2 \cdots r_m \), and rearrange the terms to get

\[
\frac{a}{b} \cdot r_1 r_2 \cdots r_m - \sum_{n=1}^{m} \frac{p_n r_1 r_2 \cdots r_m}{r_1 r_2 \cdots r_n} = \sum_{i=1}^{\infty} \frac{p_{m+i}}{r_{m+1} r_{m+2} \cdots r_{m+i}}
\]

we note that the left side is an integer. We get a contradiction by establishing that the series on the right converges to a value between 0 and 1. Indeed the series on the right is positive because of condition (1), and by condition (4) the series is less than

\[
\sum_{i=1}^{\infty} \frac{r_{m+i} - 1}{r_{m+1} r_{m+2} \cdots r_{m+i}}
\]

but this series converges to the value 1 because the sum of the first \(k \) terms has the value

\[
1 - \frac{1}{r_{m+1} r_{m+2} \cdots r_{m+k}}
\]

Thus the proof is complete and we make the following comment. Condition (2) may be replaced by the weaker condition \(r_n > 1 \), and the theorem remains valid by the same proof.

Also solved by [3 others and] the Proposer.
E 1180. Proposed by M. S. Klamkin and Alex Kraus, Polytechnic Institute of Brooklyn

Determine the 2319th digit in the expansion of 1000!

Solution by J. B. Muskat, Cambridge, Mass. By Stirling’s formula we find that the expansion of 1000! has 2568 digits. Since 5 divides 1000! 249 times, and 2 divides 1000! more than 500 times, the expansion of 1000! terminates in a string of 249 zeros. Further, since 2568 − 249 = 2319, the digit we seek is the last non-zero digit in the expansion. Clearly this digit is even, and depends upon the last digits of the factors 1, 2, 3, ..., 1000 of 1000! after removal of all factors 5. Taking the factors successively in sets of ten and removing the multiples of 5 we have, for the product of the remaining factors in each set,

$$1 \cdot 2 \cdot 3 \cdot 4 \cdot 6 \cdot 7 \cdot 8 \equiv 6 \pmod{10} \quad (1)$$

There are 100 of these products, leaving 200 numbers which are divisible by 5, and if 5 is factored out of each, 200! remains. We then have 20 more products like (1), leaving 40 numbers which are divisible by 5, and if 5 is factored out of each of these, 40! remains. We get 4 more products like (1), leaving 8 numbers which are divisible by 5, and if 5 is factored out of each of these, 8! remains. Dividing out 5 once more, we have left

$$1 \cdot 2 \cdot 3 \cdot 4 \cdot 6 \cdot 7 \cdot 8 \equiv 4 \pmod{10}$$

Now $4 \cdot 6^{124} \equiv 4 \pmod{10}$, whence 4 is the last digit in $(1000!)/5^{249}$. But 2^{249} must also be divided out to complement the 5^{249}. Since $2^{249} \equiv 2 \pmod{10}$, it now follows that the last digit in $(1000!)/10^{249}$, which is the digit we are seeking, is 2.

Editorial Note. H. S. Uhler has calculated the exact value of 1000!. See his article, Exact values of 996! and 1000! with skeleton tables of antecedent constants, Scripta Math., XXI 261–268. The 2319th digit in the expansion of 1000! appears as 2, as was shown in [1956. 189].
E 1147. Proposed by E. P. Starke, Rutgers University

If \(\cos \alpha \) is rational \((0 < \alpha < \pi)\), prove there are infinitely many triangles with integer sides having \(\alpha \) as one angle. In particular, given \(\cos \alpha = \frac{r}{s} \), find a three-parameter solution for the sides \(a, b, c \).

Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. By the law of cosines

\[
s(c + a)(c - a) = b(2cr - bs)
\]

This will be satisfied if

\[
ms(c + a) = n(2cr - bs) \quad \text{and} \quad n(c - a) = mb
\]

or if

\[
na + mb - nc = 0 \quad \text{and} \quad msa + nsb + (ms - 2nr)c = 0
\]

It follows that

\[
a = ts(m^2 + n^2) - 2tmnr \quad b = 2tn(nr - ms) \quad c = ts(n^2 - m^2)
\]

This problem has been solved previously by Züge, Archiv Math. Phys. (2) 17(1900) 354. See Dickson, History of the Theory of Numbers, Vol.II, p.215.

4664. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Are there any other laws of attraction beside the inverse square law such that the time of descent (from rest) through any straignt tunnel through a uniform spherical planet is independent of the path?

It is known that the time of traverse of a freely falling body through a straight tunnel connecting any two points of the surface of a uniform spherical planet is isochronous. We show here that if the isochronous property is to hold for any planet with a spherical symmetric density, then the density must be constant. Also it is shown that if the isochronous property is to hold for any uniform spherical planet subject to a central force law, then the force law must be inverse square. However, the isochronous property can hold for one uniform spherical planet with a different force law of attraction.
A flexible chain of length L is suspended from its endpoints. Determine the maximum area between the chord joining the endpoints and the hanging curve.

Amer. Math. Monthly, 63(1956) 495–496.

Maximum Area Between a Hanging Chain and its Chord

Solution by C. M. Sandwick, Sr., Easton High School, Easton, Pa. Let $-x + w$ and $x + w$ be the abscissas of two points on the curve having the equation $y = \cosh x$, such that the figure formed by the arc and the chord joining the two points is similar to the chain of length L and the chord joining its points of suspension. Let A be the plane area bounded by the chain and its chord, and let z be the length of the chord. Then

$$z = L(x^2 + \sinh^2 w \sinh^2 x)^{1/2} / \cosh w \sinh x$$

$$A = L^2(x \cosh x - \sinh x)/2 \cosh w \sinh^2 x$$

If w is held constant, $dA/dz = 0$ when

$$x = 2(\sinh x \cosh x)/(1 + \cosh^2 x) = 1.6062, \text{ approximately.}$$

For any x, A is a maximum when $w = 0$, which occurs when and only when the chord is horizontal. Then

$$A = L^2(x \cosh x - \sinh x)/2 \sinh^2 x \quad \text{and} \quad z = Lx/ \sinh x$$

so the maximum area is approximately $0.1549L^2$, the points of suspension being joined by a horizontal chord whose length is approximately $0.6716L$.

Editorial Note. Eliminating x from

$$A = L^2(x \cosh x - \sinh x)/2 \sinh^2 x \quad \text{and} \quad L = 2 \sinh x$$

we find

$$A_{\max} = (L^2 + 4)^{1/2} \sinh^{-1}(L/2) - L$$
For what values of θ does the following series converge:

$$
\sum_{n=1}^{\infty} \frac{1}{n \sin 2^n \theta}.
$$

Solution by Leonard Carlitz, Duke University. Put $\theta = \alpha \pi$, where we may assume that $0 < \alpha < 2$. Also put $\alpha = 2^{-n_1} + 2^{-n_2} + 2^{-n_3} + \cdots$ (0 \leq n_1 < n_2 < \cdots) and $k_r = n_r+1 - n_r$ ($r = 1, 2, \ldots$).

Clearly we may assume that $\alpha \neq m/2^t$ where m is an integer. We shall prove that the series

$$
\sum_{n=1}^{\infty} \frac{1}{n \sin 2^n \alpha \pi}
$$

converges if and only if, as $r \to \infty$,

(a) $2^{k_r}/n_r \to 0$

and the following series converges

(b) $\sum_{r=1}^{\infty} 2^{k_r}/n_r^2$

Proof. The necessity of (a) is obvious, for otherwise the n_rth term of (1) does not approach zero. In the next place it follows from the identity

$$
\frac{1}{\sin 2x} + \frac{1}{\sin 4x} + \cdots + \frac{1}{\sin 2^nx} = \cot x - \cot 2^nx
$$

that

$$
\sum_{n=1}^{N} \frac{1}{n \sin 2^n \alpha \pi} = \sum_{n=1}^{N} \frac{1}{n} (\cot 2^{n-1} \alpha \pi - \cot 2^n \alpha \pi)
$$

$$
= \cot \alpha \pi - \sum_{n=1}^{N-1} \frac{\cot 2^n \alpha \pi}{n(n+1)} - \frac{1}{N} \cot 2^N \alpha \pi
$$

(2)

It follows from (a) that as $N \to \infty$, $(\cot 2^N \alpha \pi)/N \to 0$. As for

$$
\sum_{n=1}^{N-1} \frac{\cot 2^n \alpha \pi}{n(n+1)}
$$

(3)
note first that the only negative terms are those for which \(n = n_r - 1 \); since the series
\[
\sum_{n=1}^{\infty} \frac{\cot 2^{n-1} \alpha \pi}{n_r (n_r - 1)}
\]
is evidently convergent, we may ignore such terms in (3). In other words, if
\[
\sum_{n=1}^{\infty} \frac{\cot 2^n \alpha \pi}{n(n+1)}
\]
(4)
converges, it converges absolutely. Consequently the convergence of (4) implies the convergence of
\[
\sum_{n=1}^{\infty} \frac{\cot 2^n \alpha \pi}{n_r (n_r + 1)}
\]
(5)
Since the fractional part of \(2^n \alpha \) is equal to \(\alpha = 2^{n_r-n_r+1} + 2^{n_r-n_r+2} + \cdots \), it is clear that (5) converges if and only if
\[
\sum_{r=1}^{\infty} \frac{2^k_r}{n_r (n_r + 1)}
\]
converges; this is equivalent to (b).
Conversely when (a) and (b) hold, it is clear from (2) that it is only necessary to prove the convergence of (4). But
\[
\left| \sum_{n=1}^{N} \frac{\cot 2^n \alpha \pi}{n(n+1)} \right| \leq \sum_{n=1}^{N} \left| \frac{\csc 2^n \alpha \pi}{n(n+1)} \right|
\]
and \(\sin 2^n \alpha \pi \) is negative only for \(n = n_r \). Then the convergence of
\[
\sum_{n=1}^{\infty} \frac{\csc 2^n \alpha \pi}{n(n+1)}
\]
is a consequence of (b), while the convergence of
\[
\sum_{n=1}^{\infty} \frac{1}{n(n+1) \csc 2^n \alpha \pi}
\]
is easily proved by summation by parts as in (2), This completes the proof.

Remark. The series (1) is certainly convergent if the differences \(k_r \) are bounded; in particular, (1) converges for rational \(\alpha \) (except \(m/2^t \)). An example of divergence is furnished by \(\sum 2^{-r^2} \); the condition (a) is not satisfied.
For \(n_r = [r \log_2 r] \) both (a) and (b) are satisfied; for
\[
n_r = [r(\log_2 r + \log_2 \log_2 r)]
\]
neither (a) nor (b) holds; while (a) is satisfied but (b) is not if
\[
n_r = [r(\log_2 r + \log_2 \log_2 r - \log_2 \log_2 \log_2 r)].
\]
Solve the following generalization of Clairaut’s differential equation
\[y - xy' + \frac{x^2y''}{2!} + \cdots + (-1)^{n-1}\frac{x^{n-1}y^{(n-1)}}{(n-1)!} + (-1)^n\frac{x^ny^{(n)}}{n!} = G(y^{(n)}) \]

Amer. Math. Monthly, 64(1957) 204.

Solution by the proposer. After differentiating the given equation and replacing \(y^{(n)} \) by \(r \), we can rewrite it as
\[dx^n/dr - x^n F'(r)H(r) = (-1)^{n-1}G'(r)n!H(r) \quad \text{where} \quad H(r) = (r - F(r))^{-1} \]

The standard solution of this first order linear equation is
\[x^n = \exp \left\{ \int F'(r)H(r) \, dr \right\} \int (-1)^{n-1}G'(r)n!H(r) \exp \left\{ - \int F'(r)H(r) \, dr \right\} \, dr \]
or \(x = \phi(r) \). Now \((d^ny)/(dx^n) = r\), whence
\[y = \int \cdots \int r \, (dx)^n = \int \phi'(r) \int \phi'(r) \cdots \int r \phi'(r) \, (dr)^n \]

This last equation and the equation \(x = \phi(r) \) constitute the parametric form of the solution.

It is to be noted that there is no singular solution unless \(r = F(r) \) in which case the equation reduces to that treated by Witty, this MONTHLY, 1952, pp.100–102. See also the proposer’s note, this MONTHLY, 1953, pp.97–99.
A Conditional Inequality

E 1195 1955, 728. Proposed by G. E. Bardwell, University of Denver

If $n = 2, 3, 4, \ldots$, and m is fixed and positive, for what values of p less than 1 is

$$\ln n < mn^p$$

Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. If $mn^p > \ln n$, then

$$p > \frac{\ln (\ln n)}{m \ln n} = \frac{\ln x - \ln m}{x}$$

where $x = \ln n$. Now the maximum value of $(\ln x - \ln m)/x$ occurs when $x = em$ and is equal to $1/em$. Thus

$$1 > p > \frac{1}{em} \quad \text{provided} \quad m > 1/e.$$
We interrupt the program to observe that we’ve corrected the arithmetic in the above table and in the following paragraph (and the preceding one!) The sequence of values of \(n \) is A001682 in Sloane’s OEIS, where the following values are given:

\[

A comparison of 174 and 21 shows that the corresponding mantissae differ by only 0.00044802789. This is because 153 \(\log 3 = 72.999551972108 \). Thus any number of the form 21 + 153\(k \), where \(k < 0.019546349 / 0.00044802789 = 43.6275 \ldots \) will be one of the required \(n \). For \(k = 44 \) the resulting mantissa is 0.9998312188. Subtracting 0.954242509 = 2 \(\log 3 \) we get the mantissa 0.04559061244. So instead of 21 + 153(44), use 21 + 153(44) − 2 = 6751. Now using the sequence 6741 + 153\(k_1 \), where \(k_1 < 0.04559061244 / 0.00044802789 = 101.758 \), repeat the above process and get more \(n \)s. Then derive the new sequence 22194 + 153\(k_2 \), and so on. In this way arbitrarily large \(n \)s can be determined as long as tables of sufficient accuracy are available.

Also solved by [15 others and] the proposer.

Amer. Math. Monthly, 63(1956) 667._

E 1209 [1956, 186]. _Proposed by Hüseyin Demir, Zonguldak, Turkey_

Let \(ABC \) be any triangle and \((I) \) its incircle. Let \((I) \) touch \(BC, CA, AB \) at \(D, E, F \) and intersect the cevians \(BE, CF \) at \(E', F' \) respectively. Show that the anharmonic ratio \(D(E, F, E', F') \) is the same for all triangles \(ABC \).

II. _Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn._ By a central projection, triangle \(ABC \) and its incircle \((I) \) can be transformed into an equilateral triangle and its incircle. The anharmonic ratio \(D(E, F, E', F') \) is invariant under this transformation and consequently is constant for all triangles. It is easy to show that \(D(E, F, E', F') = 4 \).
E 1245. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

If
\[b_{n+1} = \int_0^1 \min(x, a_n) \, dx \quad a_{n+1} = \int_0^1 \max(x, b_n) \, dx \]
prove that the sequences \(\{a_n\} \) and \(\{b_n\} \) both converge and find their limits.

Solution by N. J. Fine, University of Pennsylvania. For any \(a_0, b_0 \), it is easy to see that \(a_n \) and \(b_n \) both lie between 0 and 1 for all \(n \geq 2 \). The recurrence formulas then become (for \(n \geq 2 \))
\[a_{n+1} = (1 + b_n^2)/2 \quad b_{n+1} = a_n - a_n^2/2 \]

If we assume that \(\lim a_n = a, \lim b_n = b \), they must satisfy
\[a = (1 + b^2)/2 \quad b = a - a^2/2 \]
from which we get
\[a + b - 1 = (a + b - 1)(b - a + 1)/2 \]

Since the factor \((b - a + 1)/2 \neq 1\), we have \(a + b = 1 \), and this yields \(a = 2 - \sqrt{2}, b = \sqrt{2} - 1 \). To show that \(a_n \to a, b_n \to b \), we write \(a_n = a + \delta_n \), \(b_n = b + \epsilon_n \). The recurrence formulas become, after an easy reduction,
\[\delta_{n+1} = (b + \epsilon_n/2)\epsilon_n \quad \epsilon_{n+1} = (b - \delta_n/2)\delta_n \]

Now \(|\epsilon_n| = |b_n - b| \leq \max(b, 1 - b) = a \) and \(|\delta_n| = |a_n - a| \leq \max(a, 1 - a) = a \). Hence \(|b + \epsilon_n/2| \leq b + a/2 = 1/\sqrt{2}, |b - \delta_n/2| \leq b + a/2 = 1/\sqrt{2} \). Therefore \(|\delta_{n+1}| \leq |\epsilon_n|/\sqrt{2} \) and \(|\epsilon_{n+1}| \leq |\delta_n|/\sqrt{2} \). This shows that \(\delta_n \to 0, \epsilon_n \to 0 \) and the proof is complete.

Also solved by [9 others and] the proposer.
A Trigonometric Inequality

E 1212. Proposed by H. A. Osborn, University of California, Berkeley

Show that \(t > 0 \) implies \((2 + \cos t)t > 3\sin t\).

Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. This problem and a generalization both appear in Durell and Robson, Advanced Trigonometry, p.83 and p.100. We will prove the generalization: If \(a \geq 2b > 0 \) and \(\pi \geq t > 0 \), then

\[(a + b \cos t)t > (a + b)\sin t\]

If the inequality is true for the range \(\pi \geq t > 0 \), it follows immediately that it will be true for all \(t > 0 \). Since the two sides of the inequality are equal for \(t = 0 \), the inequality will follow if we can show that the derivative of the left hand side is greater than the derivative of the right hand side, that is, if

\[a + b \cos t - bt \sin t > (a + b)\cos t\]

or

\[\tan t/2 > bt/a\]

which is true if \(a \geq 2b \).

Setting \(a = 2 \), \(b = 1 \), we get \((2 + \cos t)t > 3\sin t\).

The similar inequality, \((2 + \cosh t)t > 3\sinh t, t > 0\), is given on p.115.

4716. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Determine the equation of motion if \(\vec{V}_s = \lambda \vec{V}_t \) where \(\vec{V}_s \) and \(\vec{V}_t \) are the averages of velocity with respect to distance and time, respectively, in any time interval starting at \(t = 0 \). What is the minimum eigenvalue \(\lambda \)?

Solution by N. J. Fine, University of Pennsylvania. Assuming that \(s(0) = 0 \), we see that \(\vec{V}_t = s/t \), and so

\[\frac{1}{s} \int_0^s v \, ds = \lambda \frac{s}{t}\]

Multiply by \(s \) and differentiate, to get

\[v = \lambda \left(2 \frac{s}{t} - \frac{1}{v} \frac{s^2}{t^2}\right) \quad \text{and} \quad v = \mu \frac{s}{t}\]

where \(\mu = \lambda \pm \sqrt{\lambda^2 - \lambda} \). Hence \(s = ct^\mu \). Except for the trivial case \(\mu = \lambda = 0 \), we must have \(\mu > 1/2 \) to ensure finiteness of \(\vec{V}_s \) and \(\lambda = \mu^2/(2\mu - 1) \geq 1 \). Therefore every \(\lambda \geq 1 \) is an eigenvalue, with the solution \(s = ct^\mu \), \(\mu = \lambda \pm \sqrt{\lambda^2 - \lambda} \).

Also solved by [2 others and] the proposer
A Summation Problem

Proposed by R. C. Lyness, Preston, England

(a) Prove that when the series

\[1 + \sum_{r=1}^{\infty} \left(\frac{r\alpha}{r-1} \right) \frac{x^r}{r} \]

is convergent, its sum, \(y \), satisfies \(y = 1 + xy^\alpha \).

(b) Prove also that

\[\sum_{r=1}^{\infty} \left(\frac{r\alpha + \beta - 1}{r-1} \right) \frac{x^r}{r} = \frac{y^{\beta - 1}}{\beta} \]

I. Solution by M. S. Klamkin, AVCO Research Division, Lawrence, Mass. Case (a) is a special case of (b) which, in turn, is an application of Lagrange’s reversion formula (See Bromwich, *Infinite Series*, p.158): If \(y = xf(y) \), then \(g(y) = \sum_{n=0}^{\infty} p_n y^n \) where \(np_n \) is the coefficient of \(y^{-1} \) in the expansion of \(g'(y)/x^n \).

Here \(g(y) = (y^\beta - 1)/\beta \), and \(f(y) = y^{\alpha+1}/(y-1) \). It follows that the coefficient of \(y^{-1} \) in the expansion of \(y^{\beta - 1} y^{\alpha n} (y - 1)^{-n} \) is

\[(-1)^n \binom{n-1 - \alpha n - \beta}{n-1} = \binom{n\alpha + \beta - 1}{n-1} \]

by the binomial theorem. Thus

\[\frac{y^{\beta - 1}}{\beta} = \sum_{n=1}^{\infty} \binom{n\alpha + \beta - 1}{n-1} \frac{x^n}{n} \]
[[There’s a Murray Klamkin Classroom Note:
On a Graphical Solution of Linear Differential Equations]]

Amer. Math. Monthly, 64(1957) 504.
Solve for \(x \):
\[
\int_0^x s^{8/3}(1 - s)^{4/3} \, ds = \int_0^1 t^{8/3}/(1 + t)^{-6} \, dt
\]

Solution by Calvin Foreman, Baker University. Set \(t = s/(1 - s) \) to obtain
\[
\int_0^x s^{8/3}(1 - s)^{4/3} \, ds = \int_0^{1/2} s^{8/3}(1 - s)^{4/3} \, ds
\]
Since the integral on the left is a monotonically increasing function of \(x \), the only solution is \(x = 1/2 \).
Also solved by [19 others and] the proposer.

Three congruent ellipses are mutually tangent. Determine the maximum of the area bounded by the three ellipses.
Solution by Michael Goldberg, Washington, D.C. The extremal positions can be found as equilibrium states of the following hydromechanical analogy. The minimum enclosed area is obtained by uniform external pressure on the ellipses while the maximum enclosed area is produced by a pressure within the enclosed area. In either case, the resultant force due to the pressure on an ellipse is directed along the perpendicular bisector of the chord joining the points of contact. To obtain equilibrium, the ellipse will turn until these forces are concurrent. But this can occur only when the chord is parallel to an axis of the ellipse, and this applies to each of the ellipses. Hence, the maximum enclosed area is attained when the arcs of least curvature bound the area: that is, when the chords are parallel to the major axes and form an equilateral triangle. The least area is attained when the chords are parallel to the minor axes and form an equilateral triangle.
The enclosed areas can be derived as follows. Begin with a circle of radius \(a \) and two tangents while make an included angle of \(2A \). The the area between the circle
and the tangents is $a^2(\cot A + A - \pi/2)$. If the figure is rotated about the bisector of the angle $2A$ so that the circle projects into an ellipse of minor semi-axis b, then the included area becomes $ab(\cot A + A - \pi/2)$, but the angle between the tangents becomes $2B$, where $a \tan B = b \tan A$. Thus the minimum area for the given problem is obtained when $B = \pi/3$, $\tan B = \sqrt{3}$, $\tan A = 3^{1/2}a/b$, and the total enclosed area is $3ab(b/a\sqrt{3} - \tan^{-1}(b/a\sqrt{3}))$.

If the figure is rotated about the normal to the bisector of angle $2A$ so that the circle projects into an ellipse of minor semi-axis b, then the new included area again becomes $ab(\cot A + A - \pi/2)$ but the new angle between the tangents becomes $2B$, where $b \tan B = a \tan A$. For the maximum area of the given problem, $B = \pi/3$, $\tan B = \sqrt{3}$, $\tan A = b\sqrt{3}/a$, and the total enclosed area is $3ab(a/b\sqrt{3} - \tan^{-1}(a/b\sqrt{3}))$.

The foregoing procedures can be used when the three ellipses are not congruent, even when other curves are used. The following theorem may be stated: A necessary condition for an extremum for the area enclosed by three (or more) mutually tangent curves is the equilibrium condition that the normals at the points of contact of each curve make equal angles with the respective chords joining these points of contact.

The adjoining figure is an example of the maximum area enclosed by three unequal ellipses.

[[The figure taxes my present capabilities, but is well worth including. Will see what I can do. Note how long it took for a solution to Murray’s problem to appear. Later: in endeavoring to simplify the situation, one of the ellipses has turned into a circle! Perhaps someone can do better?]]
Determine a set of \(n \) distinct, nonzero terms such that their geometric mean is the geometric mean of their arithmetic and harmonic means.

Solution by Emil Grosswald, University of Pennsylvania. Let \(S_j \) be the \(j \)th fundamental symmetric function of the \(n \) terms \(a_1, \ldots, a_n \). Then their harmonic, geometric and arithmetic means are

\[
H = nS_n/S_{n-1} \quad G = S_n^{1/n} \quad A = S_1/n
\]

respectively, and the condition \(G^2 = HA \) of the problem becomes

\[
(n-1) = S_1S_n^{1-2/n} \quad (1)
\]

It is therefore sufficient to take as \(a_1, \ldots, a_n \) the roots of

\[
x^n - S_1x^{n-1} + \cdots + (-1)^{n-1}S_{n-1}x + (-1)^nS_n = 0 \quad (2)
\]

with arbitrary \(S_2, S_3, \ldots, S_{n-2} \) and any \(S_1, S_{n-1}, S_n \) which satisfy (1). In order to have all terms different from zero it is sufficient to take \(S_n \neq 0 \); and \(a_i \neq a_j \) for \(i \neq j \) is assured if the coefficients of (2) are chosen so that its discriminant does not vanish.

Editorial Note. Several explicit sets were proposed. The simplest are: (i) \(n \) successive terms of any geometric progression, (ii) \([n/2]\) distinct pairs of reciprocals, with the addition of the element 1 in case \(n \) is odd.
Show that all the roots of $\tan z = \frac{z}{1 + m^2 z^2}$, where m is real, are real.

Also solved by [6 others and] the proposers.
The Steensholt Inequality for a Tetrahedron

E 1264 [1957, 272]. Proposed by Victor Thébault, Tennie, Sarthe, France

If an interior point P of a tetrahedron $ABCD$ is projected orthogonally into A', B', C', D' on the planes of the faces BCD, CDA, DAB, ABC and if the areas of the faces are denoted by A, B, C, D, show that

$$A(PA) + B(PB) + C(PC) + D(PD) \geq 3[A(PA') + B(PB') + C(PC') + D(PD')]$$

I. Solution by M. S. Klamkin, AVCO Research and Development, Lawrence, Mass.

Represent the volume of the volume of the tetrahedron by V. Then $V = (1/3)\sum A(PA')$. Also, $V = (1/3)h_A A$ and $h_A \leq PA + PA'$. Hence $(1/3)\sum A(PA') = (1/12)\sum h_A A \leq (1/12)\sum (PA + PA') A$ or $\sum A(PA) \geq 3 \sum A(PA')$.

Editorial Note. This problem extends to the tetrahedron a property of the triangle given by Gunnar Steensholt, this MONTHLY [1956, 571]. If the tetrahedron is isosceles (that is, equifacial), the inequality reduces to

$$PA + PB + PC + PD \geq 3(PA' + PB' + PC' + PD')$$

which establishes the Erdős-Mordell inequality for the tetrahedron ($2\sqrt{2}$ in place of 3) for this special type of tetrahedron.
It is easy to show that there exist consecutive prime pairs such that their difference is arbitrarily large. Do there exist prime triplets P_1, P_2, P_3 such that $\min(P_2 - P_1, P_3 - P_2)$ is arbitrarily large?

Solution by P. T. Bateman, University of Illinois. The question of the problem was answered affirmatively by Sierpiński [Colloq. Math., 1(1948) 193–194]. The following stronger results have since been obtained. Erdős [Pub. Math. Debrecen, 1(1949) 33–37] proved that for any positive number C there exist consecutive prime triples such that $\min(P_2 - P_1, P_3 - P_2) > C \log P_3$. Walfisz [Doklady Akad. Nauk SSSR (N.S.) 90(1953) 711–713] proved that for almost all primes p the distance of the closest prime on either side is greater than $(\log p)/(\log \log \log p)^2$. Prachar [Monats. Math., 58(1954) 114–116] showed that Walfisz’s result is still true if $(\log \log \log p)^2$ is replaced by any function of p which tends to infinity with p.

The following proof is similar to Sierpiński’s but differs somewhat in detail. Let q be any prime greater than 2. Then $(q - 1)! - 1$ and $q!$ are relatively prime. In fact, the prime factors of $q!$ are the primes not exceeding q. Clearly $(q - 1)! - 1$ is not divisible by any of the primes less than q, while $(q - 1)! - 1 \equiv -2 \pmod{q}$ by Wilson’s theorem. Since $(q - 1)! - 1$ and $q!$ are relatively prime, Dirichlet’s theorem guarantees the existence of a prime such that

$$p \equiv (q - 1)! - 1 \pmod{q!}$$

Now the q integers following p and the $q - 2$ integers preceding p are composite since

$$p \pm k + 1 \equiv p + 1 \equiv (q - 1)! \equiv 0 \pmod{k}$$

if $2 \leq k \leq q - 1$, and since $p + 2 \equiv (q - 1)! + 1 \equiv 0 \pmod{q}$. But q may be taken as large as desired and so the assertion of Sierpiński is established.

Solution by B. H. Bissinger, Lebanon Valley College. Consider the square with vertices at $(\pm 1, \pm 1)$. Taking moments about the coordinate axes we find the centroid of the
region below the diameter of slope m, $|m| \leq 1$. has coordinates $x = m/3$, $y = -1/2 + m^2/6$. Considerations of symmetry prove the closed path of the centroid for one complete revolution of the diameter consists of four parabolic sections whose equations are

$$\begin{align*}
4y^2 &= (3x^2 - 1)^2, \\
4x^2 &= (3y^2 - 1)^2
\end{align*}$$

It is interesting to note that the direction of the path of the centroid is parallel to the parametric diameter and that therefore that the derivative exists at the four points $(\pm 1/3, \pm 1/3)$ where the parabolas are pieced together.

[M. J.] Pascual considered the analogous problem in three space, where the square is replaced by a cube and the diametral line by a diametral plane. [C. S.] Ogilvy proposed the allied problem: What is the locus of the centroid if the arbitrary diameter is fixed and the square is rotated?
Divergent Integrals

4728 [1957, 201]. Proposed by R. P. Boas, Jr., Northwestern University

A. M. Rudov has propounded a proof that if $f(x)$ is continuous and the first of the following integrals converges, then the second diverges

$$\int_1^\infty f(x) \, dx \quad \int_1^\infty x^{-2} \{f(x)\}^{-1} \, dx.$$

(a) Construct a counter-example. (b) More generally, show that if $g(x)$ and $\phi(x)$ are positive and $\int_1^\infty \phi(x) \, dx$ diverges, then at least one of

$$\int_1^\infty \phi(x)g(x) \, dx \quad \text{and} \quad \int_1^\infty \{\phi(x)/g(x)\} \, dx$$

diverges.

I. Solution by M. S. Klamkin, AVCO Research and Development, Lawrence, Mass. (a) With $f(x) = (-1)^n/x$, $n = [\sqrt{x}]$, both integrals are easily seen to be convergent.

(b) By the Schwartz inequality,

$$\int_1^\infty \phi(x)g(x) \, dx \cdot \int_1^\infty \phi(x)/g(x) \, dx \geq \left[\int_1^\infty \phi(x) \, dx\right]^2$$

When $\int_1^\infty \phi(x) \, dx$ diverges, then at least one of the two integrals on the left must diverge.

An equiproduct point of a curve is defined to be a point such that the product of the two segments of any chord through the point is constant. (1) Show that if every point inside a curve is equiproduct, the curve must be a circle. (2) What is the maximum number of equiproduct points a noncircular oval can have?

Prove that no perfect square is 7 more than a perfect cube.

Solution by M. S. Klamkin, AVCO Research and Development, Lawrence, Mass. This is a problem due to V. A. Lebesgue in 1869. A reference to this and the following proof are given in H. Davenport, The Higher Arithmetic, (1952) p.160.

If $y^2 = x^3 + 7$, then x must be odd, since a number of the form $8k + 7$ cannot be a square. Now

$$y^2 + 1 = (x + 2)(x^2 - 2x + 4) = (x + 2)[(x - 1)^2]$$

and the final factor is of the form $4n + 3$, and hence must have a prime factor of this same form. But it is well known that $y^2 + 1$ cannot have a prime factor of this form.

Express as a single definite integral

\[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \frac{(m+n+r)!m^n n^r}{m! n! r!(r+1)^{m+n+r+1}} \]

An Incorrect Proposal

Editorial Note. As several readers were quick to point out, the stated series is divergent. Attempts to rework the original idea into a well-posed problem have not been satisfactory. The editor and the proposer apologize for a careless oversight.

Show that the following operators are reducible:

(1) \(x^n D^{2n} \) \hspace{1cm} (2) \(x^{2n} D^n \)

and thus solve the differential equations

(1a) \([x^n D^{2n} - \lambda] y = 0 \) \hspace{1cm} (2a) \([x^{2n} D^n - \lambda] y = 0 \).

[[Was a solution published? Have I missed it?]]

Solve the integral equation

\[\int_{0}^{\infty} t^3 \phi(x - t) \, dt = a \left\{ \int_{0}^{\infty} t^2 \phi(x - t) \, dt \right\}^b \]

where \(a \) and \(b \) are independent of \(x \).

Solution by Robert Weinstock, University of Notre Dame. Introducing the change of variable $u = t - x$ and defining F by

$$F(x) = \int_0^\infty t^2 \phi(x-t) \, dt = \int_{-x}^\infty (u + x)^2 \phi(-u) \, du \quad (1)$$

we may differentiate the integral equation and obtain

$$3 \int_{-x}^\infty (u + x)^2 \phi(-u) \, du = ab \left\{ \int_{-x}^\infty (u + x)^2 \phi(-u) \, du \right\}^{b-1} \cdot 2 \int_{-x}^\infty (u + x) \phi(-u) \, du$$

that is

$$3 = ab[F(x)]^{b-2}F'(x) = ab(d/dx)\{(b-1)^{-1}F(x)^{b-1}\}$$

provided $b \neq 1$; the case $b = 1$ is handled separately below. We introduce $m = b/(1-b)$ and integrate to obtain

$$F(x) = [c - (3/am)x]^{-m-1} \quad (2)$$

where c is an arbitrary constant.

Differentiating (1) three times and using (2) we obtain

$$\phi(x) = \frac{1}{2} F'''(x) = \frac{1}{2} (3/am)^3(m+1)(m+2)(m+3)[c - (3/am)x]^{-m-4}$$

For the existence of the integrals involved we must have $m > 0$ (whence $0 < b < 1$), $a > 0$ and $x < amc/3$. In case $b = 1$, the differential equation for F reads

$$F'(x) = (3/a)F(x), \text{ whence } F(x) = 2(a/3)^3 Be^{3x/a}$$

where B is an arbitrary constant.

We then have $\phi(x) = \frac{1}{2} F'''(x) = Be^{3x/a}$ which satisfies the integral equation for $b = 1$, provided $a > 0$, for all x.

If $a = 0$, there is clearly only the trivial solution $\phi(x) = 0$.

Also solved by [3 others and] the proposer.

If \(\phi(x) = x/1^2 - x^3/3^2 + x^5/5^2 - x^7/7^2 + \cdots \), express \(\phi(1) \) in terms of \(\phi(2 - \sqrt{3}) \), thus obtaining a more rapidly converging expansion.

A Result of Ramanujan

Note by Emil Grosswald, University of Pennsylvania. In Ramanujan’s paper, On the integral \(\int_0^x t^{-1} \tan^{-1} t \, dt \), he obtains the result

\[
2\phi(1) = 3\phi(2 - \sqrt{3}) + \frac{1}{4}\pi \log(2 + \sqrt{3})
\]

(See J. Indian Math. Soc., VII(1915) 93–96; also Collected Papers, pp.40–43.) Ramanujan’s treatment, with some details filled in, follows.

One observes that

\[
\phi(x) = \int_0^x \frac{\arctan t}{t} \, dt \quad (1)
\]

Next one shows that, for \(0 < x < \pi/2 \),

\[
\frac{\sin 2x}{1^2} + \frac{\sin 6x}{3^2} + \frac{\sin 10x}{5^2} + \cdots = \phi(\tan x) - x \log(\tan x) \quad (2)
\]

holds. Since both sides of (2) approach zero as \(x \to 0 \), it is sufficient to show that their derivatives are equal, i.e., using (1), that

\[
\frac{2 \cos 2x}{1} + \frac{2 \cos 6x}{3} + \frac{2 \cos 10x}{5} + \cdots = -\log(\tan x) \quad 0 < x < \pi/2 \quad (3)
\]

Since (3) is a known cosine Fourier expansion, (2) is proved. With \(x = \pi/12 \), \(\tan x = 2 - \sqrt{3} \), (2) becomes:

\[
\frac{1}{2} \left\{ \frac{1}{1^2} + \frac{2}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} - \frac{2}{9^2} - \frac{1}{11^2} + \frac{1}{13^2} + \frac{2}{15^2} + \cdots \right\} = \phi(2 - \sqrt{3}) - \frac{\pi}{12} \log(2 - \sqrt{3})
\]

The left member is \(2\phi(1)/3 \) as is shown by rewriting it as

\[
\frac{1}{2} \left\{ \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots \right\} + \frac{3}{2} \left\{ \frac{1}{3^2} - \frac{1}{9^2} + \frac{1}{15^2} + \cdots \right\}
\]

The desired result now follows immediately.
Find the locus of the centroids of all equilateral triangles inscribed in an ellipse.

Solution by Sister Mary Stephanie, Georgian Court College, Lakewood, New Jersey.

The problem is not new; it appears on p.170 of C. Smith, Conic Sections, Macmillan (1937). The solution given there is essentially as follows. Let the ellipse be \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \). If the eccentric angles of the vertices of an inscribed triangle are \(A, B, C \), the centroid of the triangle is given by

\[
\begin{align*}
x &= a(\cos A + \cos B + \cos C)/3 \\
y &= b(\sin A + \sin B + \sin C)/3
\end{align*}
\]

The circumcentre of the triangle is given by

\[
\begin{align*}
x &= (a^2 - b^2)\{\cos A + \cos B + \cos C + \cos(A + B + C)\}/4a \\
y &= (b^2 - a^2)\{\sin A + \sin B + \sin C - \sin(A + B + C)\}/4b
\end{align*}
\]

Since in an equilateral triangle the centroid coincides with the circumcentre, in this case we have

\[
\begin{align*}
4ax/(a^2 - b^2) - 3x/a &= \cos(A + B + C) \\
4by/(b^2 - a^2) - 3y/b &= -\sin(A + B + C)
\end{align*}
\]

Squaring and adding we obtain the ellipse

\[
(a^2 + 3b^2)\frac{x^2}{a^2} + b^2 + 3a^2\frac{y^2}{b^2} = (a^2 - b^2)^2
\]

as the required locus.
Do the sequences \(\{a_n\} \), \(\{b_n\} \), \(\{c_n\} \) converge, where

\[
\begin{align*}
a_{n+1} &= \int_0^1 \min(x, b_n, c_n) \, dx \\
b_{n+1} &= \int_0^1 \midmid(x, c_n, a_n) \, dx \\
c_{n+1} &= \int_0^1 \max(x, a_n, b_n) \, dx
\end{align*}
\]

and \(\midmid(a, b, c) = b \) if \(a \geq b \geq c \).

Evidently \(\min(x, b_n, c_n) \leq x \leq \max(x, a_n, b_n) \) so that if \(\midmid(x, a_n, c_n) = x \), we have

\[
\min(x, b_n, c_n) \leq \midmid(x, a_n, c_n) \leq \max(x, a_n, b_n) \tag{1}
\]

Now, if \(\midmid(x, a_n, c_n) = a_n \), we have either \(x \leq a_n \) or \(c_n \leq a_n \), so that
\(a_n \leq \max(x, a_n, b_n) \) implies (1) in this case also. A similar argument holds for \(\midmid(x, a_n, c_n) = c_n \), so that (1) is true in all cases. By integration there results
\(a_{n+1} \leq b_{n+1} \leq c_{n+1}, \ n = 1, 2, \ldots \).

Now we have
\[
a_{n+1} = \int_0^1 \min(x, b_n, c_n) \, dx \leq \int_0^1 d \, dx = \frac{1}{2}
\]

and similarly \(c_{n+1} \geq \frac{1}{2} \). Using this
\[
b_{n+2} = \int_0^1 \midmid(x, a_{n+1}, c_{n+1}) \, dx = \int_0^{1/2} \max(x, a_{n+1}) \, dx + \int_{1/2}^1 \min(x, c_{n+1}) \, dx
\]
\[
\leq \int_0^{1/2} \frac{1}{2} \, dx + \int_{1/2}^1 x \, dx = \frac{5}{8}
\]

Dually, \(b_{n+2} \geq 3/8 \). Since \(3/8 \leq b_{n+2} \leq c_{n+2} \), \(a_{n+3} = \int_0^1 \min(x, b_{n+2}, c_{n+2}) \, dx > 0 \), and similarly \(c_{n+3} < 1 \).
It is now assumed that \(n \) is so large that \(0 < a_n \leq b_n \leq c_n < 1 \).

\[
a_{n+1} = \int_0^{b_n} x \, dx + \int_{b_n}^1 b_n \, dx = \frac{2b_n - b_n^2}{2}
\]

\[
b_{n+1} = \int_0^{a_n} a_n \, dx + \int_{a_n}^{c_n} x \, dx + \int_{c_n}^1 c_n \, dx = \frac{a_n^2 - c_n^2 + 2c_n}{2}
\]

\[
c_{n+1} = \int_0^{b_n} b_n \, dx + \int_{b_n}^1 x \, dx = \frac{b_n^2 + 1}{2}
\]

Thus

\[
b_{n+2} = \frac{1}{2} \left[\left(\frac{2b_n - b_n^2}{2} \right)^2 - \left(\frac{b_n^2 + 1}{2} \right)^2 + 2 \left(\frac{b_n^2 + 1}{2} \right) \right]
\]

\[
= \frac{1}{2} + \frac{(2b_n - 1)(-2b_n^2 + 2b_n + 1)}{8} = b_n - \frac{(2b_n - 1)^3 + 5(2b_n - 1)}{16}
\]

Since \(0 < -2b_n^2 + 2b_n + 1 \) whenever \(0 < b_n < 1 \), either

\[
\frac{1}{2} \leq b_{n+2} \leq b_n \quad \text{or} \quad \frac{1}{2} > b_{n+2} > b_n
\]

It follows that \(\lim b_{2n} = \lim b_{2n+1} = \lim b_n = \frac{1}{2} \). Then

\[
\lim a_n = \lim a_{n+1} = \lim \frac{2b_n - b_n^2}{2} = \frac{3}{8}
\]

\[
\lim c_n = \lim c_{n+1} = \lim \frac{b_n^2 + 1}{2} = \frac{5}{8}
\]
If A, B, C are angles of a triangle, show that

\[
csc A/2 + \csc B/2 + \csc C/2 \geq 6
\]

A solution by Leon Bankoff, Los Angeles, Calif. Consider the angle bisectors AD, BE, CF concurrent at the incentre I of the triangle ABC. It is known that the sum of the ratios in which a point within a triangle divides the cevians of this point is never less than 6 (E 1043 [1953, 421]). Since the inradius $r \leq (\text{ID}, \text{IE}, \text{IF})$, it follows that $AI/r + BI/r + CI/r \geq 6$.

[[This is just the first of no fewer than SEVEN published solutions.]]

Show that if all roots of $ax^4 - bx^3 + cx^2 - x + 1 = 0$ are positive, then $c \geq 80a + b$.

The proof will show that 80 is the best possible constant.

(i) If $a = b = c = 0$, the result is true.

(ii) If $a = b = 0$, $c \neq 0$, then the roots r_1, r_2 of $cx^2 - x + 1 = 0$ are positive, so $1/c = r_1r_2 > 0$, hence $c > 0$ and the result is true.

(iii) If $a = 0$, $b \neq 0$, then the roots of $bx^3 - cx^2 + x - 1 = 0$ are positive. Since $r_1r_2r_3 = r_2r_3 + r_3r_1 + r_1r_2 = 1/b$, we have $1/r_1 + 1/r_2 + 1/r_3 = 1$, which (since all $r_i > 0$) shows that all $r_i \geq 1$; hence $c/b = \sum r_i \geq 3$, so $c \geq 3b \geq b$ and the relation holds.

(iv) Suppose $a \neq 0$. Then

\[
(c - b)/a = 1/2 \sum_{i \neq j} r_ir_j - \sum r_k = \left\{ \left(\sum r_i \right)^2 - \sum r_i^2 \right\} / 2 - \sum f_i
\]

Call this $f(r_1, r_2, r_3)$. We can use Lagrangian multipliers to determine the minimum of $f(r_1, r_2, r_3)$ in the open subset $r_1 > 0$, $r_2 > 0$, $r_3 > 0$, $r_4 > 0$ of the constraint set

\[
\prod_{i=1}^{4} r_i = \sum_{j=1}^{4} \prod_{i \neq j} r_i \quad (= 1/a)
\]

i.e., $\sum 1/r_i = 1$, since on this set the function is bounded below. The minimum occurs when all $r_i = 4$, $f_{\text{min}} = 80$; that is, $(c - b)/a \geq 80$ as desired.
Without performing any integration determine the ratio
\[\frac{\int_0^1 \frac{dt}{\sqrt{1-t^4}}}{\int_0^1 \frac{dt}{\sqrt{1+t^4}}} \]

\textit{Amer. Math. Monthly, 67(1960) 300.}

\textit{Solution by A. B. Farnell, Convair Research Laboratory, San Diego, California.} Since the first integral involved is convergent, and
\[
\int_0^1 \frac{dt}{\sqrt{1-t^4}} = \int_0^{\frac{\pi}{4}} \frac{d(\sqrt{\sin 2\theta})}{\cos 2\theta} = \int_0^{\frac{\pi}{4}} \frac{d\theta}{\sqrt{2\sin 2\theta}}
\]
\[
\int_0^1 \frac{dt}{\sqrt{1+t^4}} = \int_0^{\frac{\pi}{4}} \frac{d(\sqrt{\tan \theta})}{\sec \theta} = \frac{1}{\sqrt{2}} \int_0^{\frac{\pi}{4}} \frac{d\theta}{\sqrt{2\sin 2\theta}}
\]
the desired ratio is \(\sqrt{2}\).

\textit{Editorial Note.} Several solvers used contour integration and transformations of the complex plane. In this way [G. E. Raynor and the proposer obtained the more general result
\[
\int_0^1 \frac{dt}{(1-t^{2n})^{1/n}} : \int_0^1 \frac{dt}{(1+t^{2n})^{1/n}} = \sec(\pi/2n), \ n = 2, 3, \ldots.
\]
A smooth centro-symmetric curve has the property that the centroid of any half-area which is formed by chords through the centre is equidistant from the centre. Show that the curve is a circle.

Solution by Harley Flanders, University of California, Berkeley. Represent the curve in polar coordinates by $r = r(\theta)$, a periodic function with $r(\alpha + \pi) = r(\alpha)$. Assume r is differentiable. After multiplying r by a suitable constant, the condition on the centroid is

$$
\left[\int_{\alpha}^{\alpha+\pi} r^3 \cos \theta \, d\theta \right]^2 + \left[\int_{\alpha}^{\alpha+\pi} r^3 \sin \theta \, d\theta \right]^2 = \left[\int_{\alpha}^{\alpha+\pi} r^2 \, d\theta \right]^2
$$

Differentiation with respect to α yields

$$
\cos \alpha \int_{\alpha}^{\alpha+\pi} r^3 \cos \theta \, d\theta + \sin \alpha \int_{\alpha}^{\alpha+\pi} r^3 \sin \theta \, d\theta = 0
$$

and a second differentiation,

$$
-2r^3 - \sin \alpha \int_{\alpha}^{\alpha+\pi} r^3 \cos \theta \, d\theta + \cos \alpha \int_{\alpha}^{\alpha+\pi} r^3 \sin \theta \, d\theta = 0
$$

Another differentiation gives $r' = 0$, whence r is a constant and the curve is a circle.

Editorial Note. The proposer remarks that if the locus of the centroiod were an ellipse instead of a circle, the same argument proves that the original curve must be a homothetic ellipse. He also conjectures that an analogous hypothesis regarding a surface in three-space will lead to a sphere.

Determine the unique solution of the integral equation

\[F(x_1, x_2, \ldots, x_n) = 1 + \int_0^{x_1} \int_0^{x_2} \cdots \int_0^{x_n} F(y_1, y_2, \ldots, y_n) \, dy_1 \, dy_2 \cdots dy_n \]

(The uniqueness when \(n = 2 \) was one of the problems in the 1958 Putnam competition.)

Solution by P. G. Rooney, University of Toronto. Let \(u_0 = 1 \) and

\[u_{r+1}(x_1, \ldots, x_n) = 1 + \int_0^{x_1} \int_0^{x_2} \cdots \int_0^{x_n} u_r(y_1, \ldots, y_n) \, dy_1 \cdots dy_n \]

The, by induction,

\[u_r(x_1, \ldots, x_n) = \sum_{m=0}^{r} (x_1 x_2 \cdots x_n)^m / (m!)^n \]

Clearly \(u(x_1, \ldots, x_n) = \lim u_r(x_1, \ldots, x_n) \) exists uniformly in any bounded region of \(n \)-space, and satisfies the integral equation. Thus a solution is

\[u(x_1, \ldots, x_n) = \sum_{m=0}^{\infty} (x_1 x_2 \cdots x_n)^m / (m!)^n \]

Now, if \(u \) and \(v \) are two bounded measurable solutions and \(w = u - v \), then

\[w(x_1, \ldots, x_n) = \int_0^{x_1} \int_0^{x_2} \cdots \int_0^{x_n} w(y_1, \ldots, y_n) \, dy_1 \cdots dy_n \]

Hence, if \(M \) is a bound for \(|w| \), then by induction

\[|w(x_1, \ldots, x_n)| \leq M|x_1 x_2 \cdots x_n|^m / (m!)^n \to 0 \]

as \(m \to \infty \), and \(u \) is unique.
If \(k \) points are distributed at random at the vertices of a regular \(n \)-gon, determine the probability that the centre of gravity of the \(k \) masses lies in a circle of radius \(r \) about the centre of the \(n \)-gon. What does the probability function reduce to when \(n \to 0 \)?

[[Was a solution ever published??]]

What is the highest order of multiplicity a root can have for the equation

\[x(x - 1)(x - 2) \cdots (x - n + 1) = \lambda? \]

Defining the inverse tangent integral of the second order by

\[Ti_2(x) = \int_0^x \frac{\tan^{-1}(x)}{x} \, dx = \frac{x}{1^2} - \frac{x^3}{3^2} + \frac{x^5}{5^2} - \cdots \]

prove that

\[6Ti_2(1) - 4Ti_2(1/2) - 2Ti_2(1/3) - Ti_2(3/4) = \pi \log 2. \]

The Inverse Tangent Integral

(See L. Lewin, Dilogarithms and Associated Functions, London, 1958, p.37.) The desired result follows upon letting \(y = 1 \).

Editorial Note. The problem and the proposer’s solution were received before the publication of the book. A variety of similar formulas may be obtained, e.g.

\[Ti_2(7/24) + 2Ti_2(1/7) + 6Ti_2(1/3) - 8Ti_2(1/2) + Ti_2(3/4) + (\pi/2) \log(3/2) = 0. \]
If \(a_{n+1} = (1 + a_n a_{n-1})/a_{n-2} \) and \(a_1 = a_2 = a_3 = 1 \), show that \(a_n \) is an integer.

I. Solution by J. L. Pietenpol, Columbia University. Define a sequence \(\{b_n\} \) of integers by
\[
 b_1 = b_2 = b + 3 = 1 \quad b_4 = 2 \quad b_n = 4b_{n-2} - b_{n-4} \quad (n > 4)
\]
Then
\[
 b_{n+1}b_{n-2} - b_nb_{n-2} = (4b_{n-1} - b_{n-2})b_{n-2} - (4b_{n-2} - b_{n-4})b_{n-1}
 = b_{n-1}b_{n-4} - b_{n-2}b_{n-3}
\]
so that, by induction, \(b_{n+1}b_{n-2} - b_nb_{n-2} = 1 \), or \(b_{n+1} = (1 + b_nb_{n-1})/b_{n-2} \), and hence \(\{a_n\} = \{b_n\} \).

II. Solution by H. E. Bray, Rice University. The solution of the problem is implicit in the following

Theorem. If \(a_{n+1} = (k + a_n a_{n-1})/a_{n-2} \) and \(a_1 = a_2 = 1, a_3 = p \), where \(k, p \) are positive integers such that \((k, p) = 1 \), a necessary and sufficient condition that \(a_n \) be an integer is that \(k = rp - 1 \), where \(r \) is an integer.

[[Proof supplied]]

[H. O.] Pollak showed that the recurrence relation gives integers whenever \(a_1, a_2, (a_3 + a_1)/a_2, (a_4 + a_2)/a_3 \) are integers. [R. A.] Spinelli showed that, apart from translations, there are only two different positive integer sequences satisfying the recurrence relation, namely \(a_1 = a_2 = a_3 = 1 \) and \(a_1 = a_3 = 1, a_2 = 2 \).
NUMBER THEORY

Perfect numbers

E 1445. Proposed by M. S. Klamkin, AVCO Research and Advanced Development

A number n is defined as **almost perfect** if $\sum_{d|n} d = 2n \pm 1$. Are there any other almost perfect numbers besides numbers of the form 2^m?

[[This was unsolved, and re-proposed, with an asterisk, fifteen year later, at _Amer. Math. Monthly, 82_(1975) 73, together with the reference

In 2006, the only thing known beyond what is stated in the problem, is that numbers having sum $2n + 1$ must be square.]]

Problem no. 151 in the “Scottish Book” of problems due to Wavre poses the question of the existence of a harmonic function defined in a region containing a cube in its interior such that it vanishes on all its edges. Show that such a function $\neq 0$ exists for any number of dimensions.

Solution by Fred Svorov, Princeton University. Consider

$$h(x_1, x_2, \ldots, x_n) = (\sinh(n - 1)^{1/2}x_1) \cdot (\sin x_2) \cdots (\sin x_n)$$

h is harmonic in n-space and vanishes on the n-cube of side π. (And, of course, many other places.)

Also solved by the proposer[s].
Let $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$. Sum $\sum_1^{\infty} S_n/n!$

II. Solution by J. W. Wrench, Jr., The David Taylor Model Basin, Washington, D.C.

Consider the more general sum $y = \sum_{n=1}^{\infty} S_n x^n/n!$ The function y is found to satisfy the differential equation $xy' - xy = e^x - 1$. The solution, satisfying the condition $y \to 0$ when $x \to 0$, is

$$y = e^x[\gamma + \ln x - Ei(-x)]$$

where γ is Euler’s constant and $Ei(-x) = -\int_x^{\infty} e^{-t}t^{-1}dt$, $x > 0$, is the exponential integral for a negative real argument.

When $x = 1$, we find for the sum of the proposed series the expression $e\cdot[\gamma - Ei(-1)]$, which is numerically equal to 2.16358221532693635942, to 20 decimal places.

III. Comment by J. H. van Lint, Technical University, Eindhoven, Netherlands. The solution can be found in Erdélyi-Magnus-Oberhettinger-Tricomi: Higher Transcendental Functions, part 2, p.143, formula (5).

4983. Proposed by M. S. Klamkin, AVCO Research, and L. A. Shepp, University of California

Determine the number of different products, $P_n(r)$, if the factors are to be taken $r+1$ at a time, in $a_1a_2a_3\cdots a_n$ by inserting parentheses and keeping the order of the elements a_i unchanged. The different products which arise will be due entirely to the nonassociative character of the multiplication. The explicit products for $n = 4$, $r = 1$ are given by

$$(a_1a_2)(a_3a_4), (a_1(a_2(a_3a_4))), (((a_1a_2)a_3)a_4), (a_1((a_2a_3)a_4)), ((a_1(a_2a_3))a_4).$$

Whence, $P_4(1) = 5$. This problem generalizes the case for $r = 1$ (Bateman Project, Higher Transcendental Functions, III, 1955, p.230).

Solution by John B. Kelly, Michigan State University. We follow the method of generating functions given by N. Jacobson (Lectures in Abstract Algebra, vol.I, pp.18–19) for the case $r = 1$. Let

$$y = \sum_{n=1}^{\infty} P_n(r)x^n$$

One easily observes the recursion formula

$$P_n(r) = \sum P_{n_1}(r)P_{n_2}(r)\cdots P_{n_{r+1}}(r)$$
the summation being extended over all solutions of \(n_1 + n_2 + \cdots + n_r + 1 = n\) in non-negative integers. From (1) it follows that \(y^{r+1} - y + x = 0\), whence using a method given by J. S. Frame for inverting trinomials (this MONTHLY, April 1957) we find that

\[
P_n(r) = \begin{cases}
0 & n \not\equiv 1 \pmod{r} \\
\frac{1}{n} \binom{(r+1)k}{k} & n = kr + 1
\end{cases}
\]

(See also Pólya und Szegö, Aufgaben und Lehrsätze aus der Analysis, Berlin, 1954, Bd.I, Aufgabe 211.)

Editorial Note. The present result is included in Some problems of nonassociative combinations, [1] I. M. H. Etherington, Edinburgh Math. Notes, 32(1940) 1–6, and [2] I. M. H. Etherington and A. Erdélyi, ibid., 32(1940) 7–12. It is observed in [1] that \(P_n(r)\) is the number of ways in which a convex polygon with \(n + 1\) sides can be divided into \((r + 2)\)-gons by nonintersecting diagonals.

5014. **Proposed by M. S. Klamkin, AVCO Research, Wilmington, Mass.**

It is well known that an equilateral triangle cannot be imbedded in a square lattice. However, it can be done in a cubic lattice. Can this be extended, i.e. can any regular polygon be imbedded in a cubic lattice of high enough dimension?

Solution by H. E. Chrestenson, Reed College. Suppose that a regular \(n\)-gon is imbedded in a lattice. If \(s\) and \(d\) are the lengths of the sides and the shortest diagonal, respectively, the law of cosines gives

\[
d^2 = 2s^2 - 2s^2 \cos(\pi - 2\pi/n) = 2s^2 + s^2(2\cos 2\pi/n)
\]

Since \(s^2\) and \(d^2\) are integers, \(2\cos 2\pi/n\) must be rational. A theorem of D. H. Lehmer (see I. Niven, Irrational Numbers, Carus Monograph No.11, p.37) states that \(2\cos 2\pi/n\) is an algebraic integer of degree \(\phi(n)/2\). Thus \(\phi(n)\) must be 2, whence \(n\) is 3, 4 or 6.

To imbed a regular hexagon, let the origin and \(A\) and \(B\) be lattice point vertices of an equilateral triangle (e.g. \(A\): (4,1,1) and \(B\): (1,4,1).) By expanding the triangle by a factor of 3 and reflecting in the centroid we see that the origin, \(2A - B\), \(3A\). \(2A + 2B\), \(3B\) and \(2B - A\) are vertices of a regular hexagon. Thus a regular \(n\)-gon can be imbedded in a lattice if and only if \(n\) is 3, 4 or 6, and in these cases a cubic lattice suffices.

71

It is known that (a) any two quadrics which have a common enveloping cone intersect in plane curves, and (b) any two enveloping cones of a quadric intersect in plane curves. Does each of these properties characterize quadrics only?

[[Was a solution ever published? Have I missed it?]]

E 1538. Proposed by M. S. Klamkin and Jerry Yos, AVCO Corporation

A simple closed curve has the property that there exist inscribed squares of the same dimension in every direction. Must the curve be a circle?

Solution by Marlow Sholander, Western Reserve University. No. Each unit square can be inscribed in an “eyepiece” of the spectacle-shaped boundary of the union of circles $(x \pm \sqrt{2})^2 + y^2 \leq 1/2$ with the rectangle $-\sqrt{2} \leq x \leq \sqrt{2}, 1 \leq 2y \leq \sqrt{2}$. (A variation of the spectacles gives the same answer for n-gons.)

II. Solution by Michael Goldberg, Washington, D.C. The curve need not be a circle. Circumscribe a square about an oval of constant width. Holding the oval fixed, rotate the square about the oval. Then all four of the vertices of the square describe a new oval. This new oval is not a circle, yet it has the property that the inscribed square within it may be turned through all orientations. See Michael Goldberg, “Rotors tangent to n fixed circles”, J. Math. Phys., 37(1958) 70.

The proposers furnished a counter-example given by

\[
\begin{align*}
 x &= a \cos \theta + \epsilon \cos 4\theta \\
 y &= a \sin \theta + \epsilon \sin 4\theta
\end{align*}
\]

where $16 \epsilon < a$. Here there is only one square in each direction.

J. J. Schäffer, of the Instituto de Matematica y Estadistica, Monevideo, Uruguay, pointed out that this problem is considered by Günter Lumer in “Polígonos inscriptibles en curvas convexas”, Rev. Un. Mat. Argentina, 17(1955) 97–102. Considerable information, such as the fact that the curve may be convex and have area larger or smaller than the circle, is contained in the paper.
A Well-Known Series

E 1509. Proposed by A. G. Konheim, IBM, Yorktown Heights, New York

With $-1 < t < 1$, sum the series

$$1 + \frac{2}{3} t^2 + \frac{2}{3} \frac{4}{5} t^4 + \frac{2}{3} \frac{4}{5} \frac{6}{7} t^6 + \frac{2}{3} \frac{4}{5} \frac{6}{7} \frac{8}{9} t^8 + \cdots$$

II. Solution by M. S. Klamkin, University of Buffalo. The result follows from the known sum

$$(\sin^{-1} t)^2 = t^2 + \frac{2 t^4}{3 2} + \frac{2}{3} \frac{4}{5} \frac{6}{7} t^6 + \frac{2}{3} \frac{4}{5} \frac{6}{7} \frac{8}{9} + \cdots$$

by differentiating both sides and dividing by $2t$.

E 1588. Proposed by M. S. Klamkin, The State University of New York at Buffalo

An ellipse has the property that the sum of the moments of inertia of its area about two orthogonal tangents is constant. Does this property characterize the ellipse?

Solution by the proposer. It follows from the parallel-axis transfer theorem that in order for this property to hold for a given curve, its orthoptic curve (locus of intersection of orthogonal tangents) must be a circle whose centre coincides with the centroid of the area enclosed by the given curve. Another curve having this property (see R. C. Yates, *A Handbook of Curves and Their Properties*, J. W. Edwards, Ann Arbor, 1947) is the deltoid

$$x = a(2 \cos t + \cos 2t)$$
$$y = a(2 \sin t - \sin 2t)$$

which is a 3-cusped hypocycloid whose orthoptic is the inscribed circle.
Given the infinite permutation
\[P = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \ldots \\ 1 & 2 & 4 & 3 & 5 & 7 & 6 & 8 & 10 & 12 & \ldots \end{pmatrix} \]
where the second row is formed by taking in order from the natural numbers, 1 odd, 2 even, 3 odd, \ldots, 2n even, 2n + 1 odd, \ldots. What is the cycle structure of this permutation?

Solution by George Bergman, Harvard University. Let \(I_n \) designate the set of \(n \) integers \(\{i \mid \frac{1}{2}n(n-1) < i \leq \frac{1}{2}n(n+1)\} \). Examination of the given permutation shows that it acts on \(I_n \) by the law: \(i \rightarrow 21 - u_n \) where \(u_n = \frac{1}{2}n^2 \) if \(n \) is even, \(u_n = \frac{1}{2}(n^2 + 1) \) if \(n \) is odd. The “pivot” of this action is \(u_n \); \(u_n \) is fixed, numbers of \(I_n \) less than \(u_n \) are decreased, numbers of \(I_n \) greater than \(u_n \) are increased.

But we see that even the greatest integer in \(I_n \) is not increased as far as \(u_{n+1} \), and even the least integer in \(I_{n+1} \) is not decreased as far as \(u_n \); hence the interval \(J_n = \{i \mid u_n \leq i < u_{n+1}\} \) is sent into itself. This \(J_n \) contains \(2^{[n/2]} + 1 \) elements. Let us represent them by the integers 0 through \(2^{[n/2]} \), writing \(j \) for \(u_n + j \). Then the action of our permutation is: \(j \rightarrow 2j \) for \(j \leq [n/2] \), \(j \rightarrow 2j - 2^{[n/2]} - 1 \) otherwise. In other words, the elements of \(J_n \) are permuted exactly as the residue classes \(\pmod{2^{[n/2]} + 1} \) are permuted under multiplication by 2.

The nature of the permutation is as follows: for each divisor \(d \) of \(2^{[n/2]} + 1 \), the elements \(i = u_n + j \) of \(J_n \) such that \((2^{[n/2]} + 1, j) = d \) form a cycle of order \(f((2^{[n/2]} + 1)/d) \), where \(f(k) \) is the least \(m \) such that \(k \mid 2^m - 1 \). This number-theoretic function is described in standard texts. For example, let \(n = 15 \), \(J_n = \{i \mid 113 \leq i < 128\} \), represented by \(\{j \mid 0 \leq j < 15\} \). The permutation for these integers is
\[\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 2 & 4 & 6 & 8 & 10 & 12 & 14 & 1 & 3 & 5 & 7 & 9 & 11 & 13 \end{pmatrix} \]
The cycles are given by:
\[d = 1 : \quad (1 2 4 8), \quad (7 14 13 11) \sim (114 115 117 121), \quad (120 127 126 124) \]
\[d = 3 : \quad (3 6 12 9) \sim (116 119 125 122) \]
\[d = 5 : \quad (5 10) \sim (118 123) \]
\[d = 15 : \quad (0) \sim (113) \text{ fixed} \]

\(f \) takes on every integral value (for \(f(2^m - 1) = m \)); therefore all cycles are finite, and there are infinitely many cycles of every finite order.

Polynomial Multiple of a Polynomial

E 1540 [1962, 809]. Proposed by Azriel Rosenfeld, Yeshiva University

Prove that every polynomial has a nonzero polynomial multiple whose exponents are all divisible by 1000000.

I. Solution by M. S. Klamkin, State University of New York at Buffalo. Let the given polynomial be

\[P(x) = \prod_i (x - r_i) \]

Let

\[Q(x) = x^a \prod_i \left[\frac{(x^a - r_i^a)}{(x - r_i)} \right] \]

It follows immediately that \(P(x)Q(x) \) is a polynomial whose exponents are all divisible by \(a \). Now let \(a = 10^6 \).

Expansion of a Definite Integral

5035 [1962, 570]. Proposed by Yoshio Matsuoka, Kagoshima-shi, Japan

Let \(\alpha \) be a fixed positive number. Prove that

\[\int_0^{1/2} t^\alpha \cos^{2n} t \, dt = \frac{1}{2} \Gamma \left(\frac{\alpha + 1}{2} \right) / n^{(\alpha+1)/2} - \frac{1}{12} \Gamma \left(\frac{\alpha + 5}{2} \right) / n^{(\alpha+3)/2} + O(1/n^{(\alpha+5)/2}) \]

as \(n \to \infty \).

Solution by M. S. Klamkin, State University of New York at Buffalo. First expand \(t^\alpha \) into the series

\[t^\alpha = A_1 \sin^\alpha t + A_2 \sin^{\alpha+2} t + A_3 \sin^{\alpha+4} t + \cdots \]

(This is a Lagrange reversion of a power series.) It follows immediately that \(A_1 = 1 \), \(A_2 = \alpha/6 \). Since

\[\int_0^{1/2} \sin^m t \cos^{2n} t \, dt = \frac{\Gamma \left(\frac{m+1}{2} \right) \Gamma(n + \frac{1}{2})}{2\Gamma\left(\frac{m+n+1}{2} \right)} \]

it follows that

\[\int_0^{1/2} t^\alpha \cos^{2n} t \, dt = \frac{\Gamma \left(\frac{\alpha+1}{2} \right) \Gamma(n + \frac{1}{2})}{2\Gamma\left(\frac{\alpha+n+1}{2} \right)} + \frac{\alpha}{12} \frac{\Gamma \left(\frac{\alpha+3}{2} \right) \Gamma(n + \frac{1}{2})}{\Gamma\left(\frac{\alpha+n+2}{2} \right)} + \cdots \]

Expanding out the Gamma functions for large \(n \) by Stirling’s approximation, i.e.,

\[\Gamma(n + 1) = \left(\frac{n}{e} \right)^n \sqrt{2\pi n} \left[1 + \frac{1}{12n} + O \left(\frac{1}{n^2} \right) \right] \]

we obtain the proposed expansion.
Oops! E 1676 Again

E 1721 [1964, 911]. Proposed by J. C. Van Rhijn, Vollenhove, The Netherlands

Given an ellipse E with foci F_1 and F_2, a point P outside E, the tangents PR_1 and PR_2 from P to E, and a positive number f ($0 < f < 1$). Find the locus of P if $PR_1 \cdot PR_2 = f \cdot PF_1 \cdot PF_2$.

Editor's comment: This problem was posed as E 1676 [1964, 317] and a solution published in this Monthly, 72(1965) 188–189.

Comment by M. S. Klamkin, University of Minnesota. The result follows immediately from some results on ellipses in C. Zwikker, Advanced Plane Geometry, North-Holland, Amsterdam (1950) pp.98 & 112: If the parametric equation of the ellipse E is $z = a \cos \theta + b \sin \theta$ and R_1 and R_2 are given by $\theta = u + q$ and $\theta = u - q$ respectively, then

$$-PR_1 \cdot PR_2 = \left(\frac{a + b}{2}\right)^2 e^{2iu} + \left(\frac{a - b}{2}\right)^2 e^{-2iu} - \frac{c^2}{2} \cos 2q \quad (c^2 = a^2 - b^2)$$

and $PF_1 \cdot PF_2 = -PR_1 \cdot PR_2 / \cos^2 q$. If now $|PR_1 \cdot PR_2| = f |PF_1 \cdot PF_2|$, then $\cos^2 q = f$ and P is given by $(a \cos u + ib \sin u) / \cos q$; in other words, the locus of P is an ellipse confocal with E.

Following Zwikker, we then note the following generalization of the usual reflection property of ellipses: The tangents to an ellipse from a point make equal angles with the lines joining that point to the foci.
Inversion of Convolutual Sequences

5231 [1964, 923]. Proposed by H. W. Gould, West Virginia University

Let x, z be real numbers. Prove that each of the following systems implies the other:

\[B_n = \sum_{k=0}^{n} \binom{z}{k} x^k A_{n-k} \quad A_n = \sum_{k=0}^{n} \binom{-z}{k} x^k B_{n-k} \]

I. Solution by M. S. Klamkin, University of Minnesota. If $F(x, z, k)$ and $G(x, z, k)$ satisfy

\[\sum_{k=0}^{\infty} F(x, z, k)t^k \cdot \sum_{k=0}^{\infty} G(x, z, k)t^k \equiv 1 \]

then either of the following systems implies the other:

\[B_n = \sum_{k=0}^{n} F(x, z, k)A_{n-k} \quad A_n = \sum_{k=0}^{n} B_{n-k}G(x, z, k) \]

These transform equations follow by direct substitution and noting that

\[\sum_{k=0}^{s} G(x, z, k)F(x, z, s - k) = \begin{cases} 1 & s = 0 \\ 0 & s > 0 \end{cases} \]

The special case for the present problem requires

\[F(x, z, k) = \binom{z}{k} \quad G(x, z, k) = \binom{-z}{k} \]

\[\sum F \cdot t^k = (1 + xt)^z \quad \sum G \cdot t^k = (1 + xt)^{-s} \]
E 1775 [1965, 316]. Proposed by George Purdy, University of Reading, England

Under what conditions do real \(x_1, \ldots, x_n \) satisfy the equation
\[
x_1^2 + \cdots + x_n^2 = (x_1 + \cdots + x_n)^2/n
\]
for \(n \geq 1 \)?

III. Solution by M. S. Klamkin, Ford Scientific Laboratory, Dearborn, Mich.. The problem here is a special case of a well-known result for convex functions, i.e., if \(\phi(t) \) is convex in \(t \geq 0 \), then
\[
\phi \left(\frac{x_1 + x_2 + \cdots + x_n}{n} \right) \leq \frac{\phi(x_1) + \phi(x_2) + \cdots + \phi(x_n)}{n}
\]
(\(x_i \geq 0 \)), with equality only if the \(x_i \) are equal or \(\phi(t) \) is linear. For the present case \(\phi(t) = t^2 \) and we must have \(x_1 = x_2 = \cdots = x_n \)

Solving \(\sum f(d)f(n/d) = 1 \)

5293 [1965, 555]. Proposed by Martin J. Cohen, Beverly Hills, California

Find a function \(f \) such that \(\sum f(d)f(n/d) = 1 \) for every positive integer \(n \), where the sum is taken over all \(d \) which divide \(n \) (including 1 and \(n \)).

II. Solution by M. S. Klamkin, Ford Motor Company. The problem may be extended to find a function \(F \) such that
\[
\sum_{d_1d_2\cdots d_r=n} F(d_1)F(d_2)\cdots F(d_r) = 1
\]
for every positive integer \(n \) where the sum is taken over all \(d_r \) which divide \(n \) (including 1 and \(n \)).

Consider the formal product of \(r \) identical Dirichlet series:
\[
\left\{ \sum \frac{F(n)}{n^s} \right\} = \sum \frac{G(n)}{n^s}
\]
[See Hardy and Wright, Theory of Numbers, p.248.] Then
\[
G(n) = \sum_{d_1d_2\cdots d_r=n} F(d_1)F(d_2)\cdots F(d_r) = 1
\]
whence,
\[
\sum \frac{F(n)}{n^s} = \zeta(s)^{1/r} = \prod_{\text{primes}} \left(1 - 1/p_n^s\right)^{-1/r}
\]
multiplied possibly by an \(r \) th root of unity. Let
\[
\left\{ 1 - 1/p_n^s \right\}^{-1/r} = 1 + \frac{a_1}{p_n^s} + \frac{a_2}{p_n^{2s}} + \frac{a_3}{p_n^{3s}} + \cdots
\]
then \(a_m = \left(-1/r \right)^m \). It now follows that if
\[
n = p_n^{i_1} \cdot p_n^{i_2} \cdots p - a_n^{i_s}
\]
multiplied by a fixed \(r \) th root of unity. The original problem corresponds to the special case \(r = 2 \).

\textbf{A Special Case of a Theorem of Whitney}

5293 [1965, 555]. Proposed by R. A. Bell, Kansas City, Mo.

Suppose that \(g(x) \) has its first \(n + 1 \) derivatives defined and continuous in \([-1,1]\). Define \(y(x) = g(x)/x \) for \(x \neq 0 \) and \(y(0) = g'(0) \). If \(g(0) = 0 \), prove that \(y^{(n)}(0) = d^n y/dx^n|_{x=0} \) exists and equals \(g^{(n+1)}(0)/(n+1) \).

II. Solution by M. S. Klamkin, Mathematical and Theoretical Sciences Scientific Laboratory, Ford Motor Company, Dearborn, Michigan. Let
\[
D^m[g(x)/x] = F_m(x)/x^{m+1}
\]
so that \(DF_0(x) = D\left\{xD^0[g(x)/x]\right\} = Dg(x) = x g(x) \). Assume that
\[
DF_m(x) = x^m D^{m+1} g(x) \quad (*)
\]
Then
\[
\frac{F_{m+1}(x)}{x^{m+2}} = D^{m+1} \frac{g(x)}{x} = D \frac{F_m(x)}{x^{m+1}} = \frac{x DF_m(x) - (m+1) F_m(x)}{x^{m+1}}
\]
whence \(F_{m+1}(x) = x DF_m(x) - (m+1) F_m(x) \) and
\[
DF_{m+1}(x) = x D^2 F_m(x) - (m+1) DF_m(x)
 = x D[x^m D^{m+1} g(x)] - (m+1) x^m D^{m+1} g(x)
 = x^{m+1} D^{m+1} g(x)
\]
It follows by induction that (*) is true for all nonnegative integers \(m \).

By L'Hospital's Rule, \(\lim_{x \to 0} D^n [g(x)/x] \) will exist if \(\lim_{x \to 0} [DF_n(x)/Dx^{n+1}] \) exists. By (*), this latter limit is \(g^{(n)}(0)/(n+1) \).
A Consequence of Problem 4964

Let $ABCDEF$ be a convex hexagon such that the perimeters of the triangle ABF, BCD, DEF and BDF are the same. Show that the hexagon must be a triangle, that is, it must have three 180° angles. Compare 4964 [1962, 672].

Solution by M. S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan. Draw $\triangle GHI$, where $GB \parallel AC$, $HD \parallel CE$ and $IF \parallel AE$. Since the hexagon is convex it lies inside or on $\triangle GHI$. By the result of problem 4964 [1962,672], the perimeter of $\triangle BFD$ cannot be less than each of the triangles GFB, FDI and BDH, and if $\triangle BFD$ has the same perimeter as one of these other triangles, then all the four triangles have the same perimeter. Since $\triangle ABF \leq \triangle GFB$ in perimeter and similarly for the other two pairs of triangles, $\angle ABC = \angle CDE = \angle EFA = \pi$, and the hexagon is a triangle. The above result would still be valid if we replaced “perimeter” of the triangles by “area”. This follows from a corresponding result to problem 4964 and is also a solved problem in this MONTHLY.

An Asymptotic Formula

Show that, as $n \to \infty$, $s(n) = 1^n + 2^n + 3^n + \cdots + n^n$ is asymptotic to $e n^n/(e - 1)$.

Solution by M. S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan. Let $\nu(n) \geq 0$ for $n = 1, 2, 3, \ldots$, and set $S(n) = \sum_{r=1}^{n} r^{\nu(n)}$. By Maclaurin’s Integral Test,

$$S(n) \geq \int_{0}^{n} x^{\nu(n)} dx \geq S(n) - n^{\nu(n)}$$

Consequently,

1. If $\nu(n)/n \to 0$, then $S(n) \sim n^{\nu(n)}/[1 + \nu(n)]$
2. If $n/\nu(n) \to 0$, then $S(n) \sim n^{\nu(n)}$
3. If $\nu(n)/n \to a+ > 0$, then $1/a \leq S(n) \leq 1 + 1/a$

In Case 3 we have

$$S(n)/n^{\nu(n)} = \sum_{r=0}^{n-1} \exp[\nu(n) \log(1 - 1/n)] = \sum_{r=0}^{n-1} \exp[-\nu(n)][r/n + O(r^2/n^2)]$$

$$= \sum_{r=0}^{n-1} e^{-ar} O(1) \to \sum_{r=0}^{\infty} e^{-ar} = \frac{e^a}{e^a - 1}$$

by Tannery’s theorem [see, for example, T. J. Bromwich, Introduction to the Theory of Infinite Series, 2nd ed.(1925) p.136].

A Consequence of the Mean Value Theorem

E 1802 [1965, 666]. Proposed by Dov Avishalom, Tel-Aviv, Israel

For functions of class \(C_n \) prove that

\[
f^{(n)}(a) = \lim_{h \to 0} \left\{ \frac{1}{h^n} \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f(a + kh) \right\}
\]

I. Solution by M. S. Klamkin, Ford Scientific Laboratory. First, it is well known that

\[
\sum_{k=0}^{n} (-1)^k k^r \binom{n}{k} = \begin{cases}
0 & (r = 0, 1, \ldots, n-1) \\
n! & (r = n)
\end{cases}
\]

(Easily proved by differentiating \((1 - x)^n = \sum_{k=0}^{n} (-1)^k \binom{n}{k} x^k\) \(r\) times \((r \leq n)\) and evaluating at \(x = 1\).) Consequently, it follows from L’Hospital’s rule that the desired limit equals

\[
\frac{1}{n!} \left\{ D^n \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} F(a + kh) \right\}_{k=0} = F^n(a).
\]

5461. proposed by M. S. Klamkin, Ford Scientific Laboratory

Show that it is possible in \(E_n \) to have \(n + 1 \) mutually orthogonal spheres. What is the maximum number of such spheres?

Solution by Seymour Schuster, University of Minnesota. Consider a hypersphere of unit radius centred at the origin of a rectangular coordinate system in \(E_n \). An inversion with respect to any hypersphere whose centre is two units from the origin transforms the \(n \) coordinate hyperplanes and the unit hypersphere into \(n + 1 \) mutually orthogonal hyperspheres.

Conversely any \(n \) mutually orthogonal hyperspheres can be inverted into \(n \) mutually orthogonal hyperplanes, and we recall that \(n \) is the maximum number of mutually orthogonal hyperplanes in \(n \)-space. Any two distinct hyperspheres orthogonal to \(n \) mutually orthogonal hyperplanes must be concentric. Thus \(n + 1 \) is the maximum number of mutually orthogonal hyperspheres in \(E_n \).

J. D. E. Konhauser states that the number is \(n + 2 \) if imaginary hyperspheres are admitted.

E 1966. proposed by M. S. Klamkin, Ford Scientific Laboratory

Show how to construct a regular tetrahedron if the vertices lie on four given parallel planes.

Solution by the proposer. Let the distances between successive planes be a, b and c. Starting with any regular tetrahedron, locate points D, E on edge OA such that $OD : DE : EA = a : b : c$. On edge OB locate F such that $OF : FB = a : b$. Now draw a plane through O, a plane through B and E and a plane through A all parallel to the plane through F, D and C.

This gives us a configuration similar to the one we wish to construct, which can now be done by similar figures.

[V. F.] Ivanoff notes that it is possible to construct a tetrahedron under the given conditions similar to any given tetrahedron.

[[In connexion with the next item, I'm sure that ‘Sheila M. Kaye’ of McGill is Murray!]]

On Commutative Rings

5377 [1966, 312]. proposed by Erwin Just and Norman Schaumberger, Bronx Community College

In a ring R each element x satisfies the equation $x = x^{n+1}$ for some integer n. Prove that $x^n y = y x^n$ for each x and y contained in R.

I. Solution by Sheila M. Kaye, McGill University. We must assume $n \equiv n(x) > 0$.

(a) $x^n(x)$ is idempotent, since $(x^n(x))^2 = x^{n(x)+1} x^{n(x)-1} = x^{n(x)}$.

(b) Let $ab = 0$. Then $ba = (ba)^n(ba) + 1 = b(ab)^n(ba) a = 0$.

(c) Let x, $y \in R$ and let $n = n(x)$. Then from (a), $y x^n = y x^{2n}$, whence $(y - y x^n) x^n = 0$. Also from (b), $x^n(y - y x^n) = 0$, so that $x^n y = x^n y x^n$.

(d) Similarly, from $x^n y = x^{2n} y$, we deduce $y x^n = x^n y x^n$, which completes the proof.
E 1884 [1966, 411]. proposed by A. F. Beardon, University of Maryland

Prove that the series
\[\sum_{n_1, \ldots, n_k} \frac{1}{(n_1^2 + \cdots + N^2)^p} \]
converges if and only if \(p > k/2 \).

II. Solution by M. S. Klamkin, Ford Scientific Laboratory. By the integral test (for \(m \) dimensions) the series will converge or diverge with the integral
\[\int_1^\infty \int_1^\infty \cdots \int_1^\infty \frac{dn_1 dn_2 \cdots dn_k}{(n_1^2 + n_2^2 + \cdots + n_k^2)^p} \]
or equivalently (using spherical coordinates) with the integral
\[\int_1^\infty \frac{d\rho_1}{(\rho_1^2 + \rho_2^2 + \cdots + \rho_k^2)^p} \]
which converges if and only if \(2p - k + 1 > 1 \), or \(p > k/2 \).

We are assuming \(p \) is a constant, otherwise the result is not valid, e.g., \(\sum_{n=1}^\infty n^{1+1/n} \) diverges.

Minors of a Bidiagonal Matrix
5377 [1966, 312]. proposed by D. Ž. Djoković, University of Belgrade, Yugoslavia

Let \(A_n = (a_{ij}) \) be an \(n \times n \) matrix such that \(a_{ii} = a_i, i = 1, 2, \ldots, n; a_{i,i+1} = b_i, i = 1, 2, \ldots, n - 1; a_{ij} = 0 \) otherwise. Let \(M \) be the minor of \(\det A_n \) obtained by deleting the rows \(i_1, i_2, \ldots, i_k \) (\(1 \leq i_1 < i_2 < \cdots < i_k \leq n \)) and the columns \(j_1, j_2, \ldots, j_k \) (\(1 \leq j_1 < j_2 < \cdots < j_k \leq n \)). Prove that
\[M = (a_1 a_2 \cdots a_{i_1-1})(b_{i_1} b_{i_1+1} \cdots b_{i_k-1})(a_{i_1+1} a_{i_1+2} \cdots a_{j_2-1}) \]
\[\cdot (b_{j_2} b_{j_2+1} \cdots b_{j_k-1})(a_{j_2+1} a_{j_2+2} \cdots a_{j_k-1}) \]
\[\cdot (a_{j_k+1} a_{j_k+2} \cdots a_n) \]
if \(1 \leq j_1 < j_2 < i_2 < j_3 < \cdots < j_k \leq i_k \leq n \); \(M = 0 \) otherwise. We take \((a_r a_{r+1} \cdots a_s) = 1 \) whenever \(s < r \).

Solution by M. S. Klamkin, Ford Scientific Laboratory. We employ induction. Assume that the result hold for all matrices \(A_r, r = 1, 2, \ldots, n \) and for all \(k = 1, 2, \ldots, r \). Now consider \(A_{n+1} \). If \(n + 1 = j_k > i_k \) then \(A_{n+1} = 0 \). If \(n + 1 = i_k > j_k \) delete row \(i_k \) and column \(j_k \) and expand by minors using the last column, giving \(b A_{n-1} \). If \(i_k \) and \(j_k < n + 1 \), then \(A_{n+1} = a_{n+1} A_n \). By the inductive hypothesis the result also holds for \(A_{n+1} \). Since it clearly holds for \(A_2 \) it is valid for all \(A_n \).
Sums of Powers of Integers

E 2136 [1968, 1113]. proposed by A. Inselberg and B. Dimsdale, IBM Los Angeles Scientific Center

Let

\[S_r = \sum_{k=1}^{n} k^r \]

It is well known that \(S_3 = S_1^2 \). Are there other values of \(p, q, u, v \) such that \(S_u^p = S_v^q \) for all \(n \)?

Solution by M. S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan. We will consider \(p, q, u, v \) to be any real numbers. By the Euler-MacLaurin expansion, the first few terms of the asymptotic expansion of \(S_r \) for \(r > -1 \) is given by

\[S_r \sim \frac{n^{r+1}}{r+1} + \frac{1}{2} n^r + \frac{rn^{r-1}}{12} + \cdots \]

Thus

\[S_u^p \sim \left(\frac{n^{p+1}}{p+1} \right)^u \left\{ 1 + \frac{p+1}{2n} + \frac{p(p+1)}{12n^2} + \cdots \right\}^u \]

\[S_v^q \sim \left(\frac{n^{q+1}}{q+1} \right)^v \left\{ 1 + \frac{q+1}{2n} + \frac{q(q+1)}{12n^2} + \cdots \right\}^v \]

Since \(S_u^p = S_v^q \) for all \(n \), we must have by equating the first few terms of the expansion that

\[(p+1)^u = (q+1)^v \]

\[(p+1)^u = (q+1)^v \]

\[\frac{u(u-1)(p+1)^2}{8} + \frac{up(p+1)}{12} = \frac{v(v-1)(q+1)^2}{8} + \frac{vq(q+1)}{12} \]

(assuming that there are at least three terms in both expansions). It now follows from (2) and (3) that \(p = q \) and then that \(u = v \). If the expansion of \(S_p \) has less than three terms, then \(p = 0 \) or \(p = 1 \). In this case the term \(up(p+1)/12 \) does not appear in (3). This then leads to \(q = 3p \). Thus for \(p = 1 \), either \(q = 1 \) or \(q = 3 \), and for \(p = 0 \), \(q = 0 \).

We now consider the cases \(p, q \leq 1 \). The case \(p = -1 \neq q \) is ruled out since here \(S_p \sim \ln n \) and \(S_q \) is not. For \(p, q < -1 \) we have

\[S_u^p \sim \left\{ \zeta(-p) - \frac{n^{p+1}}{p+1} + \frac{n^p}{2} - \cdots \right\}^u \]
On comparison of the first two terms of the expansion for S^u_p with that for S^u_q we must have $p = q$.

Thus the only solution is the known identity $S_3 = S_2^2$.

[John]Ivie and many others note that the solution is well known and has been published. See D. Allison, *A note on sums of powers of integers*, this MONTHLY, 1961, p.272. A related result is developed in S. Cavior, *A theorem on power sums*, in the April 1968 Fibonacci Quarterly, pp.157–161. He considers the more general problem of finding polynomials

$$f(x) = \sum_{i=0}^{r} a_i x^i \quad g(x) = \sum_{i=0}^{s} b_i x^i$$

over the real field such that

$$\{f(1) + \cdots + f(n)\}^p = \{g(1) + \cdots + g(n)\}^q$$

for positive integral r, p, s, q. For this condition to hold, it is shown that the only monic solutions occur when $p = 2, q = 1$ and

$$f(x) = a + x \quad g(x) = x^3 + 3ax^2 + (2a^2 - a)x - a^2$$

where a is an arbitrary real constant. (For $a = 0$ this is the result of the present problem.) Cavior also considers the problem of finding non-monic polynomials f and g for arbitrary p and q, and proves a general theorem.

E 2197. *Proposed by M. S. Klamkin, Ford Scientific Laboratory and D. J. Newman, Yeshiva University*

Solve the functional equation $F(x^m) = [F(x)]^n$.

[[Was a solution ever published??]]

Solution by the proposers. Let $\log F(x) = G(x)(\log x)^\alpha$ where $\alpha = (\log n)/(\log m)$. Then $G(x^m) = G(x)$. A general solution for $G(x)$ is $G(x) = H(\log \log x)$, where H is periodic with period $\log m$. Thus

$$F(x) = \exp[H(\log \log x) \cdot (\log x)^\alpha]$$

It is to be noted that the problem was deliberately incompletely formulated in that no class of functions F and no domain of x were specified, nor the constants m and n. If $F(x)$ is to be real, then it is assumed that $x > 1$. In the above it is also assumed that $m, n > 0$ and $m \neq 1$. (The case $m = 1$ is easily handled. If $mn = 0$, the equation may be solved by inspection. The above solution is also valid when m, n are not bothpositive, provided α can be chosen so that $m^\alpha = n$.)
E 2203*. Proposed by M. S. Klamkin, Ford Scientific Laboratory

It is known that if $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n$, $(n \geq 3)$, then

$$x_1^{x_2} x_2^{x_3} \cdots x_n^{x_1} \geq x_2^{x_3} x_3^{x_4} \cdots x_1^{x_n}$$

Are there any other nontrivial permutations $\{a_1\}$ and $\{b_i\}$ of the $\{x_i\}$ such that

$$a_1^{a_2} a_2^{a_3} \cdots a_n^{a_1} \geq b_2^{b_3} b_3^{b_4} \cdots b_n^{b_1}$$

Solution (adapted) by G. L. Watson, University College, London, England. For $n = 3$ there is no other nontrivial permutation of the x_i of the form required. For $n = 4$ there are other solutions. For one such solution, note that $x_3/x_1 \geq 1$, $x_4/x_3 \geq 1$, $x_3 - x_2 \geq 0$, $x_3 - x_1 \geq 0$ imply

$$(x_3/x_1)^{x_3-x_2} (x_4/x_3)^{x_3-x_1} \geq 1$$

whence (upon multiplying both sides by $x_2^{x_4}/x_3^{x_3}$)

$$x_1^{x_2} x_2^{x_4} x_4^{x_3} x_3^{x_1} \geq x_1^{x_3} x_3^{x_2} x_2^{x_4} x_4^{x_1}$$

For $n > 4$, the possibilities increase rapidly. For example, with $n = 5$,

$$(x_5/x_2)^{x_4-x_3} (x_2/x_1)^{x_5-x_2} \geq 1$$

implies

$$x_1^{x_2} x_2^{x_3} x_3^{x_5} x_5^{x_4} x_4^{x_1} \geq x_1^{x_5} x_5^{x_3} x_3^{x_2} x_2^{x_4} x_4^{x_1}$$

Find the general solution of the differential equation

\[[xD^{n+1} + 2nD^n - xD - n]y = 0. \]

\textbf{Solution by Robert Heller, Mississippi State University.} It can be shown by induction that \(xD^n + nD^{n-1} = D^n x\) from which it follows that the given equation may be written \((D^n - 1)(xD + n)y = 0\). Hence

\[(xD + n)y = \sum_{k=1}^{n} c_k e^{a_k x} \]

where \(a_1, \ldots, a_n\) are the \(n\) distinct \(n\)th roots of unity. Multiplication by \(x^{n-1}\) gives

\[D(x^n y) = \sum_{k=1}^{n} c_k x^{n-1} e^{a_k x} \]

Repeated integration by parts shows that

\[x^n y = c_0 + \sum_{k=1}^{n} \left[c_k e^{a_k x} \sum_{p=1}^{n} \left((-1)^{p-1} \frac{(n-1)!}{(n-p)!} (a_k x)^{n-p} \right) \right] \]

Taking limits of both sides as \(x \to 0\) we see that although solutions \(y\) may exist on \((-\infty, \infty)\), such solutions are not expressed with precisely \(n + 1\) arbitrary constants. On \((-\infty, 0)\) or on \((0, \infty)\) we have the general solution

\[y = c_0 x^{-n} + x^{-n} \sum_{k=1}^{n} \left[c_k e^{a_k x} \sum_{p=1}^{n} \left((-1)^{p-1} \frac{(n-1)!}{(n-p)!} (a_k x)^{n-p} \right) \right] \]
E 2209. Proposed by M. S. Klamkin, Ford Scientific Laboratory

Determine the locus of the centroids of all triangles similar to a given triangle and inscribed in another given triangle.

Solution by Michael Goldberg, Washington, D.C. If a triangle of given shape grows so that the vertices trace fixed straight lines in the plane, then every point of the triangle will trace a straight line.

If the fixed straight lines are the sides of the triangle ABC, and the variable inscribed triangle is DEF, then its centroid P describes a straight line. However, there are some orientations for which the vertices of DEF cannot be confined to the straight line segments of the triangle ABC. Also, as DEF is turned, the motion of the vertices will change direction as they shift from one line of ABC to another line of ABC. Hence the complete locus of the centroid consists of three straight line segments, shown in dotted lines in the figure.

If, in addition to direct symmetry, reflected symmetry is acceptable, then three more straight line segments are to be added to the locus of the centroid.

[[The above picture is a special case — in simplifying the calculations I inadvertently made the two triangles similar. Here is the more general picture, with the reflected segments shown dashed. — I've gone mad and given dotted only; dashed only (the inner triangle ought to be reflected here); both; and enlarged — take your pic!! R.]]
Several solvers called attention to the well-known underlying theorem which can be found in Peterson’s text, also Johnson’s, and elsewhere.
It is intuitive that every simple \(n \)-gon \((n > 3)\) possesses at least one interior diagonal. For a simple \(n \)-gon what is the least number of diagonals which, except for their endpoints, lie wholly in its interior?

\[\text{Amer. Math. Monthly, 77(1970) 1111–1112.} \]

\[\text{Solution by Anders Bager, Hjørring, Denmark.} \]

The two tangents from a point \(P \) outside a circle \(\Gamma \) touch \(\Gamma \) in points \(A \) and \(B \). Connect \(A \) and \(B \) with a broken line consisting of \(n - 2 \) chords succeeding each other along the smaller arc from \(A \) to \(B \). Join \(P \) to \(A \) and \(B \) to obtain a simple \(n \)-gon with exactly \(n - 3 \) inner diagonals (all issuing from \(P \)).

The number \(n - 3 \) is minimal. This is trivially so if \(n = 3 \). Suppose it true for some \(n \) and consider an arbitrary simple \((n + 1)\)-gon. From this cut off a triangle such that two sides are sides of the \((n + 1)\)-gon, and the third side an inner diagonal. This is always possible and leaves a simple \(n \)-gon which, by assumption, has at least \(n - 3 \) inner diagonals. Hence the \((n + 1)\)-gon has at least \((n - 3) + 1 = (n + 1) - 3 \) inner diagonals. Thus the assertion of the problem is true by induction.

[[Also solved by ten others, including the proposers and . . .]]]

R. B. Eggleton establishes the result that a simple \(n \)-gon has precisely \(n - 3 \) inner diagonals if and only if no two of its diagonals intersect.

Given N, what is the smallest W for which $B_1 + B_2 + \cdots + B_c = W$ and $B_1 B_2 \cdots B_c \geq N$ with all B_k positive integers.

Note. The statement of the problem is ambiguous since it is not clear whether the integer c is fixed. Solutions were submitted for both cases.

I. (c fixed.) Solution by David Zeitlin, Minneapolis, Minnesota. From the arithmetic-geometric inequality, we have

$$\frac{W}{c} = \frac{B_1 + B_2 + \cdots + B_c}{c} \geq \sqrt[c]{B_1 B_2 \cdots B_c} \geq \sqrt[n]{n}$$

Thus $W = c\sqrt[N]{N}$ if integral; otherwise $W = \left[c\sqrt[N]{N} \right] + 1$.

II. (c not fixed.) Solution by M. S. Klamkin, Ford Scientific Laboratory. The dual of this problem is to find the largest number which can be obtained as the product of positive integers whose sum is $\leq S$. This problem was proposed by Leo Moser and solved by L. Carlitz [Problem 125, Pi Mu Epsilon Journal, Fall, 1961]. If $P(S)$ denotes the maximum product, it was shown that

$$P(S) = \begin{cases}
3^m & \text{if } S = 3m \\
4 \cdot 3^{m-1} & \text{if } S = 3m + 1 \\
2 \cdot 3^m & \text{if } S = 3m + 2
\end{cases}$$

Here S is partitioned into as many 3s as possible.

It now follows immediately that if $P(S) + 1 \leq N \leq P(S + 1)$ then $W_{\text{min}} = S + 1$ (the corresponding partition is not unique in general).
Which of the two integrals
\[\int_0^1 x^x \, dx \quad \text{or} \quad \int_0^1 \int_0^1 (xy)^{xy} \, dxdy \]
is larger?

Solution by R. A. Groeneveld, Mount Holyoke College. Making the substitution \(u = xy \), the second integral may be written
\[\int_0^1 \int_0^1 \frac{u}{x} \, dxdu = -\int_0^1 u^\nu (\log u) \, du \]

Since
\[\int_0^1 u^\nu (1 + \log u) \, du = u^\nu \bigg|_0^1 = 0 \]
the two stated integrals are equal.

J. Gillis proves the following generalization: Define
\[I_r = \int_0^1 \int_0^1 \cdots \int_0^1 (x_1 x_2 \cdots x_r)^{x_1 x_2 \cdots x_r} \, dx_1 dx_2 \cdots dx_r \]
r = 1, 2, \ldots. Then \(I_1 = I_2 < I_3 < I_4 < \cdots \), and \(\lim_{r \to \infty} I_r = 1 \). [M. M.] Klein reports the computer value of \(I_1 \) is 0.78343051.

II. Comment by C. D. Olds, San Jose State College. For readers who wonder how the computer value reported by Klein might be obtained, the following manipulations (easily justified) may be of interest.

\[I = \int_0^1 x^x \, dx = \int_0^1 e^{x \ln x} \, dx = \int_0^1 \sum_{n=0}^{\infty} \frac{(x \ln x)^n}{n!} \, dx \]
\[= \sum_{n=0}^{\infty} \frac{1}{n!} \int_0^1 (x \ln x)^n \, dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)^{n+1}n!} \int_0^\infty e^{-t^n} \, dt \]
\[= \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)^{n+1}n!} \Gamma(n+1) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)^{n+1}} = 0.78343051 \ldots \]

The series is particularly attractive because of its rapid convergence.
E 2226. Proposed by M. S. Klamkin, Ford Scientific Laboratory

If one altitude of a tetrahedron intersects two other altitudes, then all four altitudes are concurrent.

II. Solution by Simeon Reich, Israel Institute of Technology. Let $ABCD$ be the given tetrahedron, and let h_A intersect h_B and h_C. Then AB is perpendicular to CD and AC is perpendicular to BD (Nathan Altshiller-Court, Modern Plane Solid Geometry, 2nd Ed., §204). This can be expressed by

$$AB \cdot (AD - BC) = 0 \quad AC \cdot (AD - AB) = 0$$

Hence $AD \cdot (AB - AC) = 0$. That is, AD is perpendicular to BC. It follows that the altitudes are concurrent (loc. cit. §208, §212).

E 2231*. Proposed by M. S. Klamkin, Ford Scientific Laboratory

It is a known result that if the centroid of the vertices and the centroid of the area (both uniformly weighted) of a quadrilateral coincide, then the figure is a parallelogram. If the centroids of the vertices, of the edges, and of the area (all uniformly weighted) of a pentagon all coincide, must the figure be a regular pentagon?

Solution by W. G. Wild, Wisconsin State University. The answer is no.

Consider the pentagon with vertices at $(\pm 7k/20, 0)$, $(\pm k/2, 4/7)$ and $(0,1)$. The centroids of the area and of the vertices coincide at $(0, 3/7)$. The centroid of the edges is located at the solution of the equation

$$\frac{3}{7} = \frac{\frac{11}{7} \sqrt{\left(\frac{k}{2}\right)^2 + \left(\frac{3}{7}\right)^2} + \frac{4}{7} \sqrt{\left(\frac{3k}{20}\right)^2 + \left(\frac{4}{7}\right)^2}}{\frac{7}{10}k + 2\sqrt{\left(\frac{k}{2}\right)^2 + \left(\frac{3}{7}\right)^2} + 2\sqrt{\left(\frac{3k}{20}\right)^2 + \left(\frac{4}{7}\right)^2}}$$

(The first moment of the edge masses about the x-axis divided by the total edge mass.) These turn out to be $k = \pm 1.04228$ and ± 2.59575.

A more general solution is provided by studying the pentagon with vertices at $(\pm ak/2, 0)$, $(\pm k/2, b)$, $(0,1)$. The centroid of the vertices is at $(0, (2b + 1)/5)$ and if a is equal to $(2 - b)/(3b + b^2)$, then the area centroid coincides with that of the vertices, designated by $(0, \bar{y})$, and the relation (analogous to the one in the special case above) which expresses \bar{y} as a function of k assures us that the centroid of the edge can be made to coincide if the equation has solutions. The related existence study is routine but tedious.
The solution may be corrected as follows. Evidently the leading terms of p and t for f/g then we can write

$$[g(x)f'(x) - f(x)g'(x)]/[g(x)]^2 = 1/p(x)$$

where p is a polynomial. If $x - r$ is a (possibly complex) factor of the numerator on the left, it divides $[g(x)]^2$, so divides $g(x)$, so divides $f(x)g'(x)$, and therefore $g'(x)$; thus $(x - r)^2 | g(x)$. By induction one finds that if $(x - r)^m$ divides the numerator then $(x - r)^m | g'(x)$ and $(x - r)^{m+1} | g(x)$. Thus the two terms in the numerator separately divide $[g(x)]^2$. Since $f(x)$ and $g(x)$ are relatively prime, $f(x)$ is a constant. Thus $g'(x) | [g(x)]^2$ and every linear factor of $g'(x)$ divides $g(x)$. It follows that if $(x - r)^m | g'(x)$ then $(x - r)^{m+1} | g(x)$. Since the degree of $g(x)$ is only one more than that of $g'(x)$, $g(x)$ cannot have two different linear factors. The desired result follows.

Amer. Math. Monthly, 78(1971) 905.

Comment and solution by L. R. Abramson, Riverside Research Institute, New York.

The published solution I is in error: if f, g and p are polynomials such that f/g is in its lowest terms and $(f/g)' = 1/p$, then f need not be constant, for it is not necessarily true that each of fg', gf' divides g^2. For example, let $f(x) = x - 1$, $g(x) = x$ and $p(x) = 1/x^2$.

The solution may be corrected as follows. Evidently $\deg f \leq \deg g$. If $\deg f = \deg g$, then we can write $f/g = c + f_1/g$ where $\deg f_1 < \deg g$. Since f_1/g is another antiderivative for p, there is no loss of generality in assuming that $\deg f < \deg g$. Let the leading terms of f and g be respectively ax^s and bx^t. Then the leading term of $gf' - fg'$ is $ab(s - t)x^{s+t-1}$, since $s - t \neq 0$. Inspection rules out the cases $s = 0$, $t = 1$ and $s = 1$, $t = 0$; hence $s + t \geq 2$ and so $s + t_1 \geq 1$. As in the published solution every m-fold root of $gf' - fg'$ is an $(m + 1)$-fold root of g. Thus $t = \deg g \geq (s + t - 1) + d$, where d is the number of distinct roots of $gf' - fg'$. But $d \geq 1$, whence $s = 0$ and $d = 1$. In other words, f is constant and g' has exactly one distinct linear factor; i.e., $g(x) = (ax + b)^n$ for some $n \geq 2$.

Amer. Math. Monthly, 78(1971) 905.

E 2197. Proposed by M. S. Klamkin, Ford Scientific Laboratory and D. J. Newman, Yeshiva University

Show that if the integral of the reciprocal of a nonconstant polynomial is a rational function, then the polynomial must be of the form $(ax + b)^n$.

Amer. Math. Monthly, 78(1971) 408.

Solution by G. A. Heuer and C. V. Heuer, Concordia College. If the rational function, in its lowest terms, is $f(x)/g(x)$, f and g polynomials, then

$$[g(x)f'(x) - f(x)g'(x)]/[g(x)]^2 = 1/p(x)$$

where p is a polynomial. If $x - r$ is a (possibly complex) factor of the numerator on the left, it divides $[g(x)]^2$, so divides $g(x)$, so divides $f(x)g'(x)$, and therefore $g'(x)$; thus $(x - r)^2 | g(x)$. By induction one finds that if $(x - r)^m$ divides the numerator then $(x - r)^m | g'(x)$ and $(x - r)^{m+1} | g(x)$. Thus the two terms in the numerator separately divide $[g(x)]^2$. Since $f(x)$ and $g(x)$ are relatively prime, $f(x)$ is a constant. Thus $g'(x) | [g(x)]^2$ and every linear factor of $g'(x)$ divides $g(x)$. It follows that if $(x - r)^m | g'(x)$ then $(x - r)^{m+1} | g(x)$. Since the degree of $g(x)$ is only one more than that of $g'(x)$, $g(x)$ cannot have two different linear factors. The desired result follows.

Amer. Math. Monthly, 78(1971) 905.

Comment and solution by L. R. Abramson, Riverside Research Institute, New York.

The published solution I is in error: if f, g and p are polynomials such that f/g is in its lowest terms and $(f/g)' = 1/p$, then f need not be constant, for it is not necessarily true that each of fg', gf' divides g^2. For example, let $f(x) = x - 1$, $g(x) = x$ and $p(x) = 1/x^2$.

The solution may be corrected as follows. Evidently $\deg f \leq \deg g$. If $\deg f = \deg g$, then we can write $f/g = c + f_1/g$ where $\deg f_1 < \deg g$. Since f_1/g is another antiderivative for p, there is no loss of generality in assuming that $\deg f < \deg g$. Let the leading terms of f and g be respectively ax^s and bx^t. Then the leading term of $gf' - fg'$ is $ab(s - t)x^{s+t-1}$, since $s - t \neq 0$. Inspection rules out the cases $s = 0$, $t = 1$ and $s = 1$, $t = 0$; hence $s + t \geq 2$ and so $s + t_1 \geq 1$. As in the published solution every m-fold root of $gf' - fg'$ is an $(m + 1)$-fold root of g. Thus $t = \deg g \geq (s + t - 1) + d$, where d is the number of distinct roots of $gf' - fg'$. But $d \geq 1$, whence $s = 0$ and $d = 1$. In other words, f is constant and g' has exactly one distinct linear factor; i.e., $g(x) = (ax + b)^n$ for some $n \geq 2$.

Amer. Math. Monthly, 78(1971) 905.
Solve the nonlinear difference equation of \(r \) th order

\[
D_n = a_1 D_{n-1}^{m+1} + a_2 D_{n-1}^m D_{n+1}^{m+1} + \cdots + a_r D_{n-1-r}^m D_{n+1}^{m+1}
\]

\((m, r, a - i \text{ constants}).\)

\[[\text{I can’t make sense of the superscripts, but that doesn’t necessarily mean anything. Later: there’s a correction on p.774, taking out + signs from round the second \cdots !]}\]

Solution by the proposer. By considering the case \(r = 2 \), one is led, after some trial and error, to rewrite the given equation in the form

\[
1 = a_1 \phi_n + a_2 \phi_n \phi_{n-1} + \cdots + a_r \phi_n \phi_{n-1} \cdots \phi_{n-r+1}
\]

in which we have replaced \(D_{n-1}^{m+1}/D_n \) by \(\phi_n \). By letting \(\phi_n = \psi_n/\psi_{n+1} \) we obtain the linear difference equation

\[
\psi_{n+1} = a_1 \psi_n + a_2 \psi_{n-1} + \cdots + a_r \psi_{n-r+1}
\]

which has the general solution

\[
\psi_n = \sum_{i=1}^{r} k_i R_i^n
\]

where \(R_i \) are the roots of \(x^r = a_1 x^{r-1} + a_2 x^{r-2} + \cdots + a_r \)

Retracing our substitutions, we get in turn

\[
\phi_n = \psi_n/\psi_{n+1} \quad D_n \phi_n = D_{n-1}^{m+1}
\]

or equivalently, \(\log D_n = (m + 1) \log D_{n-1} - \log \phi_n \). Let \(\log D_n = (m + 1)^n A_n \); then \(A_n - A_{n-1} = -\log \phi_n^{(m+1)^{-n}} \). Thus

\[
A_n = -\log \left\{ e^{-A_0} \prod_{j=1}^{n} \phi_j^{(m+1)^{-j}} \right\}
\]

and finally

\[
D_n = e^{A_0(m+1)^n} \prod_{j=1}^{n} \phi_j^{-(m+1)^{n-j}}
\]

The equation arose as a generalization in a study of the frequency spectrum of a mass-spring system which forms a rooted Cayley tree.
Let \(L(a, c) \) equal the perimeter of an ellipse with semi-axes \(a \) and \(c \) (\(a \geq c \)). Show that if \(a \geq b \), then

\[
L^2(a, c) - 16a^2 \geq L^2(b, c) - 16b^2
\]

Solution by K. F. Andersen, Royal Roads Military College, Victoria, B.C. Parameterize the ellipse in the usual trigonometric manner and then let

\[
n = n(t) = (a^2 \sin^2 t + c^2 \cos^2 t)^{1/2} \quad v = v(t) = (b^2 \sin^2 t + c^2 \cos^2 t)^{1/2}
\]

Then \(u \geq v \) since \(a \geq b \), and by Schwartz’s inequality we obtain:

\[
L^2(a, c) - L^2(b, c) = (L(a, c) - L(b, c))(L(a, c) + L(b, c))
\]

\[
= \left(\int_0^{2\pi} (u - v) \, dt \right) \left(\int_0^{2\pi} (u + v) \, dt \right)
\]

\[
= \left(\int_0^{2\pi} \frac{u^2 - v^2}{u + v} \, dt \right) \left(\int_0^{2\pi} \frac{u^2 - v^2}{u - v} \, dt \right)
\]

\[
\geq \left(\int_0^{2\pi} \frac{(u^2 - v^2)^{1/2}}{(u + v)^{1/2}} \cdot (u^2 - v^2)^{1/2} (u - v)^{1/2} \, dt \right)^2
\]

\[
= \left(\int_0^{2\pi} (u^2 - v^2)^{1/2} \, dt \right)^2
\]

\[
= (a^2 - b^2) \left(2 \int_0^{\pi} \sin t \, dt \right)^2
\]

\[
= 16(a^2 - b^2).
\]

Since equality holds in Schwartz’s inequality if and only if there are constants \(m, n \), not both zero, such that \(m(u - v) = n(u + v) \) almost everywhere, we have equality above if and only if \(a = b \).

Editorial Note. The error in the first printing of the problem was noted by several solvers who derived interesting consequences from the false proposal. In particular, [E. D.] Bolker shows that the original statement implies \(\pi^2 = 8 \).
[[In connexion with the next item, it’s first of all interesting that Oppy’s address was, in 1965 and 1967, University of Malaya, Kuala Lumpur.

Here is what was published at 1967, 441:

Solution by C. S. Venkataraman, Trichur, India. Let A' be the midpoint of BC; D the foot of the perpendicular from A upon BC; O the overline; and R the circumradius of triangle ABC. We use the following three well-known results:

(i) $\prod \cos A \leq \frac{1}{8}$

(ii) $\sum \cos^2 A = 1 - 2 \prod \cos A$

(iii) $2R \cos B \cos C = OD$

The angles A, B, C being acute implies that O lies inside the triangle ABC. Now from the triangle ODA', right-angled at D, we have $OD \leq OA'$. It follows that the maximum value of OD is OA'. But when $OD = OA'$, the triangle OBC is isosceles with $OB = OC$, whence $AB = AC$. Hence from (iii) $2R \cos B \cos C$ is maximum when $AB = AC$. Similarly $2R \cos C \cos A$ is a maximum when $BC = AB$. Then $AC = BC$ and $2R \cos A \cos B$ is also maximum, and triangle ABC is equilateral. Thus it follows that

$$\sum (2R \cos B \cos C)^2 \leq \sum (2R \cdot \frac{1}{2} \cdot \frac{1}{2})^2 = 3R^2/4$$

Therefore $4 \sum \cos^2 B \cos^2 C \leq \frac{3}{4}$. Using (i) this gives

$$16 \prod \cos^2 A + 4 \sum \cos^2 B \cos^2 C \leq 16(1/64) + 3/4 = 1$$

which is the required result (1).

Further (i) and (ii) imply

$$\sum \cos^2 A \geq 1 - 2(1/8) = 3/4 \geq 4 \sum \cos^2 B \cos^2 C$$

which is result (2). Clearly, equality arises in both cases if and only if ABC is equilateral.]]

98
Two Triangle Inequalities

E 1838 [1965, 1129; 1967, 440]. Proposed by A. Oppenheim, University of Ghana

Suppose that \(ABC \) is an acute-angle triangle; then

\[
16 \prod \cos^2 A + 4 \sum \cos^2 B \cos^2 C \leq 1 \tag{1}
\]

\[
4 \sum \cos^2 B \cos^2 C \leq \sum \cos^2 A \tag{2}
\]

Equality occurs when \(ABC \) is equilateral or right-angles isosceles and in no other case.

II. Comment and solution by Murray Klamkin, Ford Scientific Laboratory. By virtue of the weak inequality conditions, \(ABC \) can be restricted to non-obtuse triangles rather than acute triangles.

In a personal communication, A. W. Walker has pointed out that there is a flaw in the published solution [1967, 441]. He notes that the solution “derives” and uses the inequality \(16 \sum \cos^2 B \cos^2 C \leq 3 \); however, this is invalid—just consider an isosceles right triangle. (By continuity, there exist acute non-isosceles triangles which violate the inequality.)

We prove (2) of the problem and show how (1) follows from it. By using \(2 \cos^2 A = 1 + \cos 2A \) and then making the transformations \(A' = \pi - 2A \), etc., we see that (2) becomes equivalent (after dropping primes) to the following:

\[
3 \sum \cos A \geq 3 + 2 \sum \cos B \cos C \tag{3}
\]

where now \(ABC \) is an arbitrary triangle. Inequality 6.12 of O. Bottema et al., Geometric Inequalities, Nordhoff, Groningen, 1969, states \(2R + 5r \geq h_a + h_b + h_c \). Since \(h_a = AH + HD = 2R \cos A + 2R \cos B \cos C \), etc., it follows that

\[
2R + 5r \geq 2R \sum \cos A + 2R \sum \cos B \cos C
\]

and hence \(5(1 + r/R) \geq 3 + 2 \sum \cos A + 2 \sum \cos B \cos C \) which reduces to (3) since \(1 + r/R = \sum \cos A \).

Now, using (2) we establish a stronger inequality than (1), viz.

\[
16 \prod \cos^2 A + \sum \cos^2 A \leq 1 \tag{4}
\]

Since \(1 - \sum \cos^2 A = 2 \prod \cos A \), (4) is equivalent to

\[
(\prod \cos A)(1 - 8 \prod \cos A) \geq 0 \tag{5}
\]

But \(\prod \cos A \geq 0 \) since the triangle is non-obtuse and \(8 \prod \cos A \leq 1 \) by 2.24 of Bottema et al. Thus (5) is established. We note that there is equality in (5) if and only if the triangle is equilateral or a right triangle. This implies that there is equality in (1) if and only if the triangle is equilateral or right isosceles.
E 2393. Proposed by M. S. Klamkin, Ford Motor Company

Parallel lines are drawn through the vertices A_0, A_1, \ldots, A_n of a given simplex of volume V, terminating in the opposite faces (extended if necessary) in the points B_0, B_1, \ldots, B_n, respectively.

(1) Show that the volume of the simplex determined by B_0, B_1, \ldots, B_n is nV.

(2) Show that the volume of the simplex determined by the vertices $A_0, A_1, \ldots, A_r, B_{r+1}, B_{r+2}, \ldots, B_n$ is given by $V'_r = |n - r - 1|V$.

Solution by Leon Gerber, St. John’s University. Parallel lines are drawn through the vertices A_0, A_1, \ldots, A_n, etc. Let the weights of the point P with respect to the given simplex be (p_i) where $\sum_{i=0}^n p_i = s$, with $s = 1$ if P is a proper point and $s = 0$ if P is improper. The cevians A_iP (which are parallel if P is improper) meet the face opposite A_i in $B_i = (b_{ij})$ where $b_{ii} = 0$ and $b_{ij} = p_j/(s - p_i)$. Thus the ratio of the content of $A_0A_1 \ldots A_{r-1}B_r \ldots B_n$ to that of the given simplex is

\[
\begin{vmatrix}
1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
b_{r,0} & \cdots & b_{r,r-1} & b_{r,r} & \cdots & b_{n,n} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
b_{n,0} & \cdots & b_{n,r-1} & b_{n,r} & \cdots & b_{n,n}
\end{vmatrix}
\]

\[= \det
\begin{vmatrix}
0 & \cdots & p_n/(s - p_r) \\
\vdots & \vdots & \vdots \\
p_r/(s - p_n) & \cdots & 0
\end{vmatrix}
\]

\[= (r - n) \prod_{i=r}^n p_i/(p_i - s)\]
A line is drawn through the centroid G of a simplex A_0, A_1, \ldots, A_n intersecting the faces (extended if necessary) in points B_0, B_1, \ldots, B_n, respectively. Show that

$$\sum_{i=1}^{n} \frac{1}{GB_i} = 0$$

where GB_i denotes the directed distance from G to B_i. Show also that the above property characterizes the point G as the centroid; i.e., if the above sum vanishes for all arbitrary lines, then G is the centroid.

This generalizes known results for triangles and tetrahedrons.

Solution by Mildred L. Stancl, Nichols College, Dudley, Massachusetts. Let G be an arbitrary point which does not lie on a face of a simplex $A_0A_1 \ldots A_n$. (The word face throughout means extended face, i.e., the $(n - 1)$-dimensional affine subspace spanned by n of the points A_0, A_1, \ldots, A_n.) Let L be an arbitrary line through G and let B_0, B_1, \ldots, B_n be defined as follows: If L intersects the face opposite A_i, let B_i be the point of intersection and call B_i finite. If L does not intersect the face opposite A_i, let B_i be a fictitious point and call B_i infinite. Define $1/GB_i$ to be zero if B_i is infinite.

Since the fact that $\sum 1/GB_i = 0$ is immediate if all B_i are infinite, assume that L intersects at least one face in the point B, where B is one of B_0, B_1, \ldots, B_n. (Unless otherwise noted, all summations run from 0 to n.) Then B is finite and for each B_j which is finite the following statements hold:

(i) The jth barycentric coordinate of B_j is zero.

(ii) $B_j = (1 - t_j)G + t_jB$ where t_j is a unique nonzero real number.

(iii) $GB_j = t_jGB$ where GB is nonzero.

Now let G be the barycentre (centroid) of the simplex, so that $G = (n + 1)^{-1} \sum A_k$ and let b_0, b_1, \ldots, b_n be the barycentric coordinates of B so that $B = \sum b_kA_k$. If B_i is an infinite point, then the rth barycentric coordinate of B is $(n + 1)^{-1}$. This remark is verified by noting the existence of points P and Q lying in the face opposite A_r such that B is a point of the line segment with endpoints A_r and P, and G is a point of the line segment with endpoints A_r and Q. The fact that L does not intersect the face opposite A_r means that the line segment with endpoints P and Q lying in that face is parallel to the line segment with endpoints B and G lying in L. Thus if $s = (n + 1)^{-1}$, then

$$B = (1 - s)P + sA_r, \quad G = (1 - s)Q + sA_r$$
The equality \(b_r = (n + 1)^{-1} \) follows since \(P \) and \(Q \) have \(r \)th barycentric coordinate zero. Since \(\sum b_k = 1 \), the following statement holds:

(iv) If \(G \) is the barycentre, if exactly \(N \) (\(1 \leq N \leq n + 1 \)) of the points \(B_0, B_1, \ldots, B_n \) are finite, and if \(B \) with barycentric coordinates \(b_0, b_1, \ldots, b_n \) is one of the finite points, then \(\sum_j' b_j = N/(n + 1) \).

(The notation \(\sum_j' \) throughout this solution means the summation over those \(j \) for which \(B_j \) is finite.)

If \(B_j \) is a finite point, statement (ii) implies that

\[
B_j = \sum \left[\frac{1}{n+1} (1 - t_j) + t_j b_k \right] A_k
\]

and (i) implies that

\[
t_j = \frac{1}{1 - (n + 1)b_j}
\]

Since \(\sum 1/\!GB_i = \sum_j' 1/\!GB_j \), statement (iii) implies that

\[
\sum \frac{1}{\!GB_i} = \frac{1}{\!GB} \sum_j' [1 - (n + 1)b_j]
\]

It now follows from (iv) that \(\sum 1/\!GB_i = 0 \).

Conversely, if \(G \) is any point such that \(\sum 1/\!GB_i = 0 \) for all lines through \(G \), then \(G \) does not lie on a face of \(A_0A_1 \ldots A_n \) for otherwise the denominator of at least one of the summands would vanish. Let \(A_k \) be any one of \(A_0, A_i, \ldots, A_n \) and consider the line through \(G \) and \(A_k \). The point \(A_k \) lies in all but one of the faces; hence, \(n \) of \(B_0, B_1, \ldots, B_n \) are equal to \(A_k \) and are finite. The remaining one, \(B_k \), is also finite, for otherwise the sum of the reciprocals of the directed distances would be \(n/\!GA_k \) which is nonzero. Let \(g_0, g_1, \ldots, g_n \) be the barycentric coordinates of \(G \) and let \(a_o, a_1, \ldots, a_n \) be the barycentric coordinates of \(A_k \). The statements (ii) and (iii) imply

\[
t_i = \frac{g_i}{g_i - a_i}
\]

Statement (iii) implies that

\[
0 = \sum \frac{1}{\!GB_i} = \frac{1}{\!GA_k} \left(n + \frac{1}{t_k} \right) = \frac{1}{\!GA_k} \left(n + 1 - \frac{a_k}{g_k} \right)
\]

Since \(a_k = 1 \) it follows that \(g_k = (n + 1)^{-1} \) and \(G \) is the barycentre.

Also solved by […] the proposers.
Let P be a point in the interior of the triangle ABC. Let R_1, R_2, R_3 denote the distances from P to the vertices of ABC and let r_1, r_2, r_3 denote the perpendicular distances from P to the sides of ABC. Show that

$$\sum R_1(r_1 + r_3) \geq \sum (r_1 + r_2)(r_1 + r_3) \quad (1)$$

$$\sum (R_1 + R_2)(R_1 + R_3) \geq 4 \sum (r_1 + r_2)(r_1 + r_3) \quad (2)$$

with equality if and only if ABC is equilateral and P is its centre.

Solution by M. S. Klamkin, Ford Scientific Laboratory. To satisfy (1) we prove a stronger inequality. For the triangle ABC let a, b, c be the lengths of the sides BC, CA, AB respectively. From \[1, \text{p.107}] we have

$$R_1 \geq \frac{r_2 c + r_3 b}{a} \quad R_2 \geq \frac{r_1 c + r_3 a}{b} \quad R_3 \geq \frac{r_1 b + r_2 a}{c} \quad (3)$$

with equality if and only if ABC is equilateral and P is its centre. We now prove that

$$\sum a^{-1}(r_2 c + r_3 b)(r_2 + r_3) \geq \sum (r_1 + r_2)(r_1 + r_3) \quad (4)$$

This inequality implies (1). This inequality is actually valid for all real r_1, r_2, r_3 since it will be shown to be a non-negative quadratic form with equality if and only if $a = b = c$. The matrix associated with (4) is given by

$$M = \begin{bmatrix}
\frac{b^2 + c^2 - bc}{a b} & \frac{a + b - 3c}{a} & \frac{a + c - 3b}{c} \\
\frac{bc}{b + a - 3c} & \frac{c^2 + a^2 - ca}{2c} & \frac{b + c - 3a}{2b} \\
\frac{2c}{c + a - 3b} & \frac{c a}{c + b - 3a} & \frac{a^2 + b^2 - ab}{a b}
\end{bmatrix}$$

As is well known, (4) is a non-negative form if three principal minors M_1, M_2, M_3 of M are non-negative. After some algebraic manipulation we find that

$$bcM_1 = (b - c)^2 + bc > 0$$

$$4abc^2M_2 = 4c^2\left(\sum a^2 - \sum ab\right) + ab\left(2\sum ab - \sum a^2\right) > 0 \quad \text{and}$$

$$(x + y)(y + z)(z + x)M_3 = \left(\sum xy\right)\left(\sum x^2 - \sum xy\right)\left(\sum x^2 + 3\sum xy\right) \geq 0$$

with equality if and only if $x = y = z$, or equivalently $a = b = c$. Here we simplify the calculation of M_3 by using the duality transformation \[2\]

$$a = y + z \quad b = z + x \quad c = x + y$$

103
where \(x, y, z\) are arbitrary non-negative numbers, not all zero.

Inequality (2) follows from adding the following two inequalities found in [1, p.110]:

\[3 \sum R_2 R_3 \geq 12 \sum r_2 r_3 \quad \sum R_1^2 \geq 4 \sum r_1^2 \]

These inequalities are inequalities if and only if \(ABC\) is equilateral and \(P\) is its centre.

Proposed by M. S. Klamkin, Ford Motor Company

If \(a_i \ (1 = 1, 2, \ldots, n) \) denote real numbers, show that

\[
n \min(a_i) \leq \sum a_i - S \leq \sum a_i + S \leq n \max(a_i)
\]

where

\[
(n - 1)S^2 = \sum_{1 \leq i < j \leq n} (a_i - a_j)^2 \quad (S \geq 0)
\]

and with equality if and only if \(a_i = \text{constant} \).

Solution by Ellen Hertz, Bronx Community College; Carolyn MacDonald, University of Missouri; Wolfe Snow, Brooklyn College; and Melvin Tews, University of California, Berkeley (independently). We can assume that \(a_1 \leq a_2 \leq \cdots \leq a_n \). Then

\[
S^2 = \frac{1}{n-1} \sum_{i=2}^{n} \sum_{j=1}^{i-1} (a_i - a_j)^2 \leq \frac{1}{n-1} \sum_{i=2}^{n} (i-1)(a_i - a_1)^2
\]

\[
\leq \sum_{i=2}^{n} (a_i - a_1)^2 \leq \left\{ \sum_{i=1}^{n} (a_i - a_1)^2 \right\}^2
\]

Taking square roots we obtain

\[
n a_1 \leq \sum_{i=1}^{n} a_i - S
\]

Similarly,

\[
S^2 \leq \frac{1}{n-1} \sum_{j=1}^{n-1} (n-j)(a_n - a_j)^2 \leq \left\{ \sum_{j=1}^{n} (a_n - a_j)^2 \right\}^2
\]

from which it follows that

\[
\sum_{j=1}^{n} a_j + S \leq n a_n
\]

It is clear the equality holds anywhere if and only if it holds throughout and this is true if and only if \(a_i = \text{constant} \).

[[the misprint – see below – in the last displayed inequality has been corrected]]
II. Comment by O. P. Lossers, Technological University, Eindhoven, the Netherlands.
A statistical interpretation is possible. Let \(a_1, a_2, \ldots, a_n \) \((n \geq 2)\) be a random sample of a random variable \(A \) with mean \(\mu \) and variance \(\sigma^2 \). As estimates for \(\mu \) and \(\sigma^2 \) one usually takes

\[
\bar{a} = \frac{1}{n} \sum_{i=1}^{n} a_i, \quad s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (a_i - \bar{a})^2
\]

The inequalities in the problem then take the form

\[
\min a_i \leq \bar{a} - \frac{s}{\sqrt{n}} \leq \bar{a} + \frac{s}{\sqrt{n}} \leq \max a_i \quad (\ast)
\]

Note that if \(A_n \) is the random variable defined by averaging samples of size \(n \) from \(A \), then the mean of \(A_n \) is also \(\mu \), but its variance is \(\sigma^2/n \), so that quantities in \((\ast)\) are related to the parameters of \(A_n \).

The proposer notes that the case \(n = 3 \) is due to D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Heidelberg, 1970, p.215.

III. Comment by C. L. Mallows, Bell Laboratories, Murray Hill, New Jersey. The left-hand inequality, \(na_1 \leq \sum a_i - S \), will be an equality if and only if \(a_1 = a_2 = \cdots = a_{n-1} \) (assuming as in the published solution that \(a_1 \leq a_2 \leq \cdots \leq a_n \)), contrary to the statement on lines 10–11 of p.783. This follows by taking \(r = 1 \) in Corollary 6.1 of my paper (jointly with Donald Richter), Inequalities of Chebyshev type involving conditional expectations, Ann. Math. Statist., 40(1969) 1922–1932. Similarly the dual inequality \(\sum a_j + S \leq na_n \) (note the misprint on line 9 of p.783) is an equality if and only if \(a_2 = a_3 = \cdots = a_n \). This follows, too, from my paper by using the inequality dual to that in Corollary 6.1 (i.e., using \(u_r \) instead of \(v_r \)). Thus equality holds in both if and only if \(n = 2 \) or all \(a_i \) are equal. Certainly \(\sum a_i - S = \sum a_1 + S \) if and only if \(S = 0 \), i.e., if and only if all \(a_i \) are equal.
Six equal regions? Yes, Seven? No.

E 2391. Proposed by V. R. R. Uppuluri, Oak Ridge National Laboratory

It is well known that three chord can divide a circular disk into at most seven pieces. Can these seven pieces all have the same area?

IV. Comment by M. S. Klamkin, Ford Motor Company (similar comment by R. C. Buck, University of Wisconsin at Madison). The answer is negative even if the circular region is replaced by a convex region; see R. C. Buck and E. F. Buck, Equipartition of convex sets, Math. Mag., 22(1949) 195–198, where it is shown that at most six of the regions can have the same area, and that these equal regions must be the six outer ones.

Alpha-max, Beta-min, and a limit for e

E 2406 [1973, 316]. Proposed by Erwin Just and Norman Schaumberger, Bronx Community College

What is the maximum value of α and the minimum value of β for which

$$\left(1 + \frac{1}{n}\right)^{n+\alpha} \leq e \leq \left(1 + \frac{1}{n}\right)^{n+\beta}$$

for all positive integers n?

Solution by M. S. Klamkin, Ford Motor Company. On taking logarithms we obtain

$$\alpha_{\text{max}} = \inf_n \left\{ \frac{1}{\log(1 + 1/n)} - n \right\} \quad \beta_{\text{min}} = \sup_n \left\{ \frac{1}{\log(1 + 1/n)} - n \right\}$$

We now show that the function

$$F(x) = \frac{1}{\log(1 + 1/x)} - x$$

is monotonically decreasing for $x > 0$ by showing that its derivative is positive:

$$F'(x) = \frac{1}{x(x + 1)[\log(1 + 1/x)]^2} - 1 = \frac{\sinh^2 u}{u^2} - 1 > 0$$

where $e^{2u} = 1 + 1/x$. Thus, $\alpha_{\text{max}} = 1/\log 2 - 1 = 0.4426950$ and $\beta_{\text{min}} = \lim_{n \to \infty} F(n)$. By expanding $\log(1 + x)$ in a Maclaurin series, we have

$$F(n) = \left[\frac{1}{n} - \frac{1}{2n^2} + O\left(\frac{1}{n^3}\right) \right]^{-1} - n$$

from which it follows that $\beta_{\text{min}} = \lim_{n \to \infty} F(n) = \frac{1}{2}$.

107
Proposed by M. S. Klamkin, Ford Motor Company

Prove that aside from a polynomial of integration of degree $2n - 1$,

$$x^{2n-1} \int \frac{dx}{x^2} \int \frac{dx}{x^2} \cdots \int \frac{dx}{x^2} \int x^{2n-1} F(x) \, dx = \int \cdots \int F(x) \, (dx)^{2n}$$

where there are $2n$ integrals on each side.

[[I don’t understand this sentence!]]

Solution by A. B. Farnell, Colorado State University. Consider

$$y_n = x^{n-1} \int \frac{dx}{x^2} \int \frac{dx}{x^2} \cdots \int \frac{dx}{x^2} \int G(x) \, dx$$

where there are n integrals involved. We propose to show by induction that

$$y_n^{(n)} = x^{1-n} G(x)$$

This expression is readily verified for $n = 1, 2, 3$. Thus we assume it valid for $y_{n-1}^{(n-1)}$. Then

$$y_n' = (n-1)x^{n-2} \int \cdots \int G(x) \, dx + x^{n-3} \int \cdots \int G(x) \, dx$$

$$xy_n' = (n-1)y_n + y_{n-1}$$

Differentiating $(n-1)$ times, we obtain

$$xy_n^{(n)} + (n-1)y_n^{(n-1)} = (n-1)y_n^{(n-1)} + x^{2-n} G(x)$$

or

$$y_n^{(n)} = x^{1-n} G(x)$$

This shows that

$$x^{n-1} \int \frac{dx}{x^2} \cdots \int x^{n-1} F(x) \, dx = \int \cdots \int F(x) \, (dx)^n$$

modulo a polynomial of degree $(n-1)$ for all n.

108
Let x be nonnegative and let m, n be integers with $m \geq n \geq 1$. Prove that

\[(m + n)(1 + x^m) \geq 2n \frac{1 - x^{m+n}}{1 - x^n}\]

Amer. Math. Monthly, 82(1975) 758–760.

IV. Solution by the proposer. As above, we can assume that $0 < x < 1$ and $m > n$, and we shall show that the inequality is strict. Also, we shall not restrict m and n to be integers, but shall allow them to be any positive real numbers $m > n > 0$. Now let $m + n = r$ and $m - n = s$ so that $r > s > 0$ and let $t = x^{1/2}$ so that $0 < t < 1$. Rearranging the desired inequality we get

\[\frac{1 - t^{2r}}{rt^r} > \frac{1 - t^{2s}}{st^s}\]

On letting $t = e^{-y}$ we get

\[\frac{\sinh ry}{ry} > \frac{\sinh sy}{sy}\]

where now $0 < y < \infty$. But $x^{-1} \sinh x$ has a power series expansion with only positive coefficients, so that it is a strictly increasing function on $(0, \infty)$.

Editor’s comment. Assume that $m > n$ are positive real numbers and that $x \neq 1$ is nonnegative. We have seen that

\[(m + n)(1 + x^m) > \frac{2n(1 - x^{m+n})}{1 - x^n}\] (A)

It is not hard to see that the following inequality is actually equivalent to (A); let us call it the dual of (A):

\[\frac{2m(1 - x^{m+n})}{1 - x^m} > (m + n)(1 + x^n)\] (B)

(Both (A) and (B) can be rearranged to assert that

\[(m - n) - (m + n)x^n + (m + n)x^m - (m - n)x^{m+n}\]

is positive if $0 \leq x < 1$ and negative if $x > 1$.)

Lepson shows that

\[\frac{2m(1 - x^{m+n})}{1 - x^n} > (m + n)(1 + x^n)\] (C)

In the same way, the dual of this inequality is

\[(m + n)(1 + x^n) > \frac{2n(1 - x^{m+n})}{1 - x^m}\] (D)
(Both (C) and (D) are equivalent to the statement that

\[(m - n) + (m + n)x^n - (m + n)x^m - (m - n)x^{m+n}\]

is positive if \(0 \leq x < 1\) and negative if \(x > 1\).) These inequalities can be displayed conveniently by the following diagram, where the arrows run from the larger quantities to the smaller:

\[
\begin{align*}
\frac{2m(1-x^{m+n})}{1-x^n} &\rightarrow (m+n)(1+x^n) & \frac{2n(1-x^{m+n})}{1-x^m} \\
0 \leq x < 1 \quad \text{or} \quad x > 1 &
\end{align*}
\]

(The inequality in the centre of the diagram can run either way, according as \(x > 1\) or \(0 \leq x < 1\).) Note that in the case \(0 \leq x < 1\), there is actually a chain of five inequalities, and that in the limit as \(x \rightarrow 1^-\), the middle three equalities of the chain approach equality.

The proposer comments that the special case of his inequality corresponding to \(n = 1\) and \(m = 2p + 1\) appears as Problem 4.8 in D. S. Mitrinović, *Elementary Inequalities*, Noordhoff, Groningen, 1964, p.95, and as Equation 3.2.4 in D. S. Mitrinović and P. M. Vasić, *Analytic Inequalities*, Springer-Verlag, Heidelberg, 1970 p.198. He observes that similar results by V. I. Levin (3.2.12), by Beck (3.2.11), and by J. M. Wilson (3.2.27), which appear in the latter reference can be extended by analogous methods.
If \(a_i \geq 0\), \(\sum a_i = 1\) and \(0 \leq x_i \leq 1\) for \(i = 1, \ldots, n\), prove that
\[
\frac{a_1}{1 + x_1} + \frac{a_2}{1 + x_2} + \cdots + \frac{a_n}{1 + x_n} \leq \frac{1}{1 + x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}}.
\]

When does equality hold?

Solution by Miriam Beesing, Junior, Hamline University. Assume without loss of generality that \(a_i > 0\) for all \(i\). The proposed inequality follows from a straightforward application of Jensen’s inequality for concave functions: If \(f\) is strictly concave (downwards) on an interval \(I\), then for all \(y_i \in I\),
\[
\sum a_i f(y_i) \leq f \left(\sum a_i y_i \right)
\]
with equality if and only if \(y_1 = \cdots = y_n\).

If \(x_i = 0\), the above proof breaks down, but this case is easily handled on its own merits. Again, equality holds if and only if \(x_1 = \cdots = x_n\), which in this case means that they are all 0.

If we allow \(a_i = 0\) (and assume \(0^0 = 1\)), then the condition for equality becomes \(x_i = \text{constant for all } i\) for which \(a_i > 0\).

Finally we remark that the inequality is reversed if \(x_i \geq 1\) for all \(i\). This is because \(f''(y) > 0\) on \((0, \infty)\) and thus \(f\) is concave upwards on \([0, \infty)\).

Editor’s comment. The proposer notes that the special case \(n = 2\) of our problem is a lemma of D. Borwein, used in his solution to Problem 5333 \([1965, 1030; 1966, 1022]\). Borwein’s lemma was used to prove the special case \(a_1 = \cdots = a_n = n^{-1}\) of our problem; once this was shown, 5333 follows from a trivial application of the arithmetic-geometric mean inequality. [Hans] Kappus uses Borwein’s
lemma as a starting point and obtains our result by an easy induction. Kappus also notes that this

[R. J.]Evans shows that the problem generalizes to infinite sequences \(\{a_i\}\) and \(\{x_i\}\) with \(a_i \geq 0, \sum a_i = 1\) and \(0 \leq x_i \leq 1\). [E. B.]Rockower shows, using Riemann sums, that the following continuous
analog holds: Suppose that \(a(t)\) and \(x(t)\) are continuous functions on the interval \([0,1]\) (the actual
interval is not important) and that \(a(t) \geq 0, \int a(t) \, dt = 1\) and \(0 \leq x(t) \leq 1\). Then

\[
\int_0^1 a(t)[1 + x(t)]^{-1} \, dt \leq \left\{1 + \exp \int_0^1 a(t) \log x(t) \, dt\right\}^{-1}
\]

with equality if and only if \(x(t)\) is constant on the set where \(a(t) > 0\). The above results can be
subsumed by the following generalization, which can be shown by first considering simple functions
and then passing to the limit: Let \((X, A, \mu)\) be a measure space with \(\mu(X) = 1\) and let \(f\) be a
measurable real-valued function on \(X\) which satisfies \(0 \leq f(x) \leq 1\) almost everywhere. Then

\[
\int (1 + f)^{-1} \, d\mu \leq \left\{1 + \exp \int \log f \, d\mu\right\}^{-1}
\]

with equality if and only if \(f(x)\) is almost everywhere constant.
E 2483. Proposed by M. S. Klamkin, University of Waterloo

Let x be non-negative and let m, n be integers with $m \geq n \geq 1$. Prove that

$$(m + n)(1 + x^m) \geq 2n \frac{1 - x^{m+n}}{1 - x^n}$$

IV. Solution by the proposer. As above [i.e., in earlier solutions] we can assume that $0 < x < 1$ and $m > n$, and we shall show that [in these cases] the inequality is strict. Also, we shall not restrict m and n to be integers, but shall allow them to be any positive real numbers $m > n > 0$. Now let $m + n = r$ and $m - n = s$ so that $r > s > 0$ and let $t = x^{1/2}$ so that $0 < t < 1$. Rearranging the desired inequality we get

$$\frac{1 - t^{2r}}{rt^r} > \frac{1 - t^{2s}}{st^s}$$

On letting $t = e^{-y}$ we get

$$\frac{\sinh ry}{ry} > \frac{\sinh sy}{sy}$$

where now $0 < y < \infty$. But $x^{-1}\sinh x$ has a power series expansion with only positive coefficients, so that it is a strictly increasing function on $(0, \infty)$.

Amer. Math. Monthly, 82(1975) 759
Area Summations in Partitioned Convex Quadrilaterals

E 2423 [1973, 691]. Proposed by Lyles Hoshek, Monterey Park, California, and B. M. Stewart, Michigan State University

Let there be given a plane convex quadrilateral of area A. Divide each of its four sides into n equal segments and join the corresponding points of division of opposite sides, forming n^2 smaller quadrilaterals. Prove: (a) the n smaller quadrilaterals in any diagonal (ordinary or broken) have a composite area equal to A/n; (b) The composite area of any row of smaller quadrilaterals and its complementary row (row i and row $n + 1 - i$) is equal to $2A/n$. (In particular, if n is odd this implies that the composite area of the middle row is A/n.)

Solution by Donald Batman, M.I.T. Lincoln Laboratory, and M. S. Klamkin, Ford Motor Company. We obtain more general results by dividing one pair of opposite sides into n equal segments and the other pair of sides into m equal segments, as shown in the figure

Denote the given quadrilateral by $OBDC$, where O is the origin. If X is a point in the plane, then we make the usual identification of X with the vector X from the origin to the point X. Define p, q by

$$D = (p + 1)B + (q + 1)C.$$

Note that p, $q > -1$ and also $p + q > -1$ since the quadrilateral is convex. The points of division will be denoted by $P(r, s)$, with $r = 0, 1, \ldots, m$ and $s = 0, 1, \ldots, n$; e.g., $P(0, 0) = O$ and $P(m, n) = D$. Let $Q(r, s)$ denote the small quadrilateral whose
upper left-hand vertex is \(P(r, s) \) and partition \(Q(r, s) \) into the two triangles \(\triangle(r, s) \) and \(\triangle'(r, s) \) as shown in the figure.

One can show that for suitable scalars \(x \) and \(y \)
\[
P(r, s) = \frac{r}{m} B + x \left\{ C + \frac{r}{m} (D - C - B) \right\} = \frac{s}{n} C + y \left\{ B + \frac{s}{n} (D - B - C) \right\}
\]

Since \(B \) and \(C \) are linearly independent, we find that \(x = s/n \) and \(y = r/m \). Thus
\[
P(r, s) = \frac{r}{m} \left\{ 1 + \frac{sp}{n} \right\} B + \frac{s}{n} \left\{ 1 + \frac{rq}{m} \right\} C \quad (1)
\]

Since \(P(r+1, s) - P(r, s) \) and \(P(r, s+1) - P(r, s) \) are independent of \(r \) and \(s \) respectively, each segment of the figure is divided into equal parts—\(m \) for the “horizontal” segments and \(n \) for the “vertical” segments (as shown in the figure).

For the area \(|\Delta(r, s)| \) of \(\triangle(r, s) \) we have
\[
2|\Delta(r, s)| = \left| \{P(r+1, s) - P(r, s)\} \times \{P(r, s+1) - P(r, s)\} \right|
\]
\[
= \frac{1}{mn} \left\{ 1 + \frac{sp}{n} + \frac{rq}{m} \right\} |B \times C| \quad (2)
\]

and similarly
\[
2|\Delta'(r, s)| = \frac{1}{mn} \left\{ 1 + \frac{(s+1)p}{n} + \frac{(r+1)q}{m} \right\} |B \times C| \quad (3)
\]

Note also that if \(A \) is the area of \(OBDC \), then
\[
2A = (p + q + 2)|B \times C| \quad (4)
\]

Look now at any \(\triangle(r, s) \) and its centro-symmetric \(\triangle'(m-1-r, n-1-s) \). From (2), (3) and (4) we have
\[
|\Delta(r, s)| + |\Delta'(m-1-r, n-1-s)| = \frac{A}{mn} \quad (5)
\]

For \(m, n \) odd it follows from this that the central small quadrilateral has area \(A/mn \).
(The special case \(m = n = 3 \) was established using along synthetic proof by B. Greenberg, That area problem, Math. Teacher 64(1971) 79–80.)

If we take any small quadrilateral \(Q(r, s) \) and its centro-symmetric quadrilateral \(Q(m-1-r, n-1-s) \) we see from (5) that
\[
|Q(r, s)| + |Q(m-1-r, n-1-s)| = |\Delta(r, s)| + |\Delta'(r, s)| \\
+ |\Delta(m-1-r, n-1-s)| + |\Delta'(m-1-r, n-1-s)| \\
= \frac{A}{mn} + \frac{A}{mn} = \frac{2A}{mn}
\]
which proves part (b).

From (2), (3) and (4) we have

\[
|Q(r, s)| = |\Delta(r, s)| + |\Delta'(r, s)|
\]

\[
= \frac{A}{mn(p + q + 2)} \left\{ 2 + \frac{(2s + 1)p}{n} + \frac{(2r + 1)q}{m} \right\}
\]

Let \(m = n \); we can now show that part (a) now follows from this formula. In fact we can show that the result hold not only for broken diagonals, but for “generalized diagonals”, i.e., for selections of \(n \) smaller quadrilaterals with one from each row and each column, as in the individual terms of a matrix expansion. More precisely, let \(\sigma \) be a permutation of \((0, 1, \ldots, n-1)\); an easy computation shows that

\[
\sum_{r=0}^{n-1} |Q(r, r\sigma)| = \frac{A}{n}
\]

giving the result.

We note that Problem E 1548 [1963, 892] and its generalizations follow from the above results,
Let \(n \) be a natural number. Evaluate the following limit:

\[
I_n = \lim_{x \to \infty} \left\{ \frac{(\log x)^{2n}}{2n} - \int_0^x \frac{(\log t)^{2n-1}}{1 + t} \, dt \right\}
\]

Solution by Watson Fulks, University of Colorado. Consider the slightly modified problem where \(2n \) is replaced by an arbitrary positive integer \(k \). Then the substitutions \(y = \log x \) and \(u = \log t \) reduce the problem to the determination of \(f(\infty) = \lim_{y \to \infty} f(y) \) where \(f \) is given by

\[
f(y) = \frac{y^k}{k} - \int_{-\infty}^y \frac{u^{k-1}}{1 + e^{-u}} \, du
\]

We note that

\[
f(0) = -\int_{-\infty}^0 \frac{u^{k-1}}{1 + e^{-u}} \, du = (-1)^k \int_0^\infty \frac{u^{k-1}}{1 + e^u} \, du
\]

so that

\[
f(y) = f(0) + \int_0^y f'(t) \, dt = f(0) + \int_0^y \frac{u^{k-1}}{1 + e^u} \, du
\]

from which

\[
f(\infty) = [1 + (-1)^k] \int_0^\infty \frac{u^{k-1}}{1 + e^u} \, du
\]

By formula (6), p.312 of *Tables of Integral Transforms*, Vol.1, Erdélyi et al., McGraw-Hill, 1954, or by expanding \((1 + e^u)^{-1}\) in powers of \(e^{-u} \) and integrating termwise, this is

\[
f(\infty) = [1 + (-1)^k] \zeta(k) \Gamma(k)[1 - 2^{1-k}]
\]

Further, \(f \) can be written in the form

\[
f(y) = f(\infty) - \int_y^\infty \frac{u^{k-1}}{1 + e^u} \, du
\]

from which the asymptotic behavior of \(f \) as \(y \to \infty \) is easily deduced, again by expanding \((1 + e^u)^{-1}\). In particular

\[
f(y) = f(\infty) - e^{-y} \sum_{j=0}^{k-1} \binom{j}{k-1} y^j \Gamma(k-j) + O(e^{-2y} y^{k-1})
\]

\[
= f(\infty) - e^{-y} y^{k-1} [1 + O(1/y)]
\]

Editor’s comment. As noted by a number of solvers, the solution may be expressed in terms of Bernoulli numbers using the formula \((2n)! \zeta(2n) = 2^{2n-1} \pi^{2n} |B_{2n}|\).
Minimal Curve for Fixed Area

Given a convex quadrilateral. Find the shortest curve which divides it into two equal areas.

Comment by M. S. Klamkin, Ford Motor Company. Although the properties of the shortest bisecting arc as given by both Ogilvy and Goldberg are correct, neither solver has really supplied a full mathematical proof. At a geometry seminar held at Michigan State University several years ago, Branko Grünbaum raised again the more general problem of determining the shortest arc which divides a given simply connected area in a fixed ratio, and which lies wholly within the area. Grünbaum noted that Norbert Wiener [The shortest line dividing an area in a given ratio, Proc. Cambridge Philos. Soc., 18(1914) 56–58] proved that (if such an arc exists) it must consist of an arc of a finite or infinite circle or a chain of such arcs having the property that two successive arcs meet only on the boundary of the given area. At the end of this paper is the footnote, “It is almost self-evident that the shortest line to divide a convex area in a given ratio is a single arc of a circle, but this I have not been able to prove.” This conjecture includes E 2185 as a special case.

Wiener’s shortest-line conjecture went unproved for almost sixty years, but in 1973, Richard Joss, a student of Grünbaum, announced that he had proved it [Notices A.M.S., June 1973, Abstract 705-D1, p.A-461].

Symmedian Point of a Triangle

Let \(P \) denote a point in the interior of the triangle \(ABC \). Let \(\alpha, \beta, \gamma \) denote the angles of \(ABC \). Let \(R_1, R_2, R_3 \) denote the distances from \(P \) to the vertices of \(ABC \) and let \(r_1, r_2, r_3 \) denote the distances from the sides of \(ABC \). Show that

\[
R_1^2 \sin^2 \alpha + R_2^2 \sin^2 \beta + R_3^2 \sin^2 \gamma \leq 3(r_1^2 + r_2^2 + r_3^2)
\]

with equality if and only if \(P \) is the symmedian point of \(ABC \).

IV. Solution by M. S. Klamkin, Ford Motor Company. The published solution, which is rather long, involves Lagrange multipliers, which should always be avoided whenever possible in proving elementary triangle inequalities. Furthermore, the solution is incomplete since sufficiency was not established.

We give a generalization by starting with the known inequality [1, p.7]

\[
xR_1^2 + yR_2^2 + zR_3^2 \geq \frac{a^2yz + b^2zx + c^2xy}{x + y + z}
\]

(1)
where \(x, y, z \) are arbitrary real numbers such that \(x + y + z > 0 \) and where there is equality if and only if \(x/F_1 = y/F_2 = z/F_3 \) (\(F_1 \) denotes the area of \(BPC \), etc.). (A physical interpretation of (1) is that the polar moment of inertia of three masses \(x, y, z \) located at \(A, B, C \) respectively, is minimized by taking the axis through the centroid of the masses.)

For any inequality of the form \(\phi(R_1, R_2, R_3, a, b, c) \geq 0 \) there is a dual equality \(\phi(r_1, r_2, r_3, R_1 \sin \alpha, R_2 \sin \beta, R_3 \sin \gamma) \geq 0 \), obtained by considering the pedal triangle of \(P \). Here the distances from \(P \) to the vertices of the pedal triangle are \(r_1, r_2, r_3 \) and the sides of the pedal triangle are \(R_1 \sin \alpha, R_2 \sin \beta, R_3 \sin \gamma \), respectively. Thus the dual of (1) is

\[
x r_1^2 + y r_2^2 + z r_3^2 \geq \frac{y z R_1^2 \sin^2 \alpha + z x R_2^2 \sin^2 \beta + x y R_3^2 \sin^2 \gamma}{x + y + z}
\]

Then the stated inequality corresponds to the special case \(x = y = z \) of (2). There is equality if and only if the point \(P \) is the centroid of the pedal triangle and consequently if and only if \(P \) is the symmedian point of \(ABC \) [2, Theorem 350]. Coincidentally, the stated inequality appears in the same form in [1, p.10]. By applying (1) to the right hand side of (2) we obtain

\[
\frac{\sum y z R_1^2 \sin^2 \alpha}{x + y + z} \geq \frac{4 F^2}{a^2 + b^2 + c^2}
\]

Inequalities (2) and (3) also provide a strengthening and a generalization of the following known inequality [2, Theorem 349], [3, Item 12.54, p.118]:

\[
r_1^2 + r_2^2 + r_3^2 \geq \frac{4 F^2}{a^2 + b^2 + c^2}
\]

Proposed by M. S. Klamkin, Ford Motor Company

Prove that

\[|x^{p-1}(x-1)^p(x-2)^p \cdots (x-n)^p| \leq \Gamma((1+n)^p) \]

where \(0 \leq x \leq n\) and \(p, n\) are real and \(\geq 1\). (This inequality has been given by A. Ostrowski for integral \(p, n\). See Mitrinović and Vasić, Analytic Inequalities, Springer-Verlag, 1970, p.198.)

Solution by Thomas Foregger, Bell Laboratories, Murray Hill, New Jersey.

Let

\[f_n(x) = |x^{p-1}(x-1)^p(x-2)^p \cdots (x-n)^p| \]

We show that

\[f_n(x) \leq \left(\frac{p-1}{2p-1}\right)^{p-1} \left(\frac{p}{2p-1}\right)^p \{\Gamma(1+n)\}^p \]

if \(0 \leq x < 1\)

\[f_n(x) \leq \frac{1}{n} \{\Gamma(1+n)\}^p \]

if \(1 \leq x \leq n\)

First, suppose that \(0 \leq x \leq 1\). Then, using \(\Gamma(n+1) = n!\) and the relation \(|(x-k)^p| = (k-x)^p \leq k^p\) for \(0 \leq x < 1\) and \(k = 1, 2, \ldots, n\), we have that

\[\frac{f_n(x)}{(n!)^p} = x^{p-1} \frac{(1-x)^p}{1^p} \frac{(2-x)^p}{2^p} \cdots \frac{(n-x)^p}{n^p} \leq x^{p-1}(1-x)^p \]

Elementary calculus shows that the right hand side has a maximum value of

\[\left(\frac{p-1}{2p-1}\right)^{p-1} \left(\frac{p}{2p-1}\right)^p \]

Next, suppose that \(1 \leq x \leq n\) and let \(m = [x]\). Then

\[|(x-k)^p| = \begin{cases} (x-k)^p & \text{if } 1 \leq k \leq m \\ (k-x)^p & \text{if } m+1 \leq k \leq n \end{cases} \]

so that

\[\frac{f_n(x)}{(n!)^p} = \frac{x^{p-1}}{n^{p-1}} \prod_{k=1}^{m-1} \frac{(x-k)^p}{(n-k)^p} \cdot \frac{(x-m)^p}{n} \cdot \prod_{k=m+1}^{n} \frac{(k-x)^p}{(k-m)^p} \]

Clearly, \(0 \leq x-k \leq n-k\) if \(1 \leq k \leq m-1\) and \(0 \leq k-x \leq k-m\) if \(m+1 \leq k \leq n\). Also \(x \leq n\). Thus

\[\frac{f_n(x)}{(n!)^p} \leq \frac{(x-m)^p}{n} \leq \frac{1}{n} \]

Editor’s note. [Emil] Grosswald observes that the inequality written as \(|x(x-1) \cdots (x-n)|x^{-1/p} \leq n!\) is an easy consequence of Ostrowski’s theorem.
APPLIED MATHEMATICS

Physics: projectiles

Amer. Math. Monthly, 82{(1975)} 520–521._

E 2535. _Proposed by M. S. Klamkin, University of Waterloo_

A body is projected in a uniform gravitational field and is subject to a resistance which is a function of its speed $|v|$. If the acceleration a of the body always has a constant direction, no matter what the initial velocity v_0, show that $a = a_0 e^{-kt}$ for some constant k.

Amer. Math. Monthly, 83{(1976)} 657._

Solution by Harry Lass and Robert M. Georgevic (jointly), Jet Propulsion Laboratory, Pasadena, California. We have $a = g - f(v)v = \lambda(t)a_0$ where g is the constant gravitational acceleration, a and v the acceleration and velocity of the body, $v = |v|$, t the time and $a_0 = a(0), \lambda(0) = 1$. Differentiating with respect to time yields

$$(\lambda'(t) + f(v)\lambda(t))a_0 = -f'(v)\frac{dv}{dt}v$$

For v not parallel to a_0 it follows that $f'(v) = 0$ and $\lambda'(t) = -f(v)\lambda(t)$. Hence $f(v) = k$ (a constant), $\lambda(t) = e^{-kt}$ and $a = e^{-kt}a_0$.

SOLID GEOMETRY

Tetrahedra: planes

Amer. Math. Monthly, 82{(1975)} 661._

Largest Cross-Section of a Tetrahedron

E 1298* [1958, 43]. _Proposed by H. D. Grossman_

It is not difficult to show that the longest linear section of a triangle is the longest side of the triangle. Is the greatest planar section of a tetrahedron the largest face of the tetrahedron?

Solution by Murray S. Klamkin, University of Waterloo. The answer is yes, as was shown in the solution to the identical Advanced Problem 5006 [1962, 63; 1963, 338; 1963, 1108]. Curiously enough, the corresponding result for a 5-simplex is false: See D. W. Walkup, _A simplex with a large cross section_, this MONTHLY, _75_{(1968)} 34–36._
N-dimensional geometry: simplexes

E 2548. Proposed by Murray S. Klamkin, University of Waterloo

Let A_0, A_1, \ldots, A_n be distinct points which lie on a hyperplane. Suppose that these points are parallel projected into another hyperplane and that their images are B_0, B_1, \ldots, B_n respectively. Prove that for any $r = 0, 1, \ldots, n$ the volumes of the simplexes spanned by $A_0, A_1, \ldots, A_r, B_{r+1}, B_{r+2}, \ldots, B_n$ and by $B_0, B_1, \ldots, B_r, A_{r+1}, A_{r+2}, \ldots, A_n$ are equal.

Solution by Aage Bondesen, Espergaerde, Denmark. Call the two given hyperplanes α and β, and let the given parallel projection p be done from α to β. The set of midpoints of the segments $Ap(A)$, for A in α, is a hyperplane γ. Let r be the affine reflection in γ such that $r(A) = p(A)$ for A in α. Since r is volume-preserving, the desired result is immediate.
ALGEBRA

Maxima and minima

E 2573. _Proposed by Murray S. Klamkin, University of Waterloo_

If _n_ positive real numbers vary such that the sum of their reciprocals is fixed and equal to _A_, find the maximum value of the sums of the reciprocals of the _n_ numbers taken _j_ at a time.

IV. _Solution and a generalization by the proposer_. Let _a_1, . . . , _a_n_ be positive and define

\[S_r = \sum_{\text{sym}} \frac{1}{x_1 + \cdots + x_r} \quad \text{and} \quad T_r = \frac{r^2 S_r}{\binom{n-1}{r-1}} \]

We shall prove that _T_1 ≥ _T_2 ≥ ··· ≥ _T_n.

Proof. The inequality

\[T_{n-1} = (n-1)S_{n-1} \geq n^2 S_n = T_n \] \hspace{1cm} (1)

follows easily from the Cauchy-Schwartz inequality because

\[\frac{n-1}{S_n} = (n-1)(x_1 + \cdots + x_n) = \sum_{\text{sym}} (x_1 + \cdots + x_{n-1}) \]

Using (1), we have _r_ = 2, 3, . . . , _n_ − 1

\[(r-1) \sum_{\text{sym}} \frac{1}{y_1 + \cdots + y_{r-1}} \geq \frac{r^2}{y_1 + \cdots + y_r} \]

for any positive _y_1, _y_2, . . . , _y_n_. Replacing (_y_1, . . . , _y_r_) by (_x_k_1, . . . , _x_k_r_) and summing over all _r_-tuples (_k_1, . . . , _k_r_) such that 1 ≤ _k_1 < ··· < _k_r_ ≤ _n_ we obtain _r_ = 2, 3, . . . , _n_ − 1

\[S_{r-1} \geq r^2 S_r, \text{ i.e., } T_{r-1} \geq T_r \]

Note that the proposed inequality is identical with _T_1 ≥ _T_j.
GEOMETRY

Triangles: medians

Extended Medians of a Triangle

Let a, b, c be the sides of a triangle ABC, and let m_a, m_b, m_c be the medians to sides a, b, c respectively. Extend the medians so as to meet the circumcircle again, and let these chords be M_a, M_b, M_c respectively. Show that

$$M_a + M_b + M_c \geq \frac{4}{3}(m_a + m_b + m_c) \quad (1)$$

$$M_a + M_b + M_c \geq \frac{2}{3}\sqrt{3}(a + b + c) \quad (2)$$

When does equality occur?

II. Solution to (1) by Paul Erdős and M. S. Klamkin, University of Waterloo, Ontario. Since $m_a(M_a - m_a) = a^2/4$, etc., (1) can be rewritten as

$$3 \sum a^2/m_a \geq 4 \sum m_a \quad (1')$$

It is known that one can form a triangle having sides m_a, m_b, m_c with its respective medians being $3a/4$, $3b/4$, $3c/4$. Thus $(1')$ is equivalent to

$$4 \sum m_a^2/a \geq 3 \sum a \quad 1''$$

Since $4m_a^2 = 2b^2 + 2c^2 - a^2$, etc., $(1'')$ reduces to $\sum (b^2 + c^2)/a \geq 2 \sum a$ or

$$\sum (b + a)(b - a)^2/ab \geq 0$$
GEOMETRY

Polygons: convex polygons

Area of a Convex Polygon

E 2514. *Proposed by G. A. Tsintsifas, Thessaloniki, Greece*

Let P be a convex polygon and let K be the polygon whose vertices are the midpoints of the sides of P. A polygon M is formed by dividing the sides of P (cyclically directed) in a fixed ratio $p : q$ where $p + q = 1$. Show that

$$|M| = (p - q)^2|P| + 4pq|K|$$

where $|M|$ denotes the area of M, etc.

II. *Comment by M. S. Klamkin, University of Waterloo.* It follows as an easy consequence that $\min |M| = |K|$ occurs for $p = q = \frac{1}{2}$.

ALGEBRA

Inequalities: fractions

E 2603. *Proposed by Murray S. Klamkin, University of Waterloo, Ontario*

Let $x_i > 0$ ($1 \leq i \leq n$). Prove that

$$r \cdot \sum \frac{x_1 x_2 \cdots x_r}{x_1 + x_2 + \cdots + x_r} \leq \binom{n}{r} \left(\frac{x_1 + \cdots + x_n}{n} \right)^{r-1}$$

and that equality holds if and only if $x_1 = x_2 = \cdots = x_n$.

(The “symmetric” sum above consists of $\binom{n}{r}$ terms.)

Solution by Lawrence A. Shepp, Bell Laboratories, Murray Hill, New Jersey. If $x_i \neq x_j$ then replacing x_i and x_j by $\frac{1}{2}(x_i + x_j)$ increases the left hand side and leaves the right hand side constant as is easy to see. Thus the maximum of the left side under fixed $x_1 + \cdots + x_n$ occurs only for $x_1 = \cdots = x_n$ in which case a direct calculation shows that the equality holds.
SOLID GEOMETRY

Analytic geometry

Volume and Surface Area of a Solid

Let f_1 and f_2 be non-negative periodic functions of period 2π and let $h > 0$. Let $P_1(\theta)$ and $P_2(\theta)$ be the points whose cylindrical coordinates are $(f_1(\theta), \theta, 0)$ and $(f_2(\theta), \theta, 0)$ respectively. Find integrals for the volume and surface area of the solid bounded by the planes $z = 0$, $z = h$ and the lines $P_1(\theta)P_2(\theta)$.

Solution by M. S. Klamkin, University of Waterloo, Ontario, Canada.

If a point (r, θ, z) lies on the surface generated by the motion of the segment $P_1(\theta)P_2(\theta)$ then

$$r = r(z, \theta) = f_1(\theta) + \frac{z}{h}(f_2(\theta) - f_1(\theta)) \quad 0 \leq z \leq h$$

Then the volume we want to find is given by

$$V = \frac{1}{2} \int_0^{2\pi} \left(\int_0^h r(z, \theta)^2 \, dz \right) \, d\theta = \frac{h}{6} \int_0^{2\pi} (f_1^2 + f_1f_2 + f_2^2) \, d\theta$$

This can also be written in the form

$$V = \frac{h}{6}(B_1 + 4M + B_2)$$

where $B_i (i = 1, 2)$ are the areas of the bases and M is the area of the mid-cross-section. Explicitly

$$B_i = \frac{1}{2} \int_0^{2\pi} f_i^2 \, d\theta \quad (i = 1, 2) \quad M = \frac{1}{2} \int_0^{2\pi} \left(\frac{f_1 + f_2}{2} \right)^2 \, d\theta$$

The lateral surface area S is given by the well-known area integral in cylindrical coordinates

$$S = \int_0^{2\pi} \int_0^h \sqrt{r^2 + (rr_z)^2 + r^2_\theta} \, dz \, d\theta$$

where r_z and r_θ are the partial derivatives of $r = r(z, \theta)$. In our case we have

$$r_z = \frac{1}{h}(f_2 - f_1) \quad r_\theta = f'_1 + \frac{z}{h}(f'_2 - f'_1)$$

Then the entire area of the solid is $B_1 + B - 2 + S$.

Editor’s Comment. The expression $r^2 + (rr_z)^2 + r^2_\theta$ is a quadratic in z. The formula for S which emerges after this integration is given by [L.]Kuipers but it is too complicated to state it here.
E 2637 [1977, 134]. Proposed by Armand E. Spencer, State University College, Potsdam, N.Y.

If \(a_0, a_1, \ldots, a_{n-1} \) are integers show that

\[
\prod_{0 \leq i < j \leq n-1} \frac{a_i - a_j}{i - j}
\]

is also an integer.

Comments. M. S. Klamkin informs us that this is the same as problem 132 in G. Pólya and G. Szegö, Problems and Theorems in Analysis II, Springer 1976, p.134. The solution appears as a special case of Problem 96 on pp.96 and 229:

By row manipulations we have

\[
\begin{vmatrix}
1 & \ldots & 1 \\
\left(\frac{x_1}{1}\right) & \ldots & \left(\frac{x_n}{1}\right) \\
\vdots & \ddots & \vdots \\
\left(\frac{x_1}{n-1}\right) & \ldots & \left(\frac{x_n}{n-1}\right)
\end{vmatrix} = \left(\prod_{i=1}^{n-1} i^{-(n-i)}\right) \cdot
\begin{vmatrix}
1 & \ldots & 1 \\
1 & \ldots & 1 \\
\vdots & \ddots & \vdots \\
\left(\frac{x_1}{n-1}\right) & \ldots & \left(\frac{x_n}{n-1}\right)
\end{vmatrix} = \prod_{0 \leq i < j \leq n-1} \frac{x_i - x_j}{i - j}
\]

Weyl’s formula for the dimension of simple \(SU(n) \)-modules shows that the number in the problem is equal to the dimension of such a module and hence is an integer.
ALGEBRA

Inequalities: exponentials

S 6. _Proposed by M. S. Klamkin and A. Meir, University of Alberta_

Let \(x_i > 0 \) for \(i = 1, 2, \ldots, n \) with \(n \geq 2 \). Prove that

\[
(x_1)^{x_2} + (x_2)^{x_3} + \cdots + (x_{n-1})^{x_n} + (x_n)^{x_1} \geq 1
\]

Solution by David Hammer. University of California, Davis. For \(n = 2 \), the solution is in E 1342 [1959, 513]. Hence we assume that \(n > 2 \). We also may assume that \(0 < x_i < 1 \) for all \(i \). Let \(S \) be the given sum. Since \(S \) is invariant under cyclic permutation of the \(x_i \) we may assume that \(x_3 \) is minimal among the \(x_i \) and hence that \(x_3 \leq x_1 \). Then

\[
S \geq (x_1)^{x_2} + (x_2)^{x_3} \geq (x_3)^{x_2} + (x_2)^{x_3} \geq 1
\]
as desired.

The sharpness of the inequality is shown by the example with \(n = 4 \) and

\[
a = r^{-r} \quad b = r^{-r} \quad c = r^{-1} \quad d = 1
\]

Then \(a^b + b^c + c^d + d^a = 3r^{-1} + 1 \) and one can let \(r \to \infty \).

A slight generalization is the following: Let \(x_i > 0 \) for \(i = 1, 2, \ldots, n \) and let \(s \) be a permutation of \(1, 2, \ldots, n \) which is the product of \(m \) disjoint cycles of length at least 2 and has \(k \) fixed points. Then

\[
\sum_{i=1}^{n} (x_i)^{s(i)} \geq m + k \left(\frac{1}{e} \right)^{1/e}
\]

This follows immediately from S 6 and the well-known fact that the minimum of \(x^x \) occurs when \(x = 1/e \).

Editorial note. F. S. Cater gave the generalization that

\[
(x_1)^{x_2} + (x_2)^{x_3} + \cdots + (x_{n-1})^{x_n} + (x_n)^{x_1} > 1 + (n - 2) \min(x_1^{x_2}, x_2^{x_3}, \ldots, x_{n-1}^{x_n}, x_n^{x_1})
\]
NUMBER THEORY

Modular arithmetic: coprime integers

S 9. _Proposed by M. S. Klamkin and A. Liu, University of Alberta_

(a) Determine all positive integers _n_ such that gcd(_x_, _n_) = 1 implies that _x^2_ ≡ 1 (mod _n_).

(b) Determine all positive integers _n_ such that _xy + 1_ ≡ 0 (mod _n_) implies that _x + y_ ≡ 0 (mod _n_).

Solution by Arnold Adelberg, Grinnell College, and Jeffery M. Cohen, graduate student, University of Pittsburgh (independently). (a) We show that _n_ satisfies the condition if and only if _n_ | 24. First, if _n_ has a prime divisor _p_ > 3 and _q_ is the product of all the prime divisors of _n_ different from _p_, then the Chinese Remainder Theorem implies the existence of an _x_ with _x_ ≡ 1 (mod _q_) and _x_ ≡ 2 (mod _p_). [Let _q_ = 1 if _n_ is a power of _p_.] Then gcd(_x_, _n_) = 1 and _x^2_ ≡ 4 ≠ 1 (mod _p_) so that _x^2_ ≢ 1 (mod _n_). Next, if _n_ = 2^2·3^s, then gcd(5, _n_) = 1 and 5^2 ≡ 1 (mod _n_) if and only if _n_ | 24.

Conversely, if _n_ | 24 then gcd(_x_, 2) = 1 implies _x^2_ ≡ 1 (mod 8) and gcd(_x_, 3) = 1 implies _x^2_ ≡ 1 (mod 3) so that _n_ satisfies the condition.

(b) Let _A_ and _B_ be the sets of integers _n_ satisfying the conditions in (a) and (b) respectively. We show that _A_ = _B_.

Let _n_ ∈ _A_. The _xy + 1_ ≡ 0 (mod _n_) implies that gcd(_x_, _n_) = 1, _x^2_ ≡ 1 (mod _n_) and

\[x + y \equiv x + x^2 y \equiv x(1 + xy) \equiv x \cdot 0 \equiv 0 \pmod{n} \]

Thus _A_ ⊆ _B_.

Now let _n_ ∈ _B_. Then gcd(_x_, _n_) = 1 implies that there is an integer _y_ with _xy_ ≡ −1 (mod _n_) which implies _x + y_ ≡ 0 (mod _n_) and so _x^2_ ≡ _x(-y) ≡ 1_ (mod _n_), i.e., _B_ ⊆ _A_. Hence _A_ = _B_.

Editor’s Note. M. J. DeLeon established several generalizations of S9 dealing with the property of a pair (_m_, _n_) of positive integers such that gcd(_a_, _m_) = 1 implies _a^n_ ≡ 1 (mod _m_). He also referred to problem B-1 of the December 6, 1969 William Lowell Putnam Mathematical Competition, which asked for a proof that _n_ ≡ −1 (mod 24) implies 24 | σ(_n_).
SOLID GEOMETRY

Tetrahedra: opposite edges

S 12. Proposed by M. S. Klamkin, University of Alberta

If $a, a_1; b, b_1; c, c_1$ denote the lengths of the three pairs of opposite edges of an arbitrary tetrahedron, prove that $a + a_1$, $b + b_1$, $c + c_1$ satisfy the triangle inequality.

[[‘sides’ changed to ‘edges’ in the above – R.]]

[[Spelling ‘Nelson’ corrected to ‘Nelsen’ in the following — R.]]

Solution by Roger B. Nelsen, Lewis and Clark College. Without loss of generality, we may assume that the edges of one face are a, b and c; while the edges emanating from the vertex opposite that face are a_1, b_1 and c_1. Hence the edges of the four triangular faces of the tetrahedron are (a, b, c); (a_1, b_1, c); (a_1, b, c_1) and (a, b_1, c_1). Each triangle satisfies the triangle inequality, so that

\[
\begin{align*}
 a &< b + c \\
 a_1 &< b_1 + c \\
 a_1 &< b + c_1 \\
 a &< b_1 + c_1
\end{align*}
\]

Adding and dividing by 2 gives $a + a_1 < b + b_1 + c + c_1$. The other two forms of the inequality are similarly obtained. Note that this result also holds for the degenerate tetrahedron consisting of four distinct coplanar points.
Proposed by M. S. Klamkin, University of Alberta

If \(n = n_1 + n_2 + \cdots + n_r \) where \(n_i \geq 0 \),

[[I've changed \(n_r \) to \(n_i \) — R.]]

prove that

\[
\frac{n^n}{\prod n_i^{n_i}} \geq \frac{\Gamma(1+n)}{\prod \Gamma(1+n_i)} \geq \frac{(n+1)^{n+1}}{\prod (n_i+1)^{n_i+1}}
\]

Solution by the proposer. The two inequalities will follow easily if we can show that the two functions

\[
F(x) = \log(x^x/\Gamma(1+x)) \quad \text{and} \quad G(x) = \log(\Gamma(1+x)/(1+x)^{1+x})
\]

are superadditive, e.g., \(F(x + y) \geq F(x) + F(y) \) for \(x \geq 0 \). Since \(F(0) = G(0) = 0 \), it suffices to show that both \(F(x) \) and \(G(x) \) are convex or equivalently that \(F''(x) \geq 0, G''(x) \geq 0 \) (See D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Heidelberg, 1970, pp.22–23).

\[
F'(x) = 1 + \log x - \Gamma'(1+x)/\Gamma(1+x) = 1 + \log x - \psi(1+x)
\]

\[
F''(x) = \frac{1}{1+x} - \psi'(1+x) = \frac{1}{x} - \left\{ \frac{1}{(1+x)^2} + \frac{1}{(2+x)^2} + \cdots \right\}
\]

By the integral test,

\[
\psi'(1+x) \leq \frac{1}{(1+x)^2} + \int_{1+x}^{\infty} \frac{dt}{t^2} = \frac{1}{(1+x)^2} + \frac{1}{1+x} = \frac{2+x}{(1+x)^2} < \frac{1}{x}
\]

Thus \(F(x) \) is superadditive and

\[
\sum F(n_k) \leq F\left(\sum n_i \right) = F(n)
\]

which establishes the left-hand half of (1).

\[
G'(x) = \psi(1+x) - 1 - \log(1+x)
\]

\[
G''(x) = \psi, (1+x) - 1/(1+x)
\]

To show \(G''(x) \geq 0 \), first note that

\[
G''(x) = \int_0^\infty \frac{te^{-(x+1)t}}{1-e^{-t}} \, dt - \int_0^\infty e^{-(x+1)t} \, dt = \int_0^\infty \frac{t - 1 + e^{-t}}{1-e^{-t}} e^{-(x+1)t} \, dt
\]
so $G''(x) \geq 0$, since $e^{-t} \geq 1 - t$ for $t \geq 0$. Thus, $G(x)$ is also superadditive which gives the right-hand half of (2).

It is to be noted that the case of the left-hand inequality, when the n_i are non-negative integers, reduces to a problem of Leo Moser (Math. Mag., 31(1957) 113). The neat solution by Chi-yi Wong was to first write $(n_1 + n_2 + \cdots + n_r)^n = n^n$ and then to note that each term of the multinomial expansion of the left-hand expression is less than n^n.

Editorial Note

The solution by Otto G. Ruehr suggests a further problem: Determine

$$\sup \left\{ \alpha : \sum f_\alpha(t_i) \geq f_\alpha(t) \text{ whenever } t = t_1 + t_2 + \cdots + t_r \quad t_i \geq 0 \quad r = 1, 2, \ldots \right\}$$

where

$$f_\alpha(x) = \log \left\{ \frac{\gamma(1 + x)}{(x + \alpha)^{x+\alpha}} \right\}$$

Clearly from the problem, $0 \leq \alpha \leq 1$.

Amer. Math. Monthly, 87(1980) 675.

6312*. Proposed by M. S. Klamkin, University of Alberta

Prove or disprove that the set of n equations in n unknowns

$$x_1^{l_1} + x_2^{l_2} + \cdots + x_n^{l_n} = 0 \quad (i = 1, 2, \ldots, n)$$

where the l_i are relatively prime positive integers, has only the trivial solution $x_i = 0$ ($i = 1, 2, \ldots, n$) if and only if each $m = 2, 3, \ldots, n$ divides at least one l_i.

Amer. Math. Monthly, 89(1982) 505.

Solution by Constantine Nakassis, Gaithersburg, Maryland. Let $n > 2$ be an even number ($n = 2k$); suppose that the only even number in $l_1, l_2 \ldots l_n$ is l_1 (for example take $l_1 = n!$ and let $l_2, \ldots l_n$ be the first $n-1$ primes that follow n). Consider any k complex numbers which satisfy

$$y_1^{l_1} + y_2^{l_2} + \cdots + y_n^{l_n} = 0$$

Let $x_{2i-1} = y_i$, $x_{2i} = -y_i$ for $i = 1, 2, \ldots, k$. It is clear then that the proposed system has nontrivial solutions. (The starred assertion is true if $n = 2$, but false if $n = 2k+1 > 3$.)

The case $n = 3$ remains open; the starred assertion has been established by the proposer for many triples.
Let \(x, y, z\) be positive, and let \(A, B, C\) be angles of a triangle. Prove that
\[
x^2 + y^2 + z^2 \geq 2yz \sin(A - \pi/6) + 2zx \sin(B - \pi/6) + 2xy \sin(C - \pi/6).
\]

Solution I. Let
\[
f(x, y, z) = x^2 + y^2 + z^2 - 2yz \sin \alpha - 2zx \sin \beta - 2xy \sin \gamma
\]
where \(\alpha = A - \pi/6, \beta = B - \pi/6\) and \(\gamma = C - \pi/6\). Since
\[
\sin \alpha = \cos \beta \cos \gamma - \sin \beta \sin \gamma
\]
we can express \(f(x, y, z)\) as
\[
(x - y \sin \gamma - z \sin \beta)^2 + (y \cos \gamma - z \cos \beta)^2
\]
and the result follows.

In fact, the given inequality holds for any real \(x, y, z\) and for all \(A, B, C\) with \(A + B + C = \pi\).

Solution II. Defining \(f(x, y, z)\) as above, the matrix of the quadratic form \(f\) is
\[
U = \begin{bmatrix} 1 & -\sin \gamma & -\sin \beta \\ -\sin \gamma & 1 & -\sin \alpha \\ -\sin \beta & -\sin \alpha & 1 \end{bmatrix}
\]
It is easily seen that \(\det U = 0\), and hence the leading principal minors of \(U\) are 1, \(\cos^2 \gamma\) and 0. Therefore \(f\) is positive semidefinite and the result follows.
E 2962. Proposed by M. S. Klamkin, University of Alberta, Canada

It is known that if the circumradii \(R \) of the four faces of a tetrahedron are congruent, then the four faces of the tetrahedron are mutually congruent (i.e., the tetrahedron is isosceles) [1]. It is also known that if the inradii of the four faces of tetrahedron are congruent, then the tetrahedron need not be isosceles [2]. Show that if \(Rr \) is the same for each face of a tetrahedron, the tetrahedron is isosceles.

Solution by O. P. Lossers, Eindhoven University of Technology, The Netherlands. Let \(ABCD \) bea tetrahedron. We put \(BC = a, CA = b, AB = c, DA = a_1, DB = b_1, DC = c_1 \). The fact that the productbof the circumradius and the inradius is the same for each face is then expressed by

\[
\frac{abc}{a+b+c} = \frac{ab_1c_1}{a+b_1+c_1} = \frac{a_1bc_1}{a_1+b+c_1} = \frac{a_1b_1c}{a_1+b_1+c} = 2Rr
\]

The first equality is equivalent to

\[
bb_1(c - c_1) + cc_1(b - b_1) = a(b_1c_1 - bc)
\]

or

\[
c_1(a + c)(b - b_1) + b(b_1 + a)(c - c_1) = 0 \tag{1}
\]

We have two more equations obtained from (1) by cyclic permutation, namely

\[
c(c_1 + b)(a - a_1) + a_1(b + a)(c - c_1) = 0 \tag{2}
\]

\[
b_1(b + c)(a - a_1) + a(a_1 + c)(b - b_1) = 0 \tag{3}
\]

Considering (1), (2) and (3) as a system of linear equations for the unknowns \(a - a_1, b - b_1, c - c_1 \) we observe that the determinant of the system has the form

\[
\begin{vmatrix}
p & q \\
q & r \\
t & u \\
\end{vmatrix} = pst + qru
\]

and does not vanish because all its elements are obviously positive. Hence \(a = a_1, b = b_1, c = c_1 \), which proves the statement.
Unequal Trigonometric Sums

E 2874. Proposed by Naoki Kimura and Tetsundo Sekiguchi, University of Arkansas

Let \(n \geq 3, 0 < A_i \leq \pi/2, i = 1, 2, \ldots, n. \) Assume \(\sum_{i=1}^{n} \cos^2 A_i = 1. \) Prove

\[
\sum \tan A_i \geq (n - 1) \sum \cot A_i
\]

Solution by M. S. Klamkin, University of Alberta, and V. Pambuccian, student (Rumania) (independently). The inequality can be rewritten as

\[
\sum \frac{1}{\sin A_i \cos A_i} \geq n \sum \frac{\cos A_i}{\sin A_i}
\]

(1)

Since by Cauchy’s inequality,

\[
\sum \sin A_i \cos A_i \sum \frac{1}{\sin A_i \cos A_i} \geq n^2
\]

(1) will follow from the stronger inequality

\[
n \geq \sum \sin A_i \cos A_i \sum \frac{\cos A_i}{\sin A_i}
\]

(2)

By letting \(x_i = \cos^2 A_i \) and \(S = \sum x_i \) (2) can be expressed in the homogeneous form

\[
\frac{1}{n} \sum x_i \geq \left\{ \frac{1}{n} \sum \sqrt{x_i(S - x_i)} \right\} \left\{ \sum \sqrt{x_i/(S - x_i)} \right\}
\]

(3)

Finally, we can assume \(x_1 \leq x_2 \leq \cdots \leq x_n \) so that \(\{x_i(S - x_i)\} \) and \(x_i/(S - x_i) \) are monotonic in the same sense and (3) follows by Chebyshev’s inequality with equality if and only if \(x_i \) are all equal. (See Hardy, Littlewood and Pólya, Inequalities, pp.43–44.)

REMARKS: By Cauchy’s inequality again, (3) interpolates the power mean inequality

\[
\frac{1}{n} \sum x_i \geq \left\{ \frac{1}{n} \sum \sqrt{x_i} \right\}^2
\]

Inequality (3) can be extended to

\[
\frac{1}{n} \sum x_i \geq \left\{ \frac{1}{n} \sum x_i^r(S - x_i)^s \right\} \left\{ \frac{1}{n} \sum x_i^{1-r}S^{-s} \right\}
\]

where \(1 \geq r \geq s \geq 0. \) Actually it even suffices to take \(r/s \geq \max x_i/(S - x_i) \) (this ensures that \(x^r(S - x)^s \) is an increasing function).

[L. Kuipers showed that \(n\sqrt{n - 1} \) is at the same time a lower bound for the left member and an upper bound for the right member of the inequality in the proposal.]
E 2981. Proposed by M. S. Klamkin, University of Alberta, Canada

If the three medians of a spherical triangle are equal, must the triangle be equilateral? Note that the sides of a (proper) spherical triangle are minor arcs of great circles and thus its perimeter is $< 2\pi$.

Composite solution. Several incorrect solutions were submitted. The following is a composite solution, portions of which were contributed by C. Gorsch, W. Meyer, the proposer and the editors.

No, surprisingly the triangle need not be equilateral; however, it must be isosceles, and is otherwise severely limited.

Let a, b, c denote the angles subtended at the centre of the sphere by the sides of the triangle; let m_a, m_b, m_c likewise denote the angles subtended by the medians from a, b, c respectively.

Using dot products, or the spherical law of cosines, or other means, the following may easily be shown:

$$
\cos m_a = \frac{\cos b + \cos c}{2 \cos a/2} \quad \cos m_b = \frac{\cos c + \cos a}{2 \cos b/2} \quad \cos m_c = \frac{\cos a + \cos b}{2 \cos c/2}
$$

If the medians are equal—i.e., $m_a = m_b = m_c$— then

$$
\frac{\cos b + \cos c}{2 \cos a/2} = \frac{\cos c + \cos a}{2 \cos b/2} = \frac{\cos a + \cos b}{2 \cos c/2}
$$

and conversely.

It is clear that these equations hold if $a = b = c$. Moreover, they cannot hold if a, b, c are all different. However, we will show that they may hold if two are equal but the third is different, i.e., the triangle is isosceles but not equilateral.

Suppose, then, that $b = c$. The condition for equality of the medians becomes

$$
\frac{\cos a + \cos b}{2 \cos b/2} = \frac{\cos b + \cos c}{2 \cos c/2}
$$

Let $x = \cos a$ and $y = \cos b = \cos c$. Then, using the half-angle formula, and cancelling common twos, we obtain

$$
\frac{2y}{\sqrt{1 + x}} = \frac{x + y}{\sqrt{1 + y}}
$$

The graph of this equation may be shown by standard methods of analytic geometry to consist of the line $y = x$ together with a portion of the ellipse $x^2 + 3xy + 4y^2 + x + 3y = 0$.

136
The line may be disregarded completely, as it corresponds to the case of equilateral triangles. The major axis of the ellipse is inclined at 1/4 of a right angle clockwise from the \(x \)-axis. The ellipse is otherwise difficult to describe nicely; but it is easily verified that it contains the following points:

\[
A(0,0) \quad B(1,-1/2) \quad C(9/7,-6/7) \quad D(1,-1) \\
E(0,-3/4) \quad F(-1/2,-1/2) \quad G(-1,0) \quad H(-5/7,1/7)
\]

Points \(C \) and \(G \) are extreme in the \(x \) direction; points \(D \) and \(H \) are extreme in the \(y \) direction.

[[The ellipse is not too difficult to describe. Its centre is at \((1/7,-3/7) \), the major and minor semi-axes are \(2(3 \pm \sqrt{2})/7 \) and have slopes \(-\pi/8, 3\pi/8 \). — R.]]

The relevant portion of the ellipse is below the line \(2y = -(x+1) \)—the rest is introduced as an “extraneous root”. This line passes through \(G \) and \(D \).

Not even all points \((x,y) \) on this portion of the ellipse will do, however. Some lead to improper spherical triangles. To be proper, the perimeter \(a + 2b \) cannot exceed \(2\pi \). On the other hand, \(a \geq 2b \) would lead to a flat or impossible triangle. Hence \(a/2 < b < \pi - a/s \). Since the cosine is decreasing over \([0, \pi]\),

\[
\cos a/2 > \cos b > \cos(\pi - a/2) = -\cos a/2
\]
Thus $\cos^2 b < \cos^2 a/2 = (1 + \cos a)/2$ or $2y^2 < x + 1$.

This corresponds to the region inside a parabola opening along the positive x axis and passing through $(-1, 0)$ and $(1, \pm 1)$.

The parabola intersects the ellipse at $G(-1, 0)$, $F(-1/2, -1/2)$ and $D(1, -1)$. Point G is a double root and, though the parabola touches the ellipse here, it remains outside it. The parabola is inside the ellipse from F to D. Only the portion of the ellipse within the parabola corresponds to viable cases—this is the section from G to F. With this restriction, $a = \cos^{-1} x$ is between 120° and 180°, whereas $b = \cos^{-1} y$ is between 90° and 120°. Any such values correspond to triangles meeting the required condition.

C. Gorsch has noted that though these values lead to proper triangles with the required property, they are barely proper in that their perimeters are all very close to the limiting value 2π. In fact he alleges the existence of a single extremum at approximately $b = 102^\circ$ for which the perimeter is least; but even so the perimeter there is within 4° of 360°.

W. Meyer has noted that the triangle determined by the midpoints of the sides of the original triangle has the property that its two sides are 120° each and the remaining side is between 90° and 120°. He asserts that, in fact, an arbitrary triangle meeting these conditions may be given, and then a triangle with the desired medians-equal property may easily be circumscribed around it.

The proposer raises two related questions: whether the triangle must be equilateral if the three altitudes are equal; and likewise if the angle bisectors are equal. He alleges that in the former case, $\sin a = \sin b = \sin c$, and thus the triangle again need not be equilateral due to the rise-fall behavior of sine in $[0, \pi]$. He leaves open the apparently more difficult second question.
Let $F(x), G(x)$ be two functions in $L_1(-\infty, \infty)$ which satisfy

$$
\int_{-\infty}^{\infty} F(x) \, dx = \int_{-\infty}^{\infty} G(x) \, dx = 1
$$

Show that for any λ in $(0,1)$ there is a set $E \subseteq (-\infty, \infty)$ such that

$$
\int_{E} F(x) \, dx = \int_{E} G(x) \, dx = \lambda.
$$

Solution 1 by Gerald A. Edgar, The Ohio State University. By Liapunoff’s theorem [see W. Rudin, Functional Analysis, second edition, McGraw-Hill, Theorem 5.5], the set S in \mathbb{R}^2 defined by

$$
S = \left\{ \left(\int_{E} F(x) \, dx, \int_{E} G(x) \, dx \right) : E \text{ measurable} \right\}
$$

is convex. Since $(0,0) \in S$ and $(1,1) \in S$, it follows that $(\lambda, \lambda) \in S$ for any $\lambda \in (0,1)$.

Solution 2 by the proposers. (This solution is more elementary than the above.) Let $A = \{ x : F(x) > G(x) \}$, $B = \mathbb{R} \setminus A$, let $A_t = A \cap (-\infty, t)$, $B_t = B \cap (-\infty, t)$ and let

$$
\alpha(t) = \int_{A_t} (F(x) - G(x)) \, dx \quad \beta(t) = \int_{B_t} (G(x) - F(x)) \, dx
$$

Then $\alpha(t)$ and $\beta(t)$ are monotone non-decreasing continuous functions with $\alpha(-\infty) = \beta(-\infty)$ and $\alpha(\infty) = \beta(\infty)$. Therefore, for every t there exists $\gamma = \gamma(t)$ such that $\alpha(t) = \beta(\gamma)$. Now set $C_t = A_t \cup B_{\gamma}$. The clearly $C_t \subseteq C_s$ when $t \leq s$ and $\mu(C_s) \to \mu(C_t)$ when $s \to t^+$. Hence the function

$$
\int_{C_t} F(x) \, dx = \int_{C_t} G(x) \, dx =: H(t)
$$

is continuous. Since $C_{-\infty} = \emptyset$ and $C_\infty = \mathbb{R}$, it follows that $H(t)$ attains all its values between 0 and 1. Thus, for $\lambda \in (0,1)$, there is a number τ such that $H(\tau) = \lambda$ and $E = C_\tau$ has the required property.
If \(A, B, C \) are angles of a triangle, prove that

\[
\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2} \geq 1 + \sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}
\]

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The Netherlands. We consider the function \(V \) defined by

\[
V(A, B, C) = \cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2} - \left(\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} \right)
\]

on the compact set \(S \) defined by \(A \geq 0, B \geq 0, C \geq 0 \) and \(A + B + C = \pi \). \(V \) attains an absolute maximum and minimum; we will show that the minimum is 1 and the maximum is \(3(\sqrt{3} - 1)/2 \).

Suppose \(C = 0 \), so that \(A + B = \pi \). The identity \(\cos(\pi/2 - x) = \sin x \) implies \(V(A, B, 0) = 1 \). Similarly \(V(0, B, C) = V(A, 0, C) = 1 \) so \(V \) is identically 1 on the boundary of \(S \), and we need only consider interior points.

For fixed \(C \neq 0 \) we have

\[
V(A, B, C) = \left(\cos \frac{A}{2} + \cos \frac{B}{2} \right) - \left(\sin \frac{A}{2} + \sin \frac{B}{2} \right) + \left(\cos \frac{C}{2} - \sin \frac{C}{2} \right)
\]

\[
= 2 \cos \frac{A - B}{4} \left(\cos \frac{A + B}{4} - \sin \frac{A + B}{4} \right) + \cos \frac{C}{2} - \sin \frac{C}{2}
\]

Since \(|x| < \pi/4 \) implies \(\cos x > \sin x \), the last expression is minimized only when \(A = 0 \) or \(B = 0 \), and it is maximized for a fixed \(A \neq 0 \) when \(B = C \). Hence \(V \) attains its maximum only at \(A = B = C = \pi/3 \), where \(V = 3/2(\sqrt{3} - 1) \). Thus we have

\[
1 < V(A, B, C) \leq 3/2(\sqrt{3} - 1),
\]

with lower equality only at a degenerate triangle and upper inequality only at an equilateral triangle.

Editorial Comment. Several readers used Lagrange multipliers to find the extrema of \(V \). Lagrange’s method seems particularly suitable for studying the extrema of such functions of the angles of a triangle. For example, it shows that the cosine sum and the sine sum separately satisfy the inequalities

\[
2 < \cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2} \leq \frac{3}{2} \sqrt{3}
\]

\[
1 < \sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} \leq \frac{3}{2}
\]

with lower equality only for a degenerate triangle and upper equality only for an equilateral triangle. H. Guggenheimer remarks that the difference between the maximum and minimum values of \(V \) is surprisingly small when compared to the corresponding differences in the inequalities just quoted.
Let \(P' \) denote the convex \(n \)-gon whose vertices are the midpoints of the sides of a given convex \(n \)-gon \(P \). Determine the extreme values of

(i) \(\text{Area} \ P' / \text{Area} \ P \).

(ii) \(\text{Perimeter} \ P' / \text{Perimeter} \ P \).

We divide the proof into seven cases.

\textbf{Case 1.} \(n = 3 \). The triangle \(P' \) is similar to \(P \) with sides exactly half as long; the conclusion is immediate for all four extrema.

\textbf{Case 2.} \(n = 4 \), \textit{Area Ratio}. Given a quadrilateral \(E_1E_2E_3E_4 \), let \(E'_1, E'_2, E'_3, E'_4 \) be the midpoints of the sides \(E_1E_2, E_2E_3, E_3E_4, E_4E_1 \) respectively. By similar triangles,

\[\text{area}(E'_1E_2E'_2) = \frac{1}{4} \text{area}(E_1E_2E_3) \]

so

\[\text{area}(E'_1E_2E'_2) + \text{area}(E'_3E_4E'_4) = \frac{1}{4} \text{area}(E_1E_2E_3E_4) \]

Likewise

\[\text{area}(E'_4E_1E'_1) + \text{area}(E'_2E_3E'_3) = \frac{1}{4} \text{area}(E_1E_2E_3E_4) \]

so

\[\frac{\text{area}(E'_1E'_2E'_3E'_4)}{\text{area}(E_1E_2E_3E_4)} = \frac{1}{2} \]
Case 3. \(n \geq 6 \), Maximum Area Ratio. A degenerate \(n \)-gon, \(P = E_1E_2 \ldots E_n \), with \(E_1 = E_2, E_3 = E_4 \) and \(E_5 = E_6 = \ldots = E_n \) will have \(\text{area} P'/\text{area} P = 1 \), which is the largest the ratio can be if \(P \) is convex.

Case 4. \(n \geq 5 \), Minimum Area Ratio. Given an \(n \)-gon \(P = E_1E_2 \ldots E_n \) draw all the “corner triangles”, i.e. the ones made by connecting three consecutive vertices of the \(n \)-gon. Let \(X \) be some point inside corner triangle \(E_2E_3E_4 \). \(X \) cannot be inside any of the other corner triangles except possibly \(E_1E_2E_3 \) and \(E_3E_4E_5 \) because all the others are disjoint from \(E_2E_3E_4 \). However, \(E_1E_2E_3 \) and \(E_3E_4E_5 \) are disjoint, so \(X \) can be in at most one of them. In other words, no point inside the \(N \)-gon \(P \) can be inside more than two of the corner triangles. Thus

\[
\sum \text{area}(\text{corner triangles}) \leq 2 \text{area} P.
\]

But the triangles made by connecting midpoints of adjacent sides of \(P \) (which will be referred to hereafter as “midpoint corner triangles”) each has \(1/4 \) the area of the corresponding corner triangle, so that

\[
\sum \text{area}(\text{midpoint corner triangles}) \leq \frac{1}{2} \text{area} P
\]

Adding \(\text{area} P' \) to both sides of this inequality and noticing that \(P' \) and the midpoint corner triangles together make up \(P \), we get

\[
\text{area} P \leq \frac{1}{2} \text{area} P + \text{area} P'
\]

or

\[
\frac{\text{area} P'}{\text{area} P} \geq \frac{1}{2}
\]

It is possible to attain this minimum ratio of \(\frac{1}{2} \) by setting \(E_3 = E_4 = \ldots = E_n \).

Case 5. \(n = 5 \), Maximum Area Ratio. Given a convex pentagon \(P = E_1E_2E_3E_4E_5 \), if we could prove that

\[
\text{area}(E_1E_3E_5) \leq \text{area}(E_5E_1E_2) + \text{area}(E_2E_3E_4) + \text{area}(E_4E_5E_1)
\]

then, by adding \(\text{area}(E_1E_3E_5) + \text{area}(E_3E_4E_5) \) to both sides, we could get

\[
\text{area} P \leq \sum \text{area}(\text{corner triangles})
\]

or

\[
\frac{1}{4} \text{area} P + \text{area} P' \leq \text{area} P \quad \text{or} \quad \frac{\text{area} P'}{\text{area} P} \leq \frac{3}{4}
\]

We will show that by choosing a suitable labelling of the vertices of \(P \), we can prove the stronger result, that

\[
\text{area}(E_1E_3E_5) \leq \text{area}(E_5E_1E_2) + \text{area}(E_2E_3E_4) \quad (1)
\]
In the convex pentagon P there must be a pair of adjacent angles that add to more than π since the average sum of pairs of adjacent angles in a pentagon is $6\pi/5$. Assume $\angle E_4 + \angle E_5 > \pi$. (see Figure 1).

[[Warning: The label ‘E_5’ is misplaced in the original figure. It is corrected in the figure below. — R.]]

This implies that the extension of E_1E_5 beyond E_5 and the extension of E_3E_4 beyond E_4 intersect. Draw the lines ℓ_1 and ℓ_2 through E_2 and parallel to E_1E_5 and E_3E_4 respectively. Draw E_1E_3. Pick a point D on E_1E_3 so that it inside the parallelogram formed by E_1E_5 and E_3E_4. Draw lines through E_4 and through E_5 parallel to E_1E_3. By performing a reflection of the picture if necessary, we can assume that E_5 is closer to E_1E_3 than E_4 is.

We establish some inequalities:

$$\text{area}(DE_3E_5) \leq \text{area}(DE_3E_4) \quad (2)$$

because they share a common base DE_3 but E_4 is farther away from that base. Likewise, for the base E_5E_1,

$$\text{area}(E_5E_1D) \leq \text{area}(E_5E_1E_2) \quad (3)$$

and, for the base E_3E_4

$$\text{area}(DE_3E_4) \leq \text{area}(E_2E_3E_4) \quad (4)$$

Now (2) and (4) yield $\text{area}(DE_3E_5) \leq \text{area}(E_2E_3E_4)$. By adding (3) to the last inequality we get (1) and thus area $P'/\text{area } P \leq \frac{3}{4}$.

It is possible to attain this maximum ratio by setting $E_1 = E_2$ and $E_3 = E_4$.

Case 6. $m \geq 4$, Maximum Perimeter Ratio. An n-gon $P = E_1E_2\ldots E_n$ which has $E_1 = E_2$ and $E_3 = E_4 = \cdots = E_n$ will have perim $P' = \text{perim } P'$.

It is impossible to get a larger ratio than 1 since, by the triangle inequality, the length of one of the sides of P' is at most that of the two half sides of P that it replaces. (This argument works even if P is not convex.)

Case 7. $n \geq 4$, Minimum Perimeter Ratio. Given an n-gon $P = E_1E_2\ldots E_n$ let D_1 be the point of intersection of E_nE_2 and E_1E_3 and in general D_k the point of intersection of $E_{k-1}E_{k+1}$ and E_kE_{k+2} where the subscripts are taken mod n. (See Figure 2.) By the triangle inequality,

$$E_1E_2 \leq D_1E_2 + E_1D_1$$

$$E_2E_3 \leq D_2E_3 + E_2D_2$$

$$\vdots$$

$$E_nE_1 \leq D_nE_1 + E_nD_n$$

143
Also, $0 \leq D_1D_2 + D_2D_3 + \cdots + D_nD_1$. Adding we obtain

\[
\text{perim } P \leq (D_1E_2 + E_1D_1) + D_1D_2 + (D_2E_3 + E_2D_2) + D_2D_3 + \cdots \\
= D_1E_2 + (E_1D_1 + D_1D_2 + D_2E_3) + (E_2D_2 + D_2D_3 + D_3E_4) + \cdots \\
= E_1E_3 + E_3E_4 + \cdots + E_nE_2 \\
= 2 \text{perim } P'
\]

so

\[
\frac{\text{perim } P'}{\text{perim } P} \geq \frac{1}{2}
\]

If $E_1E_2 \ldots E_n$ is a polygon with $E_2 = E_3 = \cdots = E_n$ then $\text{perim } P' = 1/2 \text{perim } P$.

144

One Cubic Factorization Implies Another

E 3083 [1985, 286]. Proposed by Gunnar Blom, University of Lund and Lund Institute of Technology, Sweden

If the relation

\[x^3 + y^3 + z^3 = (x + y)(x + z)(y + z) \]

is satisfied by \(x_0, y_0, z_0\) where

\[(x_0^2 + y_0^2 - z_0^2)(x_0^2 + z_0^2 - y_0^2)(y_0^2 + z_0^2 - x_0^2) \neq 0 \]

then it is also satisfied by

\[x_1 = \frac{1}{y_0^2 + z_0^2 - x_0^2}, \quad y_1 = \frac{1}{x_0^2 + z_0^2 - y_0^2}, \quad z_1 = \frac{1}{x_0^2 + y_0^2 - z_0^2} \]

Observation by M. S. Klamkin, University of Alberta, Canada. This problem is given as problems 194 and 196 in Wolstenholme, Mathematical Problems, Cambridge University Press, London (1878 or 1891).

194. Having given the equations

\[x^3 + y^3 + z^3 = (y + z)(z + x)(x + y) \]
\[a(y^2 + z^2 - x^2) = b(z^2 + x^2 - y^2) = c(x^2 + y^2 - z^2) \]

prove that

\[a^3 + b^3 + c^3 = (b + c)(c + a)(a + b). \]

196. If \(x = b^2 + c^2 - a^2, y = c^2 + a^2 - b^2\) and \(z = a^2 + b^2 - c^2\) prove that

\[y^3 z^3 + z^3 x^3 + x^3 y^3 - x y z(y + z)(z + x)(x + y) \]

is the product of four factors, one of which is

\[4a b c + (b + c - a)(c + a - b)(a + b - c) \]

\[= (b + c)(c + a)(a + b) - a^3 - b^3 - c^3 \]

and the other three are formed from this by changing the signs of \(a, b, c\) respectively.

All of these assertions can be proved by direct verification.
Maximizing a Cyclic Sum of Powers of Differences

Let \(a_i, i = 1, 2, \ldots, n \) be real numbers such that \(0 \leq a_i \leq 1 \), where \(n \geq 2 \). Find a best upper bound for

\[
S_n = (a_1 - a_2)^2 + (a_2 - a_3)^2 + \cdots + (a_n - a_1)^2
\]

and determine all cases in which this bound is attained.

Solution by M. S. Klamkin and A. Meir, University of Alberta, Edmonton, Alberta, Canada. More generally we find the maximum of the cyclic sum

\[
S(n, p) = |a_1 - a_2|^p + |a_2 - a_3|^p + \cdots + |a_n - a_1|^p
\]

Clearly the case \(n = 2m \) is trivial for which \(\max S(n, p) = 2m \) and achieved by either

\[
a_1 = a_3 = \cdots = a_{2m-1} = 1 \quad a_2 = a_4 = \cdots = a_{2m} = 0
\]

or vice-versa. For the odd case, we show that

\[
\max S(2m+1, p) = \begin{cases}
2m - 1 + 2^{1-p} & \text{for } 0 < p \leq 1 \\
2m & \text{for } p > 1
\end{cases}
\]

(1)

Proof. Suppose that the above maximum is achieved for the values \(a_1, a_2, \ldots, a_{2m+1} \). Then either (i) all \(a_i \) are 0 or 1, or (ii) there exists an \(a_i \) with \(0 < a_i < 1 \). In case (i), \(a_v = a_{v+1} \) for some \(v \) and thus \(S(2m+1, p) \leq 2m \) for any \(p > 0 \). In case (ii), let \(0 < a_v < 1 \). Then \(a_{v-1} < a_v \) and \(a_{v+1} < a_v \) is impossible since \(a_v = 1 \) would yield a larger sum. Similarly \(a_{v-1} > a_v \) and \(a_{v+1} > a_v \) is impossible. Thus \(a_{v-1} > a_v > a_{v+1} \) or vice-versa. In both cases,

\[
|a_{v-1} - a_v|^p + |a_v - a_{v+1}|^p \leq \begin{cases}
|a_{v-1} - a_v|^1 \leq 1 & \text{if } p > 1 \\
2 \left(\frac{1}{2} |a_{v-1} - a_{v+1}| \right) \leq 2^{1-p} & \text{if } 0 < p \leq 1
\end{cases}
\]

Since clearly \(\sum_{i \neq v-1, v} |a_i - a_{i+1}|^p \leq 2m - 1 \) for all \(p > 0 \), inequality (1) follows, the bound being attained in the case \(0 < p \leq 1 \) by taking, for example, \(a_1 = 0, a_2 = \frac{1}{2}, a_{2k} = 0, a_{2k+1} = 1, 2 \leq k \leq m \).
Show that if A is any three-dimensional vector and B, C are unit vectors, then

$$[(A + B) \times (A + C)] \times (B \times C) \cdot (B + C) = 0$$

Interpret the result as a property of spherical triangles.

Solution by Walter Janous, Ursulinengymnasium, Innsbruck, Austria. Starting from the formula

$$(D \times E) \times F = (F \cdot D)E - (F \cdot E)D$$

we get

$$[(A + B) \times (A + C)] \times [B \times C]$$

$$= [(B \times C) \cdot (A + B)][A + C] - [(B \times C) \cdot A + C][A + B]$$

$$= [(B \times C) \cdot A][A + C] - [(B \times C) \cdot A][A + B]$$

whence the result follows, since

$$(C - B) \cdot (B + C) = C \cdot C - B \cdot B = 1 - 1 = 0$$

Editorial comment. No two solvers gave the same “interpretation of the result as a property of spherical triangles”. The proposer showed that the result is equivalent to the assertion that a great circle which bisects two sides of a spherical triangle intersects the third side 90° from its midpoint. His argument follows.

First, if we have two great circles on a unit sphere determined by the two pairs of points B', C' and B, C, then the two antipodal points of intersection of these circles lie on the line ℓ of intersection of the planes of B', C', O and B, C, O where O is the centre of the sphere. Then a vector V on ℓ is given by $V = (B' \times C') \times (B \times C)$. (Here B denotes the vector from O to the point B, etc.)

Second, let the respective midpoints of the sides of the spherical triangle ABC be A', B', C'. Then

$$A' = (B + C)/|B + C| \quad B' = (A + C)/|A + C| \quad C' = (C + B)/|A + B|$$

and $V \cdot A' = 0$. The equivalence now follows.
An Exponential Inequality

E 3151 [1986, 401]. Proposed by Peter Ivady, Institute for Economy and Organization, Budapest, Hungary

Let \(x \geq 0, \ x \neq 1, \ \lambda \geq 1 \) and \(0 \leq \beta \leq 2 \) be real numbers. Prove that

\[
\left(\frac{x^\lambda - 1}{x - 1} \right)^\beta \leq \lambda \left(\frac{x^{\lambda \beta} - 1}{x^{\beta} - 1} \right)
\]

Solution by M. S. Klamkin, University of Alberta. Replacing \(x \) by \(1/x \) leaves the inequality unchanged, so it suffices to consider only \(x > 1 \) (it is trivial for \(x = 0 \)). Because \((e^{2\lambda at} - 1)/(e^{2at} - 1) = (e^{\lambda at}/e^{at}) \cdot (\sinh \lambda at / \sinh at) \), the hyperbolic substitution \(x = e^{2t} \) converts the inequality to

\[
\lambda \frac{\sinh \lambda \beta t}{\sinh^\beta \lambda t} \geq \frac{\sinh \beta t}{\sinh^\beta t}
\]

for \(t > 0, \ \lambda \geq 1 \) and \(2 \geq \beta \geq 0 \). Equation (1) holds with equality for \(\lambda = 1 \), so it suffices to show that the left side is a nondecreasing function of \(\lambda \), or equivalently that its logarithmic derivative with respect to \(\lambda \) is non-negative, i.e.,

\[
(1/\lambda) + \beta t \coth \lambda \beta t - \beta t \coth \lambda t \geq 0.
\]

By multiplying through by \(\lambda \sinh \lambda t \cdot \sinh \lambda \beta t \) and using the addition formula for \(\sinh \), we transform this inequality into

\[
\sinh \lambda t \sinh \lambda \beta t \geq \lambda \beta t \sinh \lambda t(\beta - 1)
\]

Since \(\sinh \) is negative for negative arguments, (2) holds for \(1 \geq \beta \geq 0 \) and we need only consider \(2 \geq \beta \geq 1 \). At \(\beta = 2 \), (2) reduces to \((\sinh \lambda t)(\sinh 2\lambda t - 2\lambda t) \geq 0 \) which follows from \(\sinh y \geq y \) for \(y \geq 0 \). To establish (2) for \(2 > \beta \geq 1 \) it suffices to show that the logarithmic derivative of the left side with respect to \(\beta \) is less than that of the right side. This reduces to showing

\[
\frac{\lambda t}{\tanh \lambda \beta t} \leq \frac{1}{\beta} + \frac{\lambda t}{\tanh \lambda t(\beta - 1)}
\]

This follows immediately from the fact that \(\tanh \) is an increasing function.
Let ABC be a triangle with sides a, b, c and area F. It is well known that $a^2 + b^2 + c^2 \geq 4F\sqrt{3}$. If p, q, r are arbitrary positive real numbers, prove that

$$\frac{p}{q + r}a^2 + \frac{q}{r + p}b^2 + \frac{r}{p + q}c^2 \geq 2F\sqrt{3}$$

Solution III and generalization by M. S. Klamkin, University of Alberta, Canada. Replace a, b, c by a_1, a_2, a_3 and p, q, r by p_1, p_2, p_3. We derive more generally an inequality for $S + \sum p_ia_i^{2n}/(k - p_i)$ where $1 \geq n \geq 0$ and $a_i \geq 0$. By Cauchy’s inequality, we have $2(S + \sum a_i^{2n}) = \sum(k - p_i)\sum a_i^{2n}/(k - p_i) \geq (\sum a_i^{2n})^2$. Letting $R = \sum a_i^n$ this is equivalent to

$$2S \geq R \prod(R - 2a_i^n)$$

with equality if and only if $a_i^{2n}/(p_2 + p_3) = a_2^{2n}/(p_3 + p_1) = a_3^{2n}/(p_1 + p_2)$. If the $\{a_i^n\}$ are not the sides of a triangle, then the right side of (1) is negative. Suppose that the $\{a_i\}$ form a triangle and that $1 \geq n \geq 0$. Then the $\{a_i^n\}$ also form a triangle whose area we denote by F_n. The right side of (1) is 16 times the square of the side-length formula for area, yielding $2S \geq 16F_n^2$. We now use Oppenheim’s generalization [1] of the Finsler-Hadwiger inequality, i.e., $4F_n/\sqrt{3} \geq (4F/\sqrt{3})^n$ for $1 \geq n \geq 0$, with equality for $n < 1$ if and only if $a_1 = a_2 = a_3$. With (1) this yields the generalization

$$2S \geq 3(4F/\sqrt{3})^{2n} \quad (0 \leq n \leq 1)$$

The proposed inequality corresponds to the special case $n = 1/2$. The special case $n = 1$ corresponds to the proposer’s problem #1051 in Crux Mathematicorum, 11(1985) 187.

The inequality $a^2 + b^2 + c^2 \geq 4F\sqrt{3}$ goes back to Weitenböck, Math. Z., 5(1919) 137–146.

E 3305. Proposed by M. S. Klamkin, University of Alberta, Edmonton

If a, b, c are the sides of a triangle with given semiperimeter s, determine the maximum values of

(i) $(b - c)^2 + (c - a)^2 + (a - b)^2$

(ii) $|(b - c)(c - a)| + |(c - a)(a - b)| + |(a - b)(b - c)|$

(iii) $(b - c)^2(c - a)^2(a - b)^2$

Solution by David Callan, University of Bridgeport, Bridgeport, CT. The maximum values are $2s^2$, s^2, $s^6/108$ respectively. Let a, b, c denote the sides in decreasing order. Note that $s/2 \leq b \leq s$. Form a new (degenerate) triangle with the same perimeter and middle side, the new sides in decreasing order being s, b, $s - b$. In switching to the new triangle, no difference between side-lengths decreases; in fact, each difference increases if the original triangle is nondegenerate. Hence each part of the problem is the maximization of a polynomial in b over $[s/2, s]$. The polynomials are:

(i) $(2b - s)^2 + b^2 + (s - b)^2$

(ii) $b(2b - s) + b(s - b) + (s - b)(2b - s)$

(iii) $(2b - s)^2b^2(s - b)^2$

These maximizations can be done by elementary calculus, giving maxima as listed above, occurring at $b = s$, s, $(3 + 3^{1/2})s/6$ respectively.

Editorial comment. Most solvers treated the problem as a constrained maximization problem in several variables.
The celebrated Morley triangle of a given triangle ABC is the equilateral triangle whose vertices are the intersections of adjacent pairs of internal angle trisectors of ABC. If s, R, r, F and s_M, R_M, r_M, F_M are the semiperimeter, the circumradius, the inradius, and the area, respectively, of ABC and its Morley triangle, determine the maximum of (i) s_M/s, (ii) R_M/R, (iii) r_M/r and (iv) F_M/F.

Editorial remark. The first, second and fourth ratios considered in the problem achieve their maxima when $A = B = C = \pi/3$ and have greatest lower bound zero. The third ratio, r_M/r, achieves a positive minimum when $A = B = C = \pi/3$ and has least upper bound equal to $2/9$. The calculation of these extrema are given in their approximate order of difficulty.

Solution of (ii) by the proposers. We prove that

$$R_M/R \leq (8/\sqrt{3}) \sin^3(\pi/9)$$

with equality only when the original triangle is equilateral. We require the known fact that the Morley triangle has side length $8R \sin(A/3) \sin(B/3) \sin(C/3)$. (Cf. [1], [2] or [3] in the list of references.) Since the circumradius of an equilateral triangle is $1/\sqrt{3}$ times its side-length, we have

$$R_M/R = (8/\sqrt{3}) \sin(A/3) \sin(B/3) \sin(C/3)$$

Now if $g_2(x) = \log \sin(x/3)$, then $g_2''(x) = -\{3 \sin(x/3)\}^{-2}$. Since $g_2''(x) < 0$ on $(0, \pi)$, we have by concavity

$$g_2(A) + g_2(B) + g_2(C) \leq 3g_2(\{A + B + C\}/3) = 3g_2(\pi/3)$$

or

$$\sin(A/3) \sin(B/3) \sin(C/3) \leq \sin^3(\pi/9)$$

with equality only if $A = B = C = \pi/3$. Thus the claimed result follows.

Solution of (iii) by the proposers. We prove that

$$(8/\sqrt{3}) \sin^3(\pi/9) \leq r_M/r < 2/9$$

with equality on the left only if the original triangle is equilateral. We begin by using the formulas $r_M = R_M/2$ and $r = 4R \sin(A/2) \sin(B/2) \sin(C/2)$ to obtain

$$r_M/r = (1/8)(R_M/R)/\{\sin(A/2) \sin(B/2) \sin(C/2)\}$$
or, by the solution of part (ii)

\[
\frac{r_m}{r} = \frac{1}{\sqrt{3}} \frac{\sin(A/3) \sin(B/3) \sin(C/3)}{\sin(A/2) \sin(B/2) \sin(C/2)}
\]

Now if \(g_3(x) = \log\{\sin(x/3)/\sin(x/2)\} \), then

\[
g''_3(x) = \frac{-\{3 \sin(x/3)\}^{-2} + \{2 \sin(x/2)\}^{-2}}{\{\sin(x/3)/(x/3)\}^2 - \{\sin(x/2)/(x/2)\}^2}
\]

Since \((\sin t)/t \) is strictly decreasing on \((0, \pi/2)\), it follows that \(g''_3(x) > 0 \) for \(0 < x < \pi \).

Hence by convexity

\[
g_3(A) + g_3(B) + g_3(C) \geq 3g_3\left\{\frac{A + B + C}{3}\right\} = 3g_3(\pi/3)
\]

or

\[
\frac{\sin(A/3) \sin(B/3) \sin(C/3)}{\sin(A/2) \sin(B/2) \sin(C/2)} \geq \left\{\frac{\sin(\pi/9)}{\sin(\pi/6)}\right\}^3 = 8 \sin^3(\pi/9)
\]

Thus we have the lower bound \(r_M/r \geq (8/\sqrt{3}) \sin^3(\pi/9) \) with equality only if \(A = B = C = \pi/3 \).

To get an upper bound we note that if \(0 < A \leq C \leq B < \pi \) and if \(\epsilon \) is a small positive number, then

\[
g_3(A) + g_3(B) + g_3(C) \geq 3g_3\left\{\frac{A + B + C}{3}\right\} = 3g_3(\pi/3)
\]

or

\[
\int_0^\epsilon \{g'_3(B + t) - g'_3(A - t)\} dt > 0
\]

since \(g'_3 \) is strictly increasing on \((0, \pi)\). Thus \(r_M/r \) increases if we increase the largest angle of the triangle and decrease another angle by the same amount. Hence \(r_M/r \) is less than the value we get for the degenerate triangle with angles \(0, 0, \pi\). Thus

\[
\frac{r_M}{r} < \frac{1}{\sqrt{3}} \frac{2 \cdot 2 \cdot \sqrt{3}}{3 \cdot 3 \cdot 2} = \frac{2}{9}
\]

Combining our two results we obtain the result claimed. Not that \(r_M/r \) is confined to the relatively narrow interval \((0.18479, 0.22223)\).

Solution of (i) by the editors. We prove that

\[
\frac{s_M}{s} \leq (8/\sqrt{3}) \sin^3(\pi/9)
\]

with equality if and only if \(A = B = C = \pi/3 \). We have

\[
s_M/s = \frac{\{24R \sin(A/3) \sin(B/3) \sin(C/3)\}}{\{\sin A + \sin B + \sin C\}}
\]

\[
= \frac{\{12 \sin(A/3) \sin(B/3) \sin(C/3)\}}{\{\sin A + \sin B + \sin C\}}
\]

\[
= \frac{\{3 \sin(A/3) \sin(B/3) \sin(C/3)\}}{\{\cos(A/2) \cos(B/2) \cos(C/2)\}}
\]
If \(g_1(x) = \log\{\sin(x/3)/\cos(x/2)\} \), then \(g_1'(x) = (1/2) \tan(x/2) + (1/3) \cot(x/3) \) and
\[
g_1''(x) = \left\{ 2 \cos(x/2) \right\}^{-2} - \left\{ 3 \sin(x/3) \right\}^{-2}
\]
which does not have constant sign on \((0, \pi)\); specifically \(g_1''(x) < 0 \) for \(0 < x < \theta_1 = 6 \arcsin(1/4) = 1.516\ldots \) and \(g_1''(x) > 0 \) for \(\theta_1 < x < \pi \). Thus simple convexity-concavity arguments alone do not suffice for (i) and we must make a more detailed analysis by treating three cases:

(a) each of \(A, B, C \) is at most \(\theta_1 \)
(b) two of \(A, B, C \) exceed \(\theta_1 \)
(c) exactly one of \(A, B, C \) exceeds \(\theta_1 \)

Suppose (a) holds. Since \(g_1''(x) < 0 \) for \(0 < x < \theta_1 \) we have by concavity
\[
g_1(A) + g_1(B) + g_1(C) \leq 3g_1(\{A + B + C\}/3) = 3g_1(\pi/3)
\]
[[The penult ‘3’ is missing from the original. – R.]]
and it follows that in this case
\[
s_m/s \leq 3 \frac{\sin^3(\pi/9)}{\cos^3(\pi/6)} = \frac{8}{\sqrt{3}} \frac{\sin^3(\pi/9)}{\sin(\pi/6)} = 0.18479\ldots
\]
with equality holding if and only if \(A = B = C = \pi/3 \).

Next suppose that (b) holds, say \(A \geq B > \theta_1 \). It follows that
\[
A = \pi - B - C < \pi - \theta_1 \\
B < (A + B + C)/2 = \pi/2 \\
C = \pi - A - B < \pi - 2\theta_1
\]
Since \(g_1'(x) > 0 \) for \(0 < x < \pi \) we have
\[
\frac{\sin(A/3)}{\cos(A/2)} < \frac{\sin((\pi - \theta_1)/3)}{\cos((\pi - \theta_1)/2)} < 0.76 \\
\frac{\sin(B/3)}{\cos(B/2)} < \frac{\sin(\pi/6)}{\cos(\pi/4)} = \sqrt{2}/2 \\
\frac{\sin(C/3)}{\cos(c/2)} < \frac{\sin((\pi - 2\theta_1)/3)}{\cos((\pi - 2\theta_1)/2)} < 0.037
\]
It follows that in case (b) we have \(s_M/s < 0.06 \), a bound smaller than that found in case (a).

Finally suppose that (c) holds. Say \(A > \theta_1 \) and \(B, C < \theta_1 \). Since \(g_1''(x) < 0 \) on \((0, \theta_1)\), we have by concavity
\[
g_1(B) + g_1(C) \leq 2g_1((B + C)/2)
\]
153
with strict inequality for $B \neq C$. Thus we may assume $B = C$. Since $A > \theta_1$

$$B = \frac{1}{2}(\pi - A) < \frac{1}{2}(\pi - \theta_1) = 0.81275 \ldots$$

If we set $f_1(x) = 2g_1(x) + g_1(\pi - 2x)$, we have $s_M/s = 3 \exp f_1(B)$. Now $f'_1(x) = 2g'_1(x) - 2g'_1(\pi - 2x)$ and we claim that $f'_1(x) > 0$ for $0 < x \leq (\pi - \theta_1)/2$. Indeed

$$g'_1(x) = \frac{1}{2}\tan \frac{x}{2} + \frac{1}{3}\cot \frac{x}{3} > \frac{1}{4} + \frac{1-x^2/18}{s(x/3)} > \frac{1}{x}$$

and

$$g'_1(\pi - 2x) = \frac{1}{2}\cot x + |\frac{\pi}{2} + \frac{2x}{3}| < \frac{1}{2x} + \frac{1}{3}\tan \left(\frac{\pi}{6} + \frac{2x}{3}\right)$$

For $0 < x \leq 0.82$ we have

$$f'_1(x) > \frac{1}{x} - \frac{2}{3}\tan \left(\frac{\pi}{6} + \frac{2x}{3}\right) > 0.82 - \frac{2}{3}\tan \left(\frac{\pi}{6} + \frac{1.64}{3}\right) > 0.0007$$

Thus, in this case

$$s_M/s < 3 \exp f \left(\frac{\pi/2 - \theta_1}{2}\right) = 0.16976 \ldots < 0.18479 \ldots$$

and hence the maximum of s_M/s can occur only in case (a) with $A = B = C$. Thus the claimed result $s_M/s \leq (8/\sqrt{3}) \sin^3(\pi/9)$ is established.

Solution of (iv) by the editors. We prove that

$$F_M/F \leq (64/3) \sin^6(\pi/9) = 0.034148 \ldots$$

with equality if and only if ABC is equilateral. Our argument is similar to that for (i), but is a little more complicated in case (c).

We have

$$F = abc/(4R) = 2R^2 \sin A \sin B \sin C$$

and

$$F_M = (\sqrt{3}/4)\{8R \sin(A/3) \sin(B/3) \sin(C/3)\}^2$$

so that

$$\frac{F_M}{F} = 8\sqrt{3}\frac{\{\sin(A/3) \sin(B/3) \sin(C/3)\}^2}{\sin A \sin B \sin C}$$

If $g_4(x) = \log \{\sin^2(x/3)/\sin x\}$, then $g'_4(x) = (2/3) \cot(x/3) - \cot x$ and

$$g''_4(x) = \{\sin x\}^{-2} - 2\{3 \sin(x/3)\}^{-2}$$
Now \(g''_4(x) \) is negative for
\[
0 < x < 3 \arcsin \left(\frac{3(2 - \sqrt{2})}{8} \right)^{1/2} = 1.46342\ldots = \theta_4
\]
and is positive for \(\theta_4 < x < \pi \). We treat three cases.

(a) If each of \(A, B, C \leq \theta_4 \), then, since \(g''_4(x) < 0 \) for \(0 < x < \theta_4 \) we have by concavity
\[
g_4(A) + g_4(B) + g_4(C) \leq 3g_4(\{A + B + C\}/3) = 3g_4(\pi/3)
\]
with equality if and only if \(A = B = C \). Thus in this case
\[
F_M/F \leq 8\sqrt{3} \exp\{3g_4(\pi/3)\} = (64/3) \sin^6(\pi/9)
\]
(b) If \(A \geq B > \theta_4 \) then \(A < \pi - \theta_4 \), \(B < \pi/2 \) and \(C < \pi - 2\theta_4 \). Now \(g'_4(x) > 0 \) for \(0 < x < \pi/2 \) since \(\tan(x/3) < \tan(x) \) there, and \(g'_4 > 0 \) for \(\pi/2 < x < \pi \), since \(\cot(x/3) > 0 \) and \(-\cot x \geq 0 \) there. It follows that in this case
\[
F_M/F \leq 8\sqrt{3} \frac{\sin((\pi - \theta_4)/3)\sin(\pi/6)\sin((\pi - 2\theta_4)/3)}{\sin(\pi - \theta_4)\sin(\pi/2)\sin(\pi - 2\theta_4)} = 0.023552\ldots
\]
(c) If \(A > \theta_4 \geq B, C \), then, since \(g''_4(x) < 0 \) for \(0 < x < \theta_4 \) we have by concavity
\[
g_4(B) + g_4(C) \leq 2g_4((B + C)/2)
\]
with equality if and only if \(B = C \). Thus we may assume that \(B = C \) and
\[
B = (\pi - A)/2 < (\pi - \theta_4)/2 = 0.83908\ldots\]
Let \(f_4(x) = 2g_4(x) + g_4(\pi - 2x) \). We shall show that
\[
g'_4(x) > g'_4(\pi - 2x) \quad 0 < x \leq (\pi - \theta_4)/2 \quad (\ast)
\]
and conclude that \(f_4 \) is increasing on this range.

Suppose first that \(x \in I + (0.7, (\pi - \theta_4)/2] \). Since \(g'_4 \) is decreasing for \(0 < x < \theta_4 \) and increasing for \(\theta_4 < x < \pi \), we have
\[
g'_4(x) \geq g'_4((\pi - \theta_4)/2) = 1.42306\ldots
\]
\[
> 1.18884 \ldots = g'_4(\pi - 1.4) \geq g'_4(\pi - 2x)
\]
so \((\ast)\) holds for \(x \in I \).

Next, suppose that \(x \in J = (0, 0.7] \). We begin by showing that
\[
3\sqrt{2} \sin(x/3) < \sin(2x) \quad x \in J.
\]
Indeed
\[
\frac{\sin(2x)}{\sin(x/3)} = 2 \cos\left(\frac{5x}{3}\right) + 2 \cos x + 2 \cos\left(\frac{x}{3}\right)
\]
155
is clearly decreasing on J and we have
\[
\frac{\sin(2x)}{\sin(x/3)} > \frac{\sin 1.4}{\sin(0.7/3)} = 4.26192 \ldots > 3\sqrt{2}
\]

Now $g'_4(x) > (1/3) \cot(x/3)$, since $\tan(x/3) < (\tan x)/3$ for $x \in J$, and also we have
\[
g'_4(\pi - 2x) = \frac{2}{3} \tan \left(\frac{\pi}{6} + \frac{2x}{3} \right) + \cot(2x)
\]

Let $h(x) = (1/3) \cot(x/3) - \cot(2x)$. We prove (*) for $x \in J$ by showing that
\[
h(x) > \frac{2}{3} \tan(\pi/6 + 2x/3) \quad (**)
\]
holds on this range. We have seen above that
\[
h'(x) = 2 \csc^2(2x) - \frac{1}{9} \csc^2 \left(\frac{x}{3} \right) = \left(\frac{\sqrt{2}}{\sin 2x} \right)^2 - \left(\frac{1}{3 \sin(x/3)} \right)^2 < 0
\]
for $x \in J$. Thus $h(x) \geq h(0.7) = 1.23007 \ldots$. On the other hand, if $x \in J$, we have
\[
(2/3) \tan(\pi/6 + 2x/3) \leq (2/3) \tan(\pi/6 + 1.4/3) = 1.01637 \ldots
\]
so that (**) and hence (*) holds for $x \in J$.

It follows that $f_4(x)$ is increasing for $0 < x \leq (\pi - \theta_4)/2$ so that in case (c) we have
\[
F_M/F \leq 8\sqrt{3} \exp f_4((\pi - \theta_4)/2) = 0.032120 \ldots
\]
which is smaller than the estimate found in (a). Thus the claimed result $F_M/F \leq (64/3) \sin^6(\pi/9)$ is established.

No other correct solutions were received.
Proposed by M. S. Klamkin, University of Alberta, Edmonton

Determine positive constants a and b such that the inequality

$$yz + zx + xy \geq a(y^2z^2 + z^2x^2 + x^2y^2) + bxyz$$

holds for all nonnegative x, y, z with $x + y + z = 1$ and is the best possible inequality of this form (in the sense that the inequality need not hold if a or b is increased).

Solution by Mark Ashbaugh, University of Missouri, Columbia, MO. The family $(a, b) = (a, 9 - a)$ for $0 < a \leq 4$ gives all solution pairs to this problem. Using the values $(x, y, z) = (1/3, 1/3, 1/3)$ and $(x, y, z) = (1/2, 1/2, 0)$, we obtain the two inequalities $a + b \leq 9$ and $a \leq 4$. Thus we need only prove that the desired inequality is valid for the pairs in the family described, i.e., that the inequality

$$yz + zx + xy \geq a(y^2z^2 + z^2x^2 + x^2y^2) + (9 - a)xyz$$

for $0 < a \leq 4$ holds for nonnegative x, y, z, since these terms are homogeneous.

The proof is now completed by showing that $P \geq 4Q + 5R$ and that $Q \geq R$, because together these imply $P \geq aQ + (4 - a)Q + 5R \geq aQ + (9 - a)R$ for $0 < a \leq 4$. To obtain the first inequality $P \geq 4Q + 5R$ we note that

$$P = 2Q + 5R + x^3y + xy^3 + y^3z + yz^3 + x^3z + xz^3$$

and then

$$P - 4Q - 5R = xy(x - y)^2 + yz(y - z)^2 + xz(x - z)^2 \geq 0 \quad (\ast)$$

To obtain the second inequality, $Q \geq R$, we apply the Cauchy-Schwarz inequality to the vectors $V = (xy, yz, zx)$ and $W = (xz, xy, yz)$ and conclude that

$$Q = \|V\| \cdot \|W\| \geq V \cdot W = x^2yz + xy^2z + xyz^2 = R \quad (\ast\ast)$$

The points x, y, z for which equality holds are easy to determine. If $a < 4$, equality occurs in $(\ast\ast)$ exactly when $x = y = z$ or at least two of x, y, z are 0, and (\ast) also holds with equality in those cases, so for $a < 4$ the only instances of equality in the triangle given by $x + y + z = 1$ and $x, y, z \geq 0$ are the centre $(1/3, 1/3, 1/3)$ and the
corners (1,0,0), (0,1,0) and (0,0,1). When \(a = 4\) the situation changes because (**) is not needed, and (*) also gives equality if one of \(x, y, z\) is 0 and the other two are equal. Thus if \(a = 4\) we also have equality at \((1/2,1/2,0), (1/2,0,1/2)\) and \((0,1/2,1/2)\), the midpoints of the sides of the above triangle.

Finally, we note that the best inequality of the form \(P \geq bR\) is \(P \geq 9\), which follows from the fact that the entire discussion above applies also when \(a = 0\); equality holds in \(P \geq 9\) only when \(x = y = z\) or when two of \(x, y, z\) are zero. The best inequality of the form \(P \geq aQ\) is \(P \geq 4\), also from the discussion above; equality holds in \(P \geq 4\) only when two of \(x, y, z\) are zero or when one of them is zero and the other two are equal.

E 3337. Proposed by M. S. Klamkin, University of Alberta, Edmonton

Suppose the two longest edges of a tetrahedron are a pair of opposite edges. Prove that the three edges incident to some vertex of the tetrahedron are congruent to the sides of an acute triangle.

Solution by Jesús Ferrer, Universidad Complutense, Madrid, Spain. Let \(O, A, B, C\) be the vertices of the tetrahedron, and suppose that \(OA\) and \(BC\) are the longest edges. If the edges incident to each vertex fail to be the side lengths of an acute triangle, then the law of cosines implies the following inequalities:

\[
\begin{align*}
OA^2 & \geq OB^2 + OC^2 \\
OA^2 & \geq AB^2 + AC^2 \\
BC^2 & \geq OB^2 + AB^2 \\
BC^2 & \geq OC^2 + AC^2
\end{align*}
\]

(The inequalities (*) are valid a fortiori if some triples do not satisfy the triangle inequality.) Summing these inequalities we obtain

\[
OA^2 + BC^2 \geq OB^2 + OC^2 + AB^2 + AC^2
\]

Expressing the vector \(\overrightarrow{BC}\) as \(\overrightarrow{OC} - \overrightarrow{OB}\) (and similarly for \(\overrightarrow{AB}\) and \(\overrightarrow{AC}\)), we can use the fact that squared length equals vector inner product to rewrite this as

\[
0 \geq OA^2 + OB^2 + OC^2 - 2\overrightarrow{OA} \cdot \overrightarrow{OB} - 2\overrightarrow{OA} \cdot \overrightarrow{OC} + 2\overrightarrow{OB} \cdot \overrightarrow{OC} = \|\overrightarrow{OA} - \overrightarrow{OB} - \overrightarrow{OC}\|^2
\]

that is, \(\overrightarrow{OA} - \overrightarrow{OB} - \overrightarrow{OC} = 0\). Thus \(\overrightarrow{OC} = \overrightarrow{BA}\) and \(\overrightarrow{OB} = \overrightarrow{CA}\), which requires \(OBA\) \(C\) to be a plane parallelogram. Since equality must hold in all four parts of (*), in fact \(OBA\) is a rectangle.

In all other cases at least one of the inequalities (*) fails, and the lengths of segments incident to the corresponding vertex are the side lengths of an acute triangle.
The Area of a Pedal of a Pedal Triangle

E 3392 [1990, 528]. Proposed by Antal Bege, Miercurea-Ciuc, Romania

Given an acute-angle triangle \(ABC\) with overline \(H\), let \(A_1, B_1, C_1\) be the feet of the altitudes from \(A, B, C\) respectively, and let \(A_2, B_2, C_2\) be the feet of the perpendiculars from \(H\) onto \(B_1C_1, C_1A_1, A_1B_1\) respectively. Prove that

\[\text{area } (\Delta ABC) \geq 16 \text{ area } (\Delta A_2B_2C_2)\]

and determine when equality holds.

Solution II and generalization by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada. More generally, the pedal triangle of a triangle \(ABC\) with respect to a point \(P\) is the triangle whose vertices \(A_1, B_1, C_1\) are the feet of the perpendiculars from \(P\) onto the sides of \(ABC\). For \(P\) lying within or on \(ABC\) it is known \((2, \text{p.139})\) that

\[\text{area } (\Delta A_2B_2C_2) \leq \frac{\text{area } (\Delta ABC)}{16}\]

where \([\]\) denotes area and \(O, R\) are, respectively, the circumcentre and circumradius of \(ABC\). There is equality if and only if \(P\) coincides with \(O\) (and this requires that \(ABC\) be non-obtuse). Then, if \(A_2B_2C_2\) is the pedal triangle of \(A_1B_1C_1\) with respect to \(P\),

\[\text{area } (\Delta A_2B_2C_2) \leq \frac{\text{area } (\Delta A_1B_1C_1)}{4} \leq \frac{\text{area } (\Delta ABC)}{16}\]

For equality in both places here, \(P\) must be the circumcentre of both \(ABC\) and \(A_1B_1C_1\). This requires that \(ABC\) is equilateral.

Editorial comment. Many solvers used analytic and other means to establish the relation

\[\text{area } (\Delta A_2B_2C_2) = 4(\cos A \cos B \cos C)^2 \text{area } (\Delta ABC).\]

This is a consequence of \(R_2 = 2R \cos A \cos B \cos C\) (where \(R_2\) is the circumradius of \(A_2B_2C_2\) \((2, \text{p.191})\) and the similarity of \(A_2B_2C_2\) and \(ABC\). The required inequality then follows from the easy inequality \(\cos A \cos B \cos C \leq 1/8\).

Walther Janous suggest 1.9 of \(1\) as a good reference for properties of iterated pedal triangles. He also points out the related inequality \([\text{area } (\Delta ABC)^3 \geq R_8^8(27/4)^2 \text{area } (\Delta A_2B_2C_2)]\) that can be obtained from inequalities found in \(3, \text{p.271}\).

Let $A_i, A'_i (i = 1, 2, 3, 4)$ be the vertices of a rectangular parallelepiped \mathcal{P}, with A'_i diametrically opposite to A_i. Let P be any interior point of \mathcal{P}. Prove that
\[S \leq 2(PA_1 \cdot PA'_1 + PA_2 \cdot PA'_2 + PA_3 \cdot PA'_3 + PA_4 \cdot PA'_4) \]
where S denotes the surface area of \mathcal{P}.

Solution by Robin J. Chapman, University of Exeter, U.K. Choose Cartesian coordinates with P as origin, and suppose that the faces of \mathcal{P} lie in the planes $x = -a, x = A, x = A + a, y = -b, y = B, z = -c, z = C$. The inequality becomes
\[
\sqrt{a^2 + b^2 + c^2} \sqrt{A^2 + B^2 + C^2} \geq AB + Ab + aB + ab + CA + Ca + cA + ca + BC + Bc + bC + bc
\]
Now by the Cauchy-Schwarz inequality
\[
\sqrt{a^2 + b^2 + c^2} \sqrt{A^2 + B^2 + C^2} \geq ab + bC + cA
\]
and also
\[
\sqrt{a^2 + b^2 + c^2} \sqrt{A^2 + B^2 + C^2} \geq Ab + Bc + Ca
\]
Hence
\[
\sqrt{a^2 + b^2 + c^2} \sqrt{A^2 + B^2 + C^2} \geq (ab + bC + cA + Ab + Bc + Ca)/2
\]
and by adding the similar inequalities obtained from the other terms on the left hand side of the main inequality, we get the main inequality.

Editorial comment. No other solver used coordinates based at P to simplify the formulas. Also, note that it is not necessary to require P to be an interior point. The interpretation as surface area is possible whenever $A + a, B + b$ and $C + c$ are all positive, and this choice can be made for any P. One reader noted that the result is false if one reads the terms $PA_1 \cdot PA'_1$ as inner products of vectors. In this interpretation, the sum of inner products is negative whenever P is an interior point. We apologize for not noticing that this confusion was possible.
Let \mathcal{A} be a regular n-gon with edge length 2. Denote the consecutive vertices by A_0, \ldots, A_{n-1} and introduce A_n as a synonym for A_0. Let \mathcal{B} be a regular n-gon inscribed in \mathcal{A} with vertices B_0, \ldots, B_{n-1} where B_i lies on A_iA_{i+1} and $|A_iB_i| = \lambda < 1$ for $0 \leq i < n$. Also let C_i be the point on A_iA_{i+1} with $|A_iC_i| = \alpha_i \leq \lambda$ for $0 \leq i < n$ and let \mathcal{C} denote the n-gon, also inscribed in \mathcal{A}, with vertices C_0, \ldots, C_{n-1}.

With $P(\mathcal{F})$ denoting the perimeter of the figure \mathcal{F}, prove that $P(\mathcal{C}) \geq P(\mathcal{B})$.

Solution ii by Roy Barbara, Lebanese University, Fanar, Lebanon. First we formulate a method for comparing lengths.

Lemma. Let $ABCD$ be a convex broken line. Assume $AB = CD$ and that the angles at B and C are equal. Denote by I, J and K the midpoints of AB, BC and CD respectively. Let R be between A and I, T between B and J, and U between C and K. Let S also lie on BT. Then $RS + SU \geq RT + TU$.

Proof.

Let V be the reflection of U across BC. Denote by O the intersection of RV and BC. Using similar triangles, it is clear that O is between J and C. Thus T is inside the triangle RSV. Therefore $RS + SU = RS + SV \geq RT + TV = RT + TU$.

Now we apply the lemma to solve the problem. Consider the n-gon \mathcal{C}; a first application of the lemma to $A_{n-1}A_0A_1A_2$ (R, S, T, U being C_{n-1}, C_0, B_0, C_1 respectively) means that replacing the vertex C_0 by B_0 will decrease the perimeter of \mathcal{C}. More generally, if we denote by \mathcal{F}_i the n-gon with vertices $B_0, \ldots, B_i, C_{i+1}, \ldots, C_{n-1}$ ($0 \leq i \leq n-1$), by repeated use of the lemma, we obtain $P(\mathcal{C}) \geq P(\mathcal{F}_0) \geq P(\mathcal{F}_1) \geq \cdots \geq P(\mathcal{F}_{n-1})$. Since \mathcal{F}_{n-1} is \mathcal{B}, the proof is complete.

Note that we have proved a more general result: the n-gon \mathcal{B} need not be regular; it is only necessary that $|A_iB_i| < \frac{1}{2}|A_iA_{i+1}|$.

161
Determine the extreme values of

\[
\frac{1}{1 + x + u} + \frac{1}{1 + y + v} + \frac{1}{1 + z + w}
\]

where \(xyz = a^3\), \(uvw = b^3\) and \(x, y, z, u, v, w > 0\).
which reduces to $x - y = (1 + h)^2 xy(x - y)$. Hence

$$x = y \quad \text{or} \quad xy = (1 + h)^{-2}$$

Similarly

$$x = z \quad \text{or} \quad xz = (1 + h)^{-2}$$

and

$$y = z \quad \text{or} \quad yz = (1 + h)^{-2}$$

If we do not have $x = y = z$, then, by permuting the variables if necessary, we may assume that $x = y$, $xz = yz = (1 + h)^{-2}$, hence

$$x = y = (1 + h)^2 a^3 \quad z = (1 + h)^{-4} a^{-3}$$

so that

$$x + u = y + v = (a + b)^3 \quad z + w = (a + b)^{-3}$$

These yield

$$S = \frac{2 + (a + b)^3}{1 + (a + b)^3}$$

Since this value is less than 2, it cannot be the maximum for S. The only remaining possibility is that $x = y = z = a$, $u = v = w = b$, hence $S = 3/(1 + a + b)$. This furnishes the maximum for S if it is at least 2 (i.e., if $a + b \leq 1/2$).
Area of a Roulette

10254 [1992, 782]. Proposed by E. Ehrhart, Université de Strasbourg, Strasbourg, France

The curve traced out by a fixed point of a closed convex curve as that curve rolls without slipping along a second curve will be called a “roulette”. Let S be the area of one arch of a roulette traced out by an ellipse of area s rolling on a straight line. Prove or disprove that $S \geq 3s$, with equality only if the ellipse is a circle.

Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.

We will show that the inequality is equivalent to $(a - b)(a - 2b) \geq 0$ where a and b are the major and minor semi-axes of the ellipse, respectively. Consequently there will be equality if $a = b$ or $a = 2b$. There will be strict inequality only if $a > 2b$.

Recall that the pedal of a given curve with respect to a point P is the locus of the foot of the perpendicular from P to a variable tangent line to the curve. The desired result follows from the following results of Steiner that can be found in B. Williamson, The Integral Calculus, Longmans Green and Co., London, 1941, 201–203.

(A) When a closed curve rolls on a straight line, the area between the line and the roulette generated in a complete revolution by any point on the rolling curve is double the area of the pedal of the rolling curve, this pedal being taken with respect to the generating point.

(B) The area of the pedal of an ellipse of semiaxes a and b with respect to any point P is given by $\pi(a^2 + b^2 + |OP|^2)/2$, where O is the centre of the ellipse. In the interest of simplicity, these theorems have been stated only when P lies on the curve. This is not an essential restriction.

Clearly, the minimum of S for P on the ellipse occurs for $|OP| = b$. Hence $S \geq 3s$ is equivalent to

$$\pi(a^2 + 2b^2) \geq 3\pi ab \quad \text{or} \quad (a - b)(a - 2b) \geq 0$$

Editorial comment. The other solvers were able to work through the Calculus without references, but as one of them said: “… I hope some are more elegant in the way they prove the result; I just ground out the integral …”.

The work leading to the formulation of this problem can be found in E. Ehrhart, Les roulettes d’ellipses. L’Ouvert, 62(1991) 43–45.

Other references to Steiner’s theorem found by the editors are E. Goursat, A Course in Mathematical Analysis, Vol.1, Dover, 1959, where it is problem 23 (with hints) on p.207, and J. Edwards, A Treatise on the Integral Calculus, Chelsea, 1955, article 673, pp.696–697, which refers back to W. H. Besant, Tract on Roulettes and Glisettes, 1870 (and not to Steiner).

[[Surely Steiner was earlier than 1870 ?? — R.]]

Richard Holzsager suggested that it would be interesting to find the convex curve C and point P on C which gives the minimum ratio of area of the roulette to the area of the curve. He conjectured that C is given by the arc of the epicycloid $x = 3\cos \theta - \cos 3\theta$, $y = 3\sin \theta - \sin 3\theta$ with its end points $(\pm 2, 0)$ connected by a line segment. The point P is $(0,0)$. For this curve, the ratio can be calculated to be $8/3$ will the above results show that when C is an ellipse, the smallest value is $2\sqrt{2}$.
Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Prove that the following two properties of the altitudes of an \(n \)-dimensional simplex are equivalent:

i) the altitudes are concurrent.

ii) the feet of the altitudes are the orthocentres of their respective faces.

Solution II by Mark D. Myerson, U.S. Naval Academy, Annapolis, MD. We first show \((i) \implies (ii)\). Assume that the altitudes are concurrent. Let \(AA' \) be the altitude from a fixed vertex \(A \) to the opposite face, an \((n−1)\)-simplex \(a \), and let \(BB' \) be the altitude from any other fixed vertex \(B \) to its opposite face \(b \). Since \(AA' \) and \(BB' \) meet, they determine a (2-dimensional) plane \(\pi \). Since \(\pi \) contains \(AA' \), it is perpendicular to \(a \); similarly, it is perpendicular to \(b \). Thus \(\pi \) is perpendicular to the \((n−2)\)-simplex \(a \cap b \). Hence the perpendicular projection to \(a \) (parallel to \(AA' \)) carries \(BB' \) into the altitude from \(B \) to \(a \cap b \) in \(a \). Applying this for all choices of \(B \) shows that this projection sends all altitudes of the original simplex other than \(AA' \) to altitudes of \(a \) and all of these altitudes contain \(A' \). Thus, \(A' \) is the orthocentre of \(a \).

We now show that \((ii) \implies (i)\). Assume that the altitudes of an \(n \)-simplex \(\Sigma \) in \(\mathbb{R}^n \) pass through the orthocentres of the faces. Let \(AA' \) be the altitude from a fixed vertex \(A \) to face \(a \). Then \(A' \) is the orthocentre of \(a \). Also, for a vertex \(B \) different from \(A \), \(BA' \) is perpendicular to \(a \cap b \), where \(b \) is the face of \(\Sigma \) opposite \(B \). Let \(\pi \) be the (2-dimensional) plane determined by \(BA' \) and \(AA' \). Since \(AA' \) is perpendicular to \(a \), \(AA' \) is perpendicular to \(a \cap b \), and so \(\pi \) must be perpendicular to \(a \cap b \). Since \(\pi \) is also 2-dimensional and \(a \cap b \) is \((n−2)\)-dimensional, they must span \(\mathbb{R}^n \), and so \(\pi \) must contain a vector perpendicular to \(b \). Thus \(\pi \) is perpendicular to \(b \), and the altitude \(BB' \) from \(B \) to \(b \) lies in \(\pi \). Since \(BB' \) and \(AA' \) lie in the same plane and are not parallel, they must meet. Since \(A \) and \(B \) were chosen arbitrarily, it follows that any two altitudes of \(\Sigma \) intersect. Consider a third altitude \(CC' \) of \(\Sigma \). By a similar argument, we know that, when projected onto \(a \) in a perpendicular fashion, the images of both \(BB' \) and \(CC' \) pass through \(A' \). Thus the intersection point of \(BB' \) and \(CC' \) must lie on \(AA' \). It follows that each altitude passes through the point of intersection of \(AA' \) and \(BB' \).

Editorial comment. A simplex meeting the conditions of the problem is called orthocentric. Another characterization is: A simplex is orthocentric if and only if any two disjoint edges are orthogonal.

This topic has a long history, and expositions can be found in N. A. Court, Notes on the orthocentric tetrahedron, this MONTHLY, 41(1934) 499–502, N. A. Court, The tetrahedron and its altitudes, Scripta Math., 14(1948) 85–97, and H. Lob, The orthocentric simplex in space of three and higher dimensions, Math. Gaz., 19(1935) 102–108. A related article is by L. Gerber, The orthocentric simplex as an extremal simplex, Pacific J. Math., 56(1975) 97–111. The latter deals primarily with extremal problems in \(n \) dimensions whose solution is an orthocentric simplex, but includes a brief discussion of the properties of such simplices.
Given a regular \(n \)-gonal pyramid with apex \(P \) and base \(A_1A_2\ldots A_n \), denote \(\angle A_iPA_{i+1} \) by \(\alpha \) with \(0 < \alpha \leq \frac{2\pi}{n} \). If points \(B_i \) are chosen on the rays \(PA_i \) \((i = 1, 2, \ldots, n)\), determine the maximum and minimum values of

\[
\frac{|PB_1| + |PB_2| + \cdots + |PB_n|}{|B_1B_2| + |B_2B_3| + \cdots + |B_nB_1|}
\]

Solution by O. P. Lossers, University of Technology, Eindhoven, The Netherlands. The expression lies between \(1/2 \) and \(1/\sin(\alpha/2) \). This follows by summing over \(i \) from 1 to \(n \) (with \(B_{n+1} = B_1 \)) the inequalities

\[
|B_iP| + |PB_{i+1}| \geq |B_iB_{i+1}| \geq \sin \frac{\alpha}{2} \cdot (|B_iP| + |PB_{i+1}|) \tag{*}
\]

The first inequality in (\(* \)) is just the triangle inequality. Since \(a^2 = b^2 + c^2 - 2bc \cos \alpha \) is equivalent to \(a^2 = (b + c)^2 \sin^2 \frac{\alpha}{2} + (b - c)^2 \cos^2 \frac{\alpha}{2} \), the second inequality in (\(* \)) follows from the law of cosines applied to \(\triangle B_iPB_{i+1} \) with \(a = |B_iB_{i+1}| \).

The second inequality in (\(* \)) also follows in a more direct way by observing that in any convex quadrilateral the sum of the lengths of the diagonals is more than the sum of the lengths of either pair of opposite sides. Now apply this to the trapezoid \(B_iB'_iB_{i+1}B'_{i+1} \) where \(B'_i \) is chosen on the ray \(PB_{i+1} \) such that \(|PB_i| = |PB'_i| \) and \(B'_{i+1} \) the corresponding point on the ray \(PB_i \).

Equality in the lower bound occurs only if of any two consecutive \(B_i \) at least one coincides with \(P \) (but not all \(B_i \) coincide with \(P \)). The upper bound is attained only if all \(B_i \) are the same (positive) distance from \(P \).

Editorial comment. The Anchorage Math Solutions Group pointed out a physical interpretation of the maximum. Namely, with \(P \) positioned above the centroid of the base in a uniform gravitational field, consider a spatial polygon with vertices on the rays \(PA_i \). Think of this polygon as a loop of rope passing through heavy rings that can slide freely on the rays \(PA_i \) while the rope can pass freely through the rings. If released, the rope and rings slide into a position of static equilibrium in which the rope is taught and forms a polygon \(B_1B_2\ldots B_n \), \(B_i \in PA_i \), with the \(B_i \) equidistant from \(P \). This position of the \(B_i \) will be such as to minimize the potential energy of the system, which is equivalent to maximizing \(\sum |PB_i| \) or maximizing \(\sum |PB_i|/\sum |B_iB_{i+1}| \) with \(\sum |B_iB_{i+1}| \) fixed.
Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Determine the extreme values of the sum of the lengths of three concurrent and mutually orthogonal chords of a given sphere of radius R if the point of concurrency is at a distance d from the centre.

Solution by John H. Lindsey II, Fort Myers, FL. We generalize the problem to the case of n concurrent and mutually orthogonal chords of an $(n-1)$-dimensional sphere of radius R in \mathbb{R}^n. We may assume the chords lie along the coordinate axes with the origin as the point of concurrency. Let the sphere centre be $P = (d_1, d_2, \ldots, d_n)$. Then $d^2 = d_1^2 + d_2^2 + \cdots + d_n^2$ and the square of the distance of the sphere centre to the chord along the ith coordinate axis is $d_i^2 - d^2$. Thus the length of this chord is $s\sqrt{R^2 - d_i^2}$. As the $(n-1)$-sphere is compact, we may locate P to maximize S the sum of the lengths of the chords. We claim that P must be along the diagonal of some orthant. Otherwise, suppose $|d_i| < |d_j|$ for some i and j. Note that $\sqrt{a+x} + \sqrt{a-x}$ is decreasing in x for $0 < x < a$. Letting $a = R^2 - d^2 + (d_i^2 + d_j^2)/2$ and $x = (d_j^2 - d_i^2)/2$ we see that decreasing d_j^2 and increasing d_i^2 by the same small amount would increase S, yielding a contradiction. It follows that $d_i^2 = d^2/n$ for all i. Hence the maximum value is

$$2n\sqrt{R^2 - \frac{n-1}{n}d^2}$$

Similarly, we may locate P to minimize S. Suppose two of the d_i are nonzero, say $0 < |d_i| \leq |d_j|$. Again, increasing d_j^2 and decreasing d_i^2 by the same small amount decreases S, a contradiction. It follows that there is an index j such that $d_i = 0$ for all $i \neq j$ and $d_j^2 = d^2$. Hence the minimum value is $2R + 2(n-1)\sqrt{R^2 - d^2}$.

Editorial comment. This result may be compared with problem E 3460 [1991, 755; 1993, 87] part of which dealt with the sum of the squares of the lengths of such chords.

Nelson M. Blachman and L. Scibani also considered the case in which the n chords could be extended to have a point of intersection outside the sphere. The first part of the selected solution shows that there is a chord along the ith coordinate axis if $d_i^2 > d^2 - R^2$. To assure existence of extrema, one should also allow the chord to degenerate to a tangent when $d_i^2 = d^2 - R^2$. The analysis in the selected solution now shows that the minimum occurs when there is an index j such that $d_i^2 = d^2 - R^2$ for all $i \neq j$ and $d_j^2 = (n-1)R^2 - (n-2)d^2$. This leads to a lower bound of $2\sqrt{nR^2 - (n-1)d^2}$ for $R \leq d \leq \sqrt{n/(n-1)}R$.

167
Prove that for any \(2^n - 1\) lattice points \(A_1, A_2, \ldots, A_{2^n-1}\) in the \(n\)-dimensional lattice of points with integer coordinates, there is a lattice point \(P\), distinct from the \(A_i\), such that none of the open segments \(PA_1, PA_2, \ldots, PA_{2^n-1}\) contains any lattice points.

Solution by Nasha Komanda, Central Michigan University, Mt. Pleasant, MI. If a lattice point \(C = (c_1, \ldots, c_n)\) is between lattice points \(A = (a_1, \ldots, a_n)\) and \(B = (b_1, \ldots, b_n)\) then there exist relatively prime positive integers \(u\) and \(v\) such that

\[(u + v)c_i = ua_i + vb_i\]

for \(1 \leq i \leq n\), which implies that \(u + v\) divides \(a_i - b_i\).

For the given lattice points \(A_1, \ldots, A_{2^n-1}\) let \(A_i = (a_{i1}, \ldots, a_{in})\). It suffices to find a lattice point \(P = (x_1, \ldots, x_n)\) distinct from each \(A_i\), such that for each \(i\) the \(n\) differences \(x_1 - a_{i1}, \ldots, x_n - a_{in}\) have no common factor.

Let \(p\) be a prime. Since there are at least \(2^n\) distinct values for \((y_1, \ldots, y_n)\) modulo \(p\), where \(y_1, \ldots, y_n\) are integers, there exist integers \(y_1(p), \ldots, y_n(p)\) such that for each \(i\) the vector \((y_1(p), \ldots, y_n(p))\) does not agree with \((a_{i1}, \ldots, a_{in})\) modulo \(p\). Let \(Y\) be the set of primes less than \(2^n\). For \(1 \leq j \leq n\) we apply the Chinese Remainder Theorem to find an integer \(y_j\) such that \(y_j \equiv y_j(p)\) modulo \(p\) for each \(p \in Y\) and \(y_j \neq a_{ij}\) for \(1 \leq i \leq 2^n - 1\).

Let \(X\) be the set of all primes that are at least \(2^n\) and that divide \(y_j - a_{ij}\) for some \(i, j\). For each \(p \in X\) there is an integer \(z(p)\) such that \(z(p) \neq a_{i1}\) for \(1 \leq i \leq 2^n - 1\). Let \(x_j = y_j\) for \(2 \leq j \leq n\). Apply the Chinese Remainder Theorem again to find \(x_1\) such that \(x_1 \equiv y_1 (\text{mod } p)\) for \(p \in Y\) and \(x_1 \equiv z(p) (\text{mod } p)\) for \(p \in X\). For each \(i\), the differences \(x_1 - a_{i1}, \ldots, x_n - a_{in}\) have no common factor, as desired.
Using the Walls to Find the Centre

Let a tetrahedron with vertices \(A_1, A_2, A_3, A_4\) have altitudes that meet in a point \(H\). For any point \(P\), let \(P_1, P_2, P_3\) and \(P_4\) be the feet of the perpendiculars from \(P\) to the faces \(A_2A_3A_4\), \(A_3A_4A_1\), \(A_4A_1A_2\) and \(A_1A_2A_3\) respectively. Prove that there exist constants \(a_1, a_2, a_3\) and \(a_4\) such that one has

\[
a_1\overrightarrow{PP_1} + a_2\overrightarrow{PP_2} + a_3\overrightarrow{PP_3} + a_4\overrightarrow{PP_4} = \overrightarrow{PH}
\]

for every point \(P\).

Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.

More generally, let \(H\) and \(P\) be any two points in the space of the given tetrahedron and let \(P_1, P_2, P_3, P_4\) be the feet of the lines through \(P\) parallel to \(HA_1, HA_2, HA_3, HA_4\) in the faces of the tetrahedron opposite \(A_1, A_2, A_3, A_4\) respectively. Then there exist constants \(a_1, a_2, a_3, a_4\), independent of \(P\) such that

\[
a_1\overrightarrow{PP_1} + a_2\overrightarrow{PP_2} + a_3\overrightarrow{PP_3} + a_4\overrightarrow{PP_4} = \overrightarrow{PH}
\]

Let \(V\) denote the vector from an origin outside the space of the given tetrahedron to any point \(V\) in the space of the tetrahedron. Then \(H\) and \(P\) have the representations (barycentric coordinates)

\[
H = x_1A_1 + x_2A_2 + x_3A_3 + x_4A_4 \quad (x_1 + x_2 + x_3 + x_4 = 1)
\]

\[
P = u_1A_1 + u_2A_2 + u_3A_3 + u_4A_4 \quad (u_1 + u_2 + u_3 + u_4 = 1)
\]

Since \(P_1\) has the representation \(P_1 = r_2A_2 + r_3A_3 + r_4A_4\) where \(r_2 + r_3 + r_4 = 1\) we must have

\[
r_2A_2 + r_3A_3 + r_4A_4 - P = \lambda_1(H - A_1)
\]

Since \(A_1, A_2, A_3, A_4\) are independent vectors, we get \(\lambda_1 = u_1/(1 - x_1)\), so that

\[
\overrightarrow{PP_1} = (P - P) = (H - A_i)u_i/(1 - x_i).
\]

Similarly,

\[
(P - P) = (H - A_i)\frac{u_i}{1 - x_i} \quad \text{for } i = 1, 2, 3, 4
\]

Choosing \(a_i = 1 - x_i\) we obtain

\[
\sum a_i(P_i - P) = \sum u_i(H - A_i) = H - P = \overrightarrow{PH}
\]

This proof generalizes to give an analogous result for \(n\)-dimensional simplices.
Murray Klamkin, (Two Year) Coll. Math. Journal

Richard K. Guy

June 22, 2006

This is the (lost count!) of a number of files listing problems, solutions and other writings of Murray Klamkin.

The easiest way to edit is to cross things out, so I make no apology for the proliferation below. Just lift out what you want.
The Two-Year Coll. Math. J. didn’t have a problems section at the outset. The first occurrence is at

The first publication of Murray that I found was:

PROBABILITY

Selection problems: points

[[He is also listed as a solver for each of the other problems (97–100) in this issue!]]

Random Points on a Line Segment

96. (Sept. 1977) Proposed by Milton H. Hoehn, Santa Rosa Jr. College, Santa Rosa, CA

On a line segment of length 1, \(n \) points are selected at random. What is the expected value of the sum of the distances between all pairs of these points?

Solution by M. S. Klamkin, University of Alberta, Edmonton, Alberta. Let \(X_1, X_2, \ldots, X_n \) be independent random variables each uniformly distributed on the unit interval. Let \(F'' \) be any function defined and absolutely integrable on the unit interval such that \(F'' \) is equal to the second derivative of some function \(F \). (It is sufficient to choose \(F''(x) = x \) and \(F(x) = x^3/6 \).)

Let \(S = \sum_{1 \leq i < j \leq n} F''(|X_i - X_j|) \). Then the expected value

\[
E(S) = \sum_{1 \leq i < j \leq n} \int_0^1 \cdots \int_0^1 F''(|x_i - x_j|) \,dx_1 \,dx_2 \cdots \,dx_n
\]

\[
= \binom{n}{2} \int_0^1 \int_0^1 F''(|x_1 - x_2|) \,dx_1 \,dx_2 = 2 \binom{n}{2} \int_{x_2=0}^1 \int_{x_1=0}^{x_2} F''(x_2 - x_1) \,dx_2 \,dx_1
\]

\[
= 2 \binom{n}{2} (F(1) - F(0) - F'(0))
\]

For the given problem, let \(F(x) = x^3/6 \), giving \(E(S) = n(n - 1)/6 \).
ANALYSIS

Differential equations: functional equations

Quadratic Mean Value Theorem

101. (Sept.1977) Proposed by Louis Alpert, Bronx Community College, NY, and Jerry Brantley, Macomb County Community College, Mt. Clemens, MI (independently)

Determine all functions f defined on $(-\infty, \infty)$ such that for all $a \neq b$,

$$f'((a+b)/2) = (f(a) - f(b))/(b-a).$$

[[Solution by John Oman and U. V. Satyanarayan (independently)]]

Theorem. If $f(x + h) - f(x - h) = 2hf'(x)$ holds identically in x for two distinct positive values of h, then $f(x)$ is a quadratic polynomial.
GEOMETRY

Regular polygons: inscribed polygons

146. Proposed by M. S. Klamkin, University of Alberta, Canada

Prove that the smallest regular n-gon which can be inscribed in a given regular n-gon will have its vertices at the midpoints of the sides of the given n-gon.

Solution by Howard Eves, University of Maine, Lubec, ME. Let $A_1A_2A_3\ldots A_n$ be the given regular n-gon and let $P_1P_2P_3\ldots P_n$ be an inscribed n-gon, where P_1 lies on A_1A_2, P_2 on A_2A_3, \ldots, P_n on A_nA_1. Then $A_1P_1/P_1A_2 = A_2P_2/P_2A_3 = \ldots = A_nP_n/P_nA_1$. For the inscribed n-gon to have minimum area, each of the n congruent triangles cut off from $A_1A_2\ldots A_n$ by $P_1P_2\ldots P_n$ must have maximum area. Now, by the familiar formula for the area of a triangle in terms of two sides and the included angle, triangle $P_nA_1O_1$ will be maximum when the product $(A_1P_n)(A_1P_1) = (A_1P_1)(P_1A_2)$ is a maximum. But when a line segment A_1A_2 is partitioned into two parts by a point P_1 such that the product of the two parts is a maximum, P_1 is the midpoint of A_1A_2.

GEOMETRY

Parallelograms

Least Squares Property of the Centroid

117. (June 1978) Proposed by Norman Schaumberger, Bronx Community College, NY

Let E be the intersection of the diagonals of parallelogram $ABCD$ and let P and Q be points on a circle with center E. Prove that $PA^2 + PB^2 + PC^2 + PD^2 = QA^2 + QB^2 + QC^2 + QD^2$.

Solution by Murray S. Klamkin, University of Alberta, Edmonton, Canada. Let a_1 and a_2 be vectors from the origin to the vertices at the respective ends of one of the diagonals of the parallelogram. Similarly, let a_3 and a_4 be the vectors to the endpoints of the other diagonal, and let g be the vector to the point of intersection of the diagonals. Since the diagonals of the parallelogram bisect one another, $g = \frac{1}{2}(a_1 + a_2) = \frac{1}{2}(a_3 + a_4)$. We call the endpoint of g the centroid of the vertices because, clearly, $g = \frac{1}{4}(a_1 + a_2 + a_3 + a_4)$.

The solution is completed by the following theorem, which, among other things, allows us to generalize the problem, for example, by substituting a skew quadrilateral $ABCD$ and the centroid E of its vertices for the parallelogram and the intersection of the diagonals. Without loss of generality, we will take the center of the circle to be at the origin.

Theorem. Let a_1, a_2, \ldots, a_n be vectors belonging to a Euclidean space, let $g = (1/n)\sum_{k=1}^{n}a_k$ and let c be a positive real number. Then $\sum_{k=1}^{n}\|a_k - p\|^2$ is constant for all vectors p belonging to the sphere $\|p\|^2 = c$ having center at 0 if, and only if, $g = 0$.

Proof. From the vanishing of the inner product $(\sum_{k=1}^{n}(a_k - g), g - p) = (0, g - p) = 0$ it follows that

$$\sum_{k=1}^{n}\|a_k - p\|^2 = \sum_{k=1}^{n}\|a_k - g + g - p\|^2 = \sum_{k=1}^{n}\|a_k - g\|^2 + n\|g - p\|^2 \quad (*)$$

Sufficiency of the condition $g = 0$ is now obvious. The proof is completed by observing that, if $g \neq 0$, then the values of $\|g - p\|^2$ in the last term in $(*)$ at $p = cg/\|g\|$ and at $p = -cg/\|g\|$, respectively, are different.

Corollary. For given vectors a_1, a_2, \ldots, a_n and all vectors p, a unique minimum value of $\sum_{k=1}^{n}\|a_k - p\|$ is achieved at $p = (1/n)\sum_{k=1}^{n}a_k$

Proof. The factor $\|g - p\|^2$ in the last term in $(*)$, with p now representing an arbitrary vector, is greater when p is not g than when p is g.

5
Lattice Point Principle

129. (Nov. 1978) Proposed by Warren Page, New York City Community College, Brooklyn, NY

For any \(n^m + 1\ (n \geq 2)\) lattice points in \(m\)-space, prove that there is at least one pair of points \(\{P, Q\}\) such that \((P - Q)/n\) is a lattice point.

\[\text{[[Solution by Warren Ruud, Santa Rosa Junior College. CA]]}\]

Editor’s note: Klamkin noted that a problem equivalent to the case \(m = 3, n = 2\) was given in the 1971 William Lowell Putnam Competition.
GEOMETRY

Triangle inequalities: sides

Sharpening of Heron’s Inequality

Let \(a, b \) and \(c \) be the lengths of the sides of a triangle, \(P \) its perimeter and \(K \) its area. Prove that

\[
\begin{align*}
(1) \quad & \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq \frac{a}{P} \\
(2) \quad & a^2 + b^2 + c^2 \geq \frac{P^2}{3} \\
(3) \quad & P^2 \geq 12\sqrt{3} K
\end{align*}
\]

\[
\begin{align*}
(4) \quad & a^2 + b^2 + c^2 \geq 4\sqrt{3} K \\
(5) \quad & a^3 + b^3 + c^3 \geq \frac{P^3}{9}
\end{align*}
\]

Composite of solutions by Donald C. Fuller, Gainesville J.C., GA; M. S. Klamkin, University of Alberta, Edmonton, Canada; Jack McCown, Central Oregon C.C., Bend, OR; and Thomas C. Wales, St. Mark’s School, Southboro, MA

With no loss of generality, let \(a \geq b \geq c \). Assume that \(a = b = c \) is false. (If \(a = b = c \), then all the inequality signs below, except those of the form \(k > k_0 \) or \(k < k_0 \) where \(k_0 \) is either 0 or 1, should be changed to equals signs.) Both (1) and (2) are examples of Cauchy’s inequality:

\[
(a + b + c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) - (1 + 1 + 1)^2 = \left(\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} \right)^2 + \left(\sqrt{\frac{a}{c}} - \sqrt{\frac{c}{a}} \right)^2 + \left(\sqrt{\frac{b}{c}} - \sqrt{\frac{c}{b}} \right)^2 > 0
\]

proves (1) and

\[
(a^2 + b^2 + c^2)(1 + 1 + 1) - (a + b + c)^2 = (a - b)^2 + (b - c)^2 + (c - a)^2 > 0
\]

proves (2). Inequality (2) is also an example of Chebychev’s inequality, as are (5) and

\[
\frac{a^3 + b^3 + c^3}{3} > \frac{a^2 + b^2 + c^2}{3} \cdot \frac{a + b + c}{3} \quad (6)
\]
Clearly (5) follows from (6) and (2), and

\[3(a^3 + b^3 + c^3) - (a^2 + b^2 + c^2)(a + b + c)\]
\[= (a^2 - b^2)(a - b) + (a^2 - c^2)(a - c) + (b^2 - c^2)(b - c) > 0\]

proves (6). We call (3) Heron’s inequality and we prove it by using Heron’s formula and the inequality of arithmetic and geometric means: If \(s = P/2\), then

\[K^2/s = (s - a)(s - b)(s - c) < \left(\frac{1}{9}((s - a) + (s - b) + (s - c))\right)^3 = (s/3)^3\]

from \(K^2 < s^4/27\), we obtain \(K < s^2/(3\sqrt{3}) = P^2/(12\sqrt{3})\). Finally, (4) follows from (2) and (3). This completes the solution. Note that we have used

\[3(a^{k+1} + b^{k+1} + c^{k+1}) - (a^k + b^k + c^k)(a + b + c)\]
\[= (a^k - b^k)(a - b) + (a^k - c^k)(a - c) + (b^k - c^k)(b - c) > 0\]

for \(k = 1\) and \(k = 2\), when, clearly, it holds for any positive number. It follows by induction that

\[a^k + b^k + c^k > P^k/3^{k-1}\] (7)

for \(k\) equal to any positive integer \(> 1\). Combining (7) with (3) proves

\[a^k + b^k + c^k > (12\sqrt{3})^{k/2}/3^{k-1}\] (8)

which is the extension of (3) and (4) to all positive integer values of \(k\).

Substituting \(1/a\), \(1/b\) and \(1/c\) for \(a\), \(b\) and \(c\), respectively, in (7), and then using (1) yields

\[\left(\frac{1}{a}\right)^k + \left(\frac{1}{b}\right)^k + \left(\frac{1}{c}\right)^k > \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^k / 3^{k-1} > 3^{k+1}/P^k\]

which shows that (7) holds also for all integer values of \(k\) that are less than 0. The fact is that (7) holds for \(k\) equal to any real number such that either \(k > 1\) or \(k < 0\), and that, if \(0 < k < 1\), then (7) holds, providing [[provided that?]] the direction of the inequality in (7) is reversed. This can be deduced from Hölder’s inequality. We have only, in the case \(k > 1\), to raise both sides of the following inequality to the \(k\) th power:

\[a + b + c < (a^k + b^k + c^k)^{1/k}(1 + 1 + 1)^{1-1/k}\]

In case \(0 \neq k < 1\) we do the same to the inequality

\[a + b + c > (a^k + b^k + c^k)^{1/k}(1 + 1 + 1)^{1-1/k}\]

taking care, in case \(k < 0\), to again reverse the direction of the inequality. Since (7) holds for all real \(k > 1\), so does (8).
Comment by Allen Kaufman, Peat Marwick Mitchell & Co., New York, NY. It is easily shown by elementary calculus that the area \(\sin \theta (1 + \cos \theta) \) of the triangle \(T = T(\theta) \) \((0 < \theta < \pi)\) whose vertices are the points \((-1, 0), (\cos \theta, \sin \theta)\) and \((\cos \theta, -\sin \theta)\) is greatest when \(\theta = \pi/3 \) (i.e., when \(T \) is equilateral), and that a smaller area is obtained when \(\theta \neq \pi/3 \). That is, the area of an equilateral triangle inscribed in a circle is greater than the area of an inscribed triangle which is not equilateral, providing [[provided that?]] the latter triangle is isosceles. This conclusion remains correct if we delete the words “providing [[provided that?]] the latter triangle is isosceles” for the area of an inscribed triangle having, say, chord \(\overline{AB} \) as one of its sides is certainly not greater than the area of one of the two inscribed triangles that have \(\overline{AB} \) for their common base. We refer to the geometric mean of the lengths of the sides of a triangle as the geometric mean of the triangle, and similarly for other means.

Theorem. Given a triangle which is not equilateral, if its geometric mean is, say, \(d \), then its area is less than the area of the equilateral triangle of perimeter \(3d \).

Proof. Let \(U \) be a triangle with area \(u \), circumradius \(x \), and whose sides \(a, b \) and \(c \) are not all equal. We know that \(abc = 4ux \). Let \(V \) be an equilateral triangle of perimeter \(3d \), which has area \(v \) and circumradius \(y \), so that \(d^3 = 4vy \). Assume that \(abc = d^3 \). It follows from \(ux = vy \) that \(u < v \) if and only if \(x > y \). Consider the equilateral triangle of perimeter \(3h \) which, like \(U \), has circumradius \(x \). It was proved above that the area, known to be \(h^3/(4x) \), of this equilateral triangle is greater than \(u \). From \(h^3 > 4ux = 4vy = d^3 \) we obtain \(h > d \). Since \(h > d \), \(x > y \) and the proof is complete.

Clearly, the theorem is equivalent to the inequalities

\[
(\sqrt{3}/4)(abc)^{2/3} > K \quad \text{or} \quad (abc)^{1/3} > (4K/\sqrt{3})^{1/2}
\]

in which \(a, b \) and \(c \) represent the sides of any triangle which is not equilateral, and \(K \) is the area of the triangle. By the inequality of arithmetic and geometric means, if \(r \) is a real number \(> 0 \), then

\[
((a^r + b^r + c^r)/3)^{1/r} > (a^r b^r c^r) \quad \text{or} \quad ((a^r + b^r + c^r)/3)^{1/r} > (abc)^{1/3}
\]

It follows that

\[
((a^r + b^r + c^r)/3)^{1/r} > (4K/\sqrt{3})^{1/2} \quad (r > 0)
\]

\((*)\)

Clearly, this result can be expressed in the following way.
Corollary. If \(r \) is a positive number, and a triangle which is not equilateral is given whose exponential mean of order \(r \) is, say, \(d \), then the area of this triangle is less than the area of the equilateral triangle of perimeter \(3d \).

To see that (*) does not hold for \(r < 0 \), consider the isosceles triangle whose base has length \(c \), whose altitude has length \(2/c \), and which has legs of equal lengths, \(a = b \), which depend on \(c \). As \(c \to 0 \), \(a \) and \(b \) clearly increase beyond all bounds, but \(K \) remains always equal to 1. If \(r < 0 \), then, as \(c \to 0 \), the left side of (*) tends to 0, while the right side remains equal to a positive constant. This contradiction shows that the real number \(r \) in (*) must be positive.

Klamkin noted that it is not possible, simply by reversing the inequality signs, to make (*) valid for negative values of \(r \). Consider the triangle determined by \(a = b = 1, c = 2 \sin \theta \), where \(\theta \) is less than \(\pi/2 \) and close to \(\pi/2 \). As \(\theta \to \pi/2 \), the area \(K = \sin \theta \cos \theta \to 0 \), and

\[
((a^r + b^r + c^r)/3)^{1/r} = ((2 + (2 \sin \theta)^r)/3)^{1/r} \to ((2 + 2^r)/3)^{1/r} > 0
\]

This shows that the inequality

\[
((a^r + b^r + c^r)/3)^{1/r} < (4K/\sqrt{3})^{1/r}
\]

is not valid.

Locate a point \(P \) in the interior of a triangle such that the sum of the squares of the distances from \(P \) to the sides of the triangle is a minimum.

Solution by M. S. Klamkin, University of Alberta, Canada. It is known result that the point in the plane for which the sum of the squares of the distances to the sides of a triangle is a minimum is the symmedian point (the isogonal conjugate to the centroid). [R. A. Johnson, *Advanced Euclidean Geometry*, Dover, NY, 1960, p.216.]

More generally, it is not much harder to locate an interior point \(P \) which minimizes

\[
S = x_1 r_1^n + x_2 r_2^n + x_3 r_3^n
\]

where \(x_1, x_2, x_3 \) are given arbitrary nonnegative numbers, \(n > 1 \), and \(r_1, r_2, r_3 \) denote the distances from \(P \) to the sides of the triangle. By Hölder’s inequality

\[
(x_1 r_1^n + x_2 r_2^n + x_3 r_3^n)^{1/n} \left\{ \left(\frac{a_1^n}{x_1} \right)^{1/(n-1)} + \left(\frac{a_2^n}{x_2} \right)^{1/(n-1)} + \left(\frac{a_3^n}{x_3} \right)^{1/(n-1)} \right\}
\geq a_1 r_1 + a_2 r_2 + a_3 r_3 = 2\Delta \quad (\Delta = \text{area of triangle})
\]

with equality if and only if

\[
x_i r_i^n = \lambda^n (a_i^n/x_i)^{1/(n-1)} \quad \text{for } i = 1, 2, 3.
\]

\(\lambda^n \) is determined by solving for \(r_i \) and substituting in \(\sum a_i r_i = 2\Delta \) or

\[
\lambda = \frac{2\Delta}{\sum (a_i^n/x_i)^{1/(n-1)}}
\]

and

\[
r_i = \lambda (a_i/x_i)^{1/(n-1)}
\]

Also,

\[
S_{\text{min}} = (2\Delta)^n \left\{ \sum (a_i^n/x_i)^{1/(n-1)} \right\}^{1-n}
\]

The results for the proposed problem are gotten by setting \(x_i = 1, n = 2 \). The maximum of \(S \) is easily obtained in the following manner:

\[
\frac{S}{(2\Delta)^n} = \sum \frac{x_i}{a_i^n} \left(\frac{a_i r_i}{2\Delta} \right)^n \leq \max \left(\frac{x_1}{a_1^n}, \frac{x_2}{a_2^n}, \frac{x_3}{a_3^n} \right) \left(\frac{a_1 r_1 + a_2 r_2 + a_3 r_3}{2\Delta} \right)
\]
since $1 \geq a_ir_i/2\Delta \geq 0$. Thus,

$$S_{\text{max}} = (2\Delta)^n \max_i x_i/a_i^n$$

and which is taken on for P coinciding with one of the vertices of the triangle. The above results can also be extended for simplexes in E^m in the same way.
Proposed by M. S. Klamkin, University of Alberta, Canada

The following problem and solution appear in [1]: - “The sum of the roots of the equation
\[x^4 - 8x^3 + 21x^2 - 20x + 5 = 0 \]
is 4; explain why on attempting to solve the equation from the knowledge of this fact the method fails.”

“\[x^4 - 8x^3 + 21x^2 - 20x + 5 = (x^2 - 5x + 5)(x^2 - 3x + 1) \]; on putting \(x = 4 - y \), the expressions \(x^2 - 5x + 5 \) and \(x^2 - 3x + 1 \) become \(y^2 - 37 + 1 \) and \(y^2 - 5y + 5 \), respectively, so that we merely reproduce the original equation.”

Give a better explanation.

REFERENCE

This example has been given for the purpose of making the following comments. One sees easily from (1) that

\[\gcd(f(x), f(3 - x)) = x^2 - 3x + 1 \]
\[\gcd(f(x), f(5 - x)) = x^2 - 5x + 5 \]
\[\gcd(f(x), f(4 - x)) = (x^2 - 3x + 1)(x^2 - 5x + 5) = f(x) \]

This shows that if the sum of two roots of \(f \) is a given rational number \(a \), then the method of obtaining a depressed equation with rational coefficients by using the Euclidean algorithm to compute the gcd of \(f(x) \) and \(f(a - x) \) would be successful in
case \(a = 3 \) or \(a = 5 \), but it would fail in case \(a = 4 \). We note that the failure would not be due to the irreducibility of \(f(x) \) over the rational numbers, but to the fact that the substitution of \(4 - x \) for \(x \) merely interchanges the factors \(x^2 - 3x + 1 \) and \(x^2 - 5x + 5 \).

A different method and one which will not fail to solve the equation \(f(x) = 0 \) when we are given that the sum of two roots is 4 begins by writing

\[
f(x) = (x^2 - 4x + b)(x^2 - 4x + c)
\] \hspace{1cm} (2)

and then \(b \) and \(c \) are easily determined by multiplying the factors on the right, and comparing the coefficients obtained with the coefficients given in the definition of \(f \).

In this way, we obtain the values \((-5 \pm \sqrt{5})/2\) for \(b \) and \(c \), so that, in contrast to (1), the factorization (2) requires irrational numbers.
The Inequality $\sum (\sum ar / \sum as) > \sum ar - s$

163. (Mar. 1981) (Corrected) Proposed by Wm. R. Klinger, Marion College, Marion, IN

Assume $a_i > 0 \ (i = 1, 2, 3, 4)$, $a_5 = a_1$ and $a_6 = a_2$. Prove or disprove:

1. $\sum_{i=1}^{4} (a_i^3 + a_{i+1}^3 + a_{i+2}^3) / (a_i + a_{i+1} + a_{i+2}) \geq \sum_{i=1}^{4} a_i^2$

and

2. $\sum_{i=1}^{4} (a_i^4 + a_{i+1}^4 + a_{i+2}^4) / (a_i + a_{i+1} + a_{i+2}) \geq \sum_{i=1}^{4} a_i^5$

Solution by M. S. Klamkin, University of Alberta, Canada. Let n and k be integers that are > 1, let $r > s > 0$, let $a_i > 0 \ (i = 1, 2, \ldots)$, let the a_i be not all equal to the same constant, and let $j \equiv m \ (\text{mod} \ n)$ imply $a_j = a_m$. We show more generally that

$$S \equiv \sum_{i=1}^{n-1} \frac{a_i^r + a_{i+1}^r + \cdots + a_{i+k}^r}{a_i^{r-s} + a_{i+1}^{r-s} + \cdots + a_{i+k}^{r-s}} > \sum_{m=1}^{n} a_m^{r-s}$$

By Chebyshev’s inequality

$$\frac{1}{k} \sum_{j=1}^{k} a_{i+j}^r \geq \left(\frac{1}{k} \sum_{j=1}^{k} a_{i+j}^s \right) \left(\frac{1}{k} \sum_{j=1}^{k} a_{i+j}^{r-s} \right) \quad i = 0, 1, 2, \ldots \quad (*)$$

That is, the ith term in the sum which defines S is $\geq (1/k) \sum_{j=1}^{k} a_{i+j}^{r-s}$. Since the numbers $a_1, a_2 \ldots$ are not all equal, at least one of the inequalities in $(*)$ is strict. It follows that

$$S > \sum_{i=0}^{n-1} \frac{1}{k} \sum_{j=1}^{k} a_{i+j}^{r-s} = \frac{1}{k} \sum_{j=1}^{k} \sum_{i=0}^{n-1} a_{i+j}^{r-s}$$

$$= \frac{1}{k} \sum_{j=1}^{k} \sum_{m=1}^{n} a_{m}^{r-s} = \sum_{m=1}^{n} a_m^{r-s}$$
Probability of a Subradial Distance

178. (Nov. 1980) Proposed by Roger L. Creech, East Carolina University, Greenville, NC

If points A and B are selected at random in the interior of a circle, what is the probability that AB is less than the length of the radius of the circle?

Editor’s Note: Klamkin noted that the problem appears in J. Edwards, Treatise on Integral Calculus, II. Chelsea, NY, 1954, p.852, and is credited to I. P. Ox, 1916.

248. Proposed by M. S. Klamkin, University of Alberta, Canada

(1) Given that a_1, a_2, \ldots and b_1, b_2, \ldots are non-constant, nonproportional arithmetic progressions. Determine the maximum number of consecutive terms in the sequence $(a_1/b_1), (a_2/b_2), \ldots$ which can be in (i) arithmetic progression, (ii) geometric progression.

(2) Given that a_1, a_2, \ldots and b_1, b_2, \ldots are non-constant, nonproportional geometric progressions. Determine the maximum number of consecutive terms in the sequence $(a_1 + b_1), (a_2 + b_2), \ldots$ which can be in (i) arithmetic progression, (ii) geometric progression.

Solution by Michael Vowe, Therwil, Switzerland. (1) Let $a_n = a + (n - 1)d$, $b_n = b + (n - 1)e$, $n = 1, 2, \ldots$, where $d \neq 0$, $e \neq 0$, $ae - bd \neq 0$, since the progressions are nonconstant and nonproportional. Also $b_n \neq 0$, $n \geq 1$, for the ratios to be defined.

(i) Let f be the difference between successive terms in the sequence of ratios, so

$$f = \frac{a_2}{b_2} - \frac{a_1}{b_1} = \frac{bd - ae}{b(b + e)}$$

The difference between a third term and the first must be $2f$, so

$$\frac{a_3}{b_3} - \frac{a_1}{b_1} = \frac{a + 2d}{b + 2e} - \frac{a}{b} = \frac{2(bd - ae)}{b(b + e)}$$

This yields $e(ae - bd) = 0$ which is impossible, so the maximum number of consecutive terms is two.
(ii) Clearly $a_n \neq 0$, $n \geq 1$, for the ratios to be in geometric progression. Let q be the ratio of successive terms in the sequence of ratios, so

$$q = \frac{a_2}{b_2} / \frac{b(a + d)}{a(b + e)}$$

The ratio $a_3/b_3 = q^2(a_1/b_1)$ or $a(a + 2d)(b + e)^2 = b(b + 2e)(a + d)^2$. This may be written $((a + d)^2 - d^2)(b + e)^2 = ((b + e)^2 - e^2)(a + d)^2$, which yields $e^2(a + d)^2 = d^2(b + e)^2$ or $e(a + d) = \pm d(b + e)$. A three-term geometric progression which may be found by using this condition is $a/b, k, (b/a)k^2, k \neq 0$, formed of ratios of the arithmetic progressions $a, \frac{a+bk}{2}, bk$ and $b, \frac{b+(a/k)}{2}, a/k$.

There cannot be a fourth term in the sequence of ratios since this would give $a_4/b_4 = q^3(a_1/b_1)$, or $a^2(a + 3d)(b + e)^3 = b^2(b + 3e)(a + d)^3$. This may be written

$$((a + d)^3 - d^2(3a + d))(b + e)^3 = ((b + e)^3 - e^2(3b + e))(a + d)^3$$

which leads, after using $e^2(a + d)^2 = d^2(b + e)^2$, to $ae = bd$ which is not allowed. Thus the maximum number of consecutive terms is three.

(2) Let $a_n = ap^{n-1}$, $b_n = bq^{n-1}$, $n = 1, 2, \ldots$, where $a \neq 0$, $b \neq 0$, $p \neq 1$, $q \neq 1$, $p \neq q$, since the progressions are nonconstant and nonproportional.

(i) Let d be the difference between successive terms in the sequence of sums, so $d = a_2 + b_2 - a_1 - b_1 = a(p - 1) + b(q - 1)$. The difference between the third term and the first must be $2d$. Therefore $a_3 + b_3 - a_1 - b_1 = a(p^2 - 1) + b(q^2 - 1) = 2(a(p - 1) + b(q - 1))$, which leads to $a(p - 1)^2 + b(q - 1)^2 = 0$. A three term arithmetic progression which may be found using this condition is $6, 10, 14$, formed of sums of the geometric progressions $8, 16, 32$ and $-2, -6, -18$.

There cannot be a fourth term in the sequence of sums since this would give $3d = a_4 + b_4 - a_1 - b_1$ or $3(a(p - 1) + b(q - 1)) = a(p^3 - 1) + b(q^3 - 1)$. This may be written $a((p - 1)^3 + 3(p - 1)^2) + b((q - 1)^3 + 3(q - 1)^2) = 0$, which gives $a(p - 1)^2(p + 2) + b(q - 1)^2(q + 2) = 0$. This leads, after using $a(p - 1)^2 = -b(q - 1)^2$, to $p = q$ which is not allowed. Thus the maximum number of consecutive terms is three.

(ii) Let r be the ratio of successive terms in the sequence of sums, so $a_2 + b_2 = r(a_1 + b_1)$ or $r(a + b) = ap + bq$. A third term in the sequence of sums would give $a_3 + b_3 = r^2(a_1 + b_1)$ or $(a + b)(ap^2 + bq^2) = (ap + bq)^2$. This implies $ab(p - q)^2 = 0$, which is impossible, so the maximum number of consecutive terms is two.
Proposed by M. S. Klamkin, University of Alberta, Canada

Assume that A, B and C are the angles of a triangle. Prove that

$$3(\cot A + \cot B + \cot C) \geq \cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}$$

with equality if and only if the triangle is equilateral.

Solution by Robert L. Young, Cape Cod Community College, West Barnstable, Mass.

Using $\cot(A/2) = (1 + \cos A)/\sin A = \csc A + \cot A$ and the corresponding equations for B and C, the inequality can be reduced to

$$2(\cot A + \cot B + \cot C) \geq \csc A + \csc B + \csc C \quad (1)$$

The left-hand side of (1) can be written in the form $(\cot A + \cot B) + (\cot B + \cot C) + (\cot C + \cot A)$. If we then multiply each side of (1) by a factor equal to twice the area of triangle ABC, we obtain

$$ch_c(\cot A + \cot B) + ah_a(\cot B + \cot C) + bh_b(\cot C + \cot A)$$

$$\geq bc \sin A(csc A) + ac \sin B(csc B) + ab \sin C(csc C) \quad (2)$$

where h_a, h_b and h_c represent the lengths of the altitudes of triangle ABC from the vertices A, B and C respectively. Then (2), and therefore also (1), is seen to be equivalent to

$$a^2 + b^2 + c^2 \geq bc + ca + ab \quad (3)$$

Doubling (3) gives us

$$(a^2 + b^2) + (b^2 + c^2) + (c^2 + a^2) \geq 2ab + 2bc + 2ca$$

or, equivalently,

$$(a - b)^2 + (b - c)^2 + (c - a)^2 \geq 0$$

This last inequality is obviously correct, and it is obvious that equality holds if and only if $a = b = c$. This completes the solution.
Comment by Michael Vowe, Therwil, Switzerland. Let s be the semiperimeter of the triangle, R the circumradius, r the inradius, and r_a, r_b and r_c the radii of the excircles opposite A, B and C, respectively. Since $\cot A = (\cot(A/2) - \tan(A/2))/2$, the proposed inequality can be written in the form

$$\cot(A/2) + \cot(B/2) + \cot(C/2) \geq 3(\tan(A/2) + \tan(B/2) + \tan(C/2))$$

or

$$\frac{(s-a)}{r} + \frac{(s-b)}{r} + \frac{(s-c)}{r} \geq 3((r_a/s) + (r_b/s) + (r_c/s))$$

That is, $s^2 \geq 3r(r_a + r_b + r_c)$ or $s^2 \geq 3r(4R + r)$. This last inequality occurs in O. Bottema et al., *Geometric Inequalities*, Walters-Noordhoff, Groningen, 1968, p.49 (5.6). [[That shd be ‘Wolters-Noordhoff’ – R.]]
Proposed by M. S. Klamkin, University of Alberta, Canada

Explain the following numerical pattern which was obtained on a pocket calculator:

\[
\begin{align*}
\tan 89.999 & \approx 57295.77951 \\
\tan 89.9999 & \approx 572957.7951 \\
\tan 89.99999 & \approx 5729577.951 \\
\tan 89.999999 & \approx 57295779.51 \\
\tan 89.9999999 & \approx 572957795.1 \\
\end{align*}
\]

[[At this point the name of the journal changed to College Math. Journal]]

Composite of solutions by Dan Kalman, Augustana College, Sioux Falls, SD; and Jan Söderkvist (student), Royal Institute of Technology, Stockholm, Sweden. The calculator is operating correctly. Let \(\theta_k = 10^{-k}\pi/180, k = 3, \ldots, 8 \). The values given by the calculator for \(\tan(\pi/2 - \theta_k) \) are, to 10 significant figures, the values of \(1/\theta_k \). We will show that, to 10 significant figures, \(\tan(\pi/2 - \theta_k) = 1/\theta_k \). Let \(0 < \theta \leq 10^{-3}\pi/180 = K \). By Taylor’s formula with the Lagrange form of the remainder,

\[
\tan(\pi/2 - \theta) = 1/\tan \theta = 1/(\theta + R)
\]

where

\[
R = (1/3)\theta^3(1 + \tan^2 A)(1 + 3\tan^2 A)
\]

for some \(A \) between 0 and \(\theta \). Also

\[
1/\theta - R/\theta^2 < 1/(\theta + R) < 1/\theta
\]

Since \((\tan x)/x \), considered for \(0 < x < \pi/4 \), is an increasing function of \(x \), we have \(\tan A < \tan K < 4K/\pi \) and

\[
R/\theta^2 < (K/3)(1 + (4K/\pi)^2)(1 + 3(4K/\pi)^2)
\]

Calculation shows that the right-hand side is less than \((1/2)10^{-5}\). Noting that the last figure given by the calculator for \(\tan 89.999 \) is in the fifth decimal place completes the solution.
Determine the extreme values of

\[S_i = \sin^i B + \sin^i C - \sin^i A \quad (i = 1, 2) \]

where \(A, B \) and \(C \) are angles of a triangle.

Composite of solutions by Richard Parris, Phillips Exeter Academy, Exeter, NH; and Doug Wiens, Dalhousie University, Halifax, Nova Scotia, Canada. If \(B = C = \pi/2 \) and \(A = 0 \), then \(S_n = 2, n = 1, 2 \). Since \(\sin A \geq 0 \), \(S_1 > 2 \) is impossible. It follows that \(\sup S_n = 2, n = 1, 2 \). Since the sines of the angles of a triangle are proportional to the lengths of the opposite sides, \(S_1 > 0 \) with equality if the triangle is degenerate. Therefore, \(\inf S_1 = 0 \). Finally,

\[S_2 = \sin^2 B + \sin^2 C - \sin^2 A = 2 \sin B \cos C \cos A \quad (\ast) \]

which shows that negative values of \(S_2 \) are obtained if \(\pi/2 < A < \pi \). With no loss in generality, let \(A \) satisfy these inequalities. By \((\ast) \), using the arithmetic-geometric mean inequality and the concavity of the sine and cosine functions on the interval \((0, \pi/2)\), we have

\[S_2 \geq 2((\sin B + \sin C)/2)^2 \cos A \geq 2 \sin^2((B + C)/2) \cos A \]

\[= 2 \cos^2(A/2) \cos A = -2 \cos^2(A/2) \cos(\pi - A) \]

\[\geq -2((2 \cos(A/2) + \cos(\pi - A))/3)^3 \]

\[\geq -2 \cos^3((2(A/2) + (\pi - A))/3) = -2 \cos^3(\pi/3) = -1/4 \]

with equality if and only if \(A/2 = \pi - A \) and \(B = C \). Then \(\min S_2 = -1/4 \) and \(S_2 = -1/4 \) if and only if \(A = (2/3)\pi \) and \(B = C = \pi/6 \). This completes the solution.
Let denote the \((n+1)\times(n+1)\) matrix such that

\[
p_{ij} = \binom{j}{i} \quad (i = 0, 1, \ldots, n; j = 0, 1, \ldots, n)
\]

Let \(C\) be the \((n+1)\times1\) column matrix defined as the transpose \((c_0, c_1, c_2, \ldots, c_n)'\) of the row \((c_0, c_1, c_2, \ldots, c_n)\). Let \(S = PC\) define \(S = (s_0, s_1, s_2, \ldots, s_n)'\). Let \(D = (d_{ij})\) be the \(n\times n\) matrix such that

\[
d_{ij} = c_{i+j-1} \quad (i = 0, 1, \ldots, n; j = 0, 1, \ldots, n)
\]

Let \(X = (1, x, x^2, \ldots, x^{n-1})'\) and let \(P_i (i = 0, 1, \ldots, n-1)\) denote the \(1\times n\) row matrix whose \(j\)th component \((j = 0, 1, \ldots, n-1)\) is the binomial coefficient \(\binom{i}{j}\). Clearly, the result, indexed by \(i\), of each one of the \(n\) successive divisions by \(x-1\) occurring in the application of Horner’s process to the problem of writing \(p(x)\) as a linear combination of powers of \(x-1\) can be described by the equation

\[
p(x) = P_i DX(x-1)^i + s_i(x-1)^{i+1} + \cdots + s_2(x-1)^2 + s_1(x-1) + s_0
\]

\((i = 0, 1, 2, \ldots, n-1)\). The conclusion of the process, obtained for \(i = n-1\), is, of course, the equation \(p(x) = s_n(x-1)^n + s_{n-1}(x-1)^{n-1} + s_2(x-1)^2 + s_1(x-1) + s_0\). Substituting \(A\) for \(x\), and \(A-I\) for \(x-1\), in this equation shows that, in consideration of the existence of \((A-I)^{-1}\) and the fact that \(p(A) = 0\),

\[
u = \min\{i : s_i \neq 0\} < n
\]

Substituting \(u\) for \(i\) in (1) gives us

\[
p(x) = P_u DX(x-1)^{u+1} + s_u(x-1)^u.
\]

From \(p(A) = 0\) and the existence of \((A-I)^{-1}\), we infer that \(A\) satisfies \(P_u DX(x-1) + s_u = 0\) or, equivalently, \(-s_u^{-1} P_u DV(x-1) = 1\). Therefore, the inverse of \(A-I\) is obtained by substituting \(I, A, A^2, \ldots, A^{u-1}\) for the components of \(X = (1, x, x^2, \ldots, x^{n-1})\) in the expression

\[
-s_u^{-1} P_u DX
\]

278. Proposed by M. S. Klamkin, University of Alberta, Canada

If \(A\) is an \(n \times n\) matrix such that \(A^3 = pA^2 + gA + rI\), determine \((A-I)^{-1}\) assuming it exists.

Solution by J. Suck, Essen, West Germany. More generally, let \(A\) satisfy the polynomial equation \(p(x) = 0\), where \(p(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_1 x + c_0\) and the \(c_i\) are given elements of a field which also containsthe components of \(A\). \(c_n \neq 0\). Let \(P = (p_{ij})\) denote the \((n+1)\times(n+1)\) matrix such that

\[
A = \begin{pmatrix}
A_{00} & A_{01} & \cdots & A_{0n} \\
A_{10} & A_{11} & \cdots & A_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n0} & A_{n1} & \cdots & A_{nn}
\end{pmatrix}
\]

The row \(c_i\) is the application of Horner’s process to the problem of writing \(p(x)\) as a linear combination of powers of \(x-1\) can be described by the equation

\[
p(x) = P_i DX(x-1)^i + s_i(x-1)^{i+1} + \cdots + s_2(x-1)^2 + s_1(x-1) + s_0
\]

\((i = 0, 1, 2, \ldots, n-1)\). The conclusion of the process, obtained for \(i = n-1\), is, of course, the equation \(p(x) = s_n(x-1)^n + s_{n-1}(x-1)^{n-1} + s_2(x-1)^2 + s_1(x-1) + s_0\). Substituting \(A\) for \(x\), and \(A-I\) for \(x-1\), in this equation shows that, in consideration of the existence of \((A-I)^{-1}\) and the fact that \(p(A) = 0\),

\[
u = \min\{i : s_i \neq 0\} < n
\]

Substituting \(u\) for \(i\) in (1) gives us

\[
p(x) = P_u DX(x-1)^{u+1} + s_u(x-1)^u.
\]

From \(p(A) = 0\) and the existence of \((A-I)^{-1}\), we infer that \(A\) satisfies \(P_u DX(x-1) + s_u = 0\) or, equivalently, \(-s_u^{-1} P_u DV(x-1) = 1\). Therefore, the inverse of \(A-I\) is obtained by substituting \(I, A, A^2, \ldots, A^{u-1}\) for the components of \(X = (1, x, x^2, \ldots, x^{n-1})\) in the expression

\[
-s_u^{-1} P_u DX
\]
The solution of the given problem follows from the above discussion by setting \(n = 3 \) and \(C = (r, q, p, -1) \). Then

\[
P = \begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

and \(S = P = (r+q+p-1, q+2p-3, p-3, -1) \). By (2), if \(r+q+p \neq -1 \), then

\[
(A - I)^{-1} = -(r + q + p - 1)^{-1}((q + p - 1)I + (p - 1)A - A^2)
\]

If \(r + q + p = 1 \) and \(q + 2p \neq 3 \), then

\[
(A - I)^{-1} = -(q + 2p - 3)^{-1}((p - 2)I - A)
\]

If \(r + q + p = 1, q + 2p = 3 \) and \(p \neq 3 \), then

\[
(A - I)^{-1} = -(p - 3)^{-1}(-I)
\]

Our solution is completed by noting that \(r + q + p = 1, q + 2p = 3 \) and \(p = 3 \) contradict the existence of \((A - I)^{-1}\).
Mean Values of Subsets of a Finite Set

Define the average of a finite nonempty set \(T \) of numbers to be the average of the elements of \(T \). Is it true that the mean of the averages of all the nonempty subsets of a finite nonempty set \(W \) always equals the average of \(W \)?

Solution by M. S. Klamkin, University of Alberta, Canada. Let \(f \) be a continuous strictly monotonic function defined on an interval which contains all the elements of \(W \). For all finite nonempty subsets \(T \) of this interval, we define the mean \(M_j(T) \) by

\[
M_j(T) = f^{-1} \left\{ \frac{1}{n(T)} \sum_{a \in T} f(a) \right\}
\]

where \(n(T) \) denotes the number of elements in \(T \).

Examples. Let \(T \) be a finite nonempty set of positive real numbers. If \(f(x) = x \), then \(M_f(T) \) is the arithmetic mean of the elements in \(T \). If \(f(x) = \ln x \), \(M_f(T) \) is the geometric mean. If \(f(x) = \frac{1}{x} \), \(M_f(T) \) is the harmonic mean.

We will show that if “average of \(T \)” is interpreted as \(M_f(T) \), then the answer is in the affirmative. Let \(m = n(W) \). Let \(T \) and \(T_a \) denote, respectively, a nonempty subset of \(W \), and a subset of \(W \) which contains the element \(a \). We note that the \(T_a \) are either 1-element sets, 2-element sets, \ldots, or \(m \)-element sets, and that the number of \(k \)-element sets of \(W \) which contain a given element \(a \) is \(\binom{m-1}{k-1} \), \(k = 1, 2, \ldots, m \). Then

\[
f^{-1} \left\{ \frac{1}{2^m - 1} \sum_T f(M_f(T)) \right\} = f^{-1} \left\{ \frac{1}{2^m - 1} \sum_T \left(\frac{1}{n(T)} \sum_{a \in T} f(a) \right) \right\}
\]

\[
= f^{-1} \left\{ \frac{1}{2^m - 1} \sum_{a \in W} \left(f(a) \sum_{T_a} \frac{1}{n(T_a)} \right) \right\}
\]

\[
= f^{-1} \left\{ \frac{1}{2^m - 1} \sum_{a \in W} \left(f(a) \sum_{k=1}^{m} \frac{1}{k} \binom{m-1}{k-1} \right) \right\}
\]

\[
= f^{-1} \left\{ \frac{1}{2^m - 1} \sum_{a \in W} \left(f(a) \sum_{k=1}^{m} \frac{1}{k} \binom{m}{k} \right) \right\}
\]

\[
= f^{-1} \left\{ \frac{1}{m} \sum_{a \in W} f(a) \right\}
\]

as was to be shown.

24
Proposed by M. S. Klamkin, University of Alberta, Edmonton, Canada and Gregg Patruno (student), Princeton University, New Jersey (jointly)

(a) It is immediate that

\[
\frac{\cos^2 x \cdot \cos^2 y}{\cot^2 x \cdot \cot^2 y} = \sin^2 x \cdot \sin^2 y
\]

Show that the identity remains valid even if the multiplication signs on the left-hand side are changed to subtraction signs.

(b) Generalize the above result.

Solution by Harry Sedinger, St. Bonaventure University, St. Bonaventure, NY. The generalization will be shown first. The functional equation

\[
\frac{f(x) \cdot f(y)}{g(x) \cdot g(y)} = \frac{f(x) - f(y)}{g(x) - g(y)}
\]

may be written as

\[
\frac{1}{f(x)} - \frac{1}{f(y)} = \frac{1}{g(x)} - \frac{1}{g(y)}
\]

so [[that]] its general solution is given by any pair of functions satisfying \((1/f(x)) - (1/g(x)) = k\), where \(k\) is an arbitrary constant. Thus, if \(f(x)\) is given and \(g(x) = f(x)/(1 - kf(x))\), then the functional equation is identically satisfied. This identity is a generalization of the result in (a) as required by (b).

Specifically, to prove (a), choose \(k = 1\) and \(f(x) = \cos^2 x\), and let

\[
g(x) = \frac{f(x)}{1 - kf(x)} = \frac{\cos^2 x}{1 - \cos^2 x} = \cot^2 x
\]

The above argument then shows the result in (a).
Let m_1, m_2, m_3, m_4 be positive real numbers with $S = \sum_{i=1}^{4} m_i$. Prove that

$$\sum_{i=1}^{4} \frac{m_i}{S - m_i} \geq \frac{4}{3}.$$

Comment by M. S. Klamkin, University of Alberta, Canada. Let m_1, m_2, \ldots, m_n be the lengths of the sides of an n-gon, $n \geq 3$. Then $S - m_i > m_i, i = 1, 2, \ldots, n$. In this case we have the companion inequality $\sum_{i=1}^{n} \left(m_i / (S - m_i) \right) < 2$ (Crux Mathematicorum, 7(1981) 28).

Proof:

$$S - m_i = (S - m_i)/2 + (S - m_i)/2 > (S - m_i)/2 + m_i/2 = S/2 \quad i = 1, 2, \ldots, n$$

Then $2m_i/S > m_i/(S - m_i)$ and

$$2 = (2/S) \sum_{i=1}^{n} m_i > \sum_{i=1}^{n} \frac{m_i}{S - m_i}.$$
Thanks Again, Euler

239. (Jan. 1983) Proposed by Norman Schaumberger, Bronx Community College, Bronx, NY

Prove or disprove: The product of four distinct nonzero integers in arithmetic progression cannot be a fourth power.

[[in fact a (special case of a) classic problem. The result attributed to Euler was already given by Fermat. – R.]]

Solution by M. S. Klamkin, University of Alberta, Canada. It is well known that the product of four consecutive integers cannot be a square since otherwise the identity $(a - 2)(a - 1)a(a + 1) + 1 = (a^2 - a - 1)^2$ leads to the equation $x^2 + 1 = (a^2 - a - 1)^2$, $x \neq 0$, which has no solution. Similarly, the product of four distinct nonzero integers in arithmetic progression cannot be a fourth power since otherwise the identity $(a - 2d)(a - d)a(a + d) + d^4 = (a^2 - ad - d^2)^2$ leads to the equation $x^4 + d^4 = y^2$, $dx \neq 0$, which was shown by Euler to have no solution. The result still holds if a, d are assumed rational: just multiply the identity by a common denominator. Note that the second identity follows from the first when a is replaced by a/d.

Editor’s note: The solver noted that this problem appeared in Crux Mathematicorum, Problem 645(1981, p.177) where the above solution was initially sent. The solvers cited many different texts on Number Theory for the result by Euler.

297. Proposed by M. S. Klamkin, University of Alberta, Canada

One is given a set of functions \(H_i(x_1, x_2, \ldots, x_r), i = 0, 1, \ldots, s \) which are homogeneous functions of degrees \(n_i \), respectively, and are functionally dependent, i.e.,

\[
H_0 = F(H_1, H_2, \ldots, H_s)
\]

Show that \(H_0 \) is homogeneous in the functions \(J_1, J_2, \ldots, J_s \), where

\[
J_i = H_i^{1/n_i}
\]

Solution by William P. Wardlaw, United States Naval Academy, Annapolis, MD.

Let \(X = (x_1, x_2, \ldots, x_r) \) and let \(H_0 = F(H_1, H_2, \ldots, H_s) = G(J_1, J_2, \ldots, J_s) \) where \(J_i = H_i^{1/n_i} \). The functions \(J_i(X) \) are each homogeneous of degree 1 since \(J_i(tX) = (H_i(tX))^{1/n_i} = tJ_i(X), i = 1, 2, \ldots, s \). The desired result follows since

\[
G(tJ_1, tJ_2, \ldots, tJ_s) = G(J_1(tX), J_2(tX), \ldots, J_s(tX))
\]

\[
= F(H_1(tX), H_2(tX), \ldots, H_s(tX))
\]

\[
= H_0(tX) = t^{n_0}H_0(X) = t^{n_0}G(J_1, J_2, \ldots, J_s)
\]

Thus \(H_0 = G(J_1, J_2, \ldots, J_s) \) is homogeneous of degree \(n_0 \) in the functions \(J_1, J_2, \ldots, J_s \) as required.
Estimation of a Product

Let $a, d > 0$ and m be a positive integer. Prove:

$$n \sqrt{\frac{a}{a + mnd}} \leq \prod_{k=1}^{n} \frac{a + (mk - 1)d}{a + mkd} \leq \sqrt{\frac{a + (m - 1)d}{a + (mn + m - 1)d}}$$

Solution by M. S. Klamkin, University of Alberta, Canada. Let $A = (a - d)/(md)$ and $B = a/(md)$. The given inequalities are equivalent to

$$\left(\frac{B}{B + n} \right)^{B-A} \leq \frac{\Gamma(A + n + 1)\Gamma(B + 1)}{\Gamma(A + 1)\Gamma(B + n + 1)} \leq \left(\frac{A + 1}{A + n + 1} \right)^{B-A} \tag{1}$$

Equality occurs both when $B = A + 1$ and when $B = A$, corresponding to $m = 1$ and $m = \infty$, respectively. We will establish (1) for any number m, not necessarily an integer, which is ≥ 1. Let

$$F(B) = (B - A) \ln \frac{A + 1}{B + n + 1} + \ln \frac{\Gamma(B + n + 1)}{\Gamma(B + 1)} - \ln \frac{\Gamma(A + n + 1)}{\Gamma(A + 1)}$$

Since $F(A) = F(A + 1) = 0$, these second inequality in (1), equivalent to $F(B) \geq 0$ for $A < B < A + 1$, will be established if we show that $F(B)$ is concave or that $F''(B) \leq 0$. Since it is known that

$$\frac{d^2 \ln \Gamma(z)}{dz^2} = \sum_{k=0}^{\infty} (z + k)^{-2}$$

the demonstration is completed by observing that

$$F''(B) = \sum_{k=0}^{\infty} \left\{ \frac{1}{(B + n + 1 + k)^2} - \frac{1}{(B + 1 + k)^2} \right\} \leq 0$$

Similarly, to prove the first inequality in (1), let

$$G(A) = \ln \frac{\Gamma(A + n + 1)}{\Gamma(A + 1)} - \ln \frac{\Gamma(B + n + 1)}{\Gamma(B + 1)} - (B - A) \ln \frac{B}{B + n}$$

We will prove the inequality $G(A) \geq 0$, equivalent to the desired inequality, for $B \geq A \geq B - 1$. Since $G(B) = G(B - 1) = 0$, it is sufficient to show $G''(A) \leq 0$. The solution is completed by observing that

$$G''(A) = \sum_{k=0}^{\infty} \left\{ \frac{1}{(A + n + 1 + k)^2} - \frac{1}{(A + 1 + k)^2} \right\} \leq 0$$
Editor’s Note: Shafer proved that the lower bound for the product can be raised to

\[
\left(\frac{2a + md - 2d}{2a + 2md + md - 2d} \right)^{1/m}
\]

for any real number \(m > 2 \).

308. Proposed by M. S. Klamkin, University of Alberta, Canada

Evaluate
\[
\left\{ \frac{d^{3n}}{dx^{3n}} (1 - \sqrt[3]{2 \sin x})^{3n} \right\}_{x=\pi/6}
\]

Solution by Michael Vowe, Therwil, Switzerland. The formula of Faà di Bruno, as given by Steven Roman, The Formula of Faà di Bruno, Amer. Math. Monthly, 87(1980) p.807, states: If \(f(t) \) and \(g(t) \) are functions for which all the necessary derivatives are defined, then

\[
D^n f(g(t)) = \sum \frac{n!}{k_1! \cdots k_n!} (D^k f)(g(t)) \left(\frac{Dg(t)}{1!} \right)^{k_1} \cdots \left(\frac{D^n g(t)}{n!} \right)^{k_n}
\]

where \(k = k_1 + \cdots + k_n \) and the sum is over all \(k_1, \ldots, k_n \) for which \(k_1 + 2k_2 + \cdots + nk_n = n \). In this case replace \(n \) by \(3n \) and let \(f(t) = t^{3n} \) and \(g(t) = 1 - (2 \sin t)^{1/3} \), then notice

\[
\left\{ (D^k f)(g(t)) \right\}_{t=\pi/6} = 0 \quad \text{for} \quad 1 \leq k \leq 3n - 1
\]

since \(g(\pi/6) = 0 \) and \(D^k f(0) = 0 \). Thus the only nonzero term in the formula has \(k_1 = 3n \) and \(k_2 = k_3 = \cdots = k_{3n} = 0 \) (from

\[
3n = k_1 + k_2 + \cdots + k_{3n} = k_1 + 2k_2 + \cdots + 3nk_{3n}
\]

This gives the required evaluation as

\[
\left\{ \frac{d^{3n}}{dx^{3n}} (1 - \sqrt[3]{2 \sin x})^{3n} \right\}_{x=\pi/6} = \frac{(3n)!}{(3n)!} (D^{3n} f) \left(g \left(\frac{\pi}{6} \right) \right) \left(Dg \left(\frac{\pi}{6} \right) \right)^{3n}
\]

\[
= (3n)!(-1)^{3n} \left(\frac{2^{1/3}}{3} \left(\sin \frac{\pi}{6} \right)^{-2/3} \cos \frac{\pi}{6} \right)^{3n}
\]

\[
= \frac{(-1)^{3n}(3n)!}{3^{3n/2}}
\]
Proposed by M. S. Klamkin, University of Alberta, Canada

The surface \(z = F(x, y) \) is smooth and is tangent to the \((x, y)\) plane at the origin. Also, all plane curves of the surface containing the \(z\)-axis have a minimum value at the origin. Must the origin be a minimum point of the surface?

Solutions by Howard K. Hilton, Chicago, IL; Joseph D. E. Konhauser, Macalester College, St. Paul, MN; and the proposer (independently). No. We give three examples.

Example by Konhauser: \(z = f(x, y) = (y - x^2)(y - 2x^2) \). The value of \(z \) is negative for points \((x, y)\) lying between the parabolas \(y = x^2 \) and \(y = 2x^2 \). The value is zero on the parabolas, and positive at all other points.

Example by Hilton: \(z = f(x, y) = (x^2 + y^2 - 2y)(x^2 - 2y) \). The circle \(x^2 + y^2 - 2y = 0 \) is internally tangent to the parabola \(x^2 - 2y \) at the origin. The factors of \(f \) will have the same sign at points which are either inside the circle or outside the parabola; the factors of \(f \) have opposite signs at each point that is simultaneously outside the circle and inside the parabola, and \(z \) is zero on the circle and on the parabola.

Example by the proposer: \(z = f(x, y) = (x - y^2)^2 - y^6 \). Here \(z \) is negative for points \(\neq (0, 0) \) of the parabola \(x = y^2 \). For points \((x, y)\) on the lines \(y = mx, m \) arbitrary, that are sufficiently close to the origin, \(z \) is a positive multiple of \(x^2 \). For points of the \((x, y)\)-plane on the line \(x = 0 \) that are sufficiently close to the origin, \(z \) is a positive multiple of \(y^4 \).

Each of the three examples is an example of a surface that is smooth and tangent to the \((x, y)\)-plane at the origin. In each example, the values of \(f \) on any line through the origin in the \((x, y)\)-plane have a strict minimum equal to zero at the origin, and yet there are points \((x, y)\) arbitrarily close to the origin at which the value of \(f \) is \(< 0 \).
If $a_1, a_2, a_3, a_4, a_5 > 0$, prove that

\[
\sum_{\text{cyclic}} \left(\frac{a_1a_2a_3}{a_4a_5} \right)^4 \geq \sum_{\text{cyclic}} a_1^2a_3
\]

When is there equality?

Solution by Beno Arbel, Tel Aviv University, Israel. The following inequality is obtained with the aid of the Arithmetic Mean-Geometric Mean Inequality: If $x_i > 0$, $i = 1, \ldots, 5$, then

\[
\sum_{i=1}^{5} = \sum_{\text{cyclic}} \left(\frac{x_1 + x_2}{2} \right) \geq \sum_{\text{cyclic}} \sqrt{x_1x_2}
\]

with equality if and only if $x_1 = \cdots = x_5$. This inequality will be used three times to complete the following proof of the given inequality:

\[
\sum_{\text{cyclic}} \left(\frac{a_1a_2a_3}{a_4a_5} \right)^4 = \left(\frac{a_1a_2a_3}{a_4a_5} \right)^4 + \left(\frac{a_3a_4a_5}{a_1a_2} \right)^4 + \left(\frac{a_5a_1a_2}{a_3a_4} \right)^4 + \left(\frac{a_2a_3a_4}{a_5a_1} \right)^4 + \left(\frac{a_4a_5a_1}{a_2a_3} \right)^4
\]

\[
\geq a_3^4 + a_5^4 + a_2^4 + a_4^4 + a_1^4 = \sum_{i=1}^{5} a_i^4 \geq \sum_{\text{cyclic}} a_1^2a_2^2 \geq \sum_{\text{cyclic}} a_1a_2a_3^2
\]

with equality if and only if $a_1 = \cdots = a_5$, which is the desired result.
Proposed by M. S. Klamkin, University of Alberta, Canada

Prove that for \(x > 1, \)

\[
\frac{(x - 1)x^{x - 1}x}{(x - \frac{1}{2})^{2x - 1}} > 1
\]

Composite of solutions by Chico Problem Group, California State University; Bjorn Poonen (student), Harvard College [??], Cambridge, MA; and Heinz-Jürgen Seiffert, Berlin, Germany.

Let \(f(x) = x \ln x \) and note that \(\lim_{x \to 0^+} f(x) = 0 \) (use l’Hospital’s rule), and that \(f(x) \) is convex for \(x > 0 \) since \(f''(x) = \frac{1}{x} > 0. \) The given inequality is then obviously equivalent to \(\ln 2 \geq f(x - 1) + f(x) - 2f(x - 1/2) > 0 \) for \(x > 1. \) The right-hand inequality is then true by the convexity of \(f(x). \) To show the left-hand inequality, let \(g(x) = f(x - 1) + f(x) - 2f(x - 1/2): \) Then

\[
\lim_{x \to 1^+} g(x) = 0 + 0 - 2(\frac{1}{2} \ln \frac{1}{2}) = \ln 2
\]

It only remains to show that \(g(x) \) remains less than \(\ln 2 \) for \(x > 1. \) Differentiation yields

\[
g'(x) = \ln(x - 1) + \ln x - 2 \ln(x - \frac{1}{2}) = \ln \left[1 - \frac{1/4}{(x - \frac{1}{2})^2} \right] < 0
\]

for \(x > 1, \) so \(g(x) \) strictly decreases proving the left-hand side and hence the given inequality.

The result may be restated in various other forms: First, if \(u = x - 1/2, \) then it becomes

\[
2 \geq (u - \frac{1}{2})^{u-1/2}(u + \frac{1}{2})^{u+1/2}u^{-2u} > 1 \quad \text{for} \quad u > \frac{1}{2}
\]

This may be written

\[
2 \geq \left(1 - \frac{1}{4u^2}\right)^u \sqrt{\frac{2u + 1}{2u - 1}} > 1 \quad \text{for} \quad u > \frac{1}{2}
\]

Next, a straightforward generalization gives the inequality

\[
4c \geq \frac{(x - 2c)^{x-2c}x^x}{(x - c)^{2x-2c}} > 1
\]

for \(x > 2c > 0. \) Finally, replacing \(x \) by \(u + c \) gives

\[
4c \geq (u - c)^{u-c}(u + c)^{u+c}u^{-2u} > 1 \quad \text{for} \quad u > c > 0.
\]
330. Proposed by M. S. Klamkin, University of Alberta, Canada

Determine the extreme values of

\[\frac{x^2}{x + yz} + \frac{y^2}{y + zx} + \frac{z^2}{z + xy} \]

given that \(x, y, z \) are positive numbers such that \(x + y + z = 1 \).

Solution by Vedula N. Murty, Pennsylvania State University at Harrisburg, Capitol College, Middletown, PA. Let \(P = \{(x, y, z) : x, y, z > 0, x + y + z = 1\} \) and

\[S = S(x, y, z) = \frac{x^2}{x + yz} + \frac{y^2}{y + zx} + \frac{z^2}{z + xy} \]

Clearly, for \((x, y, z) \in P\), \(S < x^2/x + y^2/y + z^2/z = 1 \). Since \(S = 1 \) on \(\{(x, y, z) : x, y, z \geq 0, x + y + z = 1\}, \) exactly one of \(x, y \) or \(z \) is 0 by continuity, that

\[\text{l.u.b.} \{S(x, y, z) : (x, y, z) \in P\} = 1 \]

(∗)

Define \(T = T(x, y, z) \) by \(S = 1 - T \). By maximizing \(T \), we will minimize \(S \). For \((x, y, z) \in P\), we have

\[
S = \frac{x(x + yz) - xyz}{x + yz} + \frac{y(y + zx) - xyz}{y + zx} + \frac{z(z + xy) - xyz}{z + xy} \\
= 1 - xyz \left(\frac{1}{1 - y - z + yz} + \frac{1}{1 - z - x + zx} + \frac{1}{1 - x - y + xy} \right) \\
= 1 - xyz \left(\frac{1}{1 - x}(1 - y) + (1 - z) \right) \\
= 1 - \frac{2xyz}{(y + z)(z + x)(x + y)}
\]

so that

\[T = \frac{2xyz}{(y + z)(z + x)(x + y)} \leq \frac{2xyz}{8\sqrt{yz}\sqrt{zx}\sqrt{xy}} = \frac{1}{4} \]

by the arithmetic-geometric mean inequality. It follows that \(S \geq 3/4 \) for \((x, y, z) \in P\).

We conclude, since \(S(1/3, 1/3, 1/3) = 3/4 \), that

\[\min\{S(x, y, z) : (x, y, z) \in P\} = \frac{3}{4} \]

Together with (∗), this completes the solution.
Given that $ABCD$ is an inscribed quadrilateral in a unit circle which is symmetric about AC which is a diameter of the circle. Triangle ABD is rotated about BD through an angle α. Determine the maximum value of the circumradius $R(\alpha)$ of the variable triangle $A(\alpha)CD$ for $0 \leq \alpha \leq \pi$.

Solution by J. Foster, Weber State College. By the extended law of sines and the formula for the area of a triangle that is determined by two sides and the included angle, we obtain that the product of two sides of a triangle is equal to the altitude to the third side multiplied by twice the circumradius. Since the sides $A(\theta)D$ and CD of triangle $A(\theta)CD$ have fixed length, we can maximize $R(\theta)$ by minimizing the altitude to side $A(\theta)C$. This altitude goes from D to a point in the plane containing AC and perpendicular to BD. Hence, it is minimized when its length is equal to the distance from D to that plane. This occurs when $\theta = 0$ or π. Therefore, the maximum value of $R(\theta)$ is the radius of the unit circle, or 1.
If \(a, b, c, d > 0 \), prove that

\[
\frac{b^3 c^3}{a^6} + \frac{c^3 d^3}{b^6} + \frac{d^3 a^3}{c^6} + \frac{a^3 b^3}{d^6} \geq \max \left\{ \frac{bc}{a^2} + \frac{cd}{b^2} + \frac{da}{c^2} + \frac{ab}{d^2}, \frac{a^2}{bc} + \frac{b^2}{cd} + \frac{c^2}{da} + \frac{d^2}{ab} \right\}.
\]

Solution by Benjamin G. Klein, Davidson College, NC, and V. N. Murty, Pennsylvania State University at Harrisburg, Capitol College, Middletown (independently).

Theorem. If \(x_i > 0, i = 1, 2, 3, 4 \) and \(\prod_{i=1}^{4} x_i = 1 \), then

\[
\sum_{i=1}^{4} x_i^3 \geq \max \left(\sum_{i=1}^{4} x_i, \sum_{i=1}^{4} \frac{1}{x_i} \right)
\]

Proof. It is known that

\[
\frac{1}{4} \sum_{i=1}^{4} x_i^3 \geq \left(\frac{1}{4} \sum_{i=1}^{4} x_i \right)^3
\]

Hence, to prove that \(\sum_{i=1}^{4} x_i^3 \geq \sum_{i=1}^{4} x_i \), it is sufficient to show that

\[
\frac{1}{16} \left(\sum_{i=1}^{4} x_i \right)^3 \geq \sum_{i=1}^{4} x_i
\]

or, equivalently,

\[
\left(\sum_{i=1}^{4} x_i \right)^2 \geq 1
\]

The last inequality follows from the arithmetic-geometric mean inequality due to the fact that \(\prod_{i=1}^{4} x_i = 1 \). To prove that \(\sum_{i=1}^{4} x_i^3 \geq \sum_{i=1}^{4} 1/x_i \) we note that, by the arithmetic-geometric mean inequality,

\[
\sum_{i=1}^{4} x_i^3 = \sum_{i=1}^{4} \frac{1}{3} \sum_{j \neq i} x_j^3 \geq \sum_{i=1}^{4} \prod_{j \neq i} x_j = \prod_{j=1}^{4} x_j \sum_{i=1}^{4} \frac{1}{x_i} = \sum_{i=1}^{4} \frac{1}{x_i}
\]

The problem is solved by substituting \(x_1 = bc/a^2 \), \(x_2 = cd/b^2 \), \(x_3 = da/c^2 \) and \(x_4 = ab/d^2 \).

294. (Jan. 1985) Proposed by Russell Euler, Northwest Missouri State University, Maryville

Prove
\[
\prod_{k=2}^{p} \left\{ r^2 - 2r \cos \left[\theta - \frac{2(k-1)p}{p} \right] + 1 \right\} = \frac{r^{2p} - 2r^p \cos p\theta + 1}{r^2 - 2r \cos \theta + 1}
\]

Editor’s Note: Klamkin stated that the result is a classical identity and can be found in a number of books on trigonometry; e.g., C. V. Durell & A. Robson, Advanced Trigonometry, G. Bell & Sons, London, 1953, p.226.

343. Proposed by M. S. Klamkin, University of Alberta, Canada

Determine the quotient when \(2x^{n+2} - (n+2)x^2 + n\) is divided by \((x-1)^2\)

Solution by Tsz-Mei Ko (student), The Cooper Union, New York City. The quotient may be found directly by synthetic division. Alternatively, factor:

\[
2x^{n+2} - (n+2)x^2 + n = 2(x^{n+2} - x^2) - n(x^2 - 1) = (x-1)[2(x^{n+1} + x^{n+\cdots} + x^2) - n(x+1)]
\]

This may in turn be factored:

\[
(x-1)[2(x^{n+1} - x) + \cdots + 2(x^2 - x) + n(x-1)] = (x-1)^2[2(x^n + \cdots + x) + \cdots + 2(x^2 + x) + 2x + n]
\]

Collecting like powers then gives the desired quotient as \(2(x^n + 2x^{n-1} + \cdots + nx) + n\).
If w and z are complex numbers, it is a known identity that

$$|w| + |z| = \left| \frac{w + z}{2} - \sqrt{wz} \right| + \left| \frac{w + z}{2} + \sqrt{wz} \right|$$

(1)

Generalize to an identity involving three complex numbers.

Composite of a joint solution by Kim McInturff and Peter Simon, Raytheon Corporation, Goleta, CA; and a solution by William P. Wardlaw, U.S. Naval Academy, Annapolis, MD. The identity (1) can be written in the form

$$2 \left[|\sqrt{s}|^2 + |\sqrt{w}|^2 \right] = |\sqrt{s} - \sqrt{z}|^2 + |\sqrt{s} + \sqrt{z}|^2$$

(2)

where \sqrt{w} is any one of the two square roots of w and \sqrt{z} is any one of the two square roots of z. Equation (2) is simply the parallelogram law applied to the parallelogram in the complex plane whose vertices are 0, \sqrt{s}, \sqrt{w} and $\sqrt{s} + \sqrt{w}$. The parallelogram law, of course, states that the sum of the squares on the sides of any parallelogram is equal to the sum of the squares on its diagonals. For parallelepipeds, the corresponding law is that the sum of the squares on the twelve edges of any parallelepiped is equal to the sum of the squares on its four diagonals. Our generalization is, therefore, obtained as follows. Let s, w and z be any three complex numbers, and let \sqrt{s}, \sqrt{w} and \sqrt{z} represent a square root of s, a square root of w, and a square root of z, respectively. We think of the complex numbers \sqrt{s}, \sqrt{w} and \sqrt{z} as vectors from the origin that coincide with three concurrent edges of a flat, or flattened, parallelepiped. This parallelepiped has four edges parallel to \sqrt{s}, each of length $|\sqrt{s}|$; it has four edges parallel to \sqrt{w}, each of length $|\sqrt{w}|$; and it has four edges parallel to \sqrt{z}, each of length $|\sqrt{z}|$. Thus, in our generalization, the left side of (2) will be replaced by $4(|s|^2 + |w|^2 + |z|^2)$. One diagonal of our flattened parallelepiped has an endpoint at the origin, and the same length and direction as the vector $\sqrt{s} + \sqrt{w} + \sqrt{z}$. The other diagonals have endpoints at the points \sqrt{s}, \sqrt{w}, \sqrt{z}, and their lengths and directions are those of the vectors $-\sqrt{s} + \sqrt{w} + \sqrt{z}$, $\sqrt{s} - \sqrt{w} + \sqrt{z}$ and $\sqrt{s} + \sqrt{w} - \sqrt{z}$, respectively. Therefore our generalization of (2) is

$$4(|s|^2 + |w|^2 + |z|^2) = |\sqrt{s} + \sqrt{w} + \sqrt{z}|^2 + |\sqrt{s} + \sqrt{w} + \sqrt{z}|^2 + |\sqrt{s} - \sqrt{w} + \sqrt{z}|^2 + |\sqrt{s} + \sqrt{w} - \sqrt{z}|^2$$

(3)

Identity (3) can be proved by an obvious computation which begins with the expansion of the right sides of four equations (one equation for each of the four terms on the right-hand side of (3)) similar in form to the equation

$$|\sqrt{s} + \sqrt{w} + \sqrt{z}|^2 = (\sqrt{s} + \sqrt{w} + \sqrt{z})(\sqrt{s} + \sqrt{w} + \sqrt{z})$$
This proof of (3) is reminiscent of a familiar proof of the parallelogram law; it is in fact the same proof with complex numbers replacing vectors in 3-space, and the complex inner product $\overline{w}v$, defined for every two complex numbers u and v, replacing the inner product of vectors in real 3-dimensional space.

In order to obtain an identity whose relationship to (3) shall be like the relationship of (1) to (2), we rewrite (3) in the following way:

$$4(|s| + |w| + |z|) = |s + w + z + 2(\sqrt{s}\sqrt{w} + \sqrt{w}\sqrt{z} + \sqrt{z}\sqrt{s})|$$

or

$$4(|s| + |w| + |z|) = |s + w + z + 2(\sqrt{sw} + \sqrt{wz} + \sqrt{zs})|$$

The square roots in (5) cannot be independently chosen. For example, if $s = w = z = -1$, and we choose $\sqrt{sw} = \sqrt{wz} = \sqrt{zs} = 1$, then, as is easily verified, (5) becomes false. When using (5) for arbitrary complex numbers s, w and z, the correct course is to impose the condition

$$\sqrt{sw}\sqrt{wz}\sqrt{zx} = swz$$

(6)

To verify that (5), when used in this way, is correct, we note, to begin with, that (5) reduces to (1) when s, w or z is zero. Let s, w and z not be zero. We note that we can then choose two of the square roots on the left of (6) arbitrarily, whereupon the value of the third square root is uniquely determined, and that, if $\sqrt{sw}, \sqrt{wz}, \sqrt{zs}$ satisfy (6), then the only other systems of values of the three square roots that will satisfy (6) are $\sqrt{sw}, -\sqrt{wz}, -\sqrt{zs}$; and $-\sqrt{sw}, \sqrt{wz}, -\sqrt{zs}$; and $-\sqrt{sw}, -\sqrt{wz}, \sqrt{zs}$. Direct examination of (5) shows that changing from one of these systems of values to another leaves (5) unaltered. Finally, we show that for any nonzero complex numbers s, w and z, if $\sqrt{sw}, \sqrt{wz}, \sqrt{zs}$ are chosen so that (6) is satisfied, then the right-hand side of (5) will be equal to the right-hand side of (4) for some choice of the values of \sqrt{w}, \sqrt{z} by $\sqrt{w} = \sqrt{sw}/\sqrt{s}$ and $\sqrt{z} = \sqrt{zs}/\sqrt{s}$, then, by (6),

$$\sqrt{w}\sqrt{z} = \sqrt{sw}\sqrt{zs}/s = (swz/\sqrt{wz})/s = wz/\sqrt{wz} = \sqrt{wz}$$

from which it is apparent that the right sides of (5) and (4) are equal. Since we already know that (4) is correct, we conclude that (5) is correct when the square roots in (5)
are chosen in accordance with (6). Thus our generalization of (1) is the identity (5) with the values of its square roots subjected to (6), but otherwise arbitrary.

Editor’s Notes: An extension of the above generalization of (1), a generalization in a different direction, and a combination of the two generalizations can be found in a classroom capsule, in this issue, by M. S. Klamkin & V. N. Murty, entitled “Generalization of a Complex Number Identity.” The explicit statement of equation (6) is due to McInturff & Simon.

[[Here’s the capsule just referred to. – R.]]

Generalizations of a Complex Number Identity

M. S. Klamkin, University of Alberta, Edmonton, Alberta & V. N. Murty, Pennsylvania State University, Middletown, PA

A recurring exercise that appears in texts on complex variables is to show that if w and z are complex numbers, then

$$|w| + |z| = |(w + z)/2 - \sqrt{wz}| + |(w + z)/2 + \sqrt{wz}|$$

In problem 368, this journal, the first author asked for a generalization to any number of variables and to any dimensional Euclidean space by replacing the complex numbers by vectors.

First, we can simplify the identity by getting rid of the bothersome square roots. Letting $w = z_1^2$ and $z = z_2^2$ we get

$$2 \left\{ |z_1|^2 + |z_2|^2 \right\} = |z_1 - z_2|^2 + |z_1 + z_2|^2$$

Geometrically, we now have that the sum of the squares of the edges of a parallelogram equals the sum of the squares of the diagonals. Consequently, by considering a parallelepiped, one generalization is that

$$4 \left\{ |z_1|^2 + |z_2|^2 + |z_3|^2 \right\} = |z_1 + z_2 + z_3|^2 + |z_1 + z_2 - z_3|^2 + |z_1 - z_2 + z_3|^2 + |-z_1 + z_2 + z_3|^2$$

Here, z_1, z_2, z_3 can be complex numbers in the plane or vectors in space. For a proof, assuming the z_i are vectors, just note that

$$|z_1 + z_2 - z_3|^2 = (z_1 + z_2 - z_3)^2$$

$$= z_1^2 + z_2^2 + z_3^2 + 2z_1 \cdot z_2 - 2z_1 \cdot z_3 - 2z_2 \cdot z_3$$

etc.
Geometrically we have that the sum of the squares of all the edges of a parallelepiped equals the sum of the squares of the four body diagonals. Also to be noted is that (1) is the special case of (2) when \(z_3 = 0 \). A generalization to \(n \)-dimensional space (for an \(n \)-dimensional parallelepiped) is immediate, i.e.,

\[
2^n \sum z_i^2 = \sum (\pm z_1 \pm z_2 \pm \cdots \pm z_n)^2
\]

where the summation on the right is taken over all the \(2^n \) combinations of the \(\pm \) signs.

For a generalization in another direction, note that (1) can be rewritten as

\[
|z_1|^2 + |z_2|^2 = |(z_1 - z_2)/\sqrt{2}|^2 + |(z_1 + z_2)/\sqrt{2}|^2
\]

In the real plane, the transformation \(x' = (x - y)/\sqrt{2}, y' = (x + y)/\sqrt{2} \) represents a rotation of the coordinate axes by 45° and preserves all distances, i.e., \(\sqrt{x'^2 + y'^2} = \sqrt{x^2 + y^2} \). For the case here, the value of \(|z_1|^2 + |z_2|^2 \) is preserved under an orthogonal transformation. More generally (as is known), if \(z_1, z_2, \ldots, z_n \) are complex numbers (or vectors in space) and we make the transformation \(Z' = MZ \) where \(M \) is an arbitrary real orthogonal matrix and the transpose matrices of \(Z \) and \(Z' \) are

\[
Z^T = (z_1, z_2, \ldots, z_n) \quad \text{and} \quad Z'^T = (z'_1, z'_2, \ldots, z'_n)
\]

then

\[
\sum |z'_i|^2 = \sum |z_i|^2
\]

and its proof is quite direct:

\[
\sum |z'_i|^2 = \sum z'_i \bar{z}'_i = Z'^T \bar{Z}' = (MZ)^T(MZ) = Z^T M^T M Z = Z^T Z = \sum |z_i|^2
\]

(since \(M \) is orthogonal, \(M^T M = I \)). The proof for vectors is the same except that the multiplication of the two vector matrices \(Z^T \) and \(\bar{Z} \) is via the scalar dot product.

More generally, the matrix \(M \) can be replaced by a complex matrix \(U \) if it is unitary, i.e., \(U^T \bar{U} = I \). Finally, the identity (3) can be generalized by replacing the \(z_i \) by \(z'_i \) and then letting \(Z' = UZ \). For a simple example in (2), let

\[
z'_1 = i z_1 \cos \theta + i z_2 \sin \theta, \quad z'_2 = z_1 \sin \theta - z_2 \cos \theta, \quad z'_3 = z_3
\]

where \(\theta \) is an arbitrary real angle.
Determine necessary and sufficient conditions on the consecutive sides \(a, b, c, d \) of a convex quadrilateral such that one of its configurations has an incircle, a circumcircle, and perpendicular diagonals.

\begin{align}
374. \text{ Proposed by M. S. Klamkin, University of Alberta, Canada} \\
\text{Solution by Brian Amrine, Goleta, CA; and Phil Clarke, Los Angeles Valley College, Van Nuys, CA (independently).} \\
\end{align}

Let \(a, b, c \) and \(d \) be the lengths of the consecutive sides of a convex quadrilateral. A necessary and sufficient condition for the quadrilateral to have an incircle is that

\[a + c = b + d \tag{1} \]

A necessary and sufficient condition for the diagonals of the quadrilateral to be perpendicular is that

\[a^2 + c^2 = b^2 + d^2 \tag{2} \]

Equations (1) and (2) imply

\[ac = bd \tag{3} \]

Equations (1) and (3) imply

\[a = b \text{ and } c = d \text{ or } a = d \text{ and } c = b \tag{4} \]

Conversely, (4) implies (1) and (2). Therefore (4) is a necessary and sufficient condition for a convex quadrilateral with consecutive sides \(a, b, c \) and \(d \) to have both an incircle and perpendicular diagonals. We claim that (4) is a solution to the proposer’s problem. It is clear that (4) is necessary; conversely, if, say, \(a = b \) and \(c = d \), then (1) and (2) assure the existence of an incircle and perpendicular diagonals, and we can certainly configure the quadrilateral so that side \(a \) meets side \(d \) at right angles, and side \(b \) meets side \(c \) at right angles, assuring the existence of a circumcircle. This completes the solution.

Also solved by the proposer; who referred to C. V. Durell & A. Robson, \textit{Advanced Trigonometry}, G. Bell, London, 1953, pp. 27–28.
Proposed by M. S. Klamkin, University of Alberta, Canada

Determine the maximum value of

\[P = (x - x^2)(1 - 2x)^2(1 - 8x + 8x^2)^2 \]

over \(0 \leq x \leq 1 \).

Solution I by C. Patrick Collier, University of Wisconsin, Oshkosh. Multiply and complete the square as follows:

\[P = \frac{1}{16} (1 - (8x^2 - 8x + 1)^2)(1 + (8x^2 - 8x + 1))(8x^2 - 8x + 1)^2 \]

\[= \frac{1}{16} (1 - (8x^2 - 8x + 1)^2) (8x^2 - 8x + 1)^2 = \frac{1}{16} \left(\frac{1}{4} - \left((8x^2 - 8x + 1)^2 - \frac{1}{2} \right)^2 \right) \]

It is now clear that the maximum value of \(P \) is \(\frac{1}{64} \), occurring when \((8x^2 - 8x + 1)^2 = \frac{1}{2} \) which determines \(x = \pm \frac{\sqrt{2} \pm \sqrt{2}}{4} \). These four values are between zero and one, which completes the solution.

Solution II by Philip D. Straffin, Beloit College, WI. The identity \(\cos 4\theta = 8 \cos^4 \theta - 8 \cos^2 \theta + 1 \) suggests the substitution \(x = \cos^2 \theta \) which yields

\[P(\cos^2 \theta) = \cos^2 \theta \sin^2 \theta \cos^2 2\theta \cos^2 4\theta = \frac{1}{4} \sin^2 2\theta \cos^2 2\theta \cos^2 4\theta \]

\[= \frac{1}{16} \sin^2 4\theta \cos^2 4\theta = \frac{1}{64} \sin^2 8\theta \]

Thus for \(0 \leq \theta \leq \frac{\pi}{2} \), the maximum of \(P \) is \(\frac{1}{64} \), assumed for \(\theta = \frac{\pi}{16}, \frac{3\pi}{16}, \frac{5\pi}{16}, \frac{7\pi}{16} \). The corresponding values of \(x = \cos^2 \theta \) are \(x = \frac{2+\sqrt{2}+\sqrt{2}}{4}, \frac{2+\sqrt{2}+\sqrt{2}}{4}, \frac{2-\sqrt{2}+\sqrt{2}}{4}, \frac{2-\sqrt{2}+\sqrt{2}}{4} \), respectively.

Solution III by Bill Mixon, Austin, TX; and Bert K. Waits, Ohio State University, Columbus (independently). A computer plot of \(P \) suggests that \(P \) maybe simply related to a Chebyshev polynomial. Following this hint, direct computation then verifies that

\[P = \frac{1}{128}(1 - T_8(2x - 1)), \]

where \(T_8 \) is the eighth Chebyshev polynomial: \(T_8(x) = 128x^8 - 256x^6 + 160x^4 - 32x^2 + 1 \). The domain \(0 \leq x \leq 1 \) corresponds to \(-1 \leq 2x - 1 \leq 1 \), so the well-known property \(T_8(\cos \theta) = \cos(n\theta) \) gives \(T_8(2x - 1) = \cos(8 \arccos 2x - 1) \). Thus \(P \) has a maximum of \(\frac{1}{128}(2) = \frac{1}{64} \), assumed when \(\cos(8 \arccos(2x - 1)) = -1 \), thus giving the values \(x = \frac{1}{2}(1 + \cos \frac{\pi}{8}), \frac{1}{2}(1 - \cos \frac{\pi}{8}), \frac{1}{2}(1 + \cos \frac{3\pi}{8}), \frac{1}{2}(1 - \cos \frac{3\pi}{8}) \) corresponding to \(x = \frac{2+\sqrt{2}+\sqrt{2}}{4}, \frac{2-\sqrt{2}+\sqrt{2}}{4}, \frac{2+\sqrt{2}-\sqrt{2}}{4}, \frac{2-\sqrt{2}-\sqrt{2}}{4} \) respectively.
Solution IV by Mark Biegert, Honeywell Inc., Hopkins, MD. Complete squares to give

\[P = \left(\frac{1}{4} - \left(x - \frac{1}{2}\right)^2 \right) \left(4 \left(x - \frac{1}{2}\right)^2 \right) \left(1 - 8 \left(x - \frac{1}{2}\right)^2 \right)^2 \]

\[= \frac{1}{16} \left(2 - 8 \left(x - \frac{1}{2}\right)^2 \right) \left(8 \left(x - \frac{1}{2}\right)^2 \right) \left(1 - 8 \left(x - \frac{1}{2}\right) \right)^2 \]

Let \(y = 8(x - \frac{1}{2})^2 \), so \(P(y) = \frac{1}{16}(2y - y^2)(1 - y)^2 \), \(0 \leq y \leq 2 \). Then the AGM inequality gives

\[P(y) = \left(\sqrt{\frac{2y - y^2}{4}} \left(\frac{1 - y)^2}{4} \right) \right)^2 \leq \left(\frac{1}{2} \left(\frac{1}{4}(2y - y^2) + \frac{1}{4}(1 - 2y + y^2) \right) \right)^2 = \frac{1}{64} \]

with equality when \(2y - y^2 = 1 - 2y + y^2 \), so \(y = \frac{2 + \sqrt{2}}{2} \), yielding the same values for \(x \) as above.
In an article, “The Creation of Mathematical Olympiad Problems” in the Newsletter of the World Federation of National Mathematics Competitions, Feb. 1987, pp.18–28, Arthur Engel, by using a sequence of transformations, “wipes out all traces of its origin” and ends up with the triangle inequality
\[a^2 + b^2 + c^2 - 2bc - 2ca - 2ab + 18abc/(a + b + c) \geq 4F\sqrt{3} \]
where \(a, b, c\) and \(F\) are the sides and area of the triangle, respectively. He notes that this inequality is now “a very difficult problem to prove”. Prove or disprove the latter statement.

Composite of solutions by Francisco Bellot, Valladolid, Spain and W. Weston Meyer, General Motors research Laboratories. Let \(s, r\) and \(R\) denote the semiperimeter, inradius and circumradius, respectively, of the triangle. With the well-known relations
\[a + b + c = 2s \quad bc + ca + ab = s^2 + 4rR + r^2 \quad abc = 4Rrs \]
the given inequality becomes
\[2(s^2 - r^2 - 4Rr) - 2(s^2 + r^2 + 4Rr) + 36Rr \geq 4F\sqrt{3} \]
which in turn is equivalent to \(5R - r \geq s\sqrt{3}\).

But an equilateral triangle is simultaneously the triangle of greatest perimeter that can be inscribed in a circle of radius \(R\), so that \(R \geq 2s/(3\sqrt{3})\), and the triangle of least perimeter that can be circumscribed about a circle of radius \(r\), so that \(r \leq s/(3\sqrt{3})\) [see Theorems 6.3a and 6.3c of Ivan Niven’s Maxima and Minima Without Calculus, MAA, 1981]. The desired inequality follows.
Factor $P^2 + PQ + Q^2$ into real polynomial factors where

$$P = x^2y + y^2z + z^2x \quad \text{and} \quad Q = xy^2 + yz^2 + zx^2$$

Solution by Henry A. Williams, Carroll High School, Ozark, AL. Since

$$P^3 - Q^3 = x^6y^3 - x^3y^6 + y^6z^3 - y^3z^6 + z^6x^3 - z^3x^6$$

$$= (y^3 - x^3)(z^3 - x^3)(x^3 - y^3)$$

and

$$P - Q = x^2y - xy^2 + y^2z - yz^2 + z^2x - zx^2$$

$$= (y - x)(z - x)(x - y)$$

we have

$$P^2 + PQ + Q^2 = \frac{P^3 - Q^3}{P - Q} = \frac{(y^3 - x^3)(z^3 - x^3)(x^3 - y^3)}{(y - x)(z - x)(x - y)}$$

$$= (x^2 + xy + y^2)(y^2 + yz + z^2)(z^2 + zx + x^2)$$

Editor’s Note: The factorization was also successfully accomplished by the symbolic algebra programs Derive™ (Shippensburg U. Mathematical Problem Solving Group), MACSYMA© and Mathematica™ (Robert Weaver, Mount Holyoke C.) and MAPLE™ (Robert Tardiff, Salisbury State U.).
Proposed by M. S. Klamkin, University of Alberta, Canada

Determine all integral solutions of the Diophantine equation

\[
\frac{2x}{(1-x^2)} + \frac{2y}{(1-y^2)} + \frac{2z}{(1-z^2)} = 8\frac{xyz}{(1-x^2)(1-y^2)(1-z^2)}
\]

Solution by Duane M. Broline, Eastern Illinois University, Charleston, IL.

The only integral solutions are either of the form (0, a, −a), (a, 0, −a) or (a, −a, 0) where \(a \neq \pm 1\), or of the form \((r, s-r, t-r)\) where \(r, s\) and \(t\) are integers such that \(r^2 + 1 = st\) and such that \((r, s, t)\) is not in the following table.

<table>
<thead>
<tr>
<th>(r)</th>
<th>−3</th>
<th>−3</th>
<th>−2</th>
<th>−2</th>
<th>−1</th>
<th>−1</th>
<th>−1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s)</td>
<td>−5</td>
<td>−2</td>
<td>−5</td>
<td>−1</td>
<td>−2</td>
<td>−1</td>
<td>1</td>
<td>2</td>
<td>−1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t)</td>
<td>−2</td>
<td>−5</td>
<td>−1</td>
<td>−5</td>
<td>−1</td>
<td>−2</td>
<td>2</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td>−2</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

[[This can surely be described more neatly? How about: ‘with \(|r| > 1\) and, if \(|r| = 2\) or 3, neither \(|s|\) nor \(|t| = 5″ \? Let’s see how these conditions emerge in the solution. – R.]]

Let \((x, y, z)\) be an integral solution to the original equation. Clearly, none of \(|x|\), \(|y|\) or \(|z|\) is equal to 1. [[Not clear to me why these should not be counted as solutions. – R.]]

Multiplying both sides of the original equation by \((1-x^2)(1-y^2)(1-z^2)\) and simplifying gives

\[
((x+y+z) - xyz)((yz + zx + xy) - 1) = 0
\]

Thus, either \(x+y+z = xyz\) or \(yz + zx + xy = 1\).

First consider the case that \(x+y+z = xyz\). If any one of \(x\), \(y\) or \(z\) is zero, then the other two add to zero. Hence \((x, y, z)\) has the form \((0, a, -a)\), \((a, 0, -a)\) or \((a, -a, 0)\), where \(a \neq \pm 1\). If none of \(x\), \(y\) or \(z\) is zero, then each of \(|x|\), \(|y|\) and \(|z|\) is at least 2.

Hence,

\[
\frac{-3}{4} < \frac{1}{yz} + \frac{1}{zx} + \frac{1}{xy} \leq \frac{3}{4}
\]

[[I’ve added the possibility of equality to the second inequality. – R.]] which contradicts the assumption that

\[
\frac{1}{yz} + \frac{1}{zx} + \frac{1}{xy} = 1
\]

If \(yz + zx + xy = 1\), then \((x+y)(x+z) = 1+x^2\). Setting \(r = x\), \(s = x+y\) and \(t = x+z\) we see that \((x, y, z) = (r, s-r, t-r)\), where \(r^2 + 1 = st\). Conversely, if \(r\), \(s\) and \(t\) are integers such that \(r^2 + 1 = st\), then \((x, y, z) = (r, s-r, t-r)\) provides a solution to the original equation except when one of \(r\), \(s-r\) or \(t-r\) equals 1 or −1.
If \(r = \pm 1 \) then it is easy to see that the possibilities for \(s \) and \(t \) are as given in the table. If \(s - r = \pm 1 \) then \(r \pm 1 \) divides \(r^2 + 1 \). Since \(r^2 + 1 = (r + 1)^2 \mp 2r \), we see that \(r \pm 1 \) divides 2; hence \(r \in \{-3, -2, -1, 0, 1, 2, 3\} \). The cases that \(r = \pm 1 \) have been treated previously, while the other cases give additional entries to the table. The case that \(t - r = \pm 1 \) is handled similarly.

[[This solution leaves much to be desired. The “∓” should be “−”. It seems to me that “possibilities” should be “impossibilities”. But worst of all is that the symmetry has completely disappeared.]]

395. Proposed by M. S. Klamkin, University of Alberta, Canada

If the altitudes of an acute triangle ABC are extended to intersect its circumcircle in points A', B', C' respectively, prove that

$$[A'B'C'] \leq [ABC]$$

where $[ABC]$ denotes the area of ABC.

Composite of solutions by Walter Blumberg, Coral Springs, FL, and Dave Ohlsen, Santa Rosa Junior College, CA (independently). Let $\angle C'CA = x$, $\angle A'AB = y$ and $\angle B'BC = z$. It follows that $x = \angle C'A'A = \angle ABB' = \angle AA'B'$; $y = \angle A'B'B = \angle BCC'$; and $z = \angle B'C'C = \angle A'AC = \angle AC'C$. Thus $A = y + z$, $B = z + x$, $C = x + y$, and $A' = 2x$, $B' = 2y$, $C' = 2z$. Since $2x + 2y + 2z = \pi$, $A' = \pi - 2A$, $B' = \pi - 2B$ and $C' = \pi - 2C$. Let R denote the radius of the circumcircle. Then $ABC = 2R^2 \sin A \sin B \sin C$ and $[A'B'C'] = 2R^2 \sin A' \sin B' \sin C' = 2R^2 \sin(2A) \sin(2B) \sin(2C)$. Hence the inequality $[A'B'C'] \leq [ABC]$ is equivalent to the well-known inequality $8 \cos A \cos B \cos C \leq 1$ (with equality if and only if $A = B = C = \pi/3$).

Editors' Note. Several solvers used properties of the orthic triangle of ABC (the triangle whose vertices are the feet of the altitudes). See David R. Davis, Modern College Geometry, Addison-Wesley, 1957.
Proposed by M. S. Klamkin, University of Alberta, Canada

A_i and B_i are two sets of points on an n-dimensional sphere with center O such that A_i and B_i are pairs of antipodal points for $i = 1, 2, \ldots, n$. It follows immediately that the volumes of the two simplexes

$$O, A_1, A_2, \ldots, A_r, B_{r+1}, \ldots, B_n$$

and

$$O, B_1, B_2, \ldots, B_r, A_{r+1}, \ldots, A_n$$

are equal since the simplexes are congruent. Show more generally that

$$\text{vol } [O, A_1, A_2, \ldots, A_n] = \text{vol } [O, A_1, A_2, \ldots, A_r, B_{r+1}, \ldots, B_n]$$

Solution by the Siena Heights College Problem Solving Group, Adrian, MI.

Fix $1 \leq r \leq n$ and let S be the simplex formed by the origin and the standard basis vectors e_1, e_2, \ldots, e_n in \mathbb{R}^n. Let T be the linear operator on \mathbb{R}^n that maps e_k to A_k when $1 \leq k \leq n$ and let \tilde{T} be the linear operator that maps e_k to A_k when $1 \leq k \leq r$ and maps e_k to B_k when $r + 1 \leq k \leq n$. Then $\det T = \det (A_1, \ldots, A_n)$ and $\det \tilde{T} = \det (A_1, \ldots, A_r, B_{r+1}, \ldots, B_n)$. Since $B_k = -A_k$ it follows that $|\det T| = |\det \tilde{T}|$.

The operator T maps S onto the simplex formed by $[O, A_1, \ldots, A_n]$ and the operator \tilde{T} maps S onto the simplex formed by $[O, A_1, \ldots, A_r, B_{r+1}, \ldots, B_n]$. By the change of variables theorem, we have

$$\text{vol } [O, A_1, \ldots, A_n] = \int_{T(S)} 1 = \int_S |\det T'| = \text{vol } (S) \cdot |\det T'|$$

and

$$\text{vol } [O, A_1, \ldots, A_r, B_{r+1}, \ldots, B_n] = \int_{\tilde{T}(S)} 1 = \int_S |\det \tilde{T}'| = \text{vol } (S) \cdot |\det \tilde{T}'|$$

where T' and \tilde{T}' denote matrices of mixed partials of T and \tilde{T}, respectively.

Since $|\det T'| = |\det T| = |\det \tilde{T}| = |\det \tilde{T}'|$, it follows that the volumes of the two simplexes are equal.
If \(a_n = (n + 1)^{n+1}(n - 1)^n/n^{2n+1} \), prove that the sequence \((a_n)\) is increasing.

Solution by Seung-Jin Bang, Seoul, Korea and Matthew Wyneken, University of Michigan-Flint (independently). Let \(f(x) = \ln a_x, x > 1 \). Then

\[
f'(x) = \frac{1}{x(x - 1)} - \ln[1 + 1/(x^2 - 1)] > \frac{1}{x(x - 1)} - \frac{1}{(x^2 - 1)} = \frac{1}{x(x^2 - 1)} > 0
\]

Hence the sequence \((a_n)\) is increasing.
Proposed by M. S. Klamkin, University of Alberta, Edmonton

Prove that

\[
\frac{x^3}{y^3} + \frac{y^3}{z^3} + \frac{z^3}{x^3} + \frac{x^3}{z^3} + \frac{y^3}{x^3} + \frac{z^3}{y^3} \geq \frac{x^2}{yz} + \frac{y^2}{zx} + \frac{z^2}{xy} + \frac{xy}{z^2}
\]

where \(x, y, z > 0\).

Solution I by Bijan Sadeghi, West Valley College, Saratoga, CA. The arithmetic mean-geometric mean inequality yields

\[
\frac{1}{3} \left(\frac{x^3}{y^3} + \frac{y^3}{z^3} + \frac{z^3}{x^3} \right) \geq \frac{x^2}{yz} \quad \text{and} \quad \frac{1}{3} \left(\frac{y^3}{x^3} + \frac{z^3}{y^3} + \frac{x^3}{z^3} \right) \geq \frac{yz}{x^2}
\]

Adding the six inequalities obtained by cyclically permuting \((x,y,z)\) in the above two inequalities produces the desired result.

Solution II by Michael Vowe, Therwil, Switzerland. The given inequality is equivalent to

\[
(x^3 + y^3 + z^3) \left(\frac{1}{x^3} + \frac{1}{y^3} + \frac{1}{z^3} \right) - 3 \geq (x^3 + y^3 + z^3) \frac{1}{xyz} + xyz \left(\frac{1}{x^3} + \frac{1}{y^3} + \frac{1}{z^3} \right)
\]

or

\[
(x^3 + y^3 + z^3 - xyz) \left(\frac{1}{x^3} + \frac{1}{y^3} + \frac{1}{z^3} - \frac{1}{xyz} \right) \geq 4
\]

But

\[
x^3 + y^3 + z^3 \geq 3xyz \quad \text{and} \quad \frac{1}{x^3} + \frac{1}{y^3} + \frac{1}{z^3} \geq \frac{3}{xyz}
\]

so that

\[
x^3 + y^3 + z^3 - xyz \geq 2xyz \quad \text{and} \quad \frac{1}{x^3} + \frac{1}{y^3} + \frac{1}{z^3} - \frac{1}{xyz} \geq \frac{2}{xyz}
\]

from which the desired result follows (with equality if and only if \(x = y = z\)).

Editor’s Note. This inequality is a special case of Muirhead’s Theorem: Let

\[
[\alpha] = [\alpha_1, \alpha_2, \ldots, \alpha_n] = \frac{1}{n!} \sum x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}
\]

where the sum is taken over all \(n!\) permutations of the \(x_i\). If

i) \(\alpha'_1 + \alpha'_2 + \cdots + \alpha'_n = \alpha_1 + \alpha_2 + \cdots + \alpha_n\)

ii) \(\alpha'_1 \geq \alpha'_2 \geq \cdots \geq \alpha'_n \geq \alpha'_1 \geq \alpha_2 \geq \cdots \geq \alpha_n\)

iii) \(\alpha'_1 + \alpha'_2 + \cdots + \alpha'_\nu \leq \alpha_1 + \alpha_2 + \cdots + \alpha_\nu \quad (1 \leq \nu < n)\)

then \([\alpha'] \leq [\alpha]\) (see Inequalities, G. H. Hardy, J. E. Littlewood, G. Pólya, Cambridge, 1959, pp.44–48).

The inequality in this problem is the case \([6, 3, 0] \geq \frac{1}{2}[5, 2, 2] + \frac{1}{2}[4, 4, 1]\) divided by \(x^3 y^3 z^3\).
Proposed by M. S. Klamkin, University of Alberta, Edmonton

Evaluate

\[\int \left((x^2 - 1)(x + 1) \right)^{-2/3} \, dx \]

Solution by Benjamin M. Freed, Clarion University, Clarion, PA. Since

\[\int \left((x^2 - 1)(x + 1) \right)^{-2/3} \, dx = \int \left(\frac{x - 1}{x + 1} \right)^{-2/3} (x + 1)^{-2} \, dx \]

we let \(u = \frac{x - 1}{x + 1} \). Then \(du = 2(x + 1)^{-2} \, dx \) so that

\[\int \left((x^2 - 1)(x + 1) \right)^{-2/3} \, dx = \frac{1}{2} \int u^{-2/3} \, du = \frac{3}{2} u^{1/3} + C = \frac{3}{2} \left(\frac{x - 1}{x + 1} \right)^{1/3} + C \]

Editors’ Note. Many solvers used the same substitution. Other popular substitutions included \(1/(x + 1); \ (x - 1)/(x + 1)^k \) for \(k = \frac{1}{2}, \frac{1}{3}, -\frac{1}{3}, -\frac{2}{3} \) and \(-1; \ \arctan x; \ \arctan \sqrt{x}; \ \arctan \frac{x - 1}{2}; \ \arccos x; \) and \(\arccosh x \). Integration by parts and tables were also successfully employed. Several solvers and the proposer generalized the problem. Gonzáles-Torres remarks: “An integral of the form \(\int \left((x^2 - 1)(x + 1) \right)^p \, dx \), where \(p \) is a rational number, has an integrand which (by means of the substitution \(u = x + 1 \)) becomes the differential binomial \(u^p (u - 2)^p \, du \). [\[misprinted(?)as n = 2.]] \) According to a theorem of P. Chebyshev, the integral can be expressed in terms of elementary functions if and only if at least one of the following three numbers is an integer: \(p, \ 2p \) or \(3p \). This shows that, among proper fractional exponents \(p \), only \(\pm \frac{1}{2}, \ \pm \frac{1}{3} \) and \(\pm \frac{2}{3} \) will give an integral of the above form that can be evaluated in finite terms.”
Proposed by M. S. Klamkin, University of Alberta, Edmonton, Canada

Let T_1, T_2, \ldots, T_n denote the elementary symmetric functions of $\{a_1, a_2, \ldots, a_n\}$, i.e.,

$T_1 = \sum a_i, T_2 = \sum_{i<j} a_i a_j, \ldots, T_n = a_1 a_2 \cdots a_n$ where the sums are symmetric over all the a_i. It is well known that the a_i are uniquely determined, aside from permutations, by the T_i. Let

$S_r = a_1^r + a_2^r + \cdots + a_n^r$

Show that the a_i are determined uniquely, aside from permutations, if one is given $T_{k_1}, T_{k_2}, \ldots, T_{k_r}, S_{k_1}, S_{k_2}, \ldots, S_{k_n}$, where (k_1, k_2, \ldots, k_n) is any permutation of $(1, 2, \ldots, n)$.

Solution by Daniel E. Otero, Xavier University, Cincinnati, OH. The result follows from Newton's identities [See L. E. Dickson, New First Course in the Theory of Equations, Wiley and Sons, 1939, p.147; or L. Weisner. Introduction to the Theory of Equations, Macmillan, 1938, p.115] which relate the elementary symmetric polynomials T_r and the power sums S_r for $1 \leq r \leq n$. Namely,

$S_r - S_{r-1} T_1 + S_{r-2} T_2 - \cdots + (-1)^{r-1} S_1 T_{r-1} + (-1)^r r T_r = 0$

For $k = 1, 2, \ldots, r-1$, let U_k represent either choice of S_k or T_k. Then it follows by induction from Newton’s identities that S_r is a polynomial expression in $U_1, U_2, \ldots, U_{r-1}$ and S_r. In particular this implies that T_r is a polynomial expression in U_1, U_2, \ldots, U_r.

Since the a_i are uniquely determined, up to permutation, by the T_i, they are similarly determined by the U_i.
Assume that \(a > 0, \ b > 0\) and \(c > 0\). Prove that, for \(n > 1\),
\[
\prod_{i=1}^{n} [a^{2i-1} + b^{2i-1} + c^{2i-1}] \leq 3^{n-1}[a^n + b^n + c^n]
\]
with equality if and only if \(a = b = c\).

Reference

Comment by Eugene Levine, Adelphi University, Garden City, NY. We can just as easily, and in the same way, show that, for any positive real numbers \(r_1, r_2, \ldots, r_n\) and \(a_1, a_2, \ldots, a_k\), where \(n > 1\) and \(k > 1\), the following inequality holds:
\[
\prod_{i=1}^{n} \left[\sum_{j=1}^{k} a_{i}^{r_j} \right] \leq k^{n-1} \sum_{j=1}^{k} a_{j}^{N}
\]
in which \(N = r_1 + r_2 + \cdots + r_n \). For example, using \(\sum_{d \mid N} \phi(d) = N \), where \(\phi \) is the Euler totient function, we obtain

\[
\prod_{d \mid N} \left[\sum_{j=1}^{k} a_j^{\phi(d)} \right] \leq k^{\tau(N)-1} \sum_{j=1}^{k} a_j^N
\]

where \(\tau(N) \) is the number of distinct positive divisors of \(N \).

Editor’s Notes: Gebre-Egziabher, McInturff, Shan&Wang, and the proposer, using rational exponents and the power mean inequality, multiplied

\[
\left[\frac{a_n^2 + b_n^2 + c_n^2}{3} \right]^{(2i-1)/n^2} \geq \frac{a^{2i-1} + b^{2i-1} + c^{2i-1}}{3}
\]

375. (March 1988) Proposed by Norman Schaumberger, Bronx Community College, NY

Assume $a_i > 0, (i = 1, 2, 3, 4)$. Prove that

$$\sum_{i=1}^{4} a_i^{27} / \prod_{i=1}^{4} a_i \geq \sum_{i=1}^{4} 1/a_i$$

Editor’s Note: Klamkin, McInturff and Selby proved that the given inequality is valid for $a_i > 0$ if the exponent 27 is replaced by 3. Klamkin showed that, more generally, $a_1^{r_1} + a_2^{r_2} + \cdots + a_n^{r_n} \geq \sum a_1^{r_1} a_2^{r_2} \cdots a_s^{r_s}$, where the summation is cyclic over the subscripts and the r_i are arbitrary positive numbers whose sum is m. Klamkin also referred to a similar inequality, problem 6-3, *Crux Mathematicorum*, 5(1979) 198.

387. (Nov. 1988) Proposed by Larry Hoehn, Austin Peay State University, Clarksville, TN

If a and b are distinct integers and n is a natural number, prove that

$$\frac{2^{2n-1}(a^{2n} + b^{2n}) - (a + b)^{2n}}{(a - b)^2}$$

is an integer.

Editors’ Note: Klamkin notes that a generalization is given in Problem 4, *Crux Mathematicorum*, 14(1988) pp. 131, 139; viz., if $P(x,y)$ is a symmetric polynomial in x and y and is divisible by $(x - y)^{2n-1}$, then it is also divisible by $(x - y)^{2n}$}

[[I didn’t notice any mention of Murray in 1991 – R.]]
468. Proposed by Murray Klamkin and Andy Liu (jointly), University of Alberta, Edmonton, Canada

If

$$I_n = \int_1^\infty \frac{dx}{1 + x^{n+1}} \quad n > 0$$

donstr show that

$$\frac{\log(2)}{n} + \frac{1}{4n^2} > I_n > \frac{\log(2)}{n}$$

where \(\log(x)\) is the natural logarithm function.

Editors’ Note. Hongwei Chen and H.-J. Seiffert (independently) improved the lower bound to \(\log(2)/n + (n + 2)/6n(2n + 1)(3n + 2)\). Seiffert also gave the following generalization:

If

$$I_{m,n} = \int_1^\infty \frac{x^m}{1 + x^{n+1}} \, dx$$

with \(-1 < m < n\), then

$$\frac{\log(2)}{n - m} + \frac{m + 1}{2(n - m)(2n - m + 1)} > I_{m,n} > \frac{\log(2)n - m + (m + 1)(n + m + 2)}{6(n - m)(2n - m - 1)(3n - m + 2)}$$

483. Proposed by Murray Klamkin, University of Alberta, Edmonton, Canada

Let
\[S_r = a_1^r + a_2^r + \cdots + a_n^r \quad r = 1, 2, \ldots \]

Determine \(S_{2n+2} \) given that \(S_1 = 1 \) and \(S_2 = S_3 = \cdots = S_n = 0 \).

Solution by Prestonburg Community College Math Problem Solvers Group, Prestonburg, KY. Let \(P(x) = \prod_{i=1}^{n} (x - a_i) = x^n + P_1x^{n-1} + P_2x^{n-2} + \cdots + P_n. \) Then we have

Newton's formulas [1]
\[
\begin{align*}
S_1 + P_1 &= 0 \\
S_2 + P_1S_1 + 2P_2 &= 0 \\
\vdots \\
S_n + P_1S_{n-1} + P_2S_{n-2} + \cdots + P^{n-1}S_1 + nP_n &= 0
\end{align*}
\]

and the recurrence relations [1]
\[S_{n+k} + P_1S_{n+k-1} + \cdots + P_kS_k = 0 \quad k \geq 1 \]

Since \(S_1 = 1 \) and \(S_2 = \cdots = S_n = 0 \), we get
\[P_k = -\frac{1}{k} P_{k-1} = \frac{(-1)^k}{k!} \quad k \geq 1 \]

Now we show by a recursive argument that
\[S_{n+k} = \frac{(-1)^{n+1}}{(k-1)!n!} \quad 1 \leq k \leq n+1 \quad (\ast) \]

First, note that
\[
\begin{align*}
S_{n+1} &= -P_n = \frac{(-1)^{n+1}}{0!n!} \\
S_{n+2} &= -P_1S_{n+1} = \frac{(-1)^{n+1}}{1!n!} \\
S_{n+3} &= -P_1S_{n+2} - P_2S_{n+1} = \frac{(-1)^{n+1}}{2!n!}
\end{align*}
\]
Now assume that (*) holds for S_{n+i}, $1 \leq i \leq k - 1 < n + 1$. Then

$$S_{n+k} = -\sum_{i=1}^{k-1} P_i S_{n+k-i}$$

$$= -\sum_{i=1}^{k-1} \frac{(-1)^i}{i!} \frac{(-1)^{n+1}}{(k-i-1)!n!}$$

$$= \frac{(-1)^n}{(k-1)!n!} \sum_{i=1}^{k-1} \frac{(-1)^i}{i!(k-i-1)!}$$

$$= \frac{(-1)^n}{(k-1)!n!} \sum_{i=1}^{k-1} (-1)^i \binom{k-1}{i}$$

It follows from $\sum_{j=0}^{m} (-1)^j \binom{m}{j} = 0$ that

$$S_{n+k} = \frac{(-1)^n}{(k-1)!n!} \left[-\binom{k-1}{0} \right] = \frac{(-1)^{n+1}}{(k-1)!n!}$$

Finally,

$$S_{2n+2} = -\sum_{i=1}^{n} P_i S_{2n-i+2}$$

$$= -\sum_{i=1}^{n} \frac{(-1)^i}{i!} \frac{(-1)^{n+1}}{(n-i+1)!n!}$$

$$= \frac{(-1)^n}{n!(n+1)!} \sum_{i=1}^{n} (-1)^i \binom{n+1}{i}$$

$$= \frac{(-1)^n}{n!(n+1)!} \left[-\binom{n+1}{0} - (-1)^{n+1} \binom{n+1}{n+1} \right] = \frac{1 - (-1)^n}{n!(n+1)!}$$

Solve the difference equation: \(y_{n+1} = ay_n^x \) \((n = 0, 1, \ldots)\), where \(a > 0\); \(x \neq 0\) and \(y_0 > 0\).

Solution II by Murray S. Klamkin, University of Alberta, Edmonton, Canada.

By letting \(y_n = a^{1/(1-x)}u_n^x\) we have \(u_{n+1} = u_n\). Hence

\[
y_n = a^{1/(1-x)} \left[a^{-1/(1-x)} y_0 \right]^x
\]

[[Here one would need to treat \(x = 1\) separately, in which case \(y_n = a^n y_0 - R. \)]]

488. Proposed by Murray Klamkin and Andy Liu, University of Alberta, Edmonton

A is at the northeast corner and B is at the southwest corner of an \(n+1\) by \(n+1\) square lattice. In each move, A goes south or west to a neighboring lattice point while B simultaneously goes north or east to a neighboring lattice point. A and B stay within the lattice, and, when faced with two possible directions to move, each flips a fair coin to decide the direction. Determine the probability that A and B meet.

Solution by John S. Sumner and Kevin L. Dove (jointly), University of Tampa, Tampa, FL. Let \(B = (0,0)\) and \(A = (n,n)\). If A and B meet, then they must meet on the diagonal \(\{(i,n-1) : i = 0,1,\ldots,n\}\). Suppose \(0 \leq i \leq n\) and A and B meet at \((i,n-1)\). Since the number of ways for A and B to travel to this point is \(\binom{n}{i}\) and \(\binom{n}{i}\) respectively, with each path for A or B having probability \(2^{-n}\), it follows that the probability that A and B meet is

\[
2^{-2n} \sum_{i=0}^{n} \left(\binom{n}{i}\right)^2 = 2^{-2n} \binom{2n}{n}
\]

Editor’s note: Many solvers noted that the desired probability is asymptotic to \(1/\sqrt{\pi n}\). Several solvers generalized to \(n+1\) by \(m+1\) lattices, and to biased coins.
Prove that
\[
\sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \cdots + \frac{1}{n+1} \right) \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \frac{2}{n(n+1)}
\]

Editors’ Note: M. S. Klamkin proved the following generalization: For \(r = 1, 2, \ldots \),
\[
\sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \cdots + \frac{1}{n+r} \right) \frac{1}{n(n+1)\cdots(n+r)} = \frac{1}{r^2 \cdot r!} \left(\frac{1}{r+1} + \frac{1}{2} + \cdots + \frac{1}{r} \right)
\]

510. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Canada

Which of the two integrals

\[
S_n = \int_0^{\pi/2} \int_0^{\pi/2} \cdots \int_0^{\pi/2} \sin(x_1 + x_2 + \cdots + x_n) \, dx_1 \, dx_2 \cdots dx_n \\
C_n = \int_0^{\pi/2} \int_0^{\pi/2} \cdots \int_0^{\pi/2} \cos(x_1 + x_2 + \cdots + x_n) \, dx_1 \, dx_2 \cdots dx_n
\]

is larger?

Solution I by John S. Sumner and Kevin L. Dove (jointly), University of Tampa, Tampa, FL. Using the identities for the sine and cosine of a sum, it is clear that \{S_n\} and \{C_n\} satisfy the system of difference equations

\[
S_n = C_{n-1} + S_{n-1} \quad C_n = C_{n-1} - S_{n-1} \quad n \geq 2 \\
S_1 = 1 \quad C_1 = 1
\]

The solution to this system is \(S_n = 2^{n/2} \sin\left(\frac{n\pi}{4}\right)\) and \(C_n = 2^{n/2} \sin\left(\frac{n\pi}{4}\right)\) for \(n \geq 1\). Thus \(S_n > C_n\) if \(n \equiv 2, 3, 4 \pmod{8}\), \(S_n < C_n\) if \(n \equiv 0, 6, 7 \pmod{8}\) and \(S_n = C_n\) if \(n \equiv 1, 5 \pmod{8}\).

Solution II by Kevin Ford (student), University of Illinois at Urbana-Champaign, IL. We claim that \(S_n = C_n\) when \(n \equiv 1, 5 \pmod{8}\), \(S_n < C_n\) when \(n \equiv 2, 3, 4 \pmod{8}\) and \(S_n < C_n\) when \(n \equiv 0, 6, 7 \pmod{8}\). Since

\[
C_n + iS_n = \int_0^{\pi/2} \int_0^{\pi/2} \cdots \int_0^{\pi/2} e^{i(x_1 + \cdots + x_n)} \, dx_1 \cdots dx_n = \left(\int_0^{\pi/2} e^{ix} \, dx\right)^n
\]

we have \(\text{arg}(C_n + iS_n) = \pi n/4\) and the claim follows.
Determine all pairs \((p, q)\) of positive integers \((p > q)\) such that there exist geometric progressions in which

(i) the \(q\)th term is \(p\), the \(p\)th term is \(q\), and the \((p+q)\)th term is an integer;
(ii) the \(q\)th term is \(q\), the \(p\)th term is \(p\), and the \((p+q)\)th term is an integer.

(i) Solution by John S. Sumner and Kevin L. Dove (jointly), University of Tampa, Tampa, FL. Suppose \((p, q)\) satisfies (i). Let \(q = ar^{p-1}\) and \(p = ar^{q-1}\). Then \(k = ar^{p+q-1}\) is an integer. Note that

\[
\left(\frac{k}{q}\right)^{1/q} = r = \left(\frac{k}{p}\right)^{1/p}\quad\text{and so}\quad \left(\frac{q}{k}\right)^{p/k} = \left(\frac{p}{k}\right)^{q/k}
\]

It follows [Mathematics Magazine, (February 1990) 30] that there exists a positive integer \(u\) such that

\[
\frac{p}{k} = \left(1 + \frac{1}{u}\right)^{u+1}\quad\text{and}\quad \frac{q}{k} = \left(1 + \frac{1}{u}\right)^u
\]

Thus \(p/q = 1 + 1/u\) and \(p = q + q/u\). Hence \(u\) divides \(q\) and we can put \(q = mu\). We have now that \(p = m(1 + u)\) and

\[
k = \frac{mu}{(1 + \frac{1}{u})^u} = \frac{mu^{u+1}}{(1 + u)^u}
\]

Therefore \((1+u)^u\) divides \(m\) and again we put \(m = M(1+u)^u\) for some positive integer \(M\). Finally, we have \(k = Mu^{u+1}\) so that

\[
p = M(1+u)^{u+1}\quad\text{and}\quad q = Mu(1+u)^u
\]

Conversely, it is easy to check that any pair \((p, q)\) of such integers satisfies (i) with ratio \(r = (k/p)^{1/p}\) and first term \(a = q/r^{p-1}\).

(ii) Solution by Con Amore Problem Group, Royal Danish School of Educational Studies, Copenhagen, Denmark. We seek \(p, q, n\) \(\in N\) with \(p > q \geq 1\) and such that there exist \(a, r \in R\) with

\[
ar^p = p\quad\text{(1)}\quad ar^q = q\quad\text{(2)}\quad\text{and}\quad n = ar^{p+q}\quad\text{(3)}
\]

Clearly (1)–(3) imply that

\[
n = pr^q = qr^p\quad\text{(4)}\quad\text{whereupon}\quad r = \left(\frac{p}{q}\right)^{1/(p-q)}\quad\text{(5)}
\]
Now, from (4) and (5) we have

\[n = \frac{p^{p/(p-q)}}{q^{q/(p-q)}} \quad (6) \]

Letting \(k = \gcd(p, q) \), setting \(p = Pk \) and \(q = Qk \), so that \(\gcd(P, Q) = 1 \), and putting \(d = P - Q \), we get

\[Q^q \cdot n^d = P^P \cdot k^d \quad (7) \]

From \(\gcd(Q^Q, P^P) = 1 \) it follows that \(Q^Q | k^d \).

If the prime decomposition of \(Q \) is

\[Q = \prod_{i=1}^{t} Q_i^{\alpha_i} \quad (8) \]

then the prime factor \(Q_i \) \((i = 1, \ldots, t)\) must occur in the prime decomposition of \(k \), say with exponent \(\beta_i \). Let \(Q_i^{\gamma_i} \) be the maximum power of \(Q_i \) that divides \(n \). Then by (7) we have

\[\alpha_i Q + \gamma_i d = \beta_i d \quad (i = 1, \ldots, t) \quad (9) \]

By (8), \(Q \) is then a \(d \)th power, say \(Q = \hat{Q}^d \). Similarly, \(P \) is a \(d \)th power, say \(P = \hat{P}^d \).

We then have \(d = P - Q = \hat{P}^d - \hat{Q}^d \) and, since \(\hat{P} \) and \(\hat{Q} \) are integers, this can happen only if \(d = 1 \) (since \(\hat{P}^2 - \hat{Q}^2 > 2, \hat{P}^3 - \hat{Q}^3 > 3, \ldots \)).

Consequently, \(P = Q + 1 \) and \(Q^Q | k \). This implies that there is a positive integer \(m \) such that \(k = Q^Q m \), from which it follows that

\[p = Pk = (Q + 1)Q^Q m \quad (10) \quad \text{and} \quad q = Qk = QQ^Q m = Q^{Q+1} m \quad (11) \]

As in (i), it is straightforward to check that if \(Q \) and \(m \) are chosen arbitrarily in \(\mathcal{N} \), and \(p \) and \(q \) are defined by (10) and (11), then \((p, q) \) is a solution to our problem.
Here is an example of a problem that people like Barrow, Newton and Huygens would have solved in a few minutes and which present-day mathematicians are not, in my opinion, capable of solving quickly: to calculate

$$\lim_{x \to 0} \frac{\sin(\tan x) - \tan(\sin x)}{\arcsin(\arctan x) - \arctan(\arcsin x)}$$

Solve Arnol’d’s problem. (it Editors’ note: Although some computer algebra programs are able to evaluate this limit, we are not soliciting such solutions.)

Solution I based upon solutions submitted by most solvers

Since

$$\sin(\tan x) = x + \frac{1}{6} x^3 - \frac{1}{40} x^5 - \frac{55}{1008} x^7 + O(x^9)$$
$$\tan(\sin x) = x + \frac{1}{6} x^3 - \frac{1}{40} x^5 - \frac{107}{5040} x^7 + O(x^9)$$
$$\arcsin(\arctan x) = x - \frac{1}{6} x^3 + \frac{13}{120} x^5 - \frac{341}{5040} x^7 + O(x^9)$$
$$\arctan(\arcsin x) = x - \frac{1}{6} x^3 + \frac{13}{120} x^5 - \frac{173}{5040} x^7 + O(x^9)$$

it follows that

$$\lim_{x \to 0} \frac{\sin(\tan x) - \tan(\sin x)}{\arcsin(\arctan x) - \arctan(\arcsin x)} = \lim_{x \to 0} \frac{-\frac{1}{30} x^7 + O(x^9)}{-\frac{1}{30} x^7 + O(x^9)} = 1$$

Solution II by M. S. Klamkin and L. Marcoux, University of Alberta, Edmonton, Canada. We provide the following generalization.

Let $F(x)$ and $G(x)$ be odd differentiable functions whose power series expansions are

$$F(x) = x + a_3 x^3 + a_5 x^5 + a_7 x^7 + \cdots$$
$$G(x) = x + b_3 x^3 + b_5 x^5 + b_7 x^7 + \cdots$$

Then by letting

$$F^{-1}(x) = x + c_3 x^3 + c_5 x^5 + c_7 x^7 + \cdots$$
$$G^{-1}(x) = x + d_3 x^3 + d_5 x^5 + d_7 x^7 + \cdots$$
it follows by substituting back in the series for F and G, expanding out, and equating like coefficients that

$c_3 = -a_3 \quad c_5 = 3a_3^2 - a_5 \quad c_7 = 8a_3a_5 - 9a_3^3 - a_7 \quad \ldots$

$d_3 = -b_3 \quad d_5 = 3b_3^2 - b_5 \quad d_7 = 8b_3b_5 - 9b_3^3 - b_7 \quad \ldots$

It now follows by substitution and expansion that

\[
F(G(x)) - G(F(x)) = 2(a_5b_3 - a_3b_5) + 3a_3b_3(b_3 - a_3) \]
\[
F^{-1}(G^{-1}(x)) - G^{-1}(F^{-1}(x)) = 2(c_5d_3 - c_3d_5) + 3c_3d_3(d_3 - c_3) \]
\[
= 2(a_5b_3 - a_3b_5) + 3a_3b_3(b_3 - a_3) \]
\[
F^{-1}(G^{-1}(x)) - G^{-1}(F^{-1}(x)) = 2(a_5b_3 - a_3b_5) + 3a_3b_3(b_3 - a_3) x^7 + O(x^9) \]

Hence if the coefficient of x^7 does not vanish, then

\[
\lim_{x \to 0} \frac{F(G(x)) - G(F(x))}{F^{-1}(G^{-1}(x)) - G^{-1}(F^{-1}(x))} = 1
\]

In particular, for $F(x) = \sin x$ and $G(x) = \tan x$, the coefficient of x^7 does not vanish, so the desired limit = 1.

The coefficient of x^7 can vanish if, say,

\[
\text{Case 1.} \quad a_3 = a_5 = 0 \quad \text{Case 2.} \quad a_3 = b_3 = 0
\]

In both of these cases the limit is still 1 provided that, respectively,

\[
a_7b_3 \neq 0 \quad a_7b_5 - a_5b_7 \neq 0
\]

Here for case 1,

\[
F(G(x)) - G(F(x)) = F^{-1}(G^{-1}(x)) - G^{-1}(F^{-1}(x)) = 4a_7b_3x^9 + O(x^{11})
\]

and here for case 2,

\[
F(G(x)) - G(F(x)) = F^{-1}(G^{-1}(x)) - G^{-1}(F^{-1}(x)) = 2(a_7b_5 - a_5b_7)x^{11} + O(x^{13})
\]

Let $Q(x, y, z, w)$ be a polynomial that is symmetric with respect to each of its variables. Determine the minimum degree of Q if Q is divisible by $(x^{m+1} - y^{m+1})^n$ where m and n are positive integers.

Solution by the proposer. By symmetry, we must have a factor of the form $(x^{m+1} - y^{m+1})^n$ for each of the 6 pairs of variables. This would give the minimum degree for Q to be $6(m + 1)n$ whenever n is even. Now suppose n is odd and observe that by hypothesis Q is divisible by $(x - y)^n$. We show that Q must be divisible by $(x - y)^{n+1}$. Note that

$$(x - y)^n R(x, y, z, w) = Q(x, y, z, w) = Q(y, x, z, w) = -(x - y)^n R(y, x, z, w)$$

where R is some polynomial. It then follows that

$$(x - y)^n \{ R(x, y, z, w) + R(y, x, z, w) \} = 0$$

for all x, y, z, w so that $R(x, y, z, w) + R(y, x, z, w)$ is identically zero except possibly when $x = y$. But this sum is a polynomial, so a continuity argument implies that $R(x, x, z, w) = 0$ for all x, z, w. It now follows by the remainder theorem that $R(x, y, z, w)$ must be divisible by $x - y$. Consequently, for n odd, the minimum degree for Q is $6(m + 1)n + 6$.

Proposed by Murray S. Klamkin and Andy Liu, University of Alberta, Edmonton, Canada

If A, B, C and D are consecutive vertices of a quadrilateral such that $\angle DAC = 55^\circ = \angle CAB$, $\angle ACD = 15^\circ$ and $\angle BCA = 20^\circ$, determine $\angle ADB$.

Solution I by Man-Keung Siu, University of Hong Kong, Hong Kong. We show that $\angle ADB = 40^\circ$.

Take a point E on AB such that $\angle ECB = 5^\circ$. Since the triangles ADC and AEC are congruent, AC and DE are perpendicular to each other. From this we see that $\angle ADE = 35^\circ$ and $\angle EDC = 75^\circ$. Since $\angle EBC = \angle ABC = 105^\circ$, $EBCD$ is a cyclic quadrilateral. Hence $\angle EDB = \angle ECB = 5^\circ$. Finally, $\angle ADB = \angle ADE + \angle EDB = 35^\circ + 5^\circ = 40^\circ$.

Solution II by Michael H. Andreoli, Miami Dade Community College (North), Miami, FL. Since the sum of angles in $\triangle ACD$ and in $\triangle ABC$ is 180°, $\angle ADC = 110^\circ$ and $\angle ABC = 105^\circ$. Without loss of generality suppose $AD = 1$. Applying the law of sines to $\triangle ACD$ and $\triangle ABC$ and equating the resulting expressions for AC yields $AB = (\sin 20^\circ \sin 110^\circ)/(\sin 15^\circ \sin 105^\circ)$. Since $\sin 110^\circ = \cos 20^\circ$ and $\sin 105^\circ = \cos 15^\circ$, we can use the double angle formulas to write $AB = 2 \sin 40^\circ$.

Applying the law of cosines to $\triangle ABD$ yields $BD = [1 + (AB)^2 - 2(AB) \cos 110^\circ]^{1/2}$ where $AB = 2 \sin 40^\circ$.

Applying the law of sines to $\triangle ABD$, using the above expressions for AB and BD gives

$$\sin(\angle ADB) = \sin 40^\circ \left[2 \sin 110^\circ/(1 + 4 \sin^2 40^\circ - 4 \sin 40^\circ \cos 110^\circ)^{1/2}\right]$$

This can be expressed in terms of sines and cosines of 40° using

$$\sin 110^\circ = \sin 70^\circ = \sin(40^\circ + 30^\circ) = (\sqrt{3}/2) \sin 40^\circ + (1/2) \cos 40^\circ$$
$$\cos 110^\circ = -\cos 70^\circ = -\cos(40^\circ + 30^\circ) = (1/2) \sin 40^\circ - (\sqrt{3}/2) \cos 40^\circ$$
$$1 = \sin^2 40^\circ + \cos^2 40^\circ$$

Making these substitutions in (1) and simplifying gives $\sin(\angle ADB) = \sin 40^\circ$. Since we know that $0 \leq \angle ABD \leq \angle ADC = 110^\circ$, it follows that $\angle ADB = 40^\circ$.

71
Determine the minimum values of

(i) \(a^2 + T_2\)
(ii) \(a^2 + b^2 + T_2\)
(iii) \(a^2 + b^2 + c^2 + T_2\)

where \(T_2 = a(b + c + d) + b(c + d) + cd, abcd = 1\) and \(a, b, c, d > 0\).

Solution by David Zhu, Jet Propulsion Laboratory, Pasadena, CA.

(i) \(a^2 + T_2 = a^2 + a(b + c + d) + bc + bd + cd\).

Note that \(b + c + d \geq 2\sqrt{bc}d\) and \(bc + bd + cd \geq 3\sqrt{b^2c^2d^2}\) where the inequalities hold if and only if \(b = c = d\). Letting \(u = a\) and \(v = b = c = d\) it now suffices to minimize \(a^2 + 3uv + 3v^2\) subject to \(uv^3 = 1\). This is equivalent to minimizing \(v^{-6} + 3v^{-2} + 3v^2\) which occurs when \(v = [(\sqrt{5} + 1)/2]^{1/4}\). Thus, the minimum of \(a^2 + T_2\) is

\[
\frac{2\sqrt{2}(7 + 3\sqrt{5})}{(1 + \sqrt{5})^{3/2}} = \sqrt{22 + 10\sqrt{5}}
\]

(ii) \(a^2 + b^2 + T_2 = (a^2 + b^2) + (a + b)(c + d) + ab + cd\)

With the product \(ab\) fixed, \(a^2 + b^2 + T_2\) is minimized if and only if \(a = b\), and with the product \(cd\) fixed, \(a^2 + b^2 + T_2\) is minimized if and only if \(c = d\). Letting \(u = a = b\) and \(v = c = d\) it now suffices to minimize \(3u^2 + 4uv + v^2\) subject to \(uv = 1\). But \(3u^2 + v^2 \geq 2\sqrt{3}uv = 2\sqrt{3}\) with equality holding if and only if \(\sqrt{3}u = v\) or \(u = (1/3)^{1/4}\) so that the minimum value of \(a^2 + b^2 + T_2\) is \(2\sqrt{3} + 4\).

(iii) \(a^2 + b^2 + c^2 + T_2 = (a^2 + b^2 + c^2) + (a + b + c)d + (bc + ca + ab)\).

[[the last paren was misprinted as \(ab + ad + bc\) – R.]]

With the product \(abc\) fixed, \(a^2 + b^2 + c^2 + T_2\) is minimized if and only if \(a = b = c\). Letting \(u = a = b = c\) and \(v = d\) in this case, it now suffices to minimize \(6u^2 + 3uv\) subject to \(u^3v = 1\), which is equivalent to minimizing \(6u^2 + 3u^{-2}\). But \(6u^2 + 3u^{-2} \geq 6\sqrt{2}\) with equality holding if and only if \(u = (1/2)^{1/4}\) so that the minimum value of \(a^2 + b^2 + c^2 + T_2\) is \(6\sqrt{2}\).
Determine the maximum area of the quadrilateral with consecutive vertices A, B, C and D if $\angle A = \alpha$, $BC = b$ and $CD = c$ are given.

Case 1. $\alpha < \pi$. Construct two rays forming an angle α and originating at point A. Let points B and D move along these rays, with $BC = b$ and $CD = c$ and let $\angle BCD = \theta$. We seek to maximize $[ABCD]$ by considering θ.

Clearly we may assume $\theta < \pi$ because $\theta > \pi$ would give a concave quadrilateral, and its area could be increased by reflecting $\triangle BCD$ in the line determined by B and D, producing a convex quadrilateral with a greater area.

Now $[ABCD] = [BCD] + [ABD]$. For a given θ, $[BCD]$ is fixed, and so is the length x of BD. But $[ABD]$ with a given angle α and a given side x opposite that angle is maximized when $\triangle ABD$ is isosceles with $AB = AD$. But $AB = AD \implies \angle ABD = \angle ADB = \pi/2 - \alpha/2$. By the law of sines applied to $\triangle ABD$ we have

$$AD = AB = \frac{x \sin(\pi/2 - \alpha/2)}{\sin \alpha} = \frac{x \cos(\alpha/2)}{\sin \alpha}$$

giving

$$[ABD] = \frac{1}{2} (AD)(AB) \sin \alpha = \frac{x^2 \cos^2(\alpha/2)}{2 \sin \alpha}$$

and

$$[ABCD] = \frac{1}{2} bc \sin \theta + \frac{(b^2 + c^2 - 2bc \cos \theta) \cos^2(\alpha/2)}{2 \sin \alpha} \quad (1)$$

where we have used the law of cosines in $\triangle BCD$ to write $x^2 = b^2 + c^2 - 2bc \cos \theta$. We may now write

$$[ABCD] = \frac{(b^2 + c^2) \cos^2(\alpha/2)}{2 \sin \alpha} + \frac{bc}{2} (\sin \theta - k \cos \theta)$$

where $k = [2 \cos^2(\alpha/2)]/\sin \alpha$ is some positive constant. $[ABCD]$ will be maximized when $(\sin \theta - k \cos \theta)$ is maximized, and it is easily determined that this occurs (for $0 < \theta < \pi$) when $\theta = \arctan(-1/k) + \pi$. Substituting back into (1) gives

$$[ABCD]_{\text{max}} = \frac{(b^2 + c^2) \cos^2(\alpha/2) + 2bc \cos(\alpha/2)}{2 \sin \alpha}$$
Case 2. $\alpha > \pi$. In this case there is no maximum value. Let rays \overrightarrow{AB} and \overrightarrow{AD} again form an angle α, with B and D sliding along these rays with fixed distances $CB = b$ and $CD = c$, the angle at C being θ ($\theta < 2\pi - \alpha < \pi$) and BD having length x (which is a function of θ).

We have

$$[ABCD] = [CBD] - [ABD] = \frac{1}{2}bc \sin \theta - [ABD]$$

The first term $[CBD]$ may have a maximum (if $\theta = \pi/2$ happens to be in the domain of θ), but the second term has no minimum ($[ABD]$ has 0 as a greatest lower bound). Thus $[ABCD]$ cannot be maximized.

511. (Nov. 1993) Proposed by Zhang Zaiming, Yuxi Teachers’ College, Yunnan, China
Let a_i, b_i, c_i and Δ_i be the lengths of the sides and the area, respectively, of triangle $i, i = 1, 2$. Prove that
\[a_1^2a_2^2 + b_1^2b_2^2 + c_1^2c_2^2 \geq 16\Delta_1\Delta_2 \]
where equality holds if and only if the two triangles are equilateral.

Editors’ note: Klamkin observes that the above result follows from the stronger inequality
\[a_1a_2 + b_1b_2 + c_1c_2 \geq 4\sqrt{3}\Delta_1\Delta_2 \]
in a problem of G. Tsintsifas [Crux Mathematicorum, 13(1987) 185].

Editors’ note. Several solvers used induction to establish the result. [[Eleven solvers]] provided the generalization
\[\sum_{k=0}^{n} (-1)^k \binom{3n}{k} = (-1)^n \binom{3n-1}{n-1} \]
[[Two solvers]] proved the generalization
\[\sum_{k=0}^{\lfloor n/3 \rfloor} (-1)^k \binom{n}{k} = (-1)^{\lfloor n/3 \rfloor} \binom{n-1}{\lfloor n/3 \rfloor} \]. Several solvers noted that this problem (or one equivalent to it) appears as an exercise in several combinatorics texts. Callan noted the similarity to Monthly problem 6637 (1990,621; 1992,72).

[[This last was proposed by Herbert Wilf. – R.]]

562. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Canada

Evaluate the \((n+2) \times (n+2)\) symmetric determinant

\[
\begin{vmatrix}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & a_1 & a_2 & \cdots & a_n \\
1 & a_1 & 0 & a_1 + a_2 & \cdots & a_1 + a_n \\
1 & a_2 & a_1 + a_2 & 0 & \cdots & a_2 + a_n \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_n & a_n + a_1 & a_n + a_2 & \cdots & 0 \\
\end{vmatrix}
\]

Solution by Joe Howard, New Mexico Highlands University, Las Vegas, NM. Subtract row 2 from rows 3, 4, \ldots, \((n+2)\); expand along column 1; and factor out \(a_1, a_2, \ldots, a_n\) to obtain the \((n+1) \times (n+1)\) determinant

\[
(-1)^{a_1 a_2 \cdots a_n}
\begin{vmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & -1 & 1 & \cdots & 1 \\
1 & 1 & -1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \cdots & -1 \\
\end{vmatrix}
\]

Subtract row 1 from rows 2, 3, \ldots, \((n+1)\); and then expand along column 1 to obtain the \(n \times n\) determinant

\[
(-1)^{a_1 a_2 \cdots a_n}
\begin{vmatrix}
-2 & 0 & 0 & \cdots & 0 \\
0 & -2 & 0 & \cdots & 0 \\
2 & 0 & -2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -2 \\
\end{vmatrix}
= (-1)^{n+1} 2^n (a_1 a_2 \cdots a_n)
\]

76

570. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Canada

In triangle ABC the angle bisectors of angles B and C meet the altitude AD at points E and F respectively. If $BE = CF$, prove that ABC is isosceles.

Editors’ note. As several solvers noted, if both B and C are acute, then this problem is identical to CMJ problem 546 (the solution to which appeared in the March 1996 issue). When B or C is obtuse, however, ABC need not be isosceles. For example, if the vertices of ABC are $A(0, \sqrt{3})$, $B(0, 1)$ and $C(\sqrt{12}, 0)$, then $E(0, -\sqrt{3})$ and $F(0, \sqrt{3} - 1)$ so that $BE = CF = 2$, yet ABC is not isosceles.
A known property of a parabola is that if tangents are drawn at any two points \(P \) and \(Q \) of the curve, then the line from the point of intersection of the tangents and parallel to the axis of the parabola bisects the chord \(PQ \). Does this property characterize parabolas? That is, if a curve has the above property where the line is drawn parallel to the \(y \)-axis, must the curve be a parabola whose axis is parallel to the \(y \)-axis?

Solution by John D. Eggers, North Georgia College and State University, Dahlonega, Georgia. Yes, a curve with the above property must be a parabola with a vertical axis. Call the above property Property T, and let \(\Gamma \) be a curve satisfying Property T. First, observe that \(\Gamma \) is a differentiable curve, since by Property T it has a tangent at every point. Second, observe that \(\Gamma \) is the graph of a function; for, if it were not, there would exist a pair of points on \(\Gamma \) such that the segment joining them would be vertical, contradicting Property T. Thus, \(\Gamma \) has a parametrization of the form \(t \mapsto (t, \gamma(t)) \) with domain \(U \) and open subset of \(\mathbb{R} \). Let \(t_0 \) be a fixed element in \(U \) and let \(t \) be in \(U \). The corresponding points of \(\Gamma \) are \(P_0 = (t_0, \gamma(t_0)) \) and \(P = (t, \gamma(t)) \). The equation of the line tangent to \(\Gamma \) at \(P_0 \) is

\[
y = \gamma(t_0) + \gamma'(t_0)(x - t_0)
\]

The equation of the line tangent to \(\Gamma \) at \(P \) is

\[
y = \gamma(t) + \gamma'(t)(x - t)
\]

The \(x \)-coordinate of the intersection of the tangent lines is

\[
x = \frac{[\gamma'(t)t - \gamma'(t_0)t_0] - [\gamma(t) - \gamma(t_0)]}{\gamma'(t) - \gamma'(t_0)}
\]

Since a vertical line through the point of intersection of the lines tangent to \(\Gamma \) at \(P_0 \) and at \(P \) must bisect the segment joining \(P_0 \) and \(P \), it follows that \(x = (t_0 + t)/2 \). Thus

\[
\frac{[\gamma'(t)t - \gamma'(t_0)t_0] - [\gamma(t) - \gamma(t_0)]}{\gamma'(t) - \gamma'(t_0)} = \frac{t_0 + t}{s}
\]

After some calculation one finds that the above equation is equivalent to the linear first-order differential equation

\[
\gamma'(t) - \frac{2}{t - t_0}\gamma(t) = -\frac{2\gamma(t_0)}{t - t_0} - \gamma'(t_0)
\]

By standard techniques one finds the general solution to be

\[
\gamma(t) = c(t - t_0)^2 + \gamma'(t_0)(t - t_0) + \gamma(t_0)
\]

where \(c \) is a constant of the integration. Observe that \(c \neq 0 \), for if \(c = 0 \), then \(\Gamma \) would be a line, contradicting Property T. Hence \(\Gamma \) is a parabola with a vertical axis.
The diophantine equation here is

\[abc = 4(a+b+c) + 2(bc+ca+ab) \]

where \(a, b, c \) are the lengths of the edges. Letting \((a,b,c) = (x+2, y+2, z+2) \) we get the simpler equation \(xyz = 8(x+y+z) + 40 \) where \(x, y, z > 0 \). Assuming without loss of generality that \(x \geq y \geq z \), we get the following cases.

(1) \(z = 1 \) and then \(y = 8 + 112/(x-8) \) so that \((x,y) = (22,16), (24,25), (36,12), (64,10) \) or \((120,9) \).

(2) \(z = 2 \) and then \(y = 4 + 44/(x-4) \) so that \((x,y) = (15,8), (26,6) \) or \((48,5) \).

(3) \(z = 3 \) and then \(y = 2 + (2x+80)/(3x-8) \) so that \((x,y) = (8,8), (24,4) \) or \((88,3) \).

(4) \(z = 4 \) and then \(y = 2 + 22/(x-2) \) so that \((x,y) = (13,4) \).

(5) \(z = 5 \) and then \(y = 1 + (3x+88)/(5x-8) \) so that there are no solutions.

(6) \(z \geq 6 \). Since \(xyz \geq 36x \) and \(8(x+y+z) + 40 \leq 32x \), there are no more solutions.

Finally all the solutions \((a,b,c) \) are given by

\[
\begin{align*}
(10,10,5) & \quad (15,6,6) & \quad (17,10,4) & \quad (24,18,3) & \quad (26,6,5) & \quad (26,17,3) \\
(28,8,4) & \quad (38,14,3) & \quad (50,7,4) & \quad (66,12,3) & \quad (90,5,5) & \quad (122,11,3)
\end{align*}
\]

597. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Canada

Determine all pairs of integers \((x, y)\) such that \(19 \mid ax + by\) where \((a, b)\) is any pair of integers such that \(19 \mid 11a + 2b\).

Solution by Joseph Reznick (student), College of Charleston, Charleston, SC. Assume \(11a + 2b \equiv 0 \pmod{19}\). Then \(b \equiv 4a \pmod{19}\). Now, we want to find all pairs of integers \((x, y)\) such that for every \(a\), \(0 \leq a \leq 18\), we have \(ax + by \equiv 0 \pmod{19}\). This is equivalent to

\[
ax + 4ay \equiv 0 \pmod{19}
\]

For \(a \not\equiv 0 \pmod{19}\) this implies

\[
x + 4y \equiv 0 \pmod{19}
\]

Therefore the solution set is \(\{(x, y) \mid x + 4y \equiv 0 \pmod{19}\}\).

In addition, it is interesting to note that if instead of 19 we take any other prime \(p\), and instead of the coefficients 11 and 2 we take any other coefficients \(q\) and \(r\), then the solution set is \(\{(x, y) \mid x + qr^{-1}y \equiv 0 \pmod{p}\}\).

Squared Cotangents

588. (Nov. 1996) Proposed by Can Anh Minh (student), University of Southern California, Los Angeles, CA

In \(\triangle ABC\), denote the angles at \(A\), \(B\), \(C\) by \(2\alpha\), \(2\beta\), \(2\gamma\), respectively. Prove that

\[
cot^2 \beta \cot^2 \gamma + \cot^2 \gamma \cot^2 \alpha + \cot^2 \alpha \cot^2 \beta \geq 27.
\]

Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada. Let \(S_n = \cot^n \beta \cot^n \gamma + \cot^n \gamma \cot^n \alpha + \cot^n \alpha \cot^n \beta\). We prove the more general result: \(S_n \geq 3^{n+1}\) with equality if and only if \(\alpha = \beta = \gamma\). From the Cauchy-Schwarz inequality,

\[
(cot \beta \cot \gamma + cot \gamma cot \alpha + cot \alpha cot \beta)(\tan \beta \tan \gamma + \tan \gamma \tan \alpha + \tan \alpha \tan \beta) \geq 9
\]

But since \(\gamma = (\pi/2) - (\alpha + \beta)\), \(\tan \gamma = \cot(\alpha + \beta) = (1 - \tan \alpha \tan \beta)/(\tan \alpha + \tan \beta)\) so that \(\tan \beta \tan \gamma + \tan \gamma \tan \alpha + \tan \alpha \tan \beta = 1\). Hence \(S_1 \geq 9\). By the power mean inequality, \((S_n/3)^{1/n} \geq S_1/3\), thus \(S_n/3 \geq 3^n\) and the result follows.
Extending the Radius of Convergence

625. Proposed by Sining Zheng and Yuyue Song, Dalian University of Technology, Dalian, People’s Republic of China

Let the power series $\sum a_n x^n$ have radius of convergence $R > 0$ and let $\lambda > R$. Does there exist a power series $\sum b_n$ such that

1. $\sum b_n x^n$ has radius of convergence R, and
2. $\sum (a_n + b_n) x^n$ has radius of convergence λ?

Solution by James Duemmel, Western Washington University, Bellingham, WA and Murray S. Klamkin, University of Alberta, Canada (independently).

Consider any series $\sum c_n x^n$ with radius of convergence λ. Let $b_n = c_n - a_n$. Then $\sum b_n x^n$ has radius of convergence R and $\sum (a_n + b_n) x^n = \sum c_n x^n$ has radius of convergence λ.

Editors’ Note: Most solvers made the unnecessary assumption that λ was finite.

[[Compare the next item with problem 570 above. — R.]]

An Isosceles Triangle

629. Proposed by David Beran, University of Wisconsin–Superior, Superior, WI

In triangle ABC the angle bisectors of angles B and C meet the median AD at points E and F respectively. If $BE = CF$, prove that $\triangle ABC$ is isosceles.

Editors’ Note: Klamkin and Sastry point out that the identical problem with solution by Esther Szekeres appears in Crux Mathematicorum, 20(1994) 264. [[John]] Graham and Sastry note that a special case of this problem appears with solution in CMJ problem 546 [1995,157; 1996, 150].

[[I made the following remark before I discovered that this wasn’t Murray’s last appearance in CMJ. Murray appears in the list of solvers of problem 677 on p.213 of Coll. Math. J., 32 No.3 (May, 2001). He also solved problems 695, 726, 742, the last mention being in the Jan., 2004 issue. — R.]]

711. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB, Canada

(a) Find all integers n such that there exists a polynomial $P_n(x)$, with integer coefficients which satisfies

$$P_n(n) = n^2 \quad P_n(2n) = 2n^2 \quad \text{and} \quad P_n(3n) = n^2$$

(b) Find all integers n such that there exists a polynomial $Q_n(x)$ with integer coefficients which satisfies

$$Q_n(n) = n^2 \quad Q_n(2n) = 2n^2 \quad Q_n(3n) = n^2 \quad \text{and} \quad Q_n(4n) = 2n^2$$

Solution by Li Zhou, Polk Community College, Winter Haven, FL.

(a) Let A denote this set of integers. Then $A = \mathbb{Z}$ since $P_n(x) = 2n^2 - (x - 2n)^2$ satisfies the conditions for any $n \in \mathbb{Z}$.

(b) Let B denote this set of integers. The $0 \in B$ since $Q_0(n) \equiv 0$ satisfies the conditions. Suppose that n is not zero and that $Q(x) \in \mathbb{Z}[x]$ satisfies $Q(n) = n^2$, $Q(2n) = 2n^2$ and $Q(4n) = 2n^2$. By the Remainder Theorem, there is a polynomial $R(x)$ such that

$$Q(x) = (x - 2n)(x - 4n)R(x) + 2n^2$$

In fact, $R(x) \in F[x]$ by division and induction on the degree of $Q(x)$. But then

$$n^2 = Q(n) = 3n^2R(n) + 2n^2$$

which implies that $R(n) = -1/3 \notin \mathbb{Z}$. Thus, $B = \{0\}$, and note that we have only used three of the four conditions. (We note that the conditions at n, $3n$ and $4n$ force $B = \{0\}$, the conditions at $2n$, $3n$ and $4n$ give the same answer as (a) with $Q_n(x) = (x - 3n)^2 + n^2$) for each $n \in \mathbb{Z}$, and the conditions at n and $4n$ imply that $3 \mid n$ with $Q_{3k}(x) = kx + 6k^2$.

Richard K. Guy

June 22, 2006

This file updated on 2006-04-28.

This is the second of a number of files listing problems, solutions and other writings of Murray Klamkin.

The easiest way to edit is to cross things out, so I make no apology for the proliferation below. Just lift out what you want.

Math. Mag., 24(1951) 266

103. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn, N.Y.

A high-school student solved the linear differential equation \(dy/dx + Py = Q \) for \(y \) as if it were an ordinary algebraic equation. Under what conditions could this procedure have yielded a correct solution of the differential equation?

II. Solution by R. E. Winger, Los Angeles City College. The high school student presumably cancelled the \(ds \), getting \(y/x + Px = Q \). If this is to be a correct solution of the differential equation, then \(y/x = dy/dx \). That is, \(y = cx \), an almost trivial result. When this is substituted into the original equation (in either form) we get \(Q = c(1 + Px) \), the necessary relation between \(P \) and \(Q \).
Establish the convergence or divergence of

a) \[1 - \frac{1}{2} + \frac{1}{\sqrt{3}} - \frac{1}{4} + \frac{1}{5\sqrt{5}} - \frac{1}{8} + \frac{1}{7\sqrt{7}} - \frac{1}{16} + \cdots \]

b) \[1 - \frac{1}{\sqrt{2}} + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} - \frac{1}{\sqrt{6}} + \frac{1}{7} - \frac{1}{2\sqrt{2}} + \cdots \]

I. Solution by M. S. Klamkin’s Sophomore Calculus Class, Polytechnic Institute of Brooklyn, N.Y.

a) The given series may be written in the form

\[\left(1 + \frac{1}{3\sqrt{3}} + \frac{1}{5\sqrt{5}} + \cdots \right) - \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots \right) \]

thereby exhibiting it as the difference of two well-known convergent series. It follows that the given series is convergent.

b) Consider

\[\sum_{n=1}^{\infty} \left(\frac{1}{2n-1} - \frac{1}{\sqrt{2n}} \right) = \sum_{n=1}^{\infty} \frac{\sqrt{2n} - (2n-1)}{(2n-1)\sqrt{2n}} \]

Since the degree of the denominator exceeds that of the numerator by only \(\frac{1}{2} \), the series diverges.

Math. Mag., 25(1952) 224

Q 57. Submitted by M. S. Klamkin

Prove that the derivative of an even function is odd and vice versa.

A 57. Since \(E(x) = E(-x) \), \(dE(x)/dx = dE(-x)/dx = [dE(-x)/d(-x)][d(-x)/dx] = -dE(-x)/d(-x) = \text{odd} \). Since \(O(x) = -O(-x) \), \(dO(x)/dx = -dO(-x)/dx = [-dO(-x)/d(-x)][d(-x)/dx] = dO(-x)/d(-x) = \text{even} \).
A Conic Unrolled

A right circular cone is cut by a plane. The intersection, of course, is a conic. Find the equation of the curve that this conic goes into if the cone is unrolled on to a plane. In particular, if the cone is a cylinder and the plane cuts the axis of the cylinder at 45°, then the ellipse formed will unroll into a sine curve.

Solution by M. S. Klamkin’s Sophomore Calculus Course, Polytechnic Institute of Brooklyn. Let the equation of the cone in cylindrical coordinates be $a^2r^2 = z^2$. Cut the cone along its intersection with the plane $y = 0$ and let that line become the x'-axis. Then the coordinates of the transform of a point (r, θ, z) on the cone are (r', θ') where

$$r' = \sqrt{r^2 + z^2} = r\sqrt{1 + a^2} \quad \text{and} \quad \theta' = r\theta/\sqrt{r^2 + z^2} = \theta/\sqrt{1 + a^2}$$

Now consider the transform of the intersection of the cone with a general surface, $F(r, \theta, z) = 0$. The equation of a cylinder with elements passing through the intersection curve and parallel to the z-axis is $F(r, \theta, ar) = 0$. Thus the equation of the transform curve will be

$$F(r'/\sqrt{1 + a^2}, \theta'/\sqrt{1 + a^2}, ar'/\sqrt{1 + a^2}) = 0$$

If $F(r, \theta, z) = 0$ is a plane, then

$$r(A \cos \theta + B \sin \theta) + Cz + D = 0$$

and the transform curve is

$$(r'/\sqrt{1 + a^2})(A \cos \theta'\sqrt{1 + a^2} + B \sin \theta'\sqrt{1 + a^2} + Ca) + D = 0$$

If we use a cylinder, $r = a$, instead of the cone $a^2r^2 = z^2$ we find that the point (r, θ, z) transforms into (x', y') where $x' = z$ and $y' = a\theta$. Thus if the curve of intersection is given by $r = a$ and $F(r, \theta, z) = 0$, then upon development the intersection is transformed into $F(a, y'/a, x') = 0$. Now if the intersecting surface is the plane $r(A \cos \theta + B \sin \theta) + Cz + D = 0$, then

$$F(a, y'/a, x') = a(A \cos y'/a + B \sin y'/a) + Cx' + D = 0$$

which is a sine curve for all plane intersections except when $A = B = 0$ or when $C = 0$.

Q 70. Submitted by M. S. Klamkin

Find the maximum value of

\[(\sum_{n=1}^{N} a_n x_n) \prod_{n=1}^{N} (a_n - x_n)\]

A 70.

\[\left(\sum_{n=1}^{N} a_n x_n\right) \prod_{n=1}^{N} (a_n - x_n) = \left(\sum_{n=1}^{N} a_n x_n\right) \prod_{n=1}^{N} (a_n^2 - a_n x_n) / \prod_{n=1}^{N} a_n\]

Clearly the sum of the factors of the numerator is a constant, \(\sum_{n=1}^{N} a_n^2\). Now it follows from the theorem that the geometric mean \(\leq\) the arithmetic mean, that if the sum of \(k\) factors of a function is a constant, \(b\), then the maximum value of the function is \((b/k)^k\). Therefore the maximum value sought is

\[\left(\sum_{n=1}^{N} a_n^2\right)^{N+1} / (N + 1)^{n+1} \prod_{n=1}^{N} a\]

[[ARE THERE MISPRINTS IN THE PREVIOUS ITEM ??]]

Q 15. [Sept. 1950] Find the sum of the squares of the coefficients in the expansion of \((a + b)^n\). M. S. Klamkin offers this alternative solution.

\[(1+x)^n = \binom{n}{0} + \binom{n}{1} x + \cdots + \frac{n}{n} x^n \quad \text{and} \quad (1+1/x)^n = \binom{n}{0}/x + \binom{n}{1}/x^2 + \cdots + \frac{n}{n} /x^n.\]

Multiplying we have that the sum of the squares of the coefficients is the constant term (middle term) of \((1 + x)^{2n}/x^n\). That is, \((2n)!/(n!)^2\) or \(\binom{2n}{n}\).
T 5. Submitted by M. S. Klamkin. A rich person who possessed a very expensive Swiss watch once bragged to a poor friend that not only was his watch an automatic winding one, but it lost only $1\frac{1}{4}$ sec. per day. The friend remarked that the watch would indicate the correct time only about once in a century. This annoyed the rich man who demanded to know of a better watch. The friend said that his four-year old daughter had just gotten a watch which though inexpensive at least did indicate the correct time twice a day. How accurate was the daughter’s watch?

S 5. The cheap watch must have gained or lost 24 hours per day. It was a stationary toy watch.

Euler’s ϕ-function

145. [Sept. 1952] Proposed by Leo Moser, University of Alberta, Canada

It is well-known that $n = 14$ is the smallest even integer for which $\phi(n) = n$ is insolvable. Show for every positive integer, r, that $\phi(x) = 2(7)^r$ is insolvable.

II. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. In L. E. Dickson’s History of the Theory of Numbers, Volume I, p.135, there is a result due to Alois Pichler which states “When q is a prime > 3, $\phi(x) = 2q^n$ is impossible if $p = 2q^n + 1$ is not prime; while if P is prime it has the two solutions p and $2p$.” Since $2(7)^r + 1 = 2(6 + 1)^r + 1 = 6A + 3$ has the factor 3 it follows that $\phi(x) = 2(7)^r$ has no solutions. The reference contains other results of a similar nature by Pichler.
Math. Mag., 27(1953) 51.

177. Proposed by Murray S. Klamkin, Polytechnic Institute of Brooklyn

If \(w = z^n + a_1z^{n-1} + \cdots + a_n + b_1/z + b_2/z^2 + \cdots b_r/z^r \) maps into \(|w| = 1\) for \(|z| = 1\) show that \(a_n = b_r = 0, n = 1, 2, 3, \ldots \) and \(r = 1, 2, 3, \ldots \).

I. Solution by Alfredo Jones, University of Notre Dame.

If \(w = z^n + a_1z^{n-1} + \cdots + a_n + b_1/z + b_2/z^2 + \cdots b_r/z^r \) maps \(|z| = 1\) into \(|w| = 1\) then \(w' = w' \cdot z^{r+1} = z^{n+r+1} + a_1z^{n+r} + \cdots + b_rz \) also satisfies that condition. The area of the image of the unit circle by \(w' \) will be \(A = k\pi \) where \(k \) is the number of times \(w' \) traverses \(|w| = 1\) while \(z \) traverses \(|z| = 1\). Now \(k \leq n + r + 1 \) as \(k \) is also the number of zeros of \(w' \) for \(|z| < 1\), which is less than or equal to \(n + r + 1 \). Writing \(z = Re^{i\theta} \) this area is also:

\[
A = \pi \int_0^{2\pi} z f'(z) \overline{f(z)} \, d\theta = \pi[n + r + 1 + (n + r)|a_1|^2 + \cdots + |b_r|^2]
\]

But this implies that \(a_1 = a_2 = \cdots = b_r = 0 \).

[I don’t understand the effs in the last display. Are they a misprint? – R. There’s a second solution by Walter B. Carver.]

Math. Mag., 27(1953) 57.

Q 97. Submitted by Murray S. Klamkin

Solve \(ax^2 + bx + c = 0 \) without completing the square or using the quadratic formula.

A 97. Let \(x = y + h = y - b/2a \). Then we have \(ay^2 + y(2ah + b) + ah^2 + bh + c = 0 \). Now since \(h = -b/2a \), this equation becomes \(ay^2 - b^2/4a + c = 0 \), so \(y = \pm \sqrt{(b^2 - 4ac)/4a^2} \) and \(x = [-b \pm \sqrt{b^2 - 4ac}] / 2a \). [This is the method of Vieta, for example, see D. E. Smith, History of Mathematics, Vol. II (Ginn) 1925, p.449.]

Math. Mag., 27(1953) 57.

Q 101. Submitted by Murray S. Klamkin

Prove that \(2^{1/2} + 3^{1/3} \) is irrational.

A 101. Assume that \(2^{1/2} + 3^{1/3} = R \), a rational number. Then \(3 = (R - \sqrt{2})^3 = R^3 + 6R - 2(3R^2 + 2) \). It follows that \(\sqrt{2} \) is rational. Since it is well-known that this is not true, the assumption is false.

Q 100. Submitted by Murray S. Klamkin

Express \((a_1^2 + b_1^2)(a_2^2 + b_2^2)(a_3^2 + b_3^2) \) as the sum of two squares.

A 100. \((a_1 + ib_1)(a_2 + ib_2)(a_3 + ib_3)\)

\[= a_3(a_1a_2 - b_1b_2) - b_3(a_1b_2 + a_2b_1) = i[b_3(a_1a_2 - b_1b_2) + a_3(a_1b_2 + a_2b_1)]\]

Equating the modules \([\text{moduli ?}]\) of the two sides of the identity we have

\[(a_1^2 + b_1^2)(a_2^2 + b_2^2)(a_3^2 + b_3^2)\]

\[= [a_3(a_1a_2 - b_1b_2) - b_3(a_1b_2 + a_2b_1)]^2 + [b_3(a_1a_2 - b_1b_2) + a_3(a_1b_2 + a_2b_1)]^2\]

Q 99. Proposed by Murray S. Klamkin

Evaluate \(\int_0^\infty \log x \, dx / (1 + x^2) \).

A 99. Let \(x = 1/y \), then

\[I = \int_0^\infty \log x \, dx / (1 + x^2) = \int_{1/y}^\infty \frac{\log(1/y)(-1/y^2)}{1 + 1/y^2} \, dy = - \int_0^\infty \frac{\log y \, dy}{1 + y^2} = -I. \]

Thus \(I = 0 \).

Q 101. Submitted by Murray S. Klamkin

Find integer solutions of \(x^2 + y^2 = z^3 \)

A 101. In the result of A 100 let \(a_1 = a_2 = a_3 = a \) and \(b_1 = b_2 = b_3 = b \), whence we have

\[(a^2 + b^2)^3 = (a^3 - 3ab^2)^2 + (3a^2b - b^3)^2.\]

Hence a general solution is \(x = a^3 - 3ab^2, \ y = 3a^2b - b^3, \ z = a^2 + b^2 \), where the parameters \(a, b \) are integers.

[But is it THE general solution?? Are there solutions not of this form? — R.]
Find the sum
\[\sum_{s=0}^{n} (-1)^s \left[\frac{1}{s+1} + \frac{1}{s+2} + \cdots + \frac{1}{s+n} \right] \binom{n}{s}\]

1. Solution by L. Carlitz, Duke University. Put
\[S_k = 1 + \frac{1}{2} + \cdots + \frac{1}{k} \quad (k \geq 1) \quad S_0 = 0\]

Then
\[S = \sum_{s=0}^{n} (-1)^s \left(\frac{1}{s+1} + \frac{1}{s+2} + \cdots + \frac{1}{s+n} \right) \binom{n}{s} = \sum_{s=0}^{n} (-1)^s (S_{n+s} - S_s) \binom{n}{s}\]

Using the notation of finite differences
\[\triangle^n S_k = \sum_{s=0}^{n} (-1)^{n-s} \binom{n}{s} S_{k+s}\]

But
\[\triangle S_k = \frac{1}{k} \quad \triangle^2 S_k = \frac{-1}{(k+1)(k+2)} \quad \cdots \quad \triangle^n S_k = (-1)^{n-1} \frac{(n-1)!}{(k+1)(k+2) \cdots (k+n)}\]

so that
\[\sum_{s=0}^{n} (-1)^{n-s} (S_{n+s} - S_s) \binom{n}{s} = (-1)^{n-1} \frac{(n-1)!}{(k+1) \cdots (k+n)} - \frac{(n-1)!}{n!}\]

In particular for \(k = n\) we get
\[S = (-1)^n \sum_{s=0}^{n} (-1)^{n-s} (S_{n+s} - S_s) \binom{n}{s}\]

\[= (-1)^{-1} \left\{ \frac{(n-1)!}{(n+1) \cdots (2n)} - \frac{(n-1)!}{n!} \right\} = \frac{1}{n} \left\{ 1 - \left(\frac{2n}{n} \right)^{-1} \right\}\]

T 10. Submitted by M. S. Klamkin.

Can a checker be moved from position (1,1) to position (8,8) moving one square at a time and never diagonally, in such a way that the checker enters each square once and once only?

S 10. Yes. The trick here is to move to (1,2) or (2,1) and then back to (1,1) which is then entered for the first time. One possible sequence of moves is (1,1), (1,2), (1,1), (2,1), (2,3), (1,3), (1,4), (2,4), (2,5), (1,5), (1,6), (2,6), (2,7), (1,7), (1,8), (3,8), (3,1), (4,1), (4,8), (5,8), (5,1), (6,1), (6,8), (7,8), (7,1), (8,1), (8,8).

97. [March 1951] Proposed by Bruce Kellogg, Massachusetts Institute of Technology

Let \(\{i_n\} = i_1, i_2, i_3, \ldots \) be a sequence of real numbers such that \(\lim_{n \to \infty} i_n = 1 \) and \(i_n > 1 \) for all \(n \). Does the infinite series

\[
\sum \frac{1}{n^{i_n}}
\]

converge or diverge, or does the divergence or convergence depend upon the sequence \(\{i_n\} \)?

Solution by R. M. Foster and M. S. Klamkin, Polytechnic Institute of Brooklyn. Let

\[
i_n = 1 + \frac{r \log \log n}{\log n}
\]

where the logs are natural logarithms, then

\[
\sum \frac{1}{n^{i_n}} = \sum \frac{1}{n^{(\log n)^2}}
\]

Thus if \(r \) (constant) > 1 the series converges, and \(r \leq 1 \) the series diverges. See the solvers’ note on the convergence of \(p \)-series in the American Mathematical Monthly, Nov. 1953, pp.625–626.

[[The last display is misprinted – the right side shd be a fn of \(r \). Can someone correct it from the following article?]]
ON THE CONVERGENCE OF THE p-SERIES

R. M. Foster and M. S. Klamkin, Polytechnic Institute of Brooklyn

In quite a few textbooks, we find the statement that the \(p \)-series

\[
\sum_{n=1}^{\infty} n^{-p}
\]

converges for \(p > 1 \), and diverges for \(p \leq 1 \). This is not quite correct. It should rather be stated, that the series converges for \(p \) (constant) > 1, and diverges for \(p \leq 1 \). An example illustrating this point is given by the series (1) with \(p = 1 + (1/n) \). This series diverges since

\[
\lim_{n \to \infty} \frac{n^{1+(1/n)}}{n} = 1
\]

and \(\sum_{n=1}^{\infty} n^{-1} \) diverges. This example was given as a problem in this Monthly (Nov. 1948, p.584). One of the solutions gave the following generalization of this problem:

If \(\lim_{n \to \infty} \phi(n) = 0 \), then \(\sum_{n=1}^{\infty} n^{-[1+\phi(n)]} \) diverges. This latter statement, however, is not correct. For, let \(r \) be constant and let \(n^{\phi(n)} = \psi(n) = (\ln n)^r \). Then

\[
\lim_{n \to \infty} \phi(n) = \lim_{n \to \infty} \frac{\ln \psi(n)}{\ln n} = 0
\]

but the series

\[
\sum_{n=1}^{\infty} \frac{1}{n\psi(n)} = \sum_{n=1}^{\infty} \frac{1}{n(\ln n)^r}
\]

converges for \(r \) (constant) > 1, and diverges for \(r \leq 1 \). Similarly, other functions \(\psi(n) \) can be chosen such that the series converges or diverges.]]

Q 104. Submitted by M. S. Klamkin

\[
\begin{vmatrix}
1 + x & 1 & 1 & 1 \\
1 + x & 1 + x & 1 & 1 + x \\
1 & 1 + x & 1 + x & 1 \\
1 & 1 & 1 + x & 1 + x \\
\end{vmatrix}
\]

[[This is evidently a misprint for
\[
\begin{vmatrix}
1 + x & 1 & 1 & 1 + x \\
1 + x & 1 + x & 1 & 1 \\
1 & 1 + x & 1 + x & 1 \\
1 & 1 & 1 + x & 1 + x \\
\end{vmatrix}
\]]

A 104. When \(x = 0\) the four rows are identical, so \(x^3\) is a factor. The sum of each of the rows is \(4 + 2x\) which is therefore a factor. Thus \(D = Ax^3(x + 2)\), where \(A\) is a constant. Next \(x^4\) appears in only two terms, each positive, so \(A = 1 + 1\). Hence \(D = 2x^3(x + 2)\).

Q 106. Submitted by M. S. Klamkin

Find the center of gravity of a semicircular area.

[[Sh’d’ve said it’s of uniform surface density.]]

A 106. Clearly the C.G. falls on the radius which is perpendicular to the diameter at a distance \(\bar{y}\) from the diameter. When the area is rotated about the diameter a spherical volume is generated. Hence by Pappus’s Theorem we have

\[
2\pi\bar{y}(\pi r^2/2) = 4\pi r^3/3 \quad \text{so} \quad \bar{y} = 4r/3\pi
\]
Math. Mag., 27(1954) 226–228.

Q 108. Submitted by M. S. Klamkin

Find all the integral solutions of \(x(x+1)(x+2)(x+3) + 1 = y^2. \)

A 108. Since the left hand side of the equation is a perfect square, all integer values of \(x \) will satisfy the equation.

Math. Mag., 27(1954) 226–228.

Q 109. Submitted by M. S. Klamkin

If \(A, B \) and \(C \) are three vectors originating from a common point, prove that \((A \times B) + (B \times C) + (c \times A)\) is a vector perpendicular to the plane determined by the terminal points of \(A, B \) and \(C \).

A 109. Since

\[
(A \times B) + (B \times C) + (c \times A) = (B - A) \times (C - B)
\]

the statement follows immediately.

[[The next item is an example of a “Falsie”]]

Math. Mag., 27(1954) 228.

F 15. Submitted by M. S. Klamkin

Let \(z \) be a complex number such that \(\tan z = i \). Then

\[
\tan(z + w) = \frac{1 + \tan w}{i - \tan w} = i
\]

Thus the tangent of every complex number is \(i \).

E 15. The fallacy lies in the fact that no \(z \) exists such that \(\tan z = i \).

Math. Mag., 27(1954) 287.

Q 110. Submitted by M. S. Klamkin

If \(a, b \) and \(c \) are sides of a triangle such that \(a^2 + b^2 + c^2 = bc + ca + ab \), prove that the triangle is equilateral.

[[From the answer, I guess that this sh’d’ve been \(2(bc + ca + ab) \). – R.]]

A 110. The equation is equivalent to \((a - b)^2 + (b - c)^2 + (c - a)^2 = 0 \). Thus \(a = b = c \)
Q 112. Submitted by M. S. Klamkin

A billiard ball is hit (without any “English”) so that it returns to its starting point after hitting four different cushions. Show that the distance travelled by the ball is the same regardless of the starting point.

A 112. Image that the four cushions are mirrors and we are using a light ray. By the principle of images it is easily shown that the distance equals twice the diagonal.

Q 114. Submitted by M. S. Klamkin

\[
\text{Sum } \sum_{n=1}^{\infty} \left(\frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!} \right) x^n
\]

A 114. If \(F(x) = \sum a_n x^n \) then \(F(x)/(1 - x) = \sum (a_1 + a_2 + \cdots + a_n) x^n \). Thus \(F(x) = \sum_{n=1}^{\infty} \frac{x^n}{n!} = e^x - 1 \), so our sum is \(S = \frac{e^x - 1}{1 - x} \).

[[Would someone check this ??]]
Math. Mag., 28(1955) 27.

209. Proposed by Murray S. Klamkin, Polytechnic Institute of Brooklyn

Show that \[F(x, y) = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{a^{n+1} + y} \] is symmetric in \(x \) and \(y \).

Solution by George Pólya, Stanford University.

(1) Heuristic consideration. Symmetry of \(F(x, y) \) means that \(x \) and \(y \) are interchangeable, yet the proposed expression does not render such interchangeability immediately clear. So, we desire another expression for \(F(x, y) \) which does render it immediately clear. What kind of expression? As the proposed expression is a power series in \(x \), it is natural to think of a power series in \(x \) and \(y \) (the Maclaurin expansion in these two variables). How can one obtain it? Expand in powers of \(y \).

(2) Proof. Expanding in geometric series we obtain:

\[
F(x, y) = \sum_{m=0}^{\infty} \frac{(-1)^m x^m}{a^{m+1}} \left(1 + \frac{y}{a^{m+1}} \right)^{-1}
\]

\[
= \sum_{m=0}^{\infty} \frac{(-1)^m x^m}{a^{m+1}} \sum_{n=0}^{\infty} \left(-\frac{y}{a^{m+1}} \right)^n
\]

\[
= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^{m+n} x^m y^n}{a^{(m+1)(n+1)}}
\]

in which expression \(x \) and \(y \) are obviously interchangeable.

(3) Critique. If \(|a| \geq 1 \), the foregoing transformations are easily justified provided that \(|x| < |a|, |y| < |a| \). If, however, \(0 < |a| < 1 \) the proposed series does not behave symmetrically in \(x \) and \(y \). In fact, its sum is a regular (analytic) function in a certain neighborhood of the point \(x = -a, y = a \), whereas it becomes infinite (has a pole) at the point \(x = a, y = -a \). If \(a = 0 \), \(F(x, y) = y^{-1}(1 + x)^{-1} \) and the asymmetry is quite obvious.
Q 118. Submitted by M. S. Klamkin

Find the three smallest integers such that the sum of the reciprocals of its divisors equals 2.

A 118. \(\sum 1/d_r = 2. \) But \(\sum N/d_r = \sum d_r. \) Thus \(\sum d_r = 2N \) or \(N \) is a perfect number and the answer is 6, 28 and 496.

Q 121. Submitted by M. S. Klamkin

If \(|z^n + a_1 z^{n-1} + \cdots + a_n + \frac{b_1}{z} + \frac{b_2}{z^2} + \cdots + \frac{b_r}{z^r}| = 1 \) for \(|z| = 1, \) what are the restrictions on the coefficients \(a_i \) and \(b_i? \)

[[Compare 177 above.]]

A 121. The expression is equivalent to:

\[
|b_r z^{r+n} + b_{r-1} z^{r+n-1} + \cdots + a_1 z + 1| = 1
\]

for \(|z| = 1. \) By the Maximum Modulus Theorem all the coefficients must be zero.
A Fibonacci Expression

197. Proposed by A. S. Gregory, University of Illinois

Let the explicit expression for the \(n \)th term of a sequence \(K_n \) be known. Find an explicit expression for the \(n \)th term of a sequence \(\{\phi_n\} \) which is defined as follows:

\[
\phi_n = \phi_{n-1} + \phi_{n-2} + K_n \quad n = 1, 2, 3, \ldots
\]

with \(\phi_0 \) and \(\phi_1 \) given.

Solution by Murray S. Klamkin, Polytechnic Institute of Brooklyn.

From the definition we have:

\[
\begin{align*}
\phi_2 & = \phi_1 + \phi_0 + K_2 \\
\phi_3 & = 2\phi_1 + \phi_0 + K_2 + K_3 \\
\phi_4 & = 3\phi_1 + 2\phi_0 + 2K_2 + K_3 + K_4 \\
\phi_5 & = 4\phi_1 + 3\phi_0 + 3K_2 + 2K_3 + K_4 + K_5
\end{align*}
\]

Let \(A_r \) denote the \(r \)th term of the Fibonacci sequence 1,1,2,3,5,8,\ldots. Explicitly,

\[
A_r = \frac{1}{2} \left[(1 + \sqrt{5})^r - (1 - \sqrt{5})^r \right]
\]

[[This has several errors!! Instead read:]]

\[
A_r = \frac{1}{2\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^r - \left(\frac{1 - \sqrt{5}}{2} \right)^r \right]
\]

By induction it follows that:

\[
\phi_n = A_n\phi_1 + A_{n-1}\phi_0 + A_{n-2}K_2 + A_{n-3}K_3 + \cdots + A_1K_n
\]

Q 123. Submitted by Murray S. Klamkin
If three generators of a right circular cone are
\[
\begin{align*}
\frac{x-1}{1} &= \frac{y-2}{2} = \frac{x-3}{-3} = \frac{z+3}{3} = \frac{x-1}{11} = \frac{y-2}{8} = \frac{z+3}{9}
\end{align*}
\]
[[That $x-3$ should surely be $z+3$? And I think it should be $\frac{z+3}{9}$ in the second line. Make it:]]
Then we have $(1, 2, -3), (-3, 3, 1), (11, 8, 9)$ orthogonal ?

A 123. Since the three generators are mutually orthogonal they may be replace by the x, y and z axes. By symmetry the axis of the cone can be written $x = y = z$. Thus $\cos \alpha = \sqrt{3}/3$.

Q 127. Submitted by Murray S. Klamkin
Show that the volume of the solid $(x+y)^2 + (y+z)^2 + (z+x)^2 = 2$ equals $4\pi \sqrt{2}/3$.
A 127. By rotating the axes the equation can be transformed into $ax^2 + by^2 + cz^2 = 1$ where a, b and c are the roots of the discriminating cubic
\[
\begin{vmatrix}
1 - \lambda & 1/2 & 1/2 \\
1/2 & 1 - \lambda & 1/2 \\
1/2 & 1/2 & 1 - \lambda
\end{vmatrix} = 0.
\]
$1/2$ is obviously a double root, and by adding the three rows the other root is 2. Thus the volume is $4\pi \sqrt{2}/3$.

[[at this point Murray has a way of quickening Q 105.]]

Article by Murray:
On Barbier’s Solution of the Buffon Needle Problem.

17
223. Proposed by Murray S. Klamkin, Polytechnic Institute of Brooklyn

Prove that there is no integral triangle such that \(\cos A \cos B \cos C + \sin A \sin B \sin C = 1 \).

Solution by Chi-yi Wang, University of Minnesota. The relation

\[
(cos A - cos B)^2 = (1 - cos^2 A)(1 - cos^2 B)(1 - cos^2 C)
\]

implies that \((cos A - cos B)^2 = -cos^2 C sin^2 A sin^2 B \). This equation has the trivial solution \(A = B = 0^\circ, C = 180^\circ \) and the only nontrivial solution \(A = B = 45^\circ, C = 90^\circ \). Since the two legs and the hypotenuse of an isosceles right triangle are proportional to 1, 1, \(\sqrt{2} \) the stated result follows.

203. Proposed by Norman Anning, Alhambra, California

Prove that three of the intersections of \(x^2 - y^2 + ax + by = 0 \) and \(x^2 + y^2 - a^2 - b^2 = 0 \) trisect the circle through these three points.

I. is a solution by W. O. Moser, U of Toronto

II. is a solution by Husseyin Demir, Zonguldak, Turkey

III. Solution by Richard K. Guy, University of Malaya, Singapore. The curves are a rectangular hyperbola and a circle centre \(O \). [Yes!! It was spelt thus] The circle through 3 of the points of intersection is therefore the circle \(x^2 + y^2 = a^2 + b^2 \). By inspection, \((-a, b)\) is common to the two curves. Let \(P, Q, R \) be the other 3 points of intersection. Then, by well-known theorems, the orthocentre [Yes!]] of \(PQR \) and the fourth point, \((-a, b)\), of intersection of the rectangular hyperbola with the circle \(PQR \) lie at opposite ends of a diameter of the rectangular hyperbola. But the centre of the rectangular hyperbola is \((-\frac{1}{2}a, \frac{1}{2}b)\). Therefore the orthocentre of \(PQR \) is \(O \). But this is also the circumcentre. Therefore \(PQR \) is equilateral.

IV. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. Consider

\[
z^2 = (a^2 + b^2)^{3/2} e^{i\theta} \quad \text{where} \quad \cos \theta = \frac{-a}{\sqrt{a^2 + b^2}}
\]

and

\[
\sin \theta = \frac{-b}{\sqrt{a^2 + b^2}}
\]

Then

\[
x^2 + y^2 = a^2 + b^2
\]
and
\[z^2 = (a^2 + b^2)^{3/2} \frac{\cos \theta + i \sin \theta}{z} \]

Equating the real parts of this equation leads to \(x^2 - y^2 = -ax - ay \). Thus the solution follows immediately.

Q 128. Submitted by Murray S. Klamkin

Determine the probability that a random rational fraction \(a/b \) is irreducible.

A 128. Probability

\[P = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots = \prod \left(1 - \frac{1}{p^2}\right) \]

where the infinite product is extended over all primes.

\[
\frac{1}{P} = \frac{1}{\prod \left(1 - \frac{1}{p^2}\right)} = \left(1 + \frac{1}{2^2} + \frac{1}{4} \cdots \right) \left(1 + \frac{1}{3^2} + \frac{1}{9} + \cdots \right) \cdots \\
= 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6}
\]

Thus \(P = 6/\pi^2 \).

Q 132. Submitted by Murray S. Klamkin

If \(A, B, C \) are the angles of a triangle show that \(\sin^2 A + \sin B \sin C \cos A \) is symmetric in \(A, B \) and \(C \).

A 132. Since

\[
\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = \frac{bc \sin A}{abc} = \frac{2\Delta}{abc}
\]

where \(\Delta \) is the area of the triangle and as

\[
\cos A = \frac{b^2 + c^2 - a^2}{2bc}
\]

the given sum equals

\[
\frac{2\Delta^2(a^2 + b^2 + c^2)}{(abc)^2}
\]
Q 136. Submitted by Murray S. Klamkin

Let \([x] \) denote the greatest integer less than or equal to \(x \), and let \((x)\) denote the integer nearest to \(x \). Express \((X)\) as a function of \([x]\).

A 136. By plotting \(y = [x] \) and \(y = (x) \) it is readily seen that \((x) = [x - \frac{1}{2}] + 1 = [x + \frac{1}{2}]\).

[[The next item is a chestnut, so, if we’re pruning, it shd be one of the first to go. R.]]

Q 139. Submitted by Murray S. Klamkin

What is the smallest number of balance weights needed to weight every integral weight from 1 to 121 pounds?

A 139. If the weights can be placed only on one side of the balance, then the weights needed are 1, 2, 4, 8, 16, 32, 64. If they can be placed on both sides then we need only 1, 3, 9, 27, 81.

240. Proposed by Murray S. Klamkin, Polytechnic Institute of Brooklyn

Determine the value of

\[A \times (B \times C) + B \times (C \times A) + C \times (A \times B) \]

without expanding any of the vector triple products.

Solution by Samuel Skolnik, Los Angeles City College. If \(A, B \) and \(C \) are coplanar vectors or if one of them is a null vector, the solution is trivial.

Assume that \(A, B \) and \(C \) are non-coplanar and let \(P = A \times (B \times C) + B \times (C \times A) + C \times (A \times B) \). Then

\[
A \cdot P = A \cdot A \times (B \times C) + A \cdot B \times (C \times A) + A \cdot C \times (A \times B) = 0 + (A \times B) \cdot (C \times A) + (A \times C) \cdot (A \times B) = (A \times B) \cdot (C \times A) - (C \times A) \cdot (A \times B) = 0
\]

Similarly \(B \cdot P = 0 \) and \(C \cdot (= 0) \). Since \(P \) could not be perpendicular to three non-coplanar vectors \(A, B \) and \(C \) it follows that \(P = 0 \).
A FRACTIONAL SUM

216. [Nov. 1954] Proposed by Erich Michalup, Caracas, Venezuela

Prove that

\[
\sum_{n=1}^{\infty} \frac{16n^2 + 12n - 1}{8(4n + 3)(4n + 1)(2n + 1)(n + 1)} = \frac{1}{24}
\]

I. Solution by Dennis Russell

II. Solution by L. A. Ringenberg

III. Solution by Murray S. Klamkin, Polytechnic Institute of Brooklyn. Let \(S \) represent the sum

\[
\frac{1}{2} \sum_{n=1}^{\infty} \left[\frac{3}{4n + 2} - \frac{1}{4n + 1} - \frac{1}{4n + 3} - \frac{1}{4n + 4} \right]
\]

Now

\[
\sum_{1}^{N} \frac{1}{a + nb} = \frac{1}{b} \left[\chi \left(\frac{a}{b} + n + 1 \right) - \chi \left(\frac{a}{b} + 1 \right) \right]
\]

where \(\chi(x) = \frac{\Gamma'(x)}{\Gamma(x)} \). Thus

\[
S = \frac{1}{8} \left[-3\chi \left(\frac{3}{2} \right) + \chi \left(\frac{5}{4} \right) + \chi \left(\frac{7}{4} \right) + \chi(2) \right]
\]

Since \(\chi(x+1) - \chi(x) = 1/x \) and \(\chi(1) = -\gamma, \chi(\frac{1}{2}) = -\gamma - 2 \log 2, \chi(\frac{1}{4}) = \pi/2 - \gamma - 3 \log 2 \) it follows that \(S = \frac{1}{24} \).
A PRODUCT OF TWO BINOMIALS

218. [Nov. 1954] Proposed by Ben K. Gold, Los Angeles City, College

Prove

$$\sum_{i=1}^{K} (-1)^i \binom{K + i}{K} \binom{2K + 1}{K - i} = 1$$

II. Solution by Murray S. Klamkin, Polytechnic Institute of Brooklyn. We can establish

the equality

$$\sum_{r=0}^{k} (-1)^r \binom{k + r}{k} \binom{2k + 1}{k - r} = \frac{(2k + 1)!}{(k!)^2} \sum_{r=0}^{k} \binom{k}{r} \frac{1}{k + 1 + r}$$

A more general expression [[not ‘expansion’?]] follows from the expansion of the Beta
function (See author’s note in Scripta Math., Dec. 1953, p.275). If \(m \) and \(n \) are

nonnegative integers

$$B(m + 1, n + 1) = \frac{m! n!}{(m + n + 1)!} = \int_0^1 t^m (1 - t)^n \, dt = \int_0^1 \sum_{r=0}^{n} (-1)^r \binom{n}{r} t^{m+r} \, dt$$

Thus

$$\sum_{r=0}^{n} \frac{(-1)^r \binom{n}{r}}{m + r + 1} = \sum_{r=0}^{m} \frac{(-1)^r \binom{m}{r}}{n + r + 1} = \frac{m! n!}{(m + n + 1)!}$$

The proposed identity follows by setting \(m = n = k \). (This identity was previously

The identity can be extended to nonintegers \(m \) and \(n \) both \(\geq 0 \). In this case the limits

are from 0 to \(\infty \), and

$$\frac{m! n!}{(m + n + 1)!} \text{ becomes } \frac{\Gamma(m + 1)\Gamma(n + 1)}{\Gamma(m + n + 2)}$$
Q 142. Submitted by Murray S. Klamkin

Find the class of functions such that \(\frac{1}{F(x)} = F(-x) \). One simple example is \(F(x) = e^x \).

A 142. Let \(F(x) = E(x) + O(x) \) where \(E(x) \) is even and \(O(x) \) is odd. Then

\[
\frac{1}{E(x) + O(x)} = E(x) - O(x)
\]

Thus \(E(x) = \pm \sqrt{1 - O(x)^2} \) and \(F(x) = O(x) \pm \sqrt{1 - O(x)^2} \). Let \(O(x) = \tan x \), then \(F(x) = \tan x \pm \sec x \).

[[but the following is better and more general — R.]]

[Alternate solution by Gaines Lang.] By taking absolute values and then logarithms of each side it is clear that \(\ln F(x) \) is an odd function. Hence \(F(x) = \pm e^{G(x)} \) where \(G(x) \) is an odd function.

Q 145. Submitted by Murray S. Klamkin

Determine the equation of the cone through the origin passing through the intersection of \(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \) and \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \).

A 145. The surface

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = \left[\frac{x}{a} + \frac{y}{b} + \frac{z}{c} \right]^2
\]

is a cone through the origin and obviously passes through the given intersection.

[[? Better also to give in the form

\[
\frac{yz}{bc} + \frac{zx}{ca} + \frac{xy}{ab} = 0?
\]]

Determine θ such that

$$\frac{\sin \theta + \sin 2\theta + \sin 3\theta}{\cos \theta + \cos 2\theta + \cos 3\theta} = \tan 2\theta$$

S 16. As this is an identity it is satisfied for all θ for which the denominator is not zero.

T 17. Submitted by M. S. Klamkin.

Find the relationship between A and B if

$$A = 1 + \frac{2}{1!} - \frac{2^3}{3!} + \frac{2^5}{5!} - \frac{2^7}{7!} + \cdots$$

and

$$B = 2 - \frac{4}{3!} + \frac{6}{5!} - \frac{8}{7!} + \frac{10}{9!} - \cdots$$

S 17. $A = 1 + \sin 2$ and $B = \sin 1 + \cos 1$. Therefore $A = B^2$

Evaluate $\cos 5^\circ + \cos 77^\circ + \cos 149^\circ + \cos 221^\circ + \cos 293^\circ$.

S 18. The expression is the sum of the projections of a regular pentagon and therefore equals zero.

[[This next is a real chestnut.]]

Q 146. Submitted by Murray S. Klamkin

Sum the series $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots$

A 146.

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \cdots = 1$$
Q 148. Submitted by Murray S. Klamkin

Express \(\frac{1}{(1 + x)(1 + x^2)(1 + x^4)(1 + x^6)} \) as a power series.

[[That \(x^6 \) shd be \(x^8 \) — R.]]

A 148. [[corrected]]

\[
\frac{1}{(1 + x)(1 + x^2)(1 + x^4)(1 + x^8)} = \frac{(1 - x)}{(1 - x^{16})} \\
= (1 - x)(1 + x^{16} + x^{32} + x^{48} + \cdots) \\
= 1 - x + x^{16} - x^{17} + x^{32} - x^{33} + \cdots
\]

Q 150. Submitted by Murray S. Klamkin

Show that \((a + b + c)^3 = 27abc\) if \(a^{1/3} + b^{1/3} + c^{1/3} = 0\).

A 150.

\[a + b + c - 3(abc)^{1/3} = (a^{1/3} + b^{1/3} + c^{1/3})(a^{2/3} + b^{2/3} + c^{2/3} - a^{1/3}b^{1/3} - b^{1/3}c^{1/3} - c^{1/3}a^{1/3})\]

Now if \(a^{1/3} + b^{1/3} + c^{1/3} = 0\) then we have \(a + b + c = 3(abc)^{1/3}\) or \((a + b + c)^3 = 27abc\).
In Ripley’s (New) “Believe It Or Not” the following statement appears (p.207). “The persistent number 526,315,789,473,684,210 may be multiplied by any number. The original digits will always reappear in the result.” Show that this statement is not correct.

Solution by M. A. Kirchberg, Milwaukee, Wisconsin. Observing that twice this number equals one-tenth of it less 1 plus 10^{19}, we see that 19 times the number is $10^{19} - 10$ or 99999999999999990.

Also solved by R. K. Guy, University of Malaya, Singapore; [3 others] and the proposers.

Q 152. Submitted by Murray S. Klamkin

Prove that the average of the square of the velocity is greater than or equal to the square of the average velocity.

A 152. To prove $V^2 \geq (V)^2$ we have that

$$\frac{\int_a^b V^2 \, dp}{\int_a^b dp} \geq \left[\frac{\int_a^b V \, dp}{\int_a^b dp} \right]^2$$

follows from the Cauchy-Schwartz Inequality.

[[The notation needs improving, correcting and explaining — R.]]

Q 154. Submitted by Murray S. Klamkin

Show that $V_n/S_n = r/n$ where V_n and S_n are the volume and surface of an n-dimensional sphere.

A 154. From similar figures it follows that $V_n = K_1 r^n$ and $S_n = K_2 r^{n-1}$. But by dividing the spheres $dV_n = S_n \, dr$ so that $K_1 n = K_2$ and $\frac{V_n}{S_n} = \frac{K_1 r}{K_2} = \frac{r}{n}$.

[[Or, divide sphere into cones, whose vol. is (1/n)(base)(height) ? — R.]]
Q 156. Submitted by Murray S. Klamkin

Solve $4x^3 - 6x^2 + 4x - 1 = 0$.

A 156. The given equation is equivalent to $(x-1)^4 = x^4$ or $(2x-1)[(x-1)^2 + x^2] = 0$ which has roots $x = 1/2, (1 \pm i)/2$.

Q 158. Submitted by Murray S. Klamkin

Find the area of the ellipse $4x^2 + 2\sqrt{3}xy + 2y^2 = 5$.

A 158. Rotate the ellipse into the form $Ax^2 + Cy^2 = 5$. The $A + C = 6$ and $-4AC = (2\sqrt{3})^2 - 4(4)(2)$. That is $A = 5$ and $C = 1$ or $A = 1$ and $C = 5$. Thus the area is $\pi \sqrt{5}$.

[[\text{Better is to ask that}]
\[
4x^2 + 2\sqrt{3}xy + 2y^2 = 5(x^2 + y^2)/r^2
\]
represent a pair of coincident straight lines: $3 = (4 - 5/r^2)(2 - 5/r^2)$ and the product of the squares of the roots is 5 ?? — R.]]

261. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Determine the entire class of analytic functions $F(x)$ so that Simpson’s Quadrature Formula

\[
\int_{-h}^{h} F(x) \, dx = \frac{h}{3} \left[F(-h) + 4F(0) + F(h) \right]
\]
holds exactly.

Solution by Harry D. Ruderman, Bronx, New York. Let $F(x) = E(x) + O(x)$, the sum of an even and odd function; that is

\[
E(x) = \frac{F(x) + F(-x)}{2} \quad \text{and} \quad O(x) = \frac{F(x) - F(-x)}{2}
\]

Assume that each is integrable. The Quadrature Formula is satisfied for any odd function that is integrable. The result is equal to 0. After replacing $F(x)$ by $E(x) + O(x)$ and using the property $E(-x) = E(x)$, Simpson’s formula becomes

\[
\sum_{0}^{x} E(x) \, dx = \frac{x}{3} [E(x) + 2E(0)] \quad 0 \leq x \leq h \quad (1)
\]
This relation implies that $E(X)$ has a derivative in this interval. Differentiate both members of (1).

$$E(x) = \frac{xE'(x)}{3} + \frac{E(x) + 2E(0)}{3}$$

This is a simple differential equation with the solution

$$E(x) = A + Bx^2 \quad \text{with} \quad A = E(0)$$

If $F(x)$ has two integrable components and satisfies Simpson’s Formula in the interval $0 \leq x \leq h$, then $F(x) = A + Bx^2 + O(x)$. Thus $F(x)$ is the sum of a quadratic and an odd function.

Q 160. Submitted by Murray S. Klamkin

Find the sum of 1+1+2+3+5+8+13+21+34+55+89+144.

A 160.

Q 162. Submitted by M. S. Klamkin

(From the 1953 Putnam Competition) Six points are in general position in space, no three in line and no four in a plane. The fifteen line segments joining then in pairs are drawn and then painted, some segments red and some blue. Prove that some triangle has all its sides the same color.

A 162. There are five segments emanating from any point. Three of these must be of the same color, say red. No matter how we connect the ends of these three segments we get at least one triangle of the same color.

[[Fifty years on, some of these quickies seem awfully hackneyed, but perhaps they’re new to a newer generation. — R.]]

Q 163. Submitted by M. S. Klamkin

Prove that $1 + 1/2 + 1/3 + \cdots + 1/n$ is never an integer for $n > 1$.

A 163. Multiply the sum by one half the least common multiple. The there will be exactly one term equal to $1/2$ and the remaining terms will be integers since there can be only one term which contains the highest power of 2 in the sequence 1, 2, 3, \ldots, n.
Q 164. Submitted by M. S. Klamkin

If \(\frac{F(m)+F(n)}{2} \geq F\left(\frac{m+n}{2}\right) \) is true for all real \(m \) and \(n \), prove that \(\frac{F^{-1}(m)+F^{-1}(n)}{2} \leq F^{-1}\left(\frac{m+n}{2}\right) \) in a domain where the inverse function \(F^{-1}(x) \) exists.

A 164. Geometrically this is equivalent to proving that if a function is convex its inverse is never convex. Plot the curves \(y = F(x) \) and \(y = F^{-1}(x) \). These curves are mirror images in the line \(y = x \). Thus the proof follows by symmetry.

Math. Mag., 29(1956) 222.

269. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Find the sum \(\sum_{n=1}^{\infty} \left[\frac{n}{1!} + \frac{n-1}{2!} + \frac{n-2}{3!} + \cdots + \frac{1}{n!} \right] x^n \)

Solution by Maimouna Edy, Hull, P.Q., Canada.

\[
\sum_{n=1}^{\infty} \left[\frac{n}{1!} = \frac{n-1}{2!} + \frac{n-2}{3!} + \cdots + \frac{1}{n!} \right] x^n
\]

\[
= \left(\sum_{n=0}^{\infty} \frac{x^n}{(n+1)!} \right) \cdot \left(\sum_{n=0}^{\infty} nx^n \right) = \left(\frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \right) \cdot \left(x \sum_{n=0}^{\infty} nx^{n-1} \right)
\]

\[
= \left(\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \right) \cdot \left(\sum_{n=0}^{\infty} nx^{n-1} \right) = e^{-1}(1-x)^{-2}
\]

This result is valid for \(|x| < 1 \)

Q 167. Submitted by M. S. Klamkin

Prove that \(1 + 1/3 + 1/5 + \cdots + 1/(2n-1) \) for \(n > 1 \) can never be an integer.

A 167. Assume the sum \(S \) is integral and let \(p \) be the greatest prime less than or equal to \(2n - 1 \). There will not be any other multiples of \(p \) less than \(2n - 1 \) since between \(a \) and \(2a \) there lies a prime. Then

\[
1 + 1/3 + 1/5 + \cdots + 1/(2n-1) - 1/p = S - 1/p = \frac{pS-1}{p}
\]

But the right side has a denominator \(p \) while the left side does not. This is a contradiction which proves the original statement.
T 22. Submitted by M. S. Klamkin

Solve the simultaneous system

\[
\begin{align*}
\cos A \cos B + \sin A \sin B \sin C &= 1 \\
\sin A + \sin B &= 1 \\
A + B + C &= 180^\circ
\end{align*}
\]

S 22. From the first and third equations it follows that \(\cos(A - B) \geq 1\). Thus \(A = B\) and then \(C = 90^\circ\). But this does not satisfy the second equation. Therefore the equations are inconsistent.

Q 176. Submitted by M. S. Klamkin

Sum

\[
\sum_{n=0}^{\infty} \frac{n^4 - 6n^3 + 11n^2 - 6n + 1}{n!}
\]

A 176.

\[
\sum_{n=0}^{\infty} \frac{n^4 - 6n^3 + 11n^2 - 6n + 1}{n!} = \sum_{n=0}^{\infty} \frac{n(n-1)(n-2)(n-3)+1}{n!} = 2 \sum_{n=0}^{\infty} \frac{1}{n!} = 2e
\]

284. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn

Determine the envelope of convex polygons of \(n\) sides inscribed in the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\) and having a maximum area.

[[This should be a quickie. Orthogonal projection changes area in a constant ratio; the max area of a cyclic \(n\)-gon is given by the regular \(n\)-gon, which envelops a circle which projects back to a homothetic ellipse of size \(\cos(\pi/n)\) times the original.]]

[Vindicated! This is Howard Eves’s solution, but a second, longer, solution by Chih-yi Wang, was also published.]]

Q 177. Submitted by M. S. Klamkin

Prove

\[|\Sigma_1 + \sqrt{\Sigma_1^2 - \Sigma_2^2}| + |\Sigma_1 - \sqrt{\Sigma_1^2 - \Sigma_2^2}| = |\Sigma_1 + \Sigma_2| + |\Sigma_1 - \Sigma_2| \]

A 177. Let \(\Sigma_1 + \Sigma_2 = w_1^2 \) and \(\Sigma_1 - \Sigma_2 = w_2^2 \). Then \(\Sigma_1^2 - \Sigma_2^2 = w_1^2 \cdot w_2^2 \) or \(|w_1 + w_2|^2 + |w_1 - w_2|^2 = 2|w_1|^2 + 2|w_2|^2 \). This is equivalent to the theorem that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of the sides.

Q 179. Submitted by M. S. Klamkin

Is \(i^i \) real or complex?

A 179. Here \(i^i = e^{i \log i} = e^{i[i(\pi/2+2k\pi)]} = e^{-(\pi/2+2k\pi)} \), but this is real.

Q 180. Submitted by M. S. Klamkin

Solve \(x^4 + 4x - 1 = 0 \)

A 180. \(x^4 + 4x - 1 = 0 \) is equivalent to \(x^4 + 2x^2 + 1 - 2(x^2 - 2x + 1) = 0 \). [misprint corrected] Thus \(x^2 + 1 = \pm \sqrt{2}(x-1) \) and \(x^2 \mp x\sqrt{2} + 1 \pm \sqrt{2} = 0 \) so \(x = \frac{\pm \sqrt{2} \pm \sqrt{2-4(1\pm \sqrt{2})}}{2} \)

[[The following’s a rather slow quickie!!]]

Determine a polynomial \(F(x) \) of seventh degree such that \(F(x) + 1 \) is divisible by \((x - 1)^4 \) and \(F(x) - 1 \) is divisible by \((x + 1)^4 \).

A 182. Let \(F(x) + 1 = (x - 1)^4P_1 \) and \(F(x) - 1 = (x + 1)^4P_2 \). \(F(x) \) not divisible by \((x - 1)(x + 1) \). Multiplying we have \(F(x)^2 - 1 = (x^2 - 1)^4P_1P_2 \). Differentiating gives \(2FF' = 8x(x^2 - 1)^3P_1P_2 + (x^2 - 1)^4(P_1P_2)' \). Thus \(F' \) is divisible by \((x^2 - 1)^3 \) and since it is of sixth degree, \(F' = (x^2 - 1)^3 \). So \(F(x) = k \left[\frac{x^7}{7} - \frac{3x^5}{5} + x^3 - x \right] + c \). The constants are determined from \(F(1) = -1, F(-1) = 1 \) so that \(F(x) = \frac{1}{16}[5x^7 - 21x^5 + 35x^3 - 35x] \).
Determine the minimum of
\[\sum_{r=1}^{s} \frac{x_r^s}{\prod_{r=1}^{s} x_r} \quad \text{where} \quad x_r > 0 \]

Solution by Chih-yi-Yang, University of Minnesota. Since the arithmetic mean is never less than the geometric mean of any positive terms we have
\[s \left(\sum_{r=1}^{s} \frac{x_r}{s} \right) \geq s \prod_{r=1}^{s} x_r \]

whence the required minimum value is \(s \), which is attained if all \(x_r \) are equal.

[[In connexion with the next item, it’s interesting to compare SIAM Rev., 1(1959) 68–70, the issue where Murray initiated the famous Problems Section with:

Problem 59-1, The Ballot Problem, by Mary Johnson (American Institute of Physics) and M. S. Klamkin.

A society is preparing 1560 ballots for an election for three offices for which there are 3, 4 and 5 candidates, respectively. In order to eliminate the effect of the ordering of the candidates on the ballot, there is a rule that each candidate must occur an equal number of times in each position as any other candidate for the same office. what is the least number of different ballots necessary?]]

A certain physical society is planning a ballot for the election of three officers. There being 3, 4 and 5 candidates for the three offices. There is a rule in effect (in order to eliminate the ordering of the candidates on the ballot as a possible influence on the election) that for each office, each candidate must appear in each position the same number of times as any other candidate for the same office. What is the smallest number of different ballots necessary?

Offhand one would say \(3 \cdot 4 \cdot 5 = 60 \). However, if one adds two fictitious names to the group of three and one fictitious name to the group of four, then only five different ballots are necessary. Not only will this method reduce the printing costs, but it will also give statistics on whether or not members vote by relative order [or not]. [[last two words redundant]]
Q 184. Submitted by M. S. Klamkin

Simplify
\[I = \frac{\sin x + \sin 2x + \sin 3x + \cdots + \sin nx}{\cos x + \cos 2x + \cos 3x + \cdots + \cos nx} \]

A 184.
\[
\sum_{n=1}^{N} \sin nx = \frac{\sin \frac{n-1}{2} x \sin \frac{n}{2} x}{\sin \frac{x}{2}}
\]
and
\[
\sum_{n=1}^{N} \cos nx = \frac{\cos \frac{n-1}{2} x \sin \frac{n}{2} x}{\sin \frac{x}{2}}
\]

Therefore \(I = \tan \frac{n-1}{2} x \)

Q 185. Submitted by M. S. Klamkin

Prove that
\[
\sum_{r=0}^{s} (-1)^{r} \left(\begin{array}{c} n+r \\ s \end{array} \right) \left(\begin{array}{c} k \\ r \end{array} \right) \text{ where } s \leq k - 1
\]

A 185.
\[
x^{n}(1-x)^{k} = \sum_{r=0}^{k} (-1)^{r} \left(\begin{array}{c} k \\ r \end{array} \right) x^{n+r}
\]

Since \(D^{s}(x^{n})(1-x)^{k}\big|_{x=1} = 0 \) the result follows.

Q 187. Submitted by M. S. Klamkin

Prove \(\sqrt{\frac{ab + bc + ca}{3}} \geq \sqrt[3]{abc} \) where \(a, b, c \geq 0 \)

A 187. Let \(ab + bc + ca = s \) then the maximum value of \((ab)(bc)(ca) \) occurs when \(ab = bc = ca \) or \(a = b = c \). Thus \(\sqrt{\frac{ab + bc + ca}{3}} \geq \sqrt[3]{abc} \) for all \(a, b, c \geq 0 \).
Evaluate \[\sum_{r=1}^{s+1} \sum_{s=1}^{n} \sin[(2r - 2s - 1)\theta] \]

A 189. Since

\[(2r - 2s - 1)\theta + [2(n + 2 - r) - 2(n - 1 + s) - 1]\theta = 0\]

it follows that the given sum is zero.

Math. Mag., 30(1956) 173.

Q 27. Submitted by M. S. Klamkin

A person travelling eastward at a rate of 3 miles per hour finds that the wind appears to blow directly from the north. On doubling his speed it appears to come from the north-east. What was the wind velocity?

S 27. The vector triangle is as follows, so \(w = 3\sqrt{2} \) m.p.h. from the north-west.
Find \(\lim_{z \to 1^+} (z - 1) \sum_{n=0}^{\infty} \frac{2^n}{1 + z^{2n}} \)

Solution by L. Carlitz, Duke University, N.C. Logarithmic differentiation of the familiar identity

\[
\prod_{n=1}^{\infty} (1 + x^{2^n}) = \frac{1}{1-x} \quad |x| < 1
\]

gives

\[
\sum_{n=0}^{\infty} \frac{2^n x^{2^n}}{1 - x^{2^n}} = \frac{x}{1-x}
\]

For \(x = \frac{1}{z} \) this becomes

\[
\sum_{n=0}^{\infty} \frac{2^n}{1 - z^{2^n}} = \frac{1}{z-1} \quad |z| > 1
\]

and therefore

\[
\lim_{z \to 1^+} (z - 1) \sum_{n=0}^{\infty} \frac{2^n}{1 - z^{2^n}} = 1.
\]

Q 197. Submitted by M. S. Klamkin

Find \(f(x, y) \) such that the family \(f(x, y) = c \) is orthogonal to the family \(f(x, y) = k \)

A 197. Such a family can be obtained by solving any differential equation of the form

\[
\frac{dy}{dx} = [G(x, y) + G(y, x)][H(x) - H(y)]
\]

Q 201. Submitted by M. S. Klamkin

Determine a one-parameter solution of

\[
\left(\frac{y''}{1 + (y')^2} \right)^{\frac{1}{2}} = \sinh(y - x) - 1
\]

A 201. By inspection a first integral is \(y' = \sinh(y - x) \). Let \(z = y - x \), then \(z' + 1 = \sinh(z) \) which is integrable into a one-parameter solution.

Q 203. Submitted by M. S. Klamkin

Solve

\[
\frac{dy}{dx} = x^2 + \sqrt{x^4 - 2xy}
\]

A 203. To solve, let \(y = x^3z \), then \(x^3 \frac{dz}{dx} + 3x^2z = x^2(1 + \sqrt{1 - 2x}) \). The variables are now separable.

Math. Mag., 31(1957) 57.

Q 204. Submitted by M. S. Klamkin

If \(A, B, C \) and \(D \) are vectors and \([ABC]\) is a scalar triple product, prove that

\[
\]

A 204. Let \(I = \begin{vmatrix} A & B & C & D \\ a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{vmatrix} \) Then \(I \cdot i = I \cdot j = I \cdot k = 0 \) so \(I = 0 \). Expanding by minors, we get the desired result.

Q 206. Submitted by M. S. Klamkin

If x, y and z are positive and if $x + y + z = 1$ prove that $(1/x - 1)(1/y - 1)(1/z - 1) \geq 8$

A 206. The sum of the three factors on the left hand side of the inequality equals 1. Thus their minimum occurs when $x = y = z = 1/3$. Hence the inequality follows.

Q 208. Submitted by M. S. Klamkin

If $f(x) \equiv f(x + 1) \equiv f(x + \sqrt{2})$ and $f(0) = \sqrt{2}$, find $f(x)$.

A 208. Since $f(x)$ has two independent periods, it must be the constant $f(x) = \sqrt{2}$.

Math. Mag., 31(1957) 57.

Q 210. Submitted by M. S. Klamkin

If $f(x)$ can be integrated in finite form, show that the inverse function $f^{-1}(x)$ can also be integrated in finite form.

A 210. $I = \int f^{-1}(x) \, dx$. Let $y = f^{-1}(x)$, then $x = f(y)$ and $dx = f'(y) \, dy$. Then $I = \int yf'(y) \, dy = yf(y) - \int f(y) \, dy$

Q 211. Submitted by M. S. Klamkin

Show that $3^{2n+1} + 2^{n+2}$ is divisible by 7.

A 211. $3^{2n+1} + 2^{n+2} = 3(7 + 2)^n + 2^{n+2} = 7k + 3 \cdot 2^n + 4 \cdot 2^n = 7(k + 2^n)$.

Q 213. Submitted by M. S. Klamkin

Prove that every skew symmetric determinant of odd order has a value zero.

A 213. Interchanging rows and columns does not change the value, but is equivalent to changing the sign of every element, so

$$\Delta = (-1)^n \Delta = -\Delta. \quad \text{Hence } \Delta = 0$$
Q 215. Submitted by M. S. Klamkin

Determine the minimum value of the sum of the squares of the perpendiculars from a point in the plane of a triangle to its three sides.

A 215. Let \(x, y, z \) be the perpendiculars and \(a, b, c \) be the sides. Then \(x^2 + y^2 + z^2 \) is to be minimized subject to \(ax + by + cz = 2A \) where \(A \) is the area of the triangle. This is equivalent to finding the shortest distance from the origin to the plane \(ax + by + cz - 2A = 0 \). Thus \(r = 2A/\sqrt{a^2 + b^2 + c^2} \) and the minimum \(x^2 + y^2 + z^2 \) is \(4A^2/(a^2 + b^2 + c^2) \).

Q 216. Submitted by M. S. Klamkin

Find the sum of \(1(1!) + 2(2!) + 3(3!) + \cdots + n(n!) \)

A 216. Since \(n(n!) = (n + 1 - 1)(n!) = (n + 1)! - n! \) we have

\[
\sum_{1}^{n} n(n!) = (n + 1)! - 1
\]

Q 218. Submitted by M. S. Klamkin

Find an expression true for all \(n \) for the \(n \)th derivative of \(\sin ax \).

A 218. \(D^n \sin ax = a^n \sin(ax + \frac{n\pi}{2}) \)

338. Proposed by M. S. Klamkin, AVCO, Lawrence, Massachusetts

The vector field \(\frac{R}{r^3} \) satisfies the equations \(\nabla \times \frac{R}{r^3} = 0 \) and \(\nabla \cdot \frac{R}{r^3} = 0 \). Consequently, this field has a scalar potential and a vector potential. The scalar potential is well known to be \(\frac{1}{r} \). Determine the vector potential.

Solution by D. A. Breault, Sylvania Electric Products Inc. Under the given conditions, we are asked to determine \(G = G(R) \), such that,

\[
f(R) = R/r^3 = \text{curl} G(R)
\]

Since \(f(R) \) is solenoidal, \(G(R) \) is given by

\[
G(R) = -R \times \int_{0}^{1} f(tR)t \, dt
\]
whenever the integral exists. In this case it does exist, and is in fact equal to $1/3 R \times R/r^3$, whence
\[G(R) = 1/3 R \times R/r^3 + \nabla \varnothing \]
where \varnothing is an arbitrary scalar function whose second partials exist (see Brand, ADVANCED CALCULUS, pp.391ff).

Q 223. Submitted by M. S. Klamkin

Evaluate
\[I = \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} \, dx \]

A 223. Let $x = \pi - y$, then
\[I = - \int_0^\pi \frac{(\pi - y) \sin y}{1 + \cos^2 y} \, dy = -\frac{\pi}{2} \int_0^\pi \frac{d(\cos y)}{1 + \cos^2 y} = \frac{\pi^2}{4} \]

Q 224. Submitted by M. S. Klamkin

Find the sum to N terms of 1, 12, 123, 1234, \ldots, a_n, $a_n + 1111 \cdots 11$

A 224. The successive differences are
\[
\begin{array}{ccccccc}
1 & 11 & 111 & 1111 & 11111 & \ldots \\
10 & 100 & 1000 & 10000 & \ldots
\end{array}
\]

Thus
\[
S = \sum_{r=1}^N \sum_{s=1}^r \frac{10^s - 1}{9} = \sum_{r=1}^N \frac{10(10^r - 1)}{9^2} - \frac{r}{9} = \frac{10^2(10^N - 1)}{9^3} - \frac{10N}{9^2} - \frac{N(N+1)}{18}
\]

Note by Murray:

A note on an nth order linear differential equation.
A Composite of Conics

327 [January 1958]. Proposed by Chih-yi Wang, University of Minnesota

Show that the curve

\[x^6 + y^6 - 18(x^4 + y^4) + 81(x^2 + y^2) - 108 = 0 \]

consists of two ellipses and a circle.

I. Solution by M. S. Klamkin, AVCO, Lawrence, Massachusetts. The equation can be written in the form

\[(x^2 + y^2)^3 - 18(x^2 + y^2)^2 + 81(x^2 + y^2) - 108 + 3x^2y^2(12 - x^2 - y^2) = 0 \]

[[misprint corrected]] or

\[(x^2 + y^2 - 12)(x^2 + y^2 - 3)^2 - 3x^2y^2 = 0 \]

or

\[(x^2 + y^2 - 12)(x^2 - xy\sqrt{3} + y^2 - 3)(x^2 + xy + y^2 - 3) = 0 \]

Hence, the curve consists of 2 ellipses and 1 circle.

Q 226. Submitted by M. S. Klamkin

Maximize \(a \cos \alpha + b \cos \beta + c \cos \gamma \) where \(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \)

A 226. If we let \(A = ai + bj + ck \) and \(X = i \cos \alpha + j \cos \beta + k \cos \gamma \) we have to maximize \(A \cdot X \) where \(|X| = 1 \). Consequently we have \(\max A \cdot X = |A| = \sqrt{a^2 + b^2 + c^2} \)

Math. Mag., 32(1958) 56.

Q 229. Submitted by M. S. Klamkin

Prove that \(x^3 + y^3 + z^3 - 3xyz = a^3 \) is a surface of revolution.

A 229. The general equation of a surface of revolution is \((x - a)^2 + (y - b)^2 + (z - c)^2 = F(rx + sy + tz) \) where the axis is \(\frac{x-a}{r} = \frac{y-b}{s} = \frac{z-c}{t} \). Since the given equation may be written as

\[x^2 + y^2 + z^2 = \frac{2a^3}{3(x + y + z)} + \frac{(x + y + z)^2}{3} \]

it follows that it is a surface of revolution about \(x = y = z \).
Proposed by M. S. Klamkin, AVCO, Lawrence, Massachusetts

Determine the shortest distance on the right circular cylinder \(r = R, z = 0, z = H \) between the two points \(P_1(r_1, \theta_1, 0); P_2(r_1, \theta_2, H) \) and also between the two points \(P_3(R, \theta_3, z_3) \) and \(P_4(R, \theta_4, z_4) \).

[[Either no solution was published, or I missed it. — R.]]

Q 231. Submitted by M. S. Klamkin

Prove that \(N! \) cannot be a perfect square.

A 231. The proof follows from the fact that there is always a prime between \(r \) and \(2r \) for all \(r > 1 \).

Q 236. Submitted by M. S. Klamkin

Find the sum of the series

\[
S = 1 + x + 2x^2 + 3x^3 + 5x^4 + \cdots + ax^n + bx^{n+1} + (a + b)x^{n+2} + \cdots
\]

for \(|x| < 1 \).

A 236.

\[
\begin{align*}
S &= 1 + x + 2x^2 + 3x^3 + 5x^4 + \cdots + ax^n + bx^{n+1} + (a + b)x^{n+2} + \cdots \\
xS &= x + x^2 + 2x^3 + \cdots \\
x^2S &= x^2 + x^3 + \cdots
\end{align*}
\]

so \(S(1 - x - x^2) = 1 \) or \(S = 1/(1 - x - x^2) \).

Q 240. Submitted by M. S. Klamkin

Show that

\[mz_1 + (1 - m)z_2 \leq \max[|z_1|, |z_2|] \]

where 0 \leq m \leq 1.

A 240. Proof:

Geometrically it follows that \(\overline{OB} \leq \max[\overline{OA}, \overline{OC}] \)
An explorer travels on the surface of the earth, assume to be a perfect sphere, in the manner to be described. First he travels 100 miles due north. He then travels 100 miles due east. Next he travels 100 miles due south. Finally, he travels 100 miles due west, ending at the point from which he started. Determine all the possible points from which he could have started.

Solution by D. A. Breault, Sylvania Electric Products Inc., Waltham, Massachusetts. The problem here is to choose the starting point so that the two East-West legs of the tour, even though they differ by 100 miles of latitude, span the same number of longitudinal units. This can easily be done if the starting point is anywhere on the circle of South latitude which is exactly 50 miles below the equator.

Editor’s note: Since the statement of the problem does not exclude the possibility of the explorer retracing a portion of his path, a large family of solutions exists in addition to the one published in November. A number of such solutions have been received since that date.

Solution by Benjamin L. Schwartz, Technical Operations Inc., Honolulu, Hawaii. Let \(R \) denote the radius of the earth, \(t \) the length of each segment of the trip. Introduce a spherical coordinate system with origin at the earth’s center, and \(\theta \) and \(\phi \) the longitude and colatitude, respectively. If the explorer starts at \(P_0 = (R, \theta_0, \phi_0) \), then by elementary analytic geometry, the succeeding corners of his tour are:

\[
\begin{align*}
P_1 &= (R, \theta_0, \phi_0 - \frac{t}{R}) \\
P_2 &= (R, \theta_0 + \frac{t}{R} \sin(\phi_0 - \frac{t}{R}), \phi_0 - \frac{t}{R}) \\
P_3 &= (R, \theta_0 + \frac{t}{R} \sin(\phi_0 - \frac{t}{R}), \phi_0) \\
P_4 &= (R, \theta_0 + \frac{t}{R} \sin(\phi_0 - \frac{t}{R}) - \frac{t}{R} \sin \phi_0, \phi_0)
\end{align*}
\]

and for \(P_4 \) to coincide with \(P_0 \) we require

\[
\theta_4 = \theta_0 + \frac{t}{R} \sin(\phi_0 - \frac{t}{R}) - \frac{t}{R} \sin \phi_0
\]

to be coterminal with \(\theta_0 \) (not necessarily equal to \(\theta_0 \), as the other solvers have apparently assumed).

We have then

\[
\frac{t}{R} \left[\frac{1}{\sin(\phi_0 - t/R)} - \frac{1}{\sin \phi_0} \right] = 2k\pi \quad (1)
\]
for any integer k. For $k = 0$ we get the published solution.

Other solutions exist, however, for other values of k. Rewrite (1) in the form

$$\frac{\sin \phi_0 - \sin(\phi_0 - t/R)}{\sin \phi_0 \sin(\phi_0 - t/R)} = \frac{2k\pi R}{t} \quad (2)$$

In general, for any fixed integer value of k, this transcendental equation in ϕ_0 has a family of solutions, only a finite number satisfying $0 \leq \phi_0 \leq \pi$, which is implied since ϕ is the colatitude. These supplement the previously published partial solution to provide the general solution.

The solutions of (2) are not readily computed in closed form in general. To solve the equation numerically in any particular case, we can use some simple approximations. Since $R \gg t$, the right hand side is relatively large when $k \neq 0$, and the numerator of the left hand side is small. Hence, solutions exist only in the neighborhood of $\phi_0 = 0$ or $\phi_0 = \pi$, where the factors of the left side denominator are small. Using first a neighborhood of $\phi_0 = 0$ (the North Pole) we can replace $\sin \phi$ approximately with ϕ, and the equation becomes

$$\frac{t/R}{\phi_0(\phi_0 - t/R)} = \frac{2k\pi R}{t} \quad (3)$$

which can easily be solved as a quadratic in ϕ_0 when numerical values are given to t, R and k. For example, using $R = 4000$, $t = 100$, $k = 2$ we get

$$\phi_0^2 - 0.0250\phi_0 - 0.000049739 = 0 \quad (4)$$

which yields

$$\phi_0 = 0.026852$$

This is a circle of latitude 107.41 miles south of the North Pole. The explorer who starts here will proceed north to a point 7.41 miles from the pole; he will then turn eastward and encircle the pole twice, and go on an additional 6.883 miles. A southward journey will return him to his original latitude, exactly 100 miles east of his starting point, and his final westward leg will close the polygon. A similar analysis can be applied to determine the solutions with different numbers of windings around the pole, i.e., different k, as well as those in the neighborhood of the South Pole.
Q 246. Submitted by M. S. Klamkin

Determine the class of angles which can be trisected with a straight edge and compasses.

A 246. Since \(\cos \theta = 4 \cos^3 \theta/3 - 3 \cos \theta/3 \) it follows that angles of the form \(\theta = \arccos(4x^3 - 3x) \) where \(x \) is constructible and \(\cos \theta/3 = x \).

Q 247. Submitted by M. S. Klamkin

For what values of \(x \) is \(m^2 + n^2 - a^2 - b^2 > (mn - ab)x \) where \(0 \leq a \leq m \) and \(0 \leq b \leq n \)?

A 247. Let \(x = 2 \cos \theta \). Then we have \(m^2 + n^2 - 2mn \cos \theta > a^2 + b^2 - 2ab \cos \theta \).

In the figure, \(AB = m, AC = n, AD = a \) and \(AE = b \). So \(BC^2 = m^2 + n^2 - 2mn \cos \theta \) and \(DE^2 = a^2 + b^2 - 2ab \cos \theta \). In order that \(DE \) be less than \(BC \) we must have \(\theta > 60^\circ \) or \(x < 1 \).

Q 252. Submitted by M. S. Klamkin

Find the sum of

\[
\binom{m}{r} \binom{n}{0} + \binom{m}{r-1} \binom{n}{1} + \cdots + \binom{m}{0} \binom{n}{r}
\]

A 252. On equating coefficients of \(x^r \) on both sides of the identity

\[(1 + x)^m(1 + x)^n = (1 + x)^{m+n}\]

we have the sum \(S = \binom{m+n}{r} \).
Q 254. Submitted by M. S. Klamkin

Prove that \(\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \)

A 254. Let \(a + b - x = y \). Then we have \(\int_{a}^{b} f(a + b - x) \, dx = -\int_{b}^{a} f(x) \, dx \).

Math. Mag., 33(1959) 109.

393. **Proposed by M. S. Klamkin, AVCO, Lawrence, Massachusetts**

Find a power series expansion of

\[
P = \prod_{r=1}^{\infty} (1 + x^{2^r}) \quad \text{for} \quad |x| < 1.
\]

[[On *Math. Mag.*, 34(1960) 51 it was stated that this was originally submitted as a “Quickie”]]

Math. Mag., 33(1960) 299.

Solution by Chih-yi Wang, University of Minnesota. Define

\[
P_N = \prod_{r=1}^{N} (1 + x^{2^r})
\]

Then

\[
P_N = \frac{(1 - x^2)P_N}{1 - x^2} = \frac{1 - x^{2N+1}}{1 - x^2}
\]

And

\[
P = \lim_{n \to \infty} P_N = (1 - x^2)^{-1} = \sum_{n=0}^{\infty} x^{2n} \quad \text{for} \quad |x| < 1.
\]

Math. Mag., 33(1959) 118.

Q 262. Submitted by M. S. Klamkin

For what values of \(u_0 \) does the sequence \(\{u_n\} \) diverge when \(u_{n+1} = \frac{1}{u_n+2} \)?

A 262. Consider the inverse sequence \(a_n = \frac{1}{u_{n+1}+2} \) or \(a_{n+1} = \frac{1}{a_n} - 2 \). where \(a_0 = -2 \).

Then \(\{u_n\} \) diverges for \(u_0 = a_r \), \(r \) arbitrary, since \(u_r = -2 \). \(\{u_n\} \) can be shown to converge for all other real values of \(u_0 \).
Q 264. Submitted by M. S. Klamkin

Evaluate $\sum_{m=1}^{M} \sum_{n=1}^{N} \min(m, n)$ for $M \geq N$.

\[
\sum_{m=1}^{M} \sum_{n=1}^{N} \min(m, n) = \sum_{n=1}^{N} \left(\sum_{m=1}^{n} m + \sum_{m=n+1}^{M} n \right) = \sum_{n=1}^{N} \left[\frac{n}{2} (n+1) + n (m-n) \right]
\]

Since $\sum_{n=1}^{N} n^2 = \frac{n(n+1)(2n+1)}{6}$, we have our sum equal to $\frac{N(N+1)(3M-N+1)}{6}$.

408. Proposed by M. S. Klamkin, AVCO, Lawrence, Massachusetts

Three congruent ellipses are mutually tangent symmetrically. Determine the radius of the circumcircle.

Let C denote the intersection of the common tangents to the three ellipses. Extend the major axes of two of the ellipses and denote the point of intersection by P. Let T denote the point of tangency of these two ellipses. Denote the center of one of these ellipses by H, then angle $HPC = 30^\circ$. Let F and G be the foci of the ellipse with center H with points in the order F, H, G, P. Let I, J be the foci of the other ellipse with J between I and P.

If a, b, c have their usual meaning, then, by the law of cosines

\[
(2a)^2 = GP^2 + TP^2 - GP \cdot TP
\]

Using $TP = GP + 2c$, we obtain

\[
GP + c = \sqrt{4b^2 + c^2} = \sqrt{a^2 + 3b^2}
\]

From triangle CHP

\[
HC = \frac{c + GP}{\sqrt{3}} = \sqrt{\frac{a^2 + 3b^2}{3}}
\]

Selecting coordinate axes with origin at H, with positive x-axis in direction HP and positive y-axis in direction HC, then the ellipse with center H has equation

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
\]
and point C has coordinates
\[
\left(0, \sqrt{\frac{a^2 + 3b^2}{3}}\right)
\]

By means of the calculus, it can be shown that the points on the ellipse at maximum
distance from C have coordinates
\[
\left(\pm a \left\{ 1 - \frac{b^2}{c^2} \right\} \frac{a^2 + 3b^2}{3}, -\frac{b^2}{c^2} \sqrt{\frac{a^2 + 3b^2}{3}}\right)
\]

The desired radius is then computed by the distance formula and is
\[
\frac{2a^2}{\sqrt{3c}}
\]

T 36. Submitted by M. S. Klamkin

Determine the greatest perimeter of all pentagons inscribed in a given circle.

S 36. The perimeter of the regular convex pentagon is $10r \sin \pi/5$, however the perimeter of the regular non-convex pentagon is $10r \sin 2\pi/5$ which is greater. For a $(2n+1)$-sided polygon the maximum perimeter would be $(4n+2)r \sin 2\pi/(2n+1)$, whereas for the $2n$-sided polygon the maximum perimeter would be $4nr$. In this case the polygon has degenerated into the diameter.
A student derived l'Hospital's rule in the following manner: Let
\[\frac{F(x)}{G(x)} = H(x) \quad \text{where} \quad F(a) = G(a) = 0 \quad \text{and} \quad G'(a) \neq 0. \]
Then \(F'(x) = G'(x)H(x) + G(x)H'(x) \) or
\[\frac{F'(x)}{G'(x)} = H(x) + \frac{G(x)}{G'(x)}H'(x). \]
Then
\[\lim_{x \to a} \frac{F'(x)}{G'(x)} = \lim_{x \to a} H(x) \]
since \(G(a) = 0 \) and \(G'(a) \neq 0 \).

Although \(G(a) = 0 \) and \(G'(a) \neq 0 \) it does not follow that
\[\lim_{x \to a} \frac{G(x)}{G'(x)}H'(x) = 0. \]
Actually
\[\frac{G(x)}{G'(x)}H'(x) = \frac{F'(x)}{G'(x)} - \frac{F(x)}{G(x)}, \]
so the student's assertion is equivalent to the trivial observation that if
\[\lim_{x \to a} \left[\frac{F'(x)}{G'(x)} - \frac{F(x)}{G(x)} = 0 \right] \quad \text{then} \quad \lim_{x \to a} \frac{F'}{G'} = \lim_{x \to a} \frac{F}{G}. \]
Solve the differential equation
\[
\{x(1 - \lambda)D^2 + (x\phi' + 1)D + x\phi'' + \phi'}y = 0
\]
where \(\lambda\) is a constant and \(\phi\) is a given function of \(x\).

Solution by P. D. Thomas, Coast and Geodetic Survey, Washington, D.C. Using primes to denote differentiation of \(y\) with respect to \(x\), rearrange and collect the terms of the given differential equation to get
\[
(xy\phi')' + (1 - \lambda)(xy')' + \lambda y' = 0
\]
a first integral being at once
\[
xh\phi' + (1 - \lambda)xy' + \lambda y = C \quad \text{(constant)}
\]
or
\[
y' + y(\phi' + \lambda) = \frac{C}{(1 - \lambda)x} \quad \text{(1)}
\]
Now (1) is linear and the known solution is
\[
y = e^{-\int P \, dx}(\int Q e^{\int P \, dx} \, dx + k)
\]
where from (1)
\[
P = \frac{x\phi' + \lambda}{(1 - \lambda)x} \quad Q = \frac{C}{(1 - \lambda)x}
\]
and \(k\) is a constant.
\[
\int P \, dx = \frac{1}{1 - \lambda} \int \left(\phi' + \frac{\lambda}{x}\right) \, dx = \frac{\phi + \lambda \ln x}{1 - \lambda} \quad \text{(3)}
\]
\[
\int Q e^{\int P \, dx} \, dx = \frac{C}{1 - \lambda} \int e^{\phi/(1 - \lambda)} x^{(2\lambda - 1)/(1 - \lambda)} \, dx \quad \text{(4)}
\]
The solution may then be written from (2), (3) and (4) as
\[
y = x^{\lambda/(\lambda - 1)} e^{-\phi/(1 - \lambda)} \left[\frac{CI}{1 - \lambda} + k\right] \quad \text{where} \quad I = \int e^{\phi/(1 - \lambda)} x^{(2\lambda - 1)/(1 - \lambda)} \, dx
\]
Q 268. Submitted by M. S. Klamkin

Show that one cannot inscribe a regular polygon of more than four sides in an ellipse with unequal axes.

A 268. Assume that it can be done. Then there would exist a circle intersecting the ellipse in more than four points which is impossible.

Q 269. Submitted by M. S. Klamkin

If a, b and c are positive numbers, give a geometrical interpretation for the inequality

$$2[a^2b^2 + b^2c^2 + c^2a^2] \geq a^4 + b^4 + c^4$$

A 269.

$$4a^2b^2 \geq (a^2 + b^2 + c^2)^2$$

or

$$[(a + b)^2 - c^2][c^2 - (a - b)^2]$$

Now assume $a \geq b \geq c$, then $c \geq a - b$. Consequently, a, b and c form a triangle.
The number $N = 142857$ has the property that $2N, 3N, 4N, 5N$ and $6N$ are all permutations of N. Does there exist a number M such that $2M, 3M, 4M, 5M, 6M$ and $7M$ are all permutations of M?

I. Solution by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey. Since we get all permutations of M by $1M, 2M, \ldots, 7M$ the number M, if it exists, is a seven-digit number.

Let $M = abcdefg = Gg$ where $G = abcdef$ and let $1 \leq p \leq 7$ such that $p \cdot Gg = gG$. Then

$$p(10G + g) = 10^6g + G$$

or

$$G = \frac{(10^6 - p)g}{(10p - 1)} = N_p \cdot \frac{g}{D_p}$$

Now

<table>
<thead>
<tr>
<th>p</th>
<th>N_p</th>
<th>D_p</th>
<th>N_p/D_p</th>
<th>$(n_p/3)/D_p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>999999</td>
<td>9</td>
<td>111111</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>999998</td>
<td>19</td>
<td>Irreducible</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>999997</td>
<td>29</td>
<td>Irreducible</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>999996</td>
<td>39=3\cdot13</td>
<td>...</td>
<td>Irreducible</td>
</tr>
<tr>
<td>5</td>
<td>999995</td>
<td>49=7\cdot7</td>
<td>Irreducible</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>999994</td>
<td>59</td>
<td>Irreducible</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>999993</td>
<td>69=3\cdot23</td>
<td>...</td>
<td>Irreducible</td>
</tr>
</tbody>
</table>

Since the coefficient N_p/D_p is not an integer except when $p = 1$, there is no solution for G other than $g g g g g g$. But $M = Gg = g g g g g g g$ cannot be a solution.

Hence there is no solution to the problem.

II. Comment by Dermott A. Breault, Sylvania Electric Products Inc., Waltham, Massachusetts. The number $M = 0588235294117647$ has the property that kM is a permutation of M for $k = 2, 3, \ldots, 16$. The number

$$L = 0344827586206896551724137931$$

has the property that kL is a permutation of L for $k = 2, 3, \ldots, 28$. (M consists of the digits of one cycle of the decimal expansion of $1/17$ and is 16 digits long, while L was similarly derived from $1/29$. I believe that it is correct when p is prime and $1/p = Q$ has cycle length $p - 1$, then kQ will be a permutation of Q for $k = 2, 3, \ldots, p-1.$)
[The belief is correct, of course. In L & M above I’ve moved the zeros from the end to the beginning. In *The Book of Numbers*, p.160, Conway & Guy call these long primes and give the further examples:

23: 0434782608695652173913
47: 0212765957446808510638297872340425531914893617
59: 0169491525423728813559322033898305084745762711864406779661
61: 016393442622950819672131147540983606557377049180327868852459
97: 010309278350515463917525773195876288659793814432-989690721649484536082474226804123711340206185567
and indicate that 109, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 269, ... will also serve.]

T 39. *Submitted by M. S. Klamkin*

Find the sum of

\[S = \sum_{n=1}^{\infty} \frac{1}{p_n} \]

where \(p_n \) is the \(n \) th prime in the sequence \(n^5 + n + 1 \).

S 39. Since

\[(n^5 + n + 1) = (n^2 + n + 1)(n^3 - n^2 + 1) \]

there is only one prime \(p_1 = 3 \). Whence \(S = 1/3 \).
Determine the largest and the smallest equilateral triangles that can be inscribed in an ellipse.

Let \(A_1A_2A_3 \) be an equilateral triangle inscribed in the ellipse

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad (E) \quad a > b
\]

and let

\[
(x - u)^2 + (y - v)^2 - r^2 = 0 \quad (\Omega)
\]

be the circle circumscribed to \(A_1A_2A_3 \). It cuts \(E \) at the fourth point \(A_4(x_4, y_4) \).

Eliminating \(y \) between \(E \) and \(\Omega \) we get an equation of fourth degree in \(x \)

\[
c^4 \cdot y^4 - 4a^2c^2u \cdot x^3 + \cdots = 0
\]

of which the roots are \(x_1, x_2, x_3, x_4 \).

If we eliminate \(x \) between \(E \) and \(\Omega \), the corresponding equation will be

\[
c^4 \cdot y^4 + 4b^2c^2v \cdot y^3 + \cdots = 0
\]

and the roots are \(y_1, y_2, y_3, y_4 \).

Since \(A_1A_2A_3 \) is an equilateral triangle, we have

\[
\begin{align*}
x_1 + x_2 + x_3 &= 3u \\
y_1 + y_2 + y_3 &= 3v
\end{align*}
\]

and

\[
\begin{align*}
x_4 &= \sum x_i - 3u = \frac{4a^2u}{c^2} - 3u = \frac{(a^2 + 3b^2)u}{c^2} \\
y_4 &= \sum y_i - 3v = -\frac{4b^2v}{c^2} - 3v = -\frac{(b^2 + 3a^2)v}{c^2}
\end{align*}
\]

These coordinates satisfy (1) so we obtain the relation

\[
\left(\frac{u^2}{\alpha^2}\right) + \left(\frac{v^2}{\beta^2}\right) = 1 \quad (3)
\]

where

\[
\alpha = \frac{ac^2}{a^2 + 3b^2} \quad \beta = \frac{bc^2}{b^2 + 3a^2}
\]
Hence the centers of the circles \((\Omega)\) lie on the ellipse (3) of which \(\alpha > \beta\).

Now since the largest and the smallest triangles correspond to the greatest and the smallest values of the radius \(r\) of the circle \((\Omega)\), we write

\[
\begin{align*}
 r^2 &= (x_4 - u)^2 + (y_4 - v)^2 \\
 &= \frac{(a - \alpha)^2u^2}{\alpha^2} + \frac{(b + \beta)^2v^2}{\beta^2} \\
 &= Au^2 + (b + \beta)^2 = Bv^2 + (a - \alpha)^2
\end{align*}
\]

\(dr/du = 0\) gives

\[u = 0 \quad \text{and} \quad r_1 = b + \beta\]

Similarly \(dr/dv = 0\) gives

\[r_2 = a - \alpha\]

and one may readily verify that \(r_1 > r_2\).

Hence, the largest (smallest) equilateral triangles inscribed in the ellipse are ones inscribed in the circles of center \(u = 0, v = \pm \beta\) \((u = \pm \alpha, v = 0)\) and radius \(b + \beta(a - \alpha)\).

[[I think there’s something wrong here — there should be at least two radii and the dimensions of the expression look wrong. — R.]]

There are four solutions, two for the largest and two for the smallest triangles.

Constructions: The largest (smallest) triangles inscribed in an ellipse have one of their vertices at the extremities of the minor (major) axis of the ellipse, the axis being an \(\text{not 'the')}\) axis of symmetry of the triangle.

Q 274. Submitted by M. S. Klamkin

Find the general solution of the Diophantine equation

\[(x^4 + y^4 + z^4)^2 = 2(x^8 + y^8 + z^8)\]

A 274. The equation can be factored into

\[(x^2 + y^2 + z^2)(x^2 + y^2 - z^2)(y^2 + z^2 - x^2)(z^2 + x^2 - y^2) = 0\]

Consequently, the general solution is given by the complete solution to an integral right triangle. That is, \(x = 2mn, y = m^2 - n^2, z = m^2 + n^2\) and permutations.
Determine integers a and b such that $x^{15} + ax + b$ and $5^{13} - 233x - 144$ have a common factor.

Assume the common factor has the form $x^2 - mx - n$. If $m = n = 1$, then $x^{13} - F_{13}x - F_{12}$ where F_n are the Fibonacci numbers $1, 1, 2, 3, 5, 8, \ldots$, and $F_{13} = 233$ while $F_{12} = 144$. Consequently $-a = F_{15} = 610$ and $-b = F_{14} = 377$. Whether or not other solutions exist is a considerably more involved problem.

Show that the moments of inertia about all centroidal axes of an area with n-fold ($n \geq 3$) symmetry are the same.

The ellipse of inertia must be circular since three diameters of a proper ellipse cannot all be equal.

Show that $x^m D^{m+n}x^n \equiv D^n x^m D^n$ where D is the differential operator $\frac{d}{dx}$.

$x^m D^m$ and $D^n x^n$ commute.

Determine the equation to the conic passing through the five points $(-3, -2), (-2, 3), (1, 1), (-1, 1), (4, -1)$.

Since $(-2, 3), (1, 1), and (4, -1)$ are collinear, the conic degenerates into the two straight lines

$$(2x + 35 - 5)(3x - 2y + 5) = 0$$
Determine two-parameter solutions of the following “almost” Fermat Diophantine equations:

1. \(x^{n-1} + y^{n-1} = z^n\)
2. \(x^{n+1} + y^{n+1} = z^n\)
3. \(x^{n+1} + y^{n-1} = z^n\)

Solution by Leo Moser, University of Alberta. We will exhibit two-parameter solutions for the more general equation

\[x^a + y^b = z^c \quad (a, b, c) = 1 \tag{1}\]

Since \((a, b, c) = 1\) we can first find an \(m\) and \(n\) such that

\[abm + 1 = cn \tag{2}\]

Now let \(u\) and \(v\) be arbitrary integers and let

\[x = u^{bm}(u^{abm} + v^{abm})^{bm}\]

and

\[y = v^{am}(u^{abm} + v^{abm})^{am}\]

Then

\[x^a + y^b = (u^{abm} + v^{abm})^{abm+1}\]

By (2) we have

\[x^a + y^b = (u^{abm} + v^{abm})^{nc}\]

so that with \(z = (u^{abm} + v^{abm})^n\) equation (1) is satisfied.
Show that in any polygon there exist two sides whose ratio lies between 1/2 and 2.

Assume that it is not true. Then the largest side would be greater than the sum of all the other sides. That is

\[ar^n > a + ar + ar^2 + \cdots + ar^{n-1} \quad \text{if} \quad r \geq 2. \]

Through a given point within a given angle, construct a line which will form a triangle of minimum area.

In order for the triangle \(ABC \) to be a minimum it follows that \(BP = PC \). Consequently, draw \(PM \) parallel to \(AB \), lay off \(MC = MA \) and draw \(CPB \).
474. Proposed by M. S. Klamkin, AVCO, Wilmington, Massachusetts

The three polynomials \(x - x \), \(x^2 + y^2 - 2xy \) and \(x^3 + y^3 + z^3 - 3xyz \) can each be factored into real polynomials. Which if any of the higher order analogous polynomials

\[
\sum_{r=1}^{n} x_r^n - nx_1x_2 \cdots x_n
\]

are reducible?

Solution by J. A. Tyrell, King’s College, London. None of the higher order polynomials are reducible (into either real or complex factors). To see this, observe that a factorization of

\[
x^n_1 + y^n_1 + z^n_1
\]

(1)

could be obtained from any factorization of the given polynomial (for \(n \geq 4 \)) merely by setting \(x_4, \ldots, x_n \) equal to zero. As (1) is well-known to be irreducible (for all positive integers \(n \)) our assertion follows. The following proof that (1) is irreducible may be of interest. (The impossibility of linear factors is trivial to demonstrate.) To prove the more general assertion, interpret \(x_1, x_2, x_3 \) as the homogeneous coordinates of a point in a projective plane; the vanishing of (1) then represents a plane curve of order \(n \) and, since the partial derivatives of (1) with respect to the \(x_i \) [[not \(x_1 \)]] do not vanish simultaneously at any point of the plane, the curve is non-singular (i.e. it has no multiple points). If the expression (1) were factorable, the curve would be reducible and then would necessarily possess multiple points (at the points of intersection of any two components). It follows that the expression (1) is irreducible. (Note: the geometrical facts used here may be looked up in any elementary treatise on Higher Plane Curves.)

Q 294. Submitted by M. S. Klamkin

Show that the vector expression

\[
A \times (\nabla \times B) + B \times (\nabla \times A) + (A \cdot \nabla)B + (B \cdot \nabla)A
\]

would be the same in an English or an Israeli (reading from right to left) article.

A 294. Both expressions are just expressions of \(\nabla (A \cdot B) \)
Q 296. Submitted by M. S. Klamkin

If two ellipsoids have an ellipse in common, all their other points of intersection, if real, lie on another ellipse.

A 296. Let the equations of the common ellipse be

\[C ≡ ax^2 + bxy + cy^2 + dx + ey + f = 0 \]

The most general equations of two ellipsoids which pass through this ellipse are

\[C + z(a_1 x + b_1 y + c_1 z + d_1) = 0 \]
\[C + z(a_2 x + b_2 y + c_2 z + d_2) = 0 \]

All points on both ellipsoids which are not on \(z = 0 \) must satisfy

\[a_1 x + b_1 y + c_1 z + d_1 = a_2 x + b_2 y + c_2 z + d_2 \]

which is another plane intersecting in another ellipse.

A Random Probability

A random straight line is drawn across a regular hexagon. What is the probability that it intersects two opposite sides? [[the first published solution, by W. W. Funkenbusch, Michigan College of Mining and Technology, gave the answer \(\frac{1}{3} + \left(\sqrt{3}/\pi\right) \ln \frac{3}{4} \approx 0.174725894 \).]]

II. Solution by Murray S. Klamkin, AVCO, Wilmington, Massachusetts. The problem is not uniquely soluble for no definition of the random straight line distribution was given. We will obtain two answers by assuming two different distributions both of which are invariant under the group of motions in the plane (will give the same answer to all observers). 1. We assume that two points (which define the random line) are taken at random with a uniform distribution on the sides of the hexagon with no two points on the same side. There is no loss of generality in assuming that one of the points is on a fixed side and the other is on one of the five other sides. Whence, probability of intersecting two opposite sides is 1/5. 2. If we assume that the two points as before can also be on the same side, then probability is 1/6.

Q 300. Submitted by M. S. Klamkin

Integrate

\[I = \int \frac{d\theta}{a + b \cos \theta} \]

without recourse to the usual substitution \(z = \tan \theta/2 \).

[[In fact Murray’s solution does exactly that!]]

A 300.

\[I = \int \frac{d\theta}{(a - b) \sin^2 \frac{\theta}{2} + (a + b) \cos^2 \frac{\theta}{2}} = 2 \int \frac{d\tan \theta/2}{a + b + (a - b) \tan^2 \theta/2} \]

\[= \frac{2}{\sqrt{a^2 + b^2}} \arctan \sqrt{\frac{a - b}{a + b}} \tan \theta/2 \quad \text{for } a > b \quad \text{or} \]

\[= \frac{2}{\sqrt{a^2 + b^2}} \arctanh \sqrt{\frac{b - a}{b + a}} \tan \theta/2 \quad \text{for } a < b. \]

497. Proposed by M. S. Klamkin, AVCO, Wilmington, Massachusetts

Show that

\[4 \sum_{r=0}^{n} r^3 \binom{n}{r}^p = 6n \sum_{r=0}^{n} r^2 \binom{n}{r}^p - n^3 \sum_{r=0}^{n} \binom{n}{r}^p \]

Solution by Francis D. Parker, University of Alaska. This problem is equivalent to showing that

\[\sum_{r=0}^{n} [4r^3 - 6nr^2 + n^3] \binom{n}{r}^p = 0 \]

Let \(f(r) = 4r^3 - 6nr^2 + n^3 \) and \(g(r) = \binom{n}{r}^p \).

It follows easily that \(f(r) = -f(n - r) \) and that \(g(r) = g(n - r) \). From these results the conclusion is immediate.
Q 303. Submitted by M. S. Klamkin

If every r th term is removed from the series $1 - 1/2 + 1/3 - 1/4 + \cdots$, find the resulting sum.

A 303. If r is even the resulting series obviously diverges. If r is odd, then

$$S_{rn-r} = \left(1 - 1/2 + 1/3 - \cdots \frac{1}{rn} \right) - \frac{1}{r} \left(1 - 1/2 + 1/3 - \cdots \frac{1}{n} \right)$$

$$S = \lim_{n \to \infty} S_{rn-r} = \left(1 - \frac{1}{r} \right) \ln 2$$

T 55. Submitted by M. S. Klamkin

Find all the solutions of the Diophantine equation

$$y = \sum_{r=1}^{x} r^{10}$$

S 55. Since $y = \sum_{r=1}^{x} r^{10}$, y is integral for all integers x.

T 56. Submitted by M. S. Klamkin

Describe the family of curves whose equation is $(x + y + 1)^2 = 3(x + y - xy - a^2)$ where x and y are real and a is a real parameter.

S 56. The equation can be rewritten as $(\cdot)^2 + (\cdot)^2 + (\cdot)^2 = -6a^2$. Whence the family consists of the single point $(1,1)$.

62

Q 306. Submitted by M. S. Klamkin

Show that

\[\frac{1}{11} + \frac{1}{111} + \frac{1}{1111} + \cdots + \frac{1}{10} = \frac{1}{1100} + \frac{1}{111000} + \cdots \]

[[This was originally misprinted with one too few zeroes in the last fraction. There is a correction at *Math. Mag.*, 37**(1964)** 203.]]

A 306. Since

\[\frac{1}{11} \left(1 - \frac{1}{100} \right) + \frac{1}{111} \left(1 - \frac{1}{1000} \right) + \cdots = \frac{1}{9} \left[\frac{1}{100} + \frac{1}{1000} + \cdots \right] = \frac{1}{10} \]

the result follows immediately.

Q 309. Submitted by M. S. Klamkin

Determine

\[\prod_{n=2}^{\infty} \left[1 - \frac{2}{1 + n^3} \right] \]

A 309.

\[\prod \left[1 - \frac{2}{1 + n^3} \right] = \prod \left(\frac{n - 1}{n + 1} \right) \cdot \prod \left(\frac{n^2 + n + 1}{n^2 - n + 1} \right) = (2) \left(\frac{1}{3} \right) = \frac{2}{3} \]

[[something wrong here, though answer is right. The \(n \)th partial product of the third product is \(\frac{n^2 + n + 1}{3(n+1)} \), which tends to infinity. If the original product is written as \(\prod \frac{n^2 - n + 1}{3(n+1)} \) then it is seen to converge, since the \(n \)th partial product is \(\frac{2(n^2 + n + 1)}{3n(n+1)} \) which tends to \(2/3 \) (from above!) In fact see the following:]]
Comment by Alan Sutcliffe, Knottingley, Yorkshire, England. There appear to be two compensating errors in this rather abbreviated solution. The first is the assumption that

$$\prod_{n=2}^{\infty} f(n)g(n) = \prod_{n=2}^{\infty} f(n) \prod_{n=2}^{\infty} g(n)$$

which is not true.

The second is in the evaluation of the two products, where cancellation is used to show that

$$\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 7 \cdots}{3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdots} = 2$$

and

$$\frac{7 \cdot 13 \cdot 21 \cdot 31 \cdot 43 \cdots}{3 \cdot 7 \cdot 13 \cdot 21 \cdot 31 \cdots} = \frac{1}{3}$$

If we replace this second series by

$$\frac{3 \cdot 6 \cdot 10 \cdot 15 \cdot 21 \cdots}{1 \cdot 3 \cdot 6 \cdot 10 \cdot 15 \cdots} (= 1, \text{by the solver’s method of cancellation})$$

we can prove that $1 = 2$ as follows:

$$1 = \prod_{n=2}^{\infty} 1 = \prod_{n=2}^{\infty} \left(\frac{n-1}{n+1} \right) \cdot \prod_{n=2}^{\infty} \left(\frac{\frac{1}{2}n(n+1)}{\frac{1}{2}n(n-1)} \right) = (2)(1) = 2.$$

A valid proof of the original proposition, suggested by the editor, may be given in the following way:

$$\prod_{n=2}^{N} \left[1 - \frac{2}{1+n^3} \right] = \prod_{n=2}^{N} \left(\frac{n-1}{n+1} \right) \cdot \prod_{n=2}^{N} \left(\frac{n^2+n+1}{n^2-n+1} \right) = \frac{2}{N(N+1)} \cdot \frac{N^2+N+1}{3} = \frac{2}{3} \left(1 + \frac{1}{N^2+N} \right)$$

$$\prod_{n=2}^{N} \left[1 - \frac{2}{1+n^3} \right] = \lim_{n \to \infty} \frac{2}{3} \left(1 + \frac{1}{N^2+N} \right) = \frac{2}{3}$$

Q 310. Submitted by M. S. Klamkin
Show that \(\sin \theta > \tan^2 \frac{\theta}{2} \) for \(0 < \theta < \frac{\pi}{2} \).

A 310. Let \(\cos \theta = x \). Then
\[
\sqrt{1-x^2} > \frac{1-x}{1+x} \quad \text{or} \quad (1+x)^{3/2} > (1-x)^{1/2}
\]
which is obviously true.

Q 312. Submitted by M. S. Klamkin
Show that no equilateral triangle which is either inscribed in or circumscribed about an ellipse (excluding the circular case) can have its centroid coinciding with the center of the ellipse.

A 312. Orthogonally project the ellipse into a circle. The equilateral inscribed or circumscribed triangles will become inscribed or circumscribed non-equilateral triangles whose centroids cannot coincide with the center of the circle. Since centroids transform into centroids, the proof is completed.

[[See also Math. Mag., 42(1969) 287. 816 which is identical.]]

518. Proposed by M. S. Klamkin, State University of New York at Buffalo
Show that an integer is determined uniquely from a knowledge of the product of all its divisors.

I. Solution and comments by Leo Moser, University of Alberta. By pairing a divisor \(d \) of \(n \) with its complementary divisor \(n/d \) (and leaving \(\sqrt{n} \), if it is a divisor, unpaired) we see that the geometric mean of the divisors of \(n \) is \(\sqrt{n} \) and hence, if \(\tau(n) \) denotes the number of divisors of \(n \),
\[
\prod_{d|n} d = n^{\tau(n)/2}
\]

We therefore need to show that
\[
n^{\tau(n)} = m^{\tau(m)} \quad \text{implies that} \quad n = m
\]

We will show more generally that if \(f(n) \) is an arithmetic function for which
\[
m \mid n \quad \text{implies} \quad f(m) \leq f(n) \quad \text{then} \quad (1)
\]
\[n^{f(n)} = m^{f(m)} \implies n = m\] \hspace{1cm} (2)

Proof of (2): Clearly \(n\) and \(m\) have the same prime factors. Suppose that
\[n = P_1^{\alpha_1} \cdots P_k^{\alpha_k}\]
and
\[m = P_1^{\beta_1} \cdots P_k^{\beta_k}\]
are the prime power representations of \(n\) and \(m\). Comparing the exponents of \(P_1\) in \(n\) and \(m\) we find
\[\alpha_1 f(n) = \beta_1 f(m)\] \hspace{1cm} (3)

Similarly
\[\alpha_2 f(n) = \beta_2 f(m)\] \hspace{1cm} (4)

From (3) and (4) we find
\[\frac{\alpha_1}{\alpha_2} = \frac{\beta_1}{\beta_2}\]

and similarly we find that
\[\frac{\alpha_1}{\beta_1} = \frac{\alpha_2}{\beta_2} = \cdots = \frac{\alpha_k}{\beta_k}\]

If this common ratio is 1 we are done. If not, assume without loss of generality that it exceeds 1. Then \(m \mid n\) and by (1) \(f(m) \leq f(n)\). Also \(m < n\) so that \(n^{f(n)} > m^{f(m)}\) and the result is established.

We note that special cases of suitable \(f(n)\) include
\[f(n) = \phi(n) = \sum_{1 \leq a \leq n, (a,n)=1} 1\]
\[f(n) = \sigma(n) = \sum_{d \mid n} d\]

and \(f(n) = \omega(n)\), where \(\omega(n)\) is the number of distinct prime divisors of \(n\).

Somewhat related to the fact that \(n^{\phi(n)} = m^{\phi(m)}\) implies \(n = m\) is the fact that \(n\phi(n) = m\phi(m)\) implies \(n = m\). This appears as a problem in *An Introduction to the Theory of Numbers* by Niven & Zuckerman. On the other hand we note that the corresponding result is not true for \(\phi\) replaced by \(\sigma\). In fact \(12\sigma(12) = 14\sigma(14)\) and more generally, if \((a, 42) = 1\) then \(12a\sigma(12a) = 14a\sigma(14a)\).

[[This last formula is garbled in the original. — R.]]

Let us call a solution of \(n\sigma(n) = m\sigma(m)\) primitive if it cannot be obtained from a smaller solution by multiplying through by some factor. We have not been able to decide whether \(n\sigma(n) = m\sigma(m)\), \(n \neq m\) has infinitely many solutions.

[[Forty years later Moser’s problem is still unsolved at B11 in *Unsolved Problems in Number Theory*. It is almost certain that the ‘We’ in his last sentence is Erdős & Moser. — R.]]

66
Math. Mag., 36(1963) 206, 156.

Q 314. Submitted by M. S. Klamkin

It follows by symmetry that the line joining the centers of two congruent, parallel, intersecting ellipse bisects the common chord. Show that the result holds if the ellipses are no longer congruent but similar.

A 314. The result is obvious true for two intersecting circles. Consequently it is true for two similar parallel ellipses by orthogonal projection.

Math. Mag., 36(1963) 206, 156.

Q 317. Submitted by M. S. Klamkin

A determinant whose elements are either 0 or 1 has a value ± 1. What is the maximum and minimum number of ones?

A 317. Obviously the minimum number is n. The maximum number is $n^2 - n + 1$ which occurs in the determinant $|A_{rs}|$ where $A_{rs} = 1 - \delta^{1,r-s}$ and $\delta_{m,n} = 0$ for $m \neq n$, and $\delta_{m,m} = 1$.

An Eccentric Orbit

504. [January 1963] Proposed by M. S. Demos, Drexel Institute of Technology

The orbit of the earth about the sun is an ellipse with the sun at the focus. Astronomy textbooks say that the mean distance of the sun from the earth is the major semi-axis a.

Show that the correct mean distance with respect to time is $(1 + e^2/2)a$, where e is the eccentricity.

Solution by M. S. Klamkin, SUNY at Buffalo, New York. For an elliptic orbit where

$$r = a(1 - e \cos E)$$

$$dE = \frac{k \ dt}{r \sqrt{a}}$$

(“Theoretical Mechanics”, Vol.1, Macmillan, p.279.) Whence,

$$\bar{r} = \frac{\int r \ dt}{\int dt} = \frac{\int_0^{2\pi} r^2 \ dE}{\int_0^{2\pi} r \ dE} = a(1 + e^2/2)$$

by a simple integration. Also it is easily shown that the average r with respect to polar angle is $a\sqrt{1-e^2}$. Both of these results are well known and in particular they are both posed as a problem in the aforementioned reference p.304, problem 25. Also
the problem as posed is given in “Theoretical Mechanics”, C. J. Coe, p.149. i.e., “In elliptic orbits the major semi-axis a of the ellipse is known in astronomy as the mean distance of the planet from the sun. Show that the actual average distance relative to the time is not a but $a(1 + e^2/2)$.”

Note: The arithmetic average of the perihelion distance and aphelion distance is a.

Q 318. Submitted by M. S. Klamkin

N perfectly elastic balls of equal mass are moving on the same straight line. What arrangement of velocities will produce the maximum number of collisions?

A 318. When two balls collide they will just exchange velocities. A simpler way of looking at this is to imagine the balls passing through each other. If we arrange the velocities in monotonic order, we will obtain $\binom{N}{2}$ collisions. That this is maximum follows by considering the world lines of the balls (s vs. t). The maximum number of points of intersection of N straight lines is $\binom{N}{2}$. If we have an elastic wall at one point of the line, the maximum number of collisions will be doubled.

[[The original read 'worldliness' which would be nice to preserve! — R.]]

497. Proposed by M. S. Klamkin, State University of New York, Buffalo

It is known that if a family of integral curves of the linear differential equation $y' + P(x)y = Q(x)$ is cut by the line $x = a$, then the tangents at the points of intersection are concurrent. Prove, conversely, that if for a first order equation $y' = P(x,y)$ the tangents (as above) are concurrent, then $F(x,y)$ is linear in y.

Math. Mag., 37(1964) 203.

Solution by Roop N. Kesarwani, Wayne State University, Michigan. Let the point of intersection with the line $x = a$ of a typical member of the family of integral curves of $y' = F(x,y)$ be (a,y_0). If a is fixed, y_0 clearly depends on the parameter of the family.

The tangent at the point of intersection to the integral curve is then $y - y_0 = F(a,y_0)(x-a)$. All such tangents pass through the same point, say (A,B). Therefore $B - y_0 = F(a,y_0)(A-a)$, or

$$F(a,y_0) = \frac{B - y_0}{A-a}$$

proving that $F(x,y)$ is linear in y.

Determine the maximum number of consecutive terms of the coefficients of a binomial expansion which are in arithmetic progression.

A 323. Three. For three terms to be in A.P., we must have

\[2 \binom{m}{n} = \binom{m}{n-1} + \binom{m}{n+1}\]
or
\[(m - 2n)^2 = m + 2\]

whence

\[m = a^2 - 2\]
\[2n = a^2 \pm a - 2\]

In order to have four terms in A.P., \((a^2 - a)/2 = (a^2 + a - 2)/2\) or \(a = 1\) and impossible.

(See Note of Th. Motzkin, *Scripta Math.*, March, 1946, p.14.)

Solution by Martin J. Cohen, Beverly Hills, California. I will prove a more general statement: Let \(F, G, H\) be functions such that \(F(x) = G(x) + H(x)\). Let

\[A = \left[\int_a^b F^2(x) \, dx \right]^{1/2}\]
\[B = \left[\int_a^b G^2(x) \, dx \right]^{1/2}\]
\[C = \left[\int_a^b H^2(x) \, dx \right]^{1/2}\]

\(A \geq 0, B \geq 0, C \geq 0\). Then \((B - C)^2 \leq A^2 \leq (B + C)^2\).

All we need is the form of the Minkowski integral inequality which states that

\[\left[\int_a^b f^2(x) \, dx \right]^{1/2} + \left[\int_a^b g^2(x) \, dx \right]^{1/2} \geq \left[\int_a^b (f(x) \pm g(x))^2 \, dx \right]^{1/2}\]
\[B + C = \left[\int_a^b G^2(x) \, dx \right]^{1/2} + \left[\int_a^b H^2(x) \, dx \right]^{1/2} \geq \left[\int_a^b (G(x) + H(x))^2 \, dx \right]^{1/2} \]

\[= \left[\int_a^b F^2(x) \, dx \right]^{1/2} = A \]

so that \(A^2 \leq (B + C)^2 \).

\[A + B = \left[\int_a^b F^2(x) \, dx \right]^{1/2} + \left[\int_a^b G^2(x) \, dx \right]^{1/2} \geq \left[\int_a^b (F(x) - G(x))^2 \, dx \right]^{1/2} \]

\[= \left[\int_a^b H^2(x) \, dx \right]^{1/2} = C \]

and similarly \(A + C \geq B \) so that \(A \geq |B - C| \) and \(A^2 \geq (B - C)^2 \)

Letting \(G(x) = x^r \) we see that

\[B = \left[\frac{b^{2r+1} - a^{2r+1}}{2r + 1} \right]^{1/2} \]

so that

\[\int_a^b F^2(x) \, dx \leq \left[\int_a^b (F(x) - x^r)^2 \right]^{1/2} + \left[\frac{b^{2r+1} - a^{2r+1}}{2r + 1} \right]^{1/2} \]

and

\[\int_a^b F^2(x) \, dx \geq \left[\int_a^b (F(x) - x^r)^2 \right]^{1/2} - \left[\frac{b^{2r+1} - a^{2r+1}}{2r + 1} \right]^{1/2} \]

\textit{Math. Mag., 37(1964) 62, 53.}

Q 327. Submitted by M. S. Klamkin

Determine all the triangles such that

\[a^2 + b^2 - 2ab\lambda \cos C = b^2 + c^2 - 2bc\lambda \cos A \]

\[= c^2 + a^2 - 2ca\lambda \cos B \]

A 327. \(a^2 + b^2 - 2ab\lambda \cos C = (1 - \lambda)a^2 + (1 - \lambda)b^2 + \lambda c^2 \). Consequently, \(a = b = c \) unless \(\lambda = 1/2 \) for which case the equations are identically satisfied.
Q 328. Submitted by M. S. Klamkin

Determine
\[
\int_0^\infty \frac{1 - e^{-t}}{t^m} \, dt \quad \text{where} \quad (2 > m > 1).
\]

A 328. Let
\[
\phi(a) = \int_0^\infty \frac{1 - e^{-at}}{t^m} \, dt
\]
then
\[
\phi'(a) = \int_0^\infty \frac{e^{-at}}{t^{m-1}} \, dt = \frac{1}{a^2 - m} \Gamma(2 - m)
\]
Hence
\[
\phi(1) = \frac{1}{m - 1} \Gamma(2 - m) = -\Gamma(1 - m).
\]

This procedure can be extended to integrals of the form
\[
\int_0^\infty \left(1 - t + \frac{t^2}{2!} - \cdots - e^{-t} \right) \frac{dt}{t^r}
\]

549. Proposed by M. S. Klamkin, SUNY at Buffalo, New York

The solution of the Clairaut equation \(y = xy' + F(y') \) is obtained by setting \(y' = c \) which gives \(y = cx + F(c) \). Determine the most general first order differential equation in which the solution can be obtained in this manner.

[[Compare Math. Mag., 45(1972) 102, 112. Q 537.]]}

Solution by Josef Andersson, Vaxholm, Sweden. (Translated by the editor.) If the equation is written \(y = \Phi(x, y') \) it follows that
\[
y' = \frac{\partial \Phi}{\partial x} + \frac{\partial \Phi}{\partial y'} \cdot y''
\]
The solution \(y' = C, y'' = 0 \) gives
\[
\frac{\partial \Phi}{\partial x} = y'
\]
and \(\Phi = xy' + F(y') \).

The Clairaut equation is therefore unique.
Math. Mag., 37(1964) 126, 83.

Q 332. Submitted by M. S. Klamkin

Factor $x^5 - 5x^2 + 2$.

A 332.

$$
x^5 - x^4 - x^3 + x^4 - x^3 - x^2 + 2x^3 - 2x^2 - 2x - 2x^2 + 2x + 2
\div x^5 - 5x^2 + 2
$$

so $x^5 - 5x^2 + 2 = (x^2 - x - 1)(x^3 + x^2 + 2x - 2)$.

[[Is this really a quickie? — R.]]

Math. Mag., 37(1964) 126, 83.

Q 334. Submitted by M. S. Klamkin

Determine the ratio

$$
\sum_{r=0}^{n} r \binom{n}{r} p \div \sum_{r=0}^{n} \binom{n}{r} p
$$

A 334. The ratio $n/2$ follows immediately from

$$
\sum_{r=0}^{n} r \binom{n}{r} p = \sum_{r=0}^{n} (n-r) \binom{n}{r} p
$$
or from

$$
\sum_{r=0}^{n} r^2 \binom{n}{r} p = \sum_{r=0}^{n} (n-r)^2 \binom{n}{r} p
$$

Math. Mag., 37(1964) 126, 82.

T 59. Submitted by M. S. Klamkin

Determine a function $\phi(x,y)$ such that the set of points (x,y) satisfying $\phi(x,y) = 0$ has area 1.

S 59. $\phi(x,y) = |x - 1| + |x + 1| + |y - 1| + |y + 1| - 4 = 0$. This set consists of all points in and on the square with vertices $(\pm 1, \pm 1)$.

[[This seems to give area 4, rather than area 1. — R.]]
A person was directed to the downtown side of an unfamiliar subway station. He desired to get on the first car. Which end of the platform should he walk to, assuming that there are no signs, signal lights or trains in the station to cue him?

In the United States, he should walk in a direction such that the uptown tracks are kept on his left. Presumably, in London, it would be in the opposite direction. That is, if the trains run the same way as the automobile.

Show that the only factorization of homogeneous polynomials into polynomials is into homogeneous ones.

Assume

\[H(x, y, z) = F(x, y, z)G(x, y, z) \]

But \(H \) can be expressed in the form

\[x^n P \left(\frac{y}{x}, \frac{z}{x} \right) \]

Let \(r = \frac{y}{x} \) and \(s = \frac{z}{x} \), then

\[x^n P(r, s) = F(x, rx, sx)G(x, rx, sx) \]

Now it follows that

\[F(x, rx, sx) = x_{n_1} P_1(r, s) \]
\[G(x, rx, sx) = x_{n_2} P_2(r, s) \]

Since the only factorizations of \(x^n \) are of the form \(x^{n_1} \cdot x^{n_2} \) where \(n_1 + n_2 = n \). Whence \(F \) and \(G \) are homogeneous.

[[Not a very quickie? Does the proof automatically extend to any number of variables? — R.]]
Q 263. [January 1960]. Submitted by Melvin Hochster & Jeff Cheeger. Solve arctan \(\frac{p}{x} \) + arctan \(\frac{q}{x} \) + arctan \(\frac{r}{x} \) = \(\pi \) for \(x \) where \(p, q \) and \(r \) are fixed.

A 263. In the diagram we have

\[
\begin{array}{c}
A \\
p \\
A/2 \quad p \\
\alpha \quad \gamma \quad r \\
B/2 \\
q \\
x \\
B \quad q \quad r \\
C/2 \\
\end{array}
\]

arctan \(\frac{p}{x} \) + arctan \(\frac{q}{x} \) + arctan \(\frac{r}{x} \) =
\(\alpha + \beta + \gamma = (\pi/2) - (A/2) + (\pi/2) - (B/2) + (\pi/2) - (C/2) = (3\pi/2) - \pi/2 = \pi \). Thus \(x \) is the radius of the incircle of a triangle of sides \(p + q, q + r \) and \(r + p \) and has the value \(\sqrt{pqr/(p + q + r)} \).

Comment by M. S. Klamkin, State University of New York at Buffalo. The proof submitted by the proposers, although elegant, is only valid if \(p + q, q + r \) and \(r + p \) form a triangle. The solution \(x = \sqrt{pqr/(p + q + r)} \) is still correct even if a triangle is not formed.

This follows from

\[
\text{arctan} \frac{p}{x} + \text{arctan} \frac{q}{x} + \text{arctan} \frac{r}{x} = \text{arctan} \frac{x^2(p + q + r) - pqr}{x(x^2 - pq - qr - rp)}
\]
Comment on Q319

Q 319. [September 1963]. Submitted by C. W. Trigg. Factor \(a^3 + b^3 + c^3 - 3abc \).

A 319. By symmetry, one factor must be \((a + b + c)\) and another factor must contain squared terms and terms of the form \(-ab\) so that in the product, terms of the form \(a^2b\) will vanish, so \(a^3 + b^3 + c^3 = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) \).

[[There’s an obvious misprint here, as well as the relevant following comment by Murray. — R.]]

Comment by M. S. Klamkin, SUNY at Buffalo, New York. The argument used in obtaining the factorization of Q 319, i.e.,

\[
 a^3 + b^3 + c^3 - 3abc
\]

is invalid in general. It works here since the given polynomial, coincidentally, has a pair of symmetric factors. While it is easy to establish that the only factorizations of homogeneous polynomials are into homogeneous polynomials, it is not true that symmetric polynomials factor into symmetric polynomials. Two obvious counter-examples are

\[
 x^2y^2 + x^3 + y^3 + xy = (x^2 + y)(y^2 + x) \quad \text{and} \quad xy^2 + x^2y + yz^2 + y^2z + zx^2 + z^2x + 2xyz = (x + y)(y + z)(z + x)
\]

Another method which is often useful for finding symmetric but not necessarily homogeneous factors is the following:

Let \(a, b, c \) be the roots of

\[
 x^3 - px^2 + qx - r = 0
\]

Then

\[
 \sum a^2 = p^2 - 2q
\]

\[
 \sum a^3 = p \sum a^2 - q \sum a + 3r = p^3 - 3pq + 3r
\]

Whence

\[
 a^3 + b^3 + c^3 - 3abc = p^3 - 3pq = p(p^2 - 3q) = \left(\sum a \right) \left(\sum (a^2 - bc) \right)
\]
Determine \(\{a_r\} \) such that

\[
[a_0 + a_1 + a_2 + \cdots]^x = a_0 + a_1 x + a_2 x^2 + \cdots.
\]

If \(\bar{r} \) denotes the mean distance between two random points in a sphere of radius \(r \) (with uniform distribution with respect to volume), show that \(3r/2 > \bar{r} > 3r/4 \).

If three forces are in equilibrium they must be coplanar and concurrent.

[[It may not be immediately apparent that you can get your nonzero moment — e.g., if the three forces were in three members of one family of generators of a hyperboloid of one sheet, then you might keep trying generators from the other family and get a zero moment. Also the case of three parallel, coplanar forces doesn’t seem to be dismissed. — R.]]
Proposed by M. S. Klamkin, SUNY at Buffalo and L. A. Shepp, Bell Telephone Laboratories

[[Shepp’s name was added in an erratum at Math. Mag., 39(1966) 127.]]

Show that if $x_n \geq x_{n-1} \geq \cdots \geq x_2 \geq x_1 \geq 0$ then $x_1 x_2 x_3 \cdots x_n \geq x_1 x_2 x_3 \cdots x_1$ for $n \geq 3$, with equality holding only if $n - 1$ of the numbers are equal.

Solution by L. Carlitz, Duke University. We may assume that $x_1 > 0$. Then the stated inequality is equivalent to

$$\left(\frac{x_2}{x_1}\right)^{x_2} \cdots \left(\frac{x_n}{x_1}\right)^{x_1} \geq \left(\frac{x_2}{x_1}\right)^{x_1} \left(\frac{x_n}{x_1}\right)^{x_{n-1}}$$

[[I’m a bit suspicious of this. — R.]]

We may therefore assume that $x_n \geq \cdots \geq x_2 \geq x_1 = 1$.

For $n = 3$ put $x_2 = 1 + a$, $x_3 = 1 + b$, where $b \geq a$. The stated inequality becomes $(1 + a)^{1+b}(1 + b) \geq (1 + a)(1 + b)^{1+a}$, that is,

$$(1 + a)^b \geq (1 + b)^a \quad (1)$$

This is an immediate consequence of Bernoulli’s inequality. Moreover, we have equality if and only if $a = b$ or $a = 0$.

In the general case, we wish to show that

$$\prod_{s=2}^{n-1} x_s^{x_{s+1}} \cdot x_n \geq x_2 \prod_{s=3}^{n} x_s^{x_{s-1}}$$

If we put $x_s = 1 + a_s$, $\frac{1}{2} \leq s \leq n$, this inequality becomes

$$\prod_{s=2}^{n-1} (1 + a_s)^{1+a_{s+1}}(1 + a_n) \geq (1 + a_2) \prod_{s=2}^{n} (1 + a_s)^{1+a_{s-1}} \quad (2)$$

where $a_n \geq a_{n-1} \geq \cdots \geq a_2 \geq 0$. Then by (1), the left member of (2) is greater than or equal to

$$\prod_{s=2}^{n-1} (1 + a_{s+1})^{a_s} \cdot \prod_{s=2}^{N} (1 + a_s) = \prod_{s=2}^{n} (1 + a_s)^{a_{s-1}} \cdot \prod_{s=2}^{n} (1 + a_s)$$

$$= (1 + a_2) \prod_{s=2}^{n} (1 + a_s)^{1+a_{s-1}}$$
This proves (2).

The condition for equality in (1) is either \(a = b\) or \(a = 0\). Thus the condition for equality in (2) is either \(a_s = a_{s+1}\) or \(a_s = 0\), \((s = 2, \ldots, n-1)\). Assume that

\[
a_2 = \cdots = a_k = 0 < a_{k+1} = \cdots = a_n
\]

then (2) becomes

\[
(1 + a_n)^{(n-k-1)(1+a_n)+1} = (1 + a_2)(1 + a_n)^{(n-k-1)(1+a_n)+1}
\]

Provided \(2 \leq k < n\). This gives \(a_n = a_2\) which contradicts (3). Hence either \(a_2 = \cdots = a_{n-1} = 0\) or \(a_2 = \cdots = a_{n-1} = a_n\).

Also solved by the proposer.

[[Compare the following item from the MONTHLY:

E 2203*. Proposed by M. S. Klamkin, Ford Scientific Laboratory

It is known that if \(0 \leq x_1 \leq x_2 \leq \cdots \leq x_n\), \((n \geq 3)\), then

\[
x_1^{x_2}x_2^{x_3} \cdots x_n^{x_1} \geq x_2^{x_3}x_3^{x_4} \cdots x_1^{x_n}
\]

Are there any other nontrivial permutations \(\{a_i\}\) and \(\{b_i\}\) of the \(\{x_i\}\) such that

\[
a_1^{a_2}a_2^{a_3} \cdots a_n \geq b_2^{b_1}b_1^{b_2} \cdots b_n^{b_0}
\]

Solution (adapted) by G. L. Watson, University College, London, England. For \(n = 3\) there is no other nontrivial permutation of the \(x_i\) of the form required. For \(n = 4\) there are other solutions. For one such solution, note that \(x_3/x_1 \geq 1, x_4/x_3 \geq 1, x_3 - x_2 \geq 0, x_3 - x_1 \geq 0\) imply

\[
(x_3/x_1)^{x_3-x_2}(x_4/x_3)^{x_3-x_1} \geq 1
\]

whence (upon multiplying both sides by \(x_2^{x_4}/x_3^{x_2}\))

\[
x_1^{x_2}x_2^{x_3}x_3^{x_4}x_4^{x_1} \geq x_1^{x_3}x_3^{x_2}x_2^{x_4}x_4^{x_1}
\]

For \(n > 4\), the possibilities increase rapidly. For example, with \(n = 5\),

\[
(x_5/x_2)^{x_4-x_3}(x_2/x_1)^{x_5-x_2} \geq 1
\]

implies

\[
x_1^{x_2}x_2^{x_3}x_3^{x_4}x_4^{x_1} \geq x_1^{x_3}x_3^{x_2}x_2^{x_4}x_4^{x_1}
\]

]]
Four spheres whose centres are at \((x_n, y_n, z_n)\), \(n = 1, 2, 3, 4\) are mutually tangent externally. Find their radii.

A 349. It follows that
\[
r_i + r_j = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}
\]
[[the last two minuses were printed as pluses. There seem to be other misprints as well. Perhaps the next ‘sub i’ shd be ‘sub 1’ ? Can someone check ? Thanks. — R.]]

Whence \(2r_i + \sum_1^4 r_i = a_{12} + a_{13} + a_{14}, \sum_1^4 r = \frac{1}{3} \sum_{r,s} a_{rs}, 6r_1 = 2(a_{12} + a_{13} + a_{14}) - (a_{23} + a_{34} + a_{42})\)

Q 353. Submitted by M. S. Klamkin

Solve the functional equation
\[
f(x + y)f(x - y) = \{f(x) + f(y)\}\{f(x) - f(y)\}
\]
given \(f\) has a second derivative.

A 353. Differentiating with respect to \(x\) and then with respect to \(y\) yields
\[
\frac{f''(x + y)}{f(x + y)} = \frac{f''(x - y)}{f(x - y)} = \text{constant}.
\]

Whence \(f(x) = a \sin mx, \ ax, \ or \ a \sinh mx\). This is a sort of a converse to Trickie T 52 by C. F. Pinzka (Vol.35, No.2, March, 1962).

Comment by Sid Spital, California State College, Hayward. Answer A 353 is correct but fails to point out that all solutions must be odd. This results from first setting \(x = 0\) in the functional equation: \(f(y)f(-y) = f(0)^2 - f(y)^2\) and then setting \(y = 0: f(0) = 0\). Hence \(f(-y) = -f(y)\).
Q 359. Submitted by M. S. Klamkin
Minimize $\int_0^1 F'(x)^2 \, dx$ where $F(0) = 0$ and $F(1) = 1$.

A 359. By the Schwartz inequality
\[
\int_0^1 F'(x)^2 \, dx \int_0^1 1 \, dx \geq \left(\int_0^1 F'(x) \, dx \right)^2 = 1
\]

Comment by Sidney Spital, California State College at Hayward. An alternative solution is obtained by letting $G(x) = F(x) - x$. Then clearly since $G(0) = G(1) = 0$, we have
\[
\int_0^1 (G''(x) + 1)^2 \, dx = \int_0^1 (G''(x))^2 \, dx + 1 \geq 1
\]

Q 361. Submitted by M. S. Klamkin
Find a geometrical solution for the functional equation $F(2\theta) = F(\theta) \cos \theta/2$.

A 361. $F(\theta)$ denotes the distance the C.G. of a sector of angle 2θ is from the center. Consequently $F(\theta) = \sin \theta/2\theta$.

Q 363. Submitted by M. S. Klamkin
Factor $x^11 + x^4 + 1$.

A 363. If ω is a primitive cube root of unity, it follows immediately that $\omega^{3m+2} + \omega^{3n+1} = 0$. [[Is it really??]] Consequently $x^2 + x + 1$ is a factor of $x^{3m+2} + x^{3n+1} + 1$. To find other factors, just divide.

[[this needs cleaning up a bit. — R.]]
Q 366. Submitted by M. S. Klamkin

Solve

\[
\begin{align*}
 x + y + z &= 3 \\
 x^2 + y^2 + z^2 &= 7/2 \\
 x^3 + y^3 + z^3 &= 9/2
\end{align*}
\]

A 366. Let \(x, y, z \) be the roots of \(s^3 + a_1 s^2 + a_2 s + a_3 = 0 \). Then

\[
a_1 = 3 \quad \sum x^2 = \left(\sum x \right)^2 - 2 \sum xy \quad \text{and} \quad a_2 = 11/4
\]

Next

\[
\sum x^3 + a_1 \sum x^2 + a_2 \sum x + 3a_3 \quad \text{and} \quad a_3 = -3/4
\]

The roots of the cubic are \(1/2, 2/2 \) and \(3/2 \).

Q 369. Submitted by M. S. Klamkin

Find

\[
I_n = D^n \left\{ \arctan \frac{2x^3}{1 + 3x^2} \right\}_{x=0}
\]

A 369. Since

\[
\arctan \frac{2x^3}{1 + 3x^2} = 2 \arctan x - \arctan 2x
\]

we have \(I_{2n} = 0 \) and

\[
I_{2n+1} = \frac{(-1)^n}{2n-1} \left(2^{2n-1} - 2 \right)
\]
Q 373. Submitted by M. S. Klamkin

Show that \(e^x \) is a transcendental function.

A 373. Assume that \(e^x \) is algebraic, then

\[
a_0(x)e^{nx} + a_1(x)e^{(n-1)x} + \cdots + a_n(x) = 0
\]

where \(a_r(x) \) are polynomials. Consequently

\[
-a_0(x)e^{x/2} = \frac{a_1(x)e^{(n-1)x} + \cdots + a_n(x)}{e^{(n-1/2)x}}
\]

Letting \(x \to 0 \) we obtain a contradiction, whence \(e^x \) is transcendental.

[[No doubt my stupidity, but I don’t get this. — R.]]

Show that the operators \((D-1)^n \times (D-1)\) and \(x(D-1)^{n+1} + n(D-1)^n\) are equivalent for \(n = 1, 2, 3, \ldots \), where \(D \equiv d/dx \).

II. Solution by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan.

Let \(L(D) \) designate any linear differential operator with variable coefficients (it could even be just a function of \(x \)). Then by Leibniz’s rule for the \(n \) th derivative,

\[
D^n\{xL(D)\} \equiv xD^nL(D) + nD^{n-1}L(D)
\]

Now multiply by \(\exp \int p \, dx \) (\(p \) is an arbitrary function of \(x \)) and use the exponential shift theorem, i.e.,

\[
\exp \int p \, dx \, L(D) \equiv L(D - p) \exp \int p \, dx
\]

This yields:

\[
\{(D-p)^n xL(D-p) - x(D-p)^n L(D-p) - n(D-p)^{n-1}L(D-p)\} \exp \int p \, dx \equiv 0
\]

or equivalently

\[
(D-p)^n xL(D-p) \equiv x(D-p)^n L(D-p) + n(D-p)^{n-1}L(D-p)
\]

The proposed problem corresponds to the special case \(L(D) + D \), \(p = 1 \).
Q 377. Submitted by M. S. Klamkin

Solve the difference equation

\[P_{n+1} - 2P_n + (1 + x^2)P_{n-1} = 0 \]

where \(P_0 = a(x) \) and \(P_1 = b(x) \).

A 377. Let \(xQ_n = P_{n+1} - P_n \), then

\[Q_{n+1} = Q_n - xP_n \]

Now let \(F_n = P_n + iQ_n \), which gives us

\[F_{n+1} = (1 - ix)F_n \]

\[F_0 = b(x) + i[b(x) - a(x)]/x \]

and

\[F_n = (1 - ix)^n F_0 \]

where \(P \) equals the real part of \(F_n \).

Q 378. Submitted by M. S. Klamkin and W. J. Miller

Find the average area of all triangles which can be inscribed in a given triangle. (It is assumed that the vertices are uniformly distributed over the sides of the given triangle.)

A 378. (1) Analytic solution.

\[\bar{A} = \frac{1}{abc} \int_0^a \int_0^b \int_0^c \left\{ A - \frac{1}{2} [z(b - y) \sin A + x(c - z) \sin B + y(a - x) \sin C] \right\} dxdtdz \]

\(\bar{A} = A/4 \) where \(A \) is the area of the given triangle.

(2) Geometric solution. If a series of triangles have a common base and their vertices be in a given finite straight line which is wholly on the same side of the base, the average [area] of all triangles thus formed is that [[of]] whose vertex is at the middle of the line segment; since for every triangle which exceeds this, there is obviously another just as much less than it. Consequently the mean-inscribed triangle is one joining the midpoints of the sides, and \(\bar{A} = A/4 \).
Show that a sufficient condition for a sphere to exist which intersects each of four given spheres in a great circle is that the centers of the four given spheres be noncoplanar.

Solution by P. N. Bajaj, Western Reserve University. Let the given spheres have equations

\[
x^2 + y^2 + z^2 + 2u_ix + 2v_iy + 2w_iz + d_i = 0 \quad i = 1, 2, 3, 4
\]

referred to rectangular coordinates. Sphere \(x^2 + y^2 + z^2 + 2Ux + 2Vy + 2Wz + P = 0 \) cuts these in the circles lying in the planes

\[
2(U - u_i)x + 2(V - v_i)y + 2(W - w_i)z + () = 0 \quad i = 1, 2, 3, 4
\]

If the circles of intersection are great circles, then

\[
-2(U - u_i)u_i - 2(V - v_i)v_i - 2(W - w_i)w_i + (D - d_i) = 0 \quad i = 1, 2, 3, 4
\]

or

\[
2Uu_i + 2Vv_i + 2Ww_i - D = 2u_i^2 + 2v_i^2 + 2w_i^2 - d_i \quad i = 1, 2, 3, 4
\]

A sufficient condition for these equations to determine \(U, V, W, D \) is

\[
\begin{vmatrix}
 u_1 & v_1 & w_1 & 1 \\
 u_2 & v_2 & w_2 & 1 \\
 u_3 & v_3 & w_3 & 1 \\
 u_4 & v_4 & w_4 & 1
\end{vmatrix} \neq 0
\]

i.e., centers of the given spheres are nonplanar. Hence the result.

Q 388. Submitted by M. S. Klamkin

Evaluate in closed form the integral

\[\int_{\sqrt{2}}^{\infty} \frac{dx}{x + x\sqrt{2}} \]

A 388. Consider

\[I = \int \frac{dx}{x + x^m} = \int\frac{dx}{x^{1-m} + 1} = \frac{1}{1-m} \log(x^{1-m} + 1) \]

Thus

\[\int_{\sqrt{2}}^{\infty} \frac{dx}{x + x\sqrt{2}} = (\sqrt{2} - 1) \log[1 + 2^{(1-\sqrt{2})/2}] \]

Q 393. Submitted by M. S. Klamkin

Sum

\[\sum_{n=0}^{\infty} \frac{2^n}{3^{2^n} + 1} \]

[[the exponent \(2^n\) was misprinted as \(2n\) — R.]]

A 393. Here

\[\frac{2^n}{3^{2^n} + 1} = \frac{2^n}{3^{2^n} - 1} - \frac{2^{n+1}}{3^{2^{n+1}} - 1} \]

So the sum \(S = 1/2\)

Q 397. Submitted by M. S. Klamkin

Determine

\[\lim_{n \to \infty} \frac{1}{n} \sqrt[n]{(n+1)(n+2) \cdots (n+n)} \]

A 397.

\[\log L = \lim_{n \to \infty} \frac{1}{n} \left[\log \left(1 + \frac{1}{n}\right) + \log \left(1 + \frac{2}{n}\right) + \cdots + \log \left(1 + \frac{n}{n}\right) \right] \]

\[\log L = \int_{0}^{1} \log(1 + x) \, dx = 2 \log 2 - 1 \]
from the definition of a definite integral. Therefore $L = 4/e$.

Comment by S. Spital, California State Polytechnic College, Pomona. An alternative solution is provided by a generating power series. Let $a_n = (n+1)(n+2) \cdots (n+n)/n^n$ and consider

$$\sum_{n=0}^{\infty} a_n x^n$$

From the ratio and root tests,

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} a_n + 1/a_n = \lim_{n \to \infty} \frac{(2n+1)(2n+2)}{(n+1)^2(1+1/n)^n} = 4/e
$$

Comment by Eckford Cohen, Manhattan, Kansas. This limit can also be evaluated by applying a weak form of Stirling’s formula. We may write

$$c_n \overset{\text{def}}{=} \frac{1}{n} \left((n+1)(n+2) \cdots (n+n) \right)^{1/n} = 4 \left(\frac{a_n^2}{a_n} \right)$$

where $a_n = \sqrt[n]{n!}/n$. It follows that

$$\lim_{n \to \infty} c_n = \frac{4}{e}$$

from the well-known result, $\lim_{n \to \infty} a_n = 1/e$. The latter result can be proved in a number of ways. For a simple proof based on the exponential function, we refer to S. Saks & A. Zygmund, *Analytic Functions*, Chapter 7, Section 5.
Comment on Problem 612

612. [January & September, 1966]. Proposed by M. B. McNeil, University of Missouri at Rolla

The integral
\[I_1 = \frac{1}{\pi^3} \int_0^\pi \int_0^\pi \int_0^\pi \frac{du \, dv \, dw}{1 - \cos u \cos v \cos w} \]
occurs in the study of ferromagnetism and in the study of lattice vibrations. Prove that
\[I_1 = (4\pi^3)^{-1}[\Gamma(1/4)]^4 \]

The sum
\[S = \sum_{n=0}^{\infty} \left\{ \frac{1}{2^{2n}} \binom{2n}{n} \right\}^3 \]
occurs in a combinatorial probability problem [1]. We evaluate the sum by two methods and obtain as a by-product some interesting equivalent expressions.

Since
\[\binom{2n}{n} = \frac{2}{\pi} \int_0^{\pi/2} (2 \cos \theta)^{2n} \, d\theta \quad (1) \]
\[S = \frac{4}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{2^{2n}(2n^{2n})} \int_0^{\pi/2} \int_0^{\pi/2} (4 \cos \theta \cos \psi)^{2n} \, d\theta \, d\psi \quad (2) \]

By using
\[\sum_{n=0}^{\infty} \binom{2n}{n} x^n = \frac{1}{\sqrt{1 - 4x}} \]
(2) becomes
\[S = \frac{4}{\pi^2} \int_0^{\pi/2} \int_0^{\pi/2} \frac{d\theta \, d\phi}{\sqrt{1 - \cos^2 \theta \cos^2 \phi}} \]
\[= \frac{4}{\pi^2} \int_0^{\pi/2} \int_0^{\pi/2} \frac{d\theta \, d\phi}{\sqrt{1 - \sin^2 \theta \sin^2 \phi}} \]
or, in terms of the complete elliptic function of the first kind,
\[S = \frac{4}{\pi^2} \int_0^{\pi/2} K(\sin \theta) \, d\theta \]
\[= \frac{4}{\pi^2} \int_0^1 K(k) \, dk \]
\[= \frac{4}{\pi^2} \int_0^1 \frac{K(k)}{\sqrt{1 - k^2}} \]
\[= 87 \]
The last integral is given in [2, p.637] as

\[S = \frac{4}{\pi^2} K \left(\frac{1}{\sqrt{2}} \right)^2 \]

Identities leading to equivalent hypogeometric or gamma functions may be found in the same reference (pp.905, 909). Whence, also,

\[S = \frac{1}{4} \frac{\Gamma(\frac{1}{4})^4}{\pi^2} = {}_2F_1(\frac{1}{2}, \frac{1}{2}; 1; \frac{1}{2})^2 = 1.393203929685^+ \]

The sum \(S \) was also obtained as a by-product in establishing

\[I = \frac{1}{\pi^2} \int_0^\pi \int_0^\pi \int_0^\pi \frac{du\,dv\,dw}{1 - \cos u \cos v \cos w} = \frac{1}{4\pi^2} \Gamma(\frac{1}{4})^4 \]

Q 400. Submitted by M. S. Klamkin

Find the general solution to the differential equation

\[\{D^n x^{2n} D^n - x^n D^{2n} x^n + \lambda^{2n-1}\} y = 0 \]

A 400. The only solution is \(y = 0 \) since \(D^n x^{2n} D^n \equiv x^n D^{2n} x^n \). This follows from \(D^m x^m = x^m D^m + a_1 x^{m-1} + \cdots + a_m \) by Leibniz’s theorem, \(x^r D^r = xD(xD - 1 \cdots (xD - r + 1)) \). Since \(xD - k_1 \) commutes with \(xD - k_2 \), \(D^m x^m \) commutes with \(x^n D^n \) or \(D^m x^{m+n} D^n \equiv x^n D^{m+n} x^m \).
It is easy to show that any two spheres are homothetic, regardless of their orientation. Show that this property characterizes spheres; that is, if two bounded figures are homothetic, regardless of their orientation, then they both must be spheres.

Solution by Pierre Bouchard, Université de Montréal, Canada. It is easy to show that \(\{ x : |x| \in (1, 2), x \in \mathbb{R}^3 \} \) and \(\{ x : |x| \in (3, 6), x \in \mathbb{R}^3 \} \) are not spheres and are homothetic, regardless of their orientation. This negates the proposal as stated. However, we can prove that the given figures must have a frontier which is the union of a set \(S \) of concentric spheres, the cardinality of \(S \) being the same in each figure. But “seen” from “outside the bounds” they look like spheres. We proceed to prove this last fact.

Let \(F_1 \) and \(F_2 \) be the “exterior frontiers” of the given figures in a given position: more precisely \(F_i = \{ x \in \mathbb{R}^3 : \exists y \text{ such that } |y| = 1 \text{ and } x = \sup_{z \in c_i} z \} \) where \(c_i \in \mathbb{R}^3 \) is the \(i \)th figure. First remark that for every \(y \) on the unit sphere there is a corresponding \(x \) (because of the “regardless of orientation”; otherwise the figures would be unbounded or void). Since \(F_1 \) and \(F_2 \) are homothetic regardless of orientation, so are \(F_1 \) and \(r(F_2) \) (since affine homothety is translation or central homothety we may restrict ourselves to central homothety).

Let \(P_1, P_2 \) be in \(F_1 \). Then there is an \(\alpha \in \mathbb{R} \) such that \(\alpha P_1, \alpha P_2 \) are in \(F_2 \). Let \(r \) be a rotation such that \(r(\alpha P_1) \) is on the line \(OP_2 \) and \(r(\alpha P_2) \) is on the line \(OP_1 \) (i.e., \(r \) is the rotation of \(\pi \) with respect to the axis passing through \(O \) and \(\frac{1}{2}(P_1/|P_1| + P_2/|P_2|) \)). Then \(F_1 \) and \(r(F_2) \) are homothetic and since \(\sup_{z \in x} z = cy \) is unique we must have \(r(\alpha P_1) = \beta P_2, r(\alpha P_2) = \beta P_1 \). Since \(r \) preserves distances,

\[
\beta = |r(\alpha P_1)|/|P_2| = |\alpha(P_1)|/|P_2| = \alpha|P_1|/|P_2|
\]

and

\[
\beta = |r(\alpha P_2)|/|P_1| = |\alpha(P_2)|/|P_1| = \alpha|P_2|/|P_1|
\]

89
Whence $|P_1|/|P_2| = |P_2|/|P_1|$, or $|P_2| = |P_1|$. That is F_1 is a sphere so is F_2 (homothetic image of a sphere).

Klamkin suggested that the counterexample exhibited by Bouchard could be eliminated by adding to the statement of the problem the qualifying statement, “bounded closed convex figures”.

Q 405. Submitted by M. S. Klamkin

It is apparent that a bounded figure need not have a unique chord of maximum length. Show, however, that two such maximum chords cannot be parallel.

A 405. The proof is indirect. Assume two congruent and parallel chords of maximum length. The endpoints of these chords are the vertices of a parallelogram, one of whose diagonals, at least, is larger than all the sides. This contradicts our initial assumption and, consequently, we obtain our stated result.

Greatest Divisors of Even Integers

The greatest divisors of the form 2^k of the numbers of the sequence 2, 4, 6, 8, 10, 12, 14, ..., are 2, 2^2, 2, 2^3, 2, 2^2, 2, Find the nth term of this sequence.

II. Solution by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan. If a_n denotes the nth term, then it follows immediately that

\[
\begin{align*}
 a_{2n+1} &= 2^1 \\
 a_{4n+2} &= 2^2 \\
 a_{8n+4} &= 2^3 \\
 &\vdots
\end{align*}
\]

In general

\[a_{2^r m + 2^r - 1} = 2^r\]

Note that every number n can be expressed uniquely in the form $2^r m + 2^r - 1$.

90
A Convex Curve Property

641. [November, 1966]. Proposed by Yasser Dakkah, S.S. Boys’ School, Qalqilya, Jordan

Prove that if
\[\sum_{i=1}^{n} x_i = S \]
and \(0 < x_i \) (\(i = 1, 2, \ldots, n \)), then
\[\sum_{i=1}^{n} \cosh x_i \geq \cosh(S/n) \]

I. Solution by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan. The result follows immediately from the well known inequality for convex functions, i.e.,

If \(\phi(x) \) is convex then
\[\frac{\Phi(x_1) + \phi(x_2) + \cdots + \phi(x_n)}{n} \geq \phi \left(\frac{x_1 + x_2 + \cdots + x_n}{n} \right) \]

Since \(\cosh x \) is everywhere convex \((D^2 \cosh x > 0) \), just replace \(\phi(x) \) by \(\cosh x \) to give the desired result. Note that there is nonecessity for the restriction \(x_i > 0 \).

Q 414. Submitted by M. S. Klamkin

How many primes \(p \) exist such that \(p, p + 2d \) and \(p + 4d \) are all primes where \(d \) is not divisible by 3?

A 414. Now \(p \) must be of the form 3, 3m + 1 or 3m + 2, while \(d \) must be of the form 3n + 1 or 3n + 2. Going through the six possibilities, we find there is only one prime, \(p = 3 \).

Q 416. Submitted by M. S. Klamkin

Determine the range of the function $I(t)$ where

$$I(t) = \int_{0}^{\infty} \frac{dx}{(x^2 + 1)(x^t + 1)}$$

A 416.

$$I(t) = \int_{0}^{1} \frac{dx}{(x^2 + 1)(x^t + 1)} + \int_{1}^{\infty} \frac{dy}{(y^2 + 1)(y^t + 1)}$$

In the second integral let $y = 1/x$. We then obtain

$$I(t) = \int_{0}^{1} \frac{dx}{x^2 + 1} = \pi/4$$

Thus the range of $I(t) = 0$. This integral appears in *Induction and Analogy in Mathematics*, by G. Pólya.

Math. Mag., 41 (1968) 43.

683. Proposed by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan

Two triangles have sides $\sqrt{a^2 + b^2}$, $\sqrt{b^2 + c^2}$, $\sqrt{c^2 + a^2}$ and $\sqrt{p^2 + q^2}$, $\sqrt{q^2 + r^2}$, $\sqrt{r^2 + p^2}$. Which triangle has the greater area if in addition we have $a^2b^2 + b^2c^2 + c^2a^2 = p^2q^2 + q^2r^2 + r^2p^2$ and $a > p$, $b > q$?

Math. Mag., 41 (1968) 221.

I. **Solution by Michael Goldberg, Washington, D.C.** The tri-rectangular tetrahedron whose right-angled edges have lengths a, b, c has the lengths $\sqrt{a^2 + b^2}$, $\sqrt{b^2 + c^2}$ and $\sqrt{c^2 + a^2}$ for its other edges. Since the squares of the areas of the right-triangle faces add to the square of the area of the fourth face, the square of the area of the fourth face is $(a^2b^2 + b^2c^2 + c^2a^2)/4$. Similarly, for a tri-rectangular tetrahedron whose right-angled edges have lengths p, q, r, the square of the area of the fourth face is $(p^2q^2 + q^2r^2 + r^2p^2)/4$. But since we are told that $a^2b^2 + b^2c^2 + c^2a^2 = p^2q^2 + q^2r^2 + r^2p^2$, the two triangles have the same area, regardless of the relations between a, p, b and q.

Math. Mag., 41 (1968) 50, 42.

Q 423. Submitted by M. S. Klamkin

Can one find a number (to base 10) which doubles itself on reversing its digits?

A 423. No. Let the number be of the form $a \cdots b$ then $b \cdots a = 2(a \cdots b)$. Now a can be 0, 1, 2, 3 or 4 and corresponding to these values b can be (0), (2,3), (4,5), (6,7) or (8,9) respectively. By comparing the last digits, none of these are possible.
Q 430. Submitted by M. S. Klamkin

Find a “simple” nth term formula for the sequence $0, 1, -1, 0, 0, -1, 1, 0, 1, -1, 0, 0, -1, 1, 0, 0, 1, -1, \ldots$.

A 430. One possible answer is; $\sin \pi(n^2 - n)/4$.

Q 435. Proposed by Irving Gerst and M. S. Klamkin

Evaluate the ratio

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{n^2}}{(1-x)(1-x^3) \cdots (1-x^{2n+1})}$$

divided by

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{n^2+n}}{(1-x^2)(1-x^4) \cdots (1-x^{2n+2})}$$

A 435. The ratio is one, since each sum is one. This follows from the known simple summation

$$1 = \frac{1}{1-a_1} - \frac{a_1}{(1-a_1)(1-a_2)} + \frac{a_1a_2}{(1-a_1)(1-a_2)(1-a_3)} - \cdots$$

[[I’m not sure about the signs here — would someone check? Thanks! — R.]]
[[There’s an article by Murray:
On the volume of a class of truncated prisms and some related centroid problems.]]

Fermat’s Principle

685. [March, 1968]. *Proposed by Jack M. Elkin, Polytechnic Institute of Brooklyn*

Prove Fermat’s Principle for a circular mirror. That is, given two points A and B inside a circle, locate P such that \(AP + PB \) is an extremum.

I. **Solution by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan.**

The problem is not formulated correctly. For the case of a constant refractive medium, Fermat’s principle states that the path of light is such that \(AP + PB \) is an extremum. Thus we will not be proving Fermat’s principle by locating \(P \) such that \(AP + PB \) is an extremum. Perhaps the proposer wishes to establish the law of reflection from Fermat’s principle or conversely. In either case, this is a well-known problem and a simple solution follows by the use of level lines. Also, for greater generality, we can just as easily use an arbitrary convex closed curve with continuous curvature.

Consider the family of curves \(AP + PB = k \) (constant). These are ellipses having A and B as foci. Clearly, the minimum occurs (possibly at more than one point) for the smallest ellipse of the family which is tangent to the given curve. The point (or points) of tangency will correspond to the minimizing point \(P \). Then since the focal radii make equal angles with any tangent line, we obtain the law of reflection. Similarly, the maximum occurs for the largest ellipse of the family which is tangent to the given curve.

The converse theorem follows just as easily. IF \(AP \) and \(PB \) make equal angles with the given curve, then the ellipse with foci at A and B and which passes through \(P \) must be tangent to the given curve at \(P \). Either the ellipse will be locally inside the given curve at \(P \) or outside of it. In the former case \(AP + PB \) will be a local minimum and in the latter case a local maximum.

II. **Comments by Leon Bankoff, Los Angeles, California.** This is essentially the Billiard Problem of Alhazen (965–1039 A.D.), which appears as Problem 41 in Dörrie’s “100 Great Problems of Elementary Mathematics” (Dover Reprint, N.Y., 1965). In its optical application, the problem is associated with Fermat’s principle that “nature always acts by the shortest path”. A solution to an analogous problem is given on p.73 of the 1869 issue of the “Lady’s and Gentleman’s Diary”, a source of reference somewhat less accessible than the work of Dörrie. The European reader may prefer to consult the French counterpart of Dörrie’s book, “Célébres Problèmes Mathématiques”, by Édouard Callandreau, Éditions Albin Michel, Paris, 1949, p.305, Problem 71, or

Scholarly enthusiasts who are not allergic to the dust of obscure library shelves may enjoy delving into Volume I of Leybourn’s “Diary Questions”, pp.167–169, which gives three solutions originally published in the “Ladies’ Diary” for 1727–1728.

Most of the published solutions involve one of the four intersections of the given circle with the equilateral hyperbola whose diameter is AB and whose ordinate axis is parallel to the line connecting the inverses of A and B with respect to the given circle.

One of the solutions in the 1869 “Diary” locates the point P as the point of tangency of the given circle with one of the family of confocal ellipses whose foci are A and B. In the proposed problem, both A and B lie within the circle. Hence the required ellipse lies entirely within the circle and touches the circle at the point P on the circumference for which $AP + PB$ is a minimum.

The location of P by means of conic sections precludes the possibility of a construction with Euclidean tools, except in the trivial case where A and B lie on a circle concentric with the given circle. In that case, P lies on the perpendicular bisector of the line joining A and B, and is easily found by ruler and compass or by a Mascheroni construction with compass alone.

An interesting sidelight mentioned in the 1869 ‘Diary” is that “this question occurs in the construction of steam boilers. The brace in the form of $A'P$, $B'P$, OP (where A' and B' are the inverses of A and B with respect to the given circle whose center is O) is stronger when the angle $A'PB'$ is bisected by OP.”
Central Symmetry

687. [March, 1968]. Proposed by Sidney H. L. Kung, Jacksonville University, Florida

Prove that if the perimeter of a quadrilateral $ABCD$ is cut into two portions of equal length by all straight lines passing through a fixed point O in it, the quadrilateral is a parallelogram.

II. Solution by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan.

We consider a more general problem where we have a closed curve which is starlike with respect to the fixed point O and has the same perimeter property as the quadrilateral.

By the perimeter property,

$$ R \, d\theta = S \, d\theta $$

or the curve must be centro-symmetric with respect to O. If C is a quadrilateral, it follows that it must then be a parallelogram.

$$ R \, d\theta $$

$$ R $$

$$ O $$

$$ S $$

Comment by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan.

1. In the statement of the problem, “quadrilateral” should be replaced by “simple quadrilateral”; otherwise we could have Figure 1 as a solution.
2. The second solution given by myself is erroneous. The sophomoric error is in the equation $R \, d\theta = S \, d\theta$. This equation should have been

$$R^2 + \left(\frac{dR}{d\theta}\right)^2 = S^2 + \left(\frac{dS}{d\theta}\right)^2$$

It now does not necessarily follow that $R = S$ to give a centrosymmetric figure. As a nice counterexample, consider Figure 2 made up from three semicircles. Every line through O bisects the perimeter. It would be of interest to find a noncentrosymmetric convex counterexample. However, if we restrict the figure to be a simple polygon, then Goldberg’s solution implies that the polygon is centrosymmetric.
Comment on Q 426

Q 426. Without using calculus, determine the least value of the function \(f(x) = (x+a+b)(x+a-b)(x-a+b)(x-a-b) \), where \(a \) and \(b \) are real constants. [Submitted by Roger B. Eggleton]

Comment by M. S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan. A more direct solution can be obtained by noting that

\[
f(x) = (a + b + x)(a + b - x)(a - b + x)(a - b - x) \\
= ((a + b)^2 - x^2)((a - b)^2 - x^2) \\
= (a^2 + b^2 - x^2)^2 - 4a^2b^2
\]

Thus the minimum is \(-4a^2b^2\) for \(x^2 = a^2 + b^2\).

[[On p.224 there’s an almost identical comment by S. Spital, California State College at Hayward.]]

Integral Distances

In \(R \times R \) with the usual metric, if \(G \) is an infinite subset of \(R \times R \) such that for all \(x, y \) in \(G \), \(d(x, y) \) is an integer, then \(G \subseteq l \) for some line \(l \).

As shown in the latter reference, the result does not imply the existence of a number \(k_0 \) such that the conclusion also holds when the number \(k \) of points with exclusively integral distances is greater than \(k_0 \).

Additionally, there’s no need for the “symbolic” language of the proposal. It could have been stated simply as: “If an infinite set of points in the plane is such that all of its points are at integral distances from each other, then all the points lie on a single line.”
Proposed by Murray S. Klamkin, Ford Scientific Laboratory, and Morris Morduchow, Polytechnic Institute of Brooklyn

Determine the extreme values of $S_1/r + S_2/(n - r)$ where n is a fixed integer, $S_1 = p_1 + p_2 + \cdots + p_r$

\[S_1 + S_2 = \sum_{i=0}^{n-1} i \]

and the ps are distinct integers in the interval $[0, n-1]$.

Solution by L. Carlitz, Duke University. We may assume without loss of generality that $r \leq n/2$. We will show that

\[\frac{1}{2}(n - 2r - 2) \leq A \leq \frac{1}{2}(3n - 2r - 2) \quad (1 \leq r \leq \frac{n}{2}) \]

(*)

where $A = S_1/r + S_2/(n - r)$.

Proof. If

\[
S_1 = 0 + 1 + 2 + \cdots + (r - 1) = \frac{1}{2}r(r - 1)
\]

\[
S_2 = r + (r + 1) + \cdots + (n - 1) = \frac{1}{2}n(n - 1) - \frac{1}{2}r(r - 1)
\]

\[
= \frac{1}{2}(n - r)(n + r - 1)
\]

then

\[A = \frac{1}{2}(n + 2r - 2) \quad (1) \]

If

\[
S_1 = (n - r) + (n - r + 1) + \cdots + (n - 1)
\]

\[
= \frac{1}{2}n(n - 1) - \frac{1}{2}(n - r)(n - r - 1)
\]

\[
= \frac{1}{2}r(n - 2r - 1)
\]

\[
S_2 = 0 + 1 + \cdots + (n - r - 1) = \frac{1}{2}(n - r)(n - r - 1)
\]

then

\[A = \frac{1}{2}(3n - 2r - 2) \quad (2) \]
Now let
\[S_1 = p_1 + \cdots + p_r \quad (p_1 < p_2 < \cdots < p_r) \quad S_1 + S_2 = \sum_{k=0}^{n-1} k \] \hspace{1cm} (3)

where \(p_1, p_2, \ldots, p_r \) are any \(r \) distinct numbers in \([0,1,\ldots,n-1]\). Assume that the corresponding values of \(A \) satisfies \((\ast)\). Let \(a \in S_1, b \in S_2 \) and put
\[S'_1 = S_1 - a + b \quad S'_2 = S_2 + a - b \]

Then
\[A' = \frac{1}{r} (S_1 - a + b) + \frac{1}{n-r} (S_2 + a - b) = A + \frac{n-2r}{r(n-r)} (b - a) \]

Hence if \(b > a \) it follows that \(A' \geq A \) (with strict inequality except when \(n = 2r \)). Thus setting out with
\[S_1 = 0 + 1 + \cdots + (r-1) \quad S_2 = r + (r+1) + \cdots + (n-1) \]
it is clear that after a number of interchanges \(a \leftrightarrow b \) we get \(S_1, S_2 \) as in \((3)\) and that the corresponding \(A \) satisfies
\[A \geq \frac{1}{2} (n + 2r - 2) \]

Similarly, starting with
\begin{align*}
S_1 &= (n-r) + (n-r+1) + \cdots + (n-1) \\
S_2 &= 0 + 1 + \cdots + (n-r-1)
\end{align*}

then again after a number of interchanges \(a \leftrightarrow b \) we get \(S_1, S_2 \) as in \((3)\) and that the corresponding \(A \) satisfies
\[A \leq \frac{1}{2} (3n - 2r - 2) \]
If AB and BA are both identity matrices, then A and B are both square matrices.

Let A be $m \times n$ and B be $n \times m$ with $m \geq n$. The rank of AB is m. But

since the rank of a product of two matrices cannot exceed the rank of either of the two matrices which is at most n, we must have $m \leq n$. Thus $m = n$. The result is also valid if AB and BA are both nonsingular scalar matrices, e.g., if ABC, CAB and BCA are all nonsingular scalar matrices, then they are all square matrices.

Comment by J. L. Brenner, University of Arizona. An alternative proof is the following. We first note the equations

$$
\begin{bmatrix}
\lambda I & A \\
0 & \lambda I
\end{bmatrix}
\begin{bmatrix}
\lambda I & -A \\
B & \lambda I
\end{bmatrix}
\begin{bmatrix}
\lambda I & 0 \\
0 & \lambda I
\end{bmatrix}
=
\begin{bmatrix}
\lambda^3 I - AB & 0 \\
0 & \lambda^3 I
\end{bmatrix}
$$

$$
\begin{bmatrix}
\lambda I & 0 \\
B & \lambda I
\end{bmatrix}
\begin{bmatrix}
\lambda I & -A \\
-\lambda I & \lambda I
\end{bmatrix}
\begin{bmatrix}
\lambda I & A \\
0 & \lambda I
\end{bmatrix}
=
\begin{bmatrix}
\lambda^3 I & 0 \\
0 & \lambda^3 I - BA
\end{bmatrix}
$$

[[One of the above λ^3’s was misprinted as λ^2]]

If $AB = I_r$, $BA = I_s$ then using $\det(XYZ) = \det X \det Y \det Z = \det(ZYX)$, $(\lambda^2 - 1)^r(\lambda^3)^s = (\lambda^3)^r(\lambda^2 - 1)^s$.

This cannot be valid for all λ except if $r = s$, which is what was to be shown. The only thing this proof uses is $\det(XY) = \det X \det Y = \det Y \det X$. The proof is therefore slightly more powerful than the one given on page 244.

[[Math. Mag., 43(1970) 165. Murray is listed as Associate Editor of the Problems Section.]]
Q 483. Submitted by M. S. Klamkin

If A, B, C are the angles of a triangle such that

$$\tan(A - B) + \tan(B - C) + \tan(C - A) = 0$$

then the triangle is isosceles.

A 483. Expanding out and replacing $\tan A$, $\tan B$ and $\tan C$ by a, b and c respectively we get

$$\frac{a - b}{1 + ab} + \frac{b - c}{1 + bc} + \frac{c - a}{1 + ca} = 0$$

On combining fractions and factoring we obtain

$$(a - b)(b - c)(c - a) = 0$$

and thus the triangle is isosceles. Note [that] the condition that $A + B + C = \pi$ is not necessary.

[[There’s an article by Murray:
On some soluble Nth order differential equations.]]

Q 494. Submitted by M. S. Klamkin

In a given sphere APB, CPD and EPF are three mutually perpendicular and concurrent chords. If $AP = 2a$, $BP = 2b$, $CP = 2c$, $DP = 2d$, $EP = 2e$ and $FP = 2f$, determine the radius of the sphere.

A 494. If we choose a rectangular coordinate system whose axes are along the three given chords, then the center is at the point $(b - a, d - c, f - e)$ where we are assuming without loss of generality that $b \geq a$, $d \geq c$ and $f \geq e$. Then [[The eff in the next equation was misprinted as bee]]

$$R^2 = (b - a - 2b)^2 + (d - c - 0)^2 + (f - e - 0)^2$$

$$= a^2 + b^2 + c^2 + d^2 + e^2 + f^2 - 2ef$$

(since $ab = cd = ef$).

It is to be noted that the result is easily extended for the case of an n-dimensional sphere. For the special case of the circle ($n = 2$), the cross terms disappear.

Q 498. Submitted by M. S. Klamkin

Given a cake in the form of a triangular layer (prism) which is covered with a thin layer of icing on its top and sides. Show how to divide the cake into eleven portions so that each portion contains the same amount of cake and icing.

A 498. Divide the triangle perimeter into eleven equal parts and make vertical cuts emanating from the center of the inscribed circle to these points of division. This problem for a square appears in H. S. M. Coxeter, Introduction to Geometry and the method is valid for any polygonal layer cake having an incircle.

792. Proposed by Murray S. Klamkin, Ford Scientific Laboratory

It is a known result that a necessary and sufficient condition for a triangle inscribed in an ellipse to have a maximum area is that its centroid coincide with the center of the ellipse. Show that the analogous result for a tetrahedron inscribed in an ellipsoid is not valid.

Math. Mag., 45(1972) 53.

Solution by the proposer. By means of an affine transformation, it suffices to consider a sphere instead of an ellipsoid.

For a sphere, it is a known result that the inscribed regular tetrahedron has the maximum volume and for this case its centroid coincides with the center of the sphere. However, the converse is not valid, i.e., if the centroid of an inscribed tetrahedron in a sphere coincides with the center of the sphere, the tetrahedron need not be regular but it must be isosceles (one whose pairs of opposite edges are congruent). This latter result can be obtained vectorially as follows:

Let \(A, B, C, D \) denote the four vertices on a unit sphere with center at \(O \). Then if the two centroids coincide, we have \(A + B + C + D = 0 \) in addition to \(A^2 = B^2 = C^2 = D^2 = 1 \). Whence \((A + B)^2 = (C + D)^2\) or \(A \cdot B = C \cdot D = 0 \). Thus

\[(A - B)^2 = (C - D)^2\]

and similarly

\[(A - C)^2 = (D - B)^2\]
\[(A - D)^2 = (B - C)^2\]

and the tetrahedron is isosceles.

Conversely, if the tetrahedron is isosceles, then \((A - B)^2 = (C - D)^2\), \((A - C)^2 = (D - B)^2\), \((A - D)^2 = (B - C)^2\) in addition to \(A^2 = B^2 = C^2 = D^2 = 1 \). Whence,
\[A \cdot B = C \cdot D, \quad A \cdot C = D \cdot B, \quad A \cdot D = B \cdot C\] and \((A + B)^2 = (C + D)^2\). Then

\[(A + B - C - D) \cdot (A + B + C + D) = 0\]

and similarly

\[(A + D - B - C) \cdot (A + B + C + D) = 0\]

Thus

\[(A - C) \cdot (A + B + C + D) = 0\]

and similarly

\[(A - B) \cdot (A + B + C + D) = 0\]

\[(A - D) \cdot (A + B + C + D) = 0\]

Finally the last three equations imply \(A + B + C + D = 0\) or that the two centroids coincide. (A geometric proof appears in N. Altshiller-Court, *Modern Solid Geometry*, MacMillan, New York, 1935, p.95).
Another Triangle Property

Let M be an arbitrary point not necessarily in the plane of triangle $A_1A_2A_3$. If B_i is the midpoint of the side opposite A_i, prove

$$\sum_{i=1}^{3} MA_i^2 - \sum_{i=1}^{3} MB_i^2 = \frac{1}{3} \sum_{i=1}^{3} A_iB_i^2$$

II. Solution by M. S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan. We prove a more general result, i.e., if $A_1, A_2, \ldots, A_{n+1}$ denote any $n+1$ points in any E_r and if B_j ($j = 1, 2, \ldots, n+1$) denotes the centroid of all the A_i with the exception of A_j then for any arbitrary point M

$$\sum_{i=1}^{n+1} MA_i^2 - \sum_{i=1}^{n+1} MB_i^2 = \frac{n-1}{n+1} \sum_{i=1}^{n+1} A_iB_i^2 \quad (1)$$

Let A_i, B_i, M denote vectors from the centroid of all the A_i to A_i, B_i, M respectively. Then

$$\sum_{i=1}^{n+1} A_i = 0 \quad \text{and} \quad -B_i = A_i/n$$

The l.h.s. of (1) is now

$$\sum_{i=1}^{n+1} (M - A_i)^2 - \sum_{i=1}^{n+1} (M + A_i/n)^2$$

or

$$\frac{n^2 - 1}{n^2} \sum_{i=1}^{n+1} A_i^2$$

Since the r.h.s. of (1) is now

$$\frac{n-1}{n+1} \sum_{i=1}^{n+1} A_i^2(1 + 1/n)^2$$

identity (1) follows. The proposed problem corresponds to the special case $n = 2$.

Q 522. Submitted by M. S. Klamkin
Determine all triangles XYZ satisfying
\[
\frac{\sin 2X}{\sin A} = \frac{\sin 2Y}{\sin B} = \frac{\sin 2Z}{\sin C}
\]
where ABC is a given triangle.

A 522. First note that XYZ must be acute. Now let $2X = \pi - R$, $2y = \pi - S$ and $2Z = \pi - T$. Thus RST is a triangle and
\[
\frac{\sin R}{\sin A} = \frac{\sin S}{\sin B} = \frac{\sin T}{\sin C}
\]
Whence $RST \sim ABC$ and
\[
2X = \pi - A \quad 2Y = \pi - B \quad 2Z = \pi - C.
\]

Q 527. Submitted by M. S. Klamkin
Evaluate the determinant
\[
D_n = |a_r - b_s| \quad r, s = 1, 2, \ldots, n
\]

A 527. Since D vanishes for $a_p = a_q$, $p \neq q$, and is linear in a_r, it must identically vanish for $n > 2$. Also $D_1 = a_1 - b_1$ and $D_2 = (a_1 - a_2)(b_1 - b_2)$.

Comment on Q 503

Q 503. [January, 1971]. Submitted by A. K. Austin, University of Sheffield. A boy walks 4 mph, a girl walks 3 mph and a dog walks 10 mph. They all start together at a certain place on a straight road and the boy and girl walk steadily in the same direction. The dog walks back and forth between the two of them, going repeatedly from one to the other and back again. After one hour where is the dog and which direction is he facing?

I. Comment by M. S. Klamkin, Ford Motor Company. I disagree with the proposer’s solution. While I agree that the motion is reversible from any initial starting position in which the participants are not at the same location, it is not possible to start the motion when all three start from the same location. The dog would have a nervous breakdown attempting to carry out his program. If one id not convinced, let the initial
starting distance between the boy and the girl be \(\epsilon \) (arbitrarily small), then one can show that the number of times the dog reverses becomes arbitrarily large in a finite time.

An analogous situation occurs in the well known problem of the four bugs pursuing each other cyclically with the same constant speed and starting initially at the vertices of a square. At any point of their motion (except when together), the motion is reversible by reversing the velocities. However, when together, the directions of the velocities are indeterminate and thus they cannot reverse without further instructions.

[[Parallel comments were also made by Leon Bankoff, Charles Trigg, Lyle E. Pursell]]

\[Math. \ Mag., 42(1969) \ 287. \]

816. Proposed by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan

Show that no equilateral triangle which is either inscribed in or circumscribed about a noncircular ellipse can have its centroid coincide with the center of the ellipse.

[[This is identical with Math. Mag., 36(1963) 142, 108.]]

Q 312. Submitted by M. S. Klamkin

Show that no equilateral triangle which is either inscribed in or circumscribed about an ellipse (excluding the circular case) can have its centroid coinciding with the center of the ellipse.

A 312. Orthogonally project the ellipse into a circle. The equilateral inscribed or circumscribed triangles will become inscribedor circumscribed non-equilateral triangles whose centroids cannot coincide with the center of the circle. Since centroids transform into centroids, the proof is completed.]]

\[Math. \ Mag., 45(1972) \ 236. \]

Solution by Leon Bankoff, Los Angeles, California. If an equilateral triangle and a circumscribed ellipse were to share the same centroid, the ellipse and the circumcircle of the triangle would be concentric. Consequently the four intersections of the circle and the ellipse would be vertices of a rectangle. Since the vertices of an equilateral triangle cannot lie on three vertices of a rectangle, the initial assumption regarding a common centroid is untenable.

The same assumption for the inscribed ellipse would mean that each chord of contact of the ellipse would be bisected by a corresponding internal angle bisector of the tangential equilateral triangle. This could only occur if each vertex of the triangle lay on an extended principle axis of the ellipse. This, in turn, would necessitate two vertices on one axis—an obvious impossibility for a circumscribed triangle.
Comment on Q 505

Q 505. [January, 1971]. Submitted by Gregory Wulczyn. Solve the differential equation

\[(x - a)(x - b)y'' + 2(2x - a - b)y' + 2y = 0\]

Comment by M. S. Klamkin, Ford Motor Company. The problem can be easily extended and solved to the differential equation

\[(x - a)(x - b)y'' + n(2x - a - b)y' + n(n - 1)y = 0 \quad (n = 2, 3, 4, \ldots)\]

Letting \(y = D^{n-2}z\), the differential equation can be rewritten as

\[D^n\{z(x - a)(x - b)\} = 0\]

Whence

\[z = \frac{1}{(x - a)(x - b)}\{A_0 + A_1x + \cdots + A_{n-1}x^{n-1}\}\]

\[= B_0 + B_1x + \cdots + B_{n-3}x^{n-3} + \frac{A}{x - a} + \frac{B}{x - b}\]

Finally

\[y = D^{n-2}\left\{\frac{A}{x - a} + \frac{B}{x - b}\right\} = \frac{A'}{(x - a)^{n-1}} + \frac{B'}{(x - b)^{n-1}}\]

[[By now it’s rather a slow quickie. — R.]]

[[Further !]] Comment by Murray S. Klamkin, Ford Motor Company. The still more general equation

\[(x - a)(x - b)y'' + n(2x - a - b)y' = F(x) \quad (n \text{ arbitrary})\]

can also be solved easily by first noting the factorization

\[\{(x - a)D + n\}\{(x - b)D + n - 1\}y = F(x)\]

Then by the exponential shift theorem,

\[y = (x - b)^{1-n} \int \frac{(x - b)^{n-2}dx}{(x - a)^n} \int F(x)(x - a)^{n-1}dx\]

On letting \(F(x) = 0\), we find on comparison with my previous comment (Nov.-Dec., 1971) that

\[\int \frac{(x - b)^{n-2}dx}{(x - a)^n} = A' \left\{\frac{x - b}{x - a}\right\}^{n-1} + B' \quad (1)\]
which at first glance is somewhat surprising since one would expect a series by expanding out $\{(x - a) + (a - b)\}^{n-2}$ (here $A' = 1/(n - 1)(b - a)$). This leads to the summation

$$\sum_{r=0}^{n} \binom{n}{r} \left\{ \frac{a - b}{x - a} \right\}^{r+1} = \frac{1}{n+1} \left\{ \left(\frac{x - b}{x - a} \right)^{n+1} - 1 \right\}$$

A further extension to an rth order equation is given by the following: If S_i ($i = 0, 1, \ldots, r$) denote the elementary symmetric functions of $x - a_i$ ($i = 1, 2, \ldots, r$), i.e.,

$$\prod_{i=1}^{r} (\lambda + x - a_i) \equiv \sum_{i=0}^{r} S_i \lambda^{r-1}$$

then the solution of the differential equation

$$\sum_{j=0}^{r} j! \binom{n}{j} S_{r-j} D^{r-j} y = 0 \quad (2)$$

is given by

$$y = \sum_{i=1}^{r} A_i (x - a_i)^{r-n-1} \quad (A_i \text{ arbitrary constants})$$

The latter follows since it can be shown by induction that (2) factorizes into

$$\{(x - a_1)D + n\}\{(x - a_2)D + n - 1\} \cdots \{(x - a_r)D + n - r + 1\}y = 0$$

for any ordering of the a_i. The nonhomogeneous equation corresponding to (2) can also be solved by quadratures by means of the exponential shift theorem. Also, corresponding to (1) for $r = 3$, we have

$$\int \frac{(x - c)^{n-3} dx}{(x - b)^{n-1}} \int \frac{(x - b)^{-2} dx}{(x - a)^{n}} = A \left\{ \frac{x - c}{x - a} \right\}^{n-2} + B \left\{ \frac{x - c}{x - b} \right\}^{n-2} + C$$

There are analogous results for $r > 3$.

[[This must be the world’s slowest quickie! — R.]]
Q 536. Submitted by M. S. Klamkin

Show that the square roots of three distinct prime numbers cannot be terms of a common geometric progression.

A 536. If they were then

\[a r^{n_1} = \sqrt{p_1}, \quad a r^{n_2} = \sqrt{p_2}, \quad a r^{n_3} = \sqrt{p_3}, \quad (n_1, n_2, n_3 \text{ distinct integers}) \]

Eliminating \(a \) and \(r \) yields

\[(p_1/p_2)^{n_2-n_3} = (p_2/p_3)^{n_1-n_2} \]

[[exponents have been corrected(?) please check! — R.]]

which is clearly impossible (by the unique factorization theorem). The result holds for any integral roots.

Comment by William Wernick, City College of New York. If three terms are in geometric progression then the product of the first and last must equal the square of the second, thus in this case \(\sqrt{ac} = b \) or \(b^2 = ac \) which is clearly impossible with distinct primes.

[[This assumes that the terms were consecutive — this was not the intention — Later, on Math. Mag., 46(1973) 174–175 one reads]]

Comment by the proposer. In his comment on Q 536 (September 1972) Wernick does not solve the given problem since he assumes that the three terms are consecutive terms of a geometric progression.

Q 537. Submitted by M. S. Klamkin

Determine solutions to

\[xF'(x) - F(x) = F'(F'(x)) \]

other than \(F(x) = a(x - 1) \).

A 537. This is a Clairaut equation. Consequently we differentiate obtaining \(xF''(x) = F''(x)F'(F'(x)) \). One solution is \(F''(x) = 0 \) or \(F(x) = a(x - 1) \). The other solutions are derivable from \(x = F''(F'(x)) \). The general solution of this latter equation seems difficult to derive. However, it does have the power solution \(F(x) = ax^{n+1} \) where \(n = (1 \pm \sqrt{5})/2 \) and \(a = n^{-1/n}/(n + 1) \).

[[sqrt sign missing from penult equation. And compare Math. Mag., 37(1964) 119. 549.]]

Q 542. Submitted by Murray S. Klamkin

If \(a, b, c, d\) and \(x, y\) denote respective lengths of four consecutive sides and both diagonals of a quadrilateral having both an incircle and a circumcircle, show that
\[(a + b + c + d)^2 \geq 8xy,\]
with equality if and only if the quadrilateral is a square.

A 542. Since the quadrilateral has an incircle, \(a + c = b + d\). Since the quadrilateral is inscribable, \(xy = ac + bd\). Thus we must show equivalently that
\[a^2 + c^2 \geq 2b(a + c - b)\]

For a given \(a + c\) the r.h.s. has a maximum value of \((a + c)^2/2\) when \(b = (a + c)/2\). Since
\[2(a^2 + c^2) - (a + c)^2 = (a - c)^2 \geq 0\]
our inequality is established. The stated inequality is also equivalent to
\[(a + b + c + d)^2 \geq 8(ac + bd)\]
for circumscribable quadrilaterals \((a, b, c, d\) are lengths of consecutive sides).

Minimum of an Exponential Function

803. [September, 1971]. Proposed by Kenneth Rosen, University of Michigan

Let \(x\) and \(y\) be positive real numbers with \(x + y = 1\). Prove that \(x^x + y^y \geq \sqrt{2}\) and discuss conditions for equality.

III. Solution by Murray S. Klamkin, Ford Motor Company. It is well known that if \(F(x)\) is strictly convex for \(0 \leq x \leq a\), then
\[F(x_1) + F(x_2) + \cdots + F(x_n) \geq nF\left(\frac{x_1 + x_2 + \cdots + x_n}{n}\right)\]
with equality if and only if \(x_1 = x_2 = \cdots = x_n\). Since \(D^2x^x = x^x(1 + \log x)^2 + x^{x-1}, x^x\) is strictly convex for \(x \geq 0\). Thus for \(x_1 + x_2 + \cdots + x_n = nb,\)
\[\sum_{i=1}^{n} x_i^{x_i} \geq nb^b.\]

The given problem corresponds to the special case \(n = 2, b = \frac{1}{2}\).

Arithmetic-Geometric Mean Inequality

807. [September, 1971]. Proposed by Norman Schaumberger, Bronx Community College

Let \((x_i), i = 1, 2, 3, \ldots\) be an arbitrary sequence of positive real numbers and set

\[\Delta_k = \frac{1}{k} \sum_{i=1}^{k} x_i - \left(\prod_{i=1}^{k} x_i \right)^{1/k} \]

If \(n \geq m\), prove that \(n \Delta_n \geq m \Delta_m\).

II. **Solution by Murray S. Klamkin, Ford Motor Company.** It suffices just to prove the case \(m = n - 1\) \((n \geq 2)\), i.e.,

\[(n - 1)(x_1x_2 \cdots x_{n-1})^{1/(n-1)} \geq n(x_1x_2 \cdots x_n)^{1/n} - x_n \]

(1)

Let

\[x_n = \lambda^n (x_1x_2 \cdots x_{n-1})^{1/(n-1)} \]

so that (1) becomes

\[\lambda^n - 1 \geq n(\lambda - 1) \]

which is a known elementary result (just factor \(\lambda^n - 1\)) with equality if and only if \(\lambda = 1\).

Remark. Since \(\Delta_1 = 0\), the above solution provides an apparently new elementary inductive proof of the Arithmetic-Geometric mean inequality \((\Delta_n \geq 0)\).

Math. Mag., 46 (1973) 52–53.

[[Further !]] **Comment by Murray S. Klamkin, Ford Motor Company, Dearborn, Michigan.** The result here is known and is contained in a class of inequalities which are sometimes called Rado type inequalities (see D. S. Mitrinović, *Analytic Inequalities*, Springer-Verlag, Heidelberg, 1970, pp.94, 98–102). Related to these inequalities are the ones analogous to

\[\left\{ \frac{G_n(x)}{A_n(x)} \right\} \leq \left\{ \frac{G_{n-1}(x)}{A_{n-1}(x)} \right\}^{n-1} \]

which are sometimes called Popoviciu type inequalities. Here, \(G_n\) and \(A_n\) denote the geometric and arithmetic means of \(x_1, x_2, \ldots, x_n\), respectively. A similar proof can also be given for the latter inequality. Just let

\[x_n = \lambda(x_1 + x_2 + \cdots + x_{n-1}) \]

giving

\[\frac{\lambda}{(1 + \lambda)^n} \leq \frac{(n - 1)^{n-1}}{n^n} \]

112
It follows easily that the r.h.s. is the maximum value of the l.h.s. which is taken on for
\(\lambda = 1/(n - 1) \).

841. Proposed by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan

Solve the following generalization of Clairaut’s equation:

\[
y = xp + F(p)\left\{1 + \sqrt{1 + xG(p)}\right\}
\]

where \(p = dy/dx \).

Solution by the proposer. Let \(r = 1 + \sqrt{1 + xG(p)} \) and differentiate with respect to \(x \),
giving

\[
xp' + rp'F' + r'F = 0
\]

Now replace \(r' \) by \(p'\frac{dr}{dp} \) and \(x \) by \((r^2 - 2r)/G \) to give

\[
p' \left\{ \frac{(r^2 - 2r)}{G} + rF' + F\frac{dr}{dp} \right\} = 0
\]

If the first factor is zero, i.e., \(p' = 0 \), we get

\[
y = cx + F(c)\left\{1 + \sqrt{1 + xG(c)}\right\}
\]

provided that \(F(c)G(c) = 0 \).

The other factor can be rewritten as

\[
\left\{ D_p + \frac{2}{FG} - \frac{F'}{F} \right\} \frac{1}{r} = \frac{1}{FG}
\]

Whence

\[
\frac{1}{r} = F \exp\left\{ -2 \int \frac{dp}{FG} \right\} \int \exp\left\{ 2 \int \frac{dp}{F^2G} \right\} dp
\]

which gives \(x \) as a function of \(P \). The original equation gives \(y \) also as a function of \(p \).

These two latter equations give the solution in parametric form.
It is a well-known theorem that all quadric surfaces which pass through seven given points will also pass through an eighth fixed point. (a) If the seven given points are (0,0,0), (0,0,1), (0,1,0), (2,0,0), (1,1,0), (1,0,1) and (1,1,1), determine the eighth fixed point. (b) Determine the eighth fixed point explicitly as a function of the seven general given points \((x_i, y_i, z_i), i = 1, 2, 3, \ldots, 7\).

Solution by the proposer. If the equation of a quadric surface be

\[
ax^2 + by^2 + cz^2 + dxy + eyz + fzx + gx + hy + iz + j = 0
\]

then the equations must satisfy the 7 equations

\[
\begin{align*}
 j &= 0 \\
 a + b + d + g + h &= 0 \\
 c + i &= 0 \\
 a + c + f + g + i &= 0 \\
 b + h &= 0 \\
 a + b + c + d + e + f + g + h + i &= 0 \\
 4a + 2g &= 0
\end{align*}
\]

Thus, the equation reduces to the form

\[
a(x^2 + xy - 2x) + by(y - 1) + cz(z - 1) = 0
\]

and the eighth fixed point is \((-1, 1, 1)\).

[[Part (b) not solved ??]]
Math. Mag., 46(1973) 43, 54.

Q 559. Submitted by Murray S. Klamkin

If \(a_{n+1} = 5a_n + \sqrt{24a_n^2 - 1}, \) \(n = 0, 1, 2, \ldots \) and \(a_0 = 0, \) show that the sequence \(\{a_n\} \) is always integral.

A 559. Squaring \(a_{n+1}^2 - 10a_n + a_n^2 = 1. \) Solving for \(a_n: \) \(a_n = 5a_{n+1} - \sqrt{24a_{n+1}^2 - 1}. \)

Reducing \(n \) by one in the latter equation and adding it to the given equation we get \(a_{n+1} = 10a_n - a_{n-1}. \) Since \(a_0 = 0 \) and \(a_1 = 1 \) all the \(a_i \) are integers.

Comment on Q 546

Q 546. [May, 1972]. Submitted by Erwin Just. If \(n \) is an integer greater than 2, prove that \(n \) is the sum of the \(n \)th powers of the roots of \(x^n - kx - 1 = 0.\)

Comment by Murray S. Klamkin, Ford Motor Company, Dearborn, Michigan. One can obtain further results in a similar fashion. If \(T_1, T_2, \ldots, T_n \) denote the elementary symmetric functions of \(x_1, x_2, \ldots, x_n, \) i.e.,

\[
P(x) = \prod (x - x_i) = x^n - T_1 x^{n-1} + T_2 x^{n-2} - \cdots + (-1)^n T_n
\]

and if

\[
S_k = \sum x_i^k
\]

then the Newton formulae are given by

\[
S_k - T_1 S_{k-1} + T_2 S_{k-2} - \cdots + (-1)^{k-1} T_{k-1} S_1 + (-1)^k T_k = 0 \quad (k \leq n) \quad (A)
\]

\[
S_k - T_1 S_{k-1} + T_2 S_{k-2} - \cdots + +(-1)^n T_n S_{k-n} = 0 \quad (k > n) \quad (B)
\]

If \(P(x) \equiv x^n - ax - 1, \) then \(T_{n-1} = (-1)^n a, \) \(T_n = (-1)^{n-1} \) and \(T_1 = T_2 = \cdots = T_{n-2} = 0. \) It then follows that \(S_m = 0 \) for \(m = rn + 1, \) \(rn + 2, \ldots, \) \((r + 1)n - r - 2 \) \((1 \leq r \leq n - 3).\) The nonvanishing power sums are given by

\[
S_{n-1} = (n-1)a \quad S_n = n \quad S_{2n-2} = (n-1)a^2
\]

\[
S_{2n-1} = (2n-1)a \quad S_{2n} = n \quad S_{3n-3} = (n-1)a^3
\]

\[
S_{3n-2} = (3n-2)a^2 \quad S_{3n-1} = (3n-1)a \quad S_{3n} = n \quad \text{etc.}
\]
If $A_iB_iCiD_i$ ($i = 1, 2, 3, 4$) denote four given quadrilaterals in space such that the four vector sums

$$A_iB_{i+1} + C_iB_{i-1} + A_{i+1}B_{i+2} + C_{i+1}D_{i+2} + A_{i+2}B_i + C_{i+2}D_i$$

($i = 1, 2, 3, 4$) and $A_i = A_{i+4}$, etc. are zero, show that the sums remain zero for any changes of the orientations of the quadrilaterals.

A 564. Let $A_iB_i = R_{\sim i}$, $B_iC_i = S_{\sim i}$, $C_iD_i = T_{\sim i}$, $OA_i = U_{\sim i}$ ($i = 1, 2, 3, 4$) then the given vectors can be shown to reduce to

$$R_{\sim i} + T_{\sim i} + R_{\sim i+1} + T_{\sim i+1} + R_{\sim i+2} + T_{\sim i+2}$$

($i = 1, 2, 3, 4$)

Consequently $R_{\sim i} + T_{\sim i} = 0$ which is invariant under rigid body motions. Also the quadrilaterals must be parallelograms.

Q 565. Submitted by Murray S. Klamkin

Determine the trihedral angles $OAB'C'$ such that if one picks an arbitrary point A, B, C, respectively on the open rays OA', OB', OC', then ABC is always an acute triangle.

A 565. It follows by continuity that none of the face angles can be acute or obtuse. Thus the only possibility is a trirectangular angle. If $OA = a$, $OB = b$, $OC = c$, then

$$AB^2 = a^2 + b^2 \quad BC^2 = b^2 + c^2 \quad AC^2 = c^2 + a^2$$

Since the sum of any two is greater than the third, ABC is acute.

Comment on Q 543

Q 543. [May, 1972]. Submitted by Alexander Zujus. Show that for all natural numbers $n \geq 4$, $(n-1)^n > n^{n-1}$

II. Comment by Murray S. Klamkin, Ford Motor Company. More generally, $x^{1/x}$ is a monotonic decreasing function for $x \geq e$. This follows since

$$D(x^{1/x}) = x^{1/x}(1 - \log x)/x^2$$
Math. Mag., 46(1973) 167, 112.

Q 568. Submitted by Murray S. Klamkin

Solve the equation \(x^{2n} + x^{2n-2} + \cdots + x^2 + 1 = x^n \)

A 568. Summing the left hand side, we get \(\frac{x^{2n+2} - 1}{x^2 - 1} = x^n \) or equivalently \((x^n - 1)(x^{n+2} + 1) = 0 \). Thus \(x = e^{i\theta} \) where

\[\theta = \begin{cases} 2\pi m/n & m = 1, 2, \ldots, n-1 \text{ (excluding } \theta = \pi \text{ if } m \text{ is even)} \\ \pi(2m + 1)/n & m = 1, 2, \ldots, n+1 \text{ (excluding } \theta = \pi \text{ if } n \text{ is odd)} \end{cases} \]

More generally one can treat

\[\sum_{i=0}^{n} x^{ri} = x^{rn/2} \]

in a similar way.

875. Proposed by Murray S. Klamkin, Ford Motor Company, Dearborn, Michigan

If \(\{a_i\}, \{b_i\} \) denote two sequences of positive numbers and \(n \) is a positive integer, show that:

\[\sum_i a_i^{2n} \cdot \sum_j b_j^{2n} \geq \sum_i a_i^{2n-1} b_i \cdot \sum_j a_j b_j^{2n-1} \geq \cdots \geq \sum_i a_i^n b_i^n \cdot \sum_j a_j^n b_j^n \]

Solution by Robert M. Hashway, West Warwick, Rhode Island. Since the inequalities are trivially true when either the \(a_i \) or the \(b - i \) are all zero, the \(a_i \) and the \(b_i \) may be either positive or zero. Hence \(\{a_i\} \) and \(\{b_i\} \) can be made of the same dimension by inserting zeroes. What must be shown is that: if \(\{a_i\}, \{b_i\} \) are sequences consisting of positive real numbers or zero, and \(n \) is a positive number, then

\[\sum_i a_i^{2n-k} b_i^k \sum_j a_j^k b_j^{2n-k} \geq \sum_i a_i^{2n-k-1} b_i^{k-1} \sum_j a_j^{k-1} b_j^{2n-k-1} \]

where \(k \) is an integer such that \(n - 1 \geq k \geq 0 \)

Proof: We need to determine if the expression below is positive or zero:

\[\sum_i a_i^{2n-k} b_i^k \sum_j a_j^k b_j^{2n-k} - \sum_i a_i^{2n-k-1} b_i^{k-1} \sum_j a_j^{k-1} b_j^{2n-k-1} \]

[[in the original, the last two exponents \(k - 1 \) were printed as \(n + 1 \) and \(k + 1 \) but I don’t think that that can be right. — R.]]
We can easily see that:

$$\sum_i a_i^{2n-k} b_i^k \sum_j a_j^{b_i^{2n-k}} = \sum_i a_i^{2n} b_i^{2n} + \sum_i \sum_{j \neq i} a_i^{2n-k} a_j^k b_i^k b_j^{2n-k}$$

and

$$\sum_i a_i^{2n-k-1} b_i^{k-1} \sum_j a_j^{b_i^{2n-k-1}} = \sum_i a_i^{2n} b_i^{2n} + \sum_i \sum_{j \neq i} a_i^{2n-k-1} a_j^{k+1} b_i^{k+1} b_j^{2n-k-1}$$

Hence what remains to prove is that

$$s_k = \sum_i \sum_{j \neq i} (a_i^{2n-k} a_j^k b_i^{b_i^{2n-k}}) - a_i^{2n-k-1} b_i^{k+1} a_j^{k+1} b_j^{2n-k-1} \geq 0$$

By interchanging the indices i and j and summing over all j, i we have

$$s_k = \sum_i \sum_{j<i} (a_i^{2n-k} a_j^k b_i^{b_i^{2n-k}} + a_j^{2n-k} a_i^k b_j^{b_j^{2n-k}}$$

$$- a_i^{2n-k-1} b_i^{k+1} a_j^{k+1} b_j^{2n-k-1} - a_j^{2n-k-1} b_j^{k+1} a_i^{k+1} b_i^{2n-k-1})$$

By factoring out similar terms we have:

$$s_k = \sum_i \sum_{j<i} a_j^k b_i^k a_i^k b_j^k (b_i a_j - b_j a_i) ((a_j b_i)^m - (a_i b_j)^m)$$

where $m = 2(n-k) - 1$.

Since each term of the series is positive, the result is clear.

Q 576. Submitted by Murray S. Klamkin

Given an n-dimensional simplex $OA_1A_2\cdots A_n$ whose edges emanating from O are mutually orthogonal. Show that the square of the content of the $(n-1)$-dimensional face opposite O is equal to the sum of the squares of the contents of the remaining faces.

A 576. Let the tetrahedron [sic] be given by the n coordinate planes of an n-dimensional rectangular coordinate system x_1, x_2, \ldots, x_n and the hyperplane $P: \sum x_i/a_i = 1$. If V and B denote the contents of the simplex and the face opposite O (the origin), respectively, then $V = dB/n$ where d denotes the distance from O to P. Since $V = \frac{1}{n!}\pi a_2$ and $P = \{\sum a_i^{-2}\}^{-1/2}$

[[something weird about that formula for V but I can't figure out what it is. And ditto near the end of the next display. — R.]]

$$B^2 = \{(n-1)!\}^{-2}\{\sum a_i^{-2}\}\pi a_i^2$$

Now each term in the summation for B^2 corresponds to the square of the content of the remaining faces (the $(n-1)$-dimensional version of the expression for V). The case $n = 2$ corresponds to the Pythagorean theorem but we have not proved it since it was used implicitly in the solution. However, the result does generalize the known result for the tetrahedron ($n = 3$).

Q 580. Submitted by Murray S. Klamkin

Determine the extreme values of

$$2\sin A\cos B\cos C + 2\sin B\cos C\cos A + 2\sin C\cos A\cos B$$

$$\sin 2A + \sin 2B + \sin 2C$$

where A, B, C denote the angles of a triangle.

A 580. The expression is equivalent to

$$\frac{\sum(a^2 + c^2 - b^2)(a^2 + b^2 - c^2)}{\sum a^2(b^2 + c^2 - a^2)} = 1$$

dron ($n = 3$).
Math. Mag., 46(1973) 48, 60.

Q 584. Submitted by Murray S. Klamkin

If A, B, C are nonnegative angles satisfying the triangle inequality and with a sum $\leq \pi$ show that

$$2 \sum \sin^2 B \sin^2 C \geq 4 \prod \sin^2 A + \sum \sin^4 A$$

with equality if and only if $A + B + C = \pi$.

A 584. The inequality can be rewritten as $4\Delta \geq 8 \sin A \sin B \sin C$ or $1 \geq R$ where Δ and R are area and circumradius, respectively, of a triangle of sides $2 \sin A$, $2 \sin B$ and $2 \sin C$. If we inscribe the triangle in a unit sphere, we obtain a corresponding spherical triangle of sides $2A$, $2B$, $2C$ whose circumradius is then ≤ 1. The equality occurs when the spherical triangle corresponds to a great circle.
900. Proposed by Murray S. Klamkin, Ford Motor Company, and Seymour Papert, Massachusetts Institute of Technology

A long sheet of rectangular paper $ABCD$ is folded such that D falls on AB producing a smooth crease EF with E on AD and F on CD (when unfolded). Determine the minimal area of triangle EFD by elementary methods.

\[A \quad D' \quad B \]
\[\quad E \]
\[\quad \theta \]
\[D \quad F \quad C \]

Solution by Michael Goldberg, Washington, D.C. If $AD = 1$ and K denotes the area of the triangle EFD, then

\[
K = \frac{(DD')(EF)}{4} = \frac{(1/\cos \theta)(1/2 \cos^2 \theta \sin \theta)}{4} = \frac{1}{2M} \quad \text{where } M = \sin 2\theta + \frac{1}{2} \sin 4\theta
\]

Then \(dM/d\theta = 2 \cos 2\theta + 2 \cos 4\theta = 0\). Hence \(- \cos 4\theta = \cos 2\theta\)

\[
\pi - 4\theta = 2\theta, \quad \theta = \pi/6 = 30^\circ, \quad K = \frac{1}{2}(\sqrt{3}/2 + \sqrt{3}/4)/2 = 2\sqrt{3}/9 \approx 0.385
\]

The following demonstration can serve as an elementary kinematic solution or verification of the foregoing result. The triangle $D'EF$ attains its extremal area when the line EF intersects its neighboring position at its midpoint G; then the area added by moving the triangle is equal to the area subtracted. As the point D' moves along the straight line AB, the instantaneous center of rotation of the triangle $D'EF$ is on a line through D' perpendicular to AB. Hence, the perpendicular must pass through G. Hence $AD' = \frac{1}{2}(DF)$ and this occurs only when $\theta = 30^\circ$.

Q 590. Submitted by Murray S. Klamkin

$O \quad ABCDE$ is a regular pentagonal pyramid such that $\angle AOB = 60^\circ$. Find $\angle AOC$.

A 590. By symmetry $\angle AOC = \angle ABC = 108^\circ$.

121
Property of an Interior Point

Let P be a point in the interior of the triangle ABC. Let R_1, R_2, R_3 denote the distances of P from the vertices of ABC and let r_1, r_2, r_3 denote the distances from P to the sides of ABC. Show that

$$\sum r_1 R_2 R_3 \geq 12r_1 r_2 r_3$$
$$\sum r_1 R_2^2 \geq 12r_1 r_2 r_3$$
$$\sum r_2^2 r_3 R_2 R_3 \geq 12r_1^2 r_2^2 r_3$$

In each case there is equality if and only if ABC is equilateral and P is the center of ABC.

II. Solution by Murray S. Klamkin, Ford Motor Company. The three inequalities are special cases of

$$\sum_{cyclic} \frac{R_i R_j R_k}{r_i r_j r_k} \geq 3 \left\{ \frac{R_1 R_2 R_3}{r_1 r_2 r_3} \right\}^{m/3} \geq 3 \cdot 2^m$$

where $i + j + k = u + v + w = m \geq 0$. The left hand inequality follows immediately from the A.M.-G.M. inequality while the right hand inequality follows from the known inequality $R_1 R_2 R_3 \geq 8r_1 r_2 r_3$ with equality if and only if ABC is equilateral and P is the center [see O. Bottema et al., Geometric Inequalities, Walters-Noordhoff, Groningen, 1969, p.111].

Remark: We can obtain a stronger identity by using (loc. cit.)

$$R_1 R_2 R_3 \geq r_1 r_2 r_3 \prod \sin A/2$$

Also, by using $(x + y + z)/3 \geq \{xy/3\}^{1/2}$ we can augment the proposed inequalities to

$$\left\{ \sum \frac{R_i}{r_1} \right\}^2 \geq 3 \sum \frac{R_2 R_3}{r_2 r_3} \geq 36$$
$$\left\{ \sum \frac{1}{r_1 R_1^2} \right\}^2 \geq 3 \sum \frac{1}{r_2 r_3 R_2 R_3} \geq 36$$
$$\left\{ \sum r_1^2 R_1 \right\}^2 \geq 3 \sum r_2^2 r_3^2 R_2 R_3 \geq 36r_1^2 r_2^2 r_3^2$$

Q 597. Submitted by Murray S. Klamkin

Prove that

\[
\frac{(n + 1)^{n+1}}{n^n} > \frac{n^n}{(n - 1)^{n-1}}
\]

for \(n = 1, 2, 3, \ldots \) (here \(n^a = 1 \) for \(n = 0 \)).

A 597. The inequality can be rewritten as

\[
\frac{n + 1}{n - 1} \left(1 - \frac{1}{n^2}\right)^n > 1
\]

By Bernoulli’s inequality

\[
\left(1 - \frac{1}{n^2}\right)^n \geq 1 - \frac{1}{n}
\]

whence

\[
\frac{n + 1}{n - 1} \left(1 - \frac{1}{n^2}\right)^n \geq \frac{n + 1}{n} > 1
\]

Comment on Q 572

Q 572. [May, 1973]. Submitted by Norman Schaumberger

Show that if \(n \) and \(k \) are positive integers then \(x^n + y^n = z^{n+1/k} \) always has solutions in integers \(x, y, z \).

Comment by Murray S. Klamkin, Ford Motor Company. Since \(z \) must be a \(k \)th power, we can replace the equation by \(x^n + y^n = z^{nk+1} \). One can show more generally that \(x^a + y^b = z^c \) always has solutions in integers \(x, y, z \) if \(a, b, c \) are positive integers with \(ab, c \) relatively prime. Just let \(x = 2^{bt} \cdot u^{bc}, y = 2^{at} \cdot u^{ac}, z = 2^s \cdot u^{ab} \). Then \(2^{abt+1} = 2^{cs} \).

Since \((ab, c) = 1 \), there are infinitely many positive integers \(s, t \) satisfying \(abt + 1 = cs \).
914. Proposed by Murray S. Klamkin, Ford Motor Company

If for any \(n\) of a given \(n+1\) integral weights, there exists a balance of them on a two pan balance where a fixed number of weights are placed on one pan and the remainder on the other pan, prove that the weights are all equal.

Solution by Thomas E. Elsner, General Motors Institute. Let \(w_1, w_2, \ldots, w_{n+1}\) be the \(n+1\) integral weights. Since any \(n\) of the weights balance, the sum of any \(n\) weights must be even. This implies further that all the weights have the same parity (congruent \((\text{mod } 2)\)). Now the balancing properties of the initial weights must be shared by the integers \(w_i/2\) or \((w_i - 1)/2\) (depending on whether the \(w_i\) are all even or odd).

Hence the \(w_i\) must be congruent \((\text{mod } 4)\). Continuing in the same way, the \(w_i\) are congruent \((\text{mod } 2^k)\) for every \(k\) and this implies that the weights are equal and further, that \(n\) is even.

Editors’ Comment. James A. Davis and Richard A. Gibbs point out that the published solution (September 1975) is incomplete. The argument that the balancing property of the initial weights \(w_i\) must be shared by \(w_i/2\) or \((w_i - 1)/2\) fails just when all \(w_i\) are odd and the two pans contain unequally many weights. For example, \(3 + 3 + 3 = 9\), but \(1 + 1 + 1 \neq 4\). It should also be noted that the fixed number in the problem must be the same for every choice of \(n\) of the \(n+1\) weights. The necessity of this is seen for the set \(\{1,1,1,1,3\}\) of weights.

II. Solution by James A. Davis, Sandia Laboratories: We assume that the result holds if equally many weights are placed in the two pans, as proved in Solution I.

Let \(S = \{w_1, w_2, \ldots, w_{n+1}\}\) be the given set of \(n+1\) weights such that any \(n\) of them can be balanced with a suitable choice of \(k\) weights on one pan and \(n-k\) weights on the other. Now consider a set \(T = \{w_1, w_2, \ldots, w_{n+1}, w_1, w_2, \ldots, w_n\}\); that is, \(T\) consists of \(2n+1\) weights with two copies of the weights \(w_1, w_2, \ldots, w_n\). Now if weight \(w_{n+1}\) is removed from \(T\), the remaining weights balance with \(n\) weights on each pan. If weight \(w_i\) \((1 \leq i \leq n)\) is removed from \(T\), then \(T\) can be viewed as the union of \(T_1 = \{w_1, w_2, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{n+1}\}\) and \(T_2 = \{w_1, w_2, \ldots, w_n\}\). Since both \(T_1\) and \(T_2\) can be divided into \(k\) and \(n-k\) weights which balance, there is a balance of the weights of \(T\) with \(n\) weights on each pan. Thus, from Solution I, we conclude that all the weights of \(T\), and hence of \(S\), are equal and that \(n\) must be even.
Editors’ Note. The problem generalizes to \(n+1 \) weights with real, positive values. A very nice solution (using linear algebra) to the problem with equally many weights on the two pans has been given by C. C. Clever and K. L. Yocom, this Magazine, 49 135–136.

[[I’ve copied out the article here. — was Murray on the Putnam Committee at that time? — R.]]

A Generalization of a Putnam Problem

C. C. Clever

K. L. Yocom

South Dakota State University

The following problem appeared on the 1973 Putnam Examination: Let \(a_1, a_2, \ldots, a_{2n+1} \) be integers such that, if any one of them is removed, those remaining can be divided into two sets of \(n \) having equal sums. Prove \(a_1 = a_2 = \cdots = a_{2n+1} \). A proof may be based on special properties of integers. (Show that the given integers are either all even or all odd. The if they are all even they may be divided by 2 while if they are allder odd they may be increased by 1 without destroying the property of the problem.) In generalizing the problem, we developed a different proof which is an interesting application of linear algebra. We begin with two generalizations of the problem, which we prove by means of a lemma concerning matrices. Then we state and prove a further generalization as our main theorem.

Generalization 1. Let \(x_1, x_2, \ldots, x_{2n+1} \) be complex numbers such that, if any one of them is removed, those remaining can be divided into two sets of \(n \) having equal sums; then \(x_1 = x_2 = \cdots = x_{2n+1} \).

Generalization 2. Let \(x_1, x_2, \ldots, x_{2n} \) be complex numbers such that, if any one of them is removed, those remaining can be divided into two sets having equal sums; then \(x_1 = x_2 = \cdots = x_{2n} = 0 \).

Lemma. If \(A \) is an \(n \) by \(n \) matrix having zeros on the main diagonal and all \(\pm 1 \) off the diagonal, then \(A \) is nonsingular if \(n \) is even and the rank of \(A \) is at least \(n-1 \) if \(n \) is odd.

Proof. In the expansion of \(\det A \), each term -s 0, 1 or \(-1\) and the number, \(d_n \), of nonzero terms in the expansion is the number of permutations of order \(n \) which leave no element fixed. Such permutations are commonly called derangements and it is well known [1, p.31] that \(d_1 = 0, d_2 = 1 \) and \(d_{n+2} = (n+1)(d_n + d_{n+1}) \) for \(n \geq 1 \). It follows inductively that \(d_n \) is even for \(n \) odd and \(d_n \) is odd for \(n \) even. Thus if \(n \) is even, \(\det A \neq 0 \) while if \(n \) is odd, each principal submatrix of \(A \) of order \(n-1 \) has a nonzero determinant. This completes the proof of the lemma.
Proof of 1. Let \(x = \text{col}(x_1, x_2, \ldots, x_{2n+1}) \) and let \(A \) be a \(2n+1 \) by \(2n+1 \) matrix having zeros on the main diagonal and exactly \(n \) entries equal to 1 and \(n \) equal to \(-1\) in each row. Then the components of a solution vector \(x \) of \(Ax = 0 \) satisfy the hypotheses of Generalization 1. Since \(x_0 = \text{col}(1, 1, \ldots, 1) \) is one such solution vector, \(A \) is singular and by the lemma, \(A \) has rank \(2n \). Thus all solutions are of the form \(x = cx_0 = \text{col}(c, c, \ldots, c) \).

Proof of 2. Let \(x = \text{col}(x_1, x_2, \ldots, x_{2n}) \) and let \(A \) be a \(2n \) by \(2n \) matrix with zeros on the main diagonal and \(\pm 1 \) off the diagonal. Then \(A \) is nonsingular by the lemma and hence \(Ax = 0 \) has only the trivial solution \(x = 0 \).

Theorem. Let \(k \) and \(n \) be positive integers satisfying \(n > 2 \) and \(1 \leq k \leq n - 2 \).

(a) If \(n - k = 2m \), an even integer, and \(x_1, x_2, \ldots, x_n \) is a sequence of complex numbers such that, if any \(k \) of them are removed, those remaining can be divided into two sets of \(m \) having equal sums, then \(x_1 = x_2 = \cdots = x_n \).

(b) If \(n - k = 2m + 1 \), an odd integer, and \(x_1, x_2, \ldots, x_n \) is a sequence of complex numbers such that, if any \(k \) of them are removed, those remaining can be divided into two sets having equal sums, then \(x_1 = x_2 = \cdots = x_n = 0 \).

Proof. The theorem is true for \(k = 1 \) by 1 and 2 above. Now proceed inductively on \(k \), assuming the theorem true for \(k = 1, 2, \ldots, K - 1 < n - 2 \). First suppose \(n - K = 2m \) in which case we are to establish (a) for \(k = K \). Let \(x_i \) and \(x_j \) be any two designated elements of the sequence with \(i \neq j \). Remove any \(K - 1 \) elements of the sequence, but leave \(x_i \) and \(x_j \) (this is possible since \(n - K + 1 \geq 3 \)). Then we are left with a sequence of length \(2m + 1 \) satisfying the hypotheses of 1 and hence \(x_i = x_j \). Thus \(x_1 = x_2 = \cdots = x_n \). Similarly if \(n - K = 2m + 1 \) we must establish (b) for \(k = K \).

Again, remove \(K - 1 \) elements of the sequence but this time leave some designated element \(x_i \). The remaining sequence of length \(n - K + 1 = 2m \) satisfies the hypotheses of 2 and hence \(x_i = 0 \). Thus \(x_1 = x_2 = \cdots = x_n = 0 \).

If \(a(n)\) denotes the exponent of the prime \(p\) in the factorization of \(n\), determine the sum

\[S(m) = a(1) + a(2) + \cdots + a(p^m). \]

\[S(m+1) - S(m) = a(p^{m+1}) + a(p^{m+2}) + \cdots + a(p^{m+1}). \]

Since \(a(pq) = 1 + a(q)\) and \(a(r) = 0\) if \(p \nmid r\),

\[S(m+1) - S(m) = (p-1)p^{m-1} + a(p^{m-1} + 1) + a(p^{m-1} + 2) + \cdots + a(p^{m-1} + (p-1)p^{m-1}) \]

or

\[S(m+1) - 2S(m) + S(m-1) = (p-1)p^{m-1} \]

It now follows easily that

\[S(m) = \frac{p^m - 1}{p - 1} \]

Remark: The special case \(p = 2\) was given as a problem on a recent Dutch Mathematical Olympiad.

Q 601. Submitted by Murray S. Klamkin

If \(\{z_i\} \) and \(\{w_i\} \) \((w_1 \neq z_1 \neq z_2)\) denote complex numbers such that

\[
\begin{vmatrix}
 z_1 & z_4 & 1 \\
 z_2 & z_3 & 1 \\
 w_1 & w_2 & 1 \\
\end{vmatrix}
= \begin{vmatrix}
 z_1 & z_1 & 1 \\
 z_2 & z_3 & 1 \\
 w_1 & w_3 & 1 \\
\end{vmatrix}
= \begin{vmatrix}
 z_1 & z_1 & 1 \\
 z_2 & w_2 & 1 \\
 w_1 & w_3 & 1 \\
\end{vmatrix} = 0
\]

prove that \(z_2 - z_1 = z_3 - z_4 \).

[[The entries in the top row of the second determinant look fishy. Also, after looking at the answer, I believe that the inequalities should have been given in the order \((z_1 \neq w_1 \neq z_2)\) — or should it be \((z_1 \neq w_1 \neq z_2 \neq z_1)\)? — R.]]

A 601. Solving for \(w_2 \) and \(w_3 \) from the first two determinants being zero and substituting into the third one, we obtain

\[
(z_2 + z_4 - z_1 - z_3)(w_1 - z_1)(w_1 - z_2) = 0
\]

Thus, it is necessary and sufficient that

\[z_2 - z_1 = z_3 - z_4 \]

The sufficiency condition is equivalent to the following geometric theorem: If \(ABCD \) is a parallelogram and \(ABX, DCY \) and \(ACZ \) are directly similar triangles, then also \(XYZ \sim ABX \) (this is given as an exercise in T. M. MacRobert, Functions of a Complex Variable, Macmillan, London, 1950, p.277).
919. Proposed by Murray S. Klamkin, Ford Motor Company

An \((n+1)\)-dimensional simplex with vertices \(O, A_1, A_2, \ldots, A_{n+1}\) is such that the \((n+1)\) concurrent edges \(OA_i\) are mutually orthogonal. Show that the orthogonal projection of \(O\) onto the \(n\)-dimensional face opposite to it coincides with the orthocenter of that face (this generalizes the known result for \(n = 2\)).

Solution by Leon Gerber, St. John’s University. Let \(O\) be the origin of an \((n+1)\)-dimensional coordinate system and let \(A_i\) lie on the \(i\)th coordinate axis at a distance \(a_i\) from \(O\). The equation of the face \(F\) opposite \(O\) is \(\sum_{i=1}^{n+1} x_i/a_i = 1\). Let \(a^{-1} = \sum_{i=1}^{n+1} a_i^{-2}\) and let \(H = (a/a_i)\). Clearly \(H\) lies in \(F\) and \(OH\) is perpendicular to \(F\). Also,

\[
A_1H \cdot A_2A_3 = [a/a_1 - a_1, a/a_2, a/a_3, \ldots, a/a_{n+1}] \cdot [0, -a_2, a_3, 0, \ldots, 0] = -a + a = 0
\]

so \(A_1H\) is perpendicular to \(A_2A_3\) and similarly for any three distinct subscripts.

Remark. This result and its converse, namely that if an \(n\)-simplex is orthocentric there exist numbers \(a_i, i = 1, \ldots, n+1\) such that \(A_iA - j^2 = a_i^2 + a_j^2, i \neq j\), is in the literature:

Show elementarily that
\[(x + y + z)^{x+y+z} \geq x^x y^y z^z\]
for positive \(x, y, z\).

More generally, it will follow by induction that
\[\left\{\sum x_i\right\}^{\sum x_i} \geq \prod x_i^{x_i} \quad (x_i > 0)\]
if we first show that
\[(x + y)^{x+y} \geq x^x y^y\]
Letting \(y = kx\) we get the obvious inequality
\[(1 + k)(1 + k)^k \geq k^k\]
Another solution, but not as elementary, follows from the concavity of \(\log x\):
\[\frac{\sum x_i \log x_i}{\sum x_i} \leq \log \frac{\sum x_i^2}{\sum x_i} \leq \log \sum x_i\]
There is equality if and only if all the \(x_i\) but one are zero.
Q 608. Submitted by Murray S. Klamkin

If \(x, y, z \) are nonnegative and are not sides of a triangle, show that

\[
1 + \frac{x}{y + z - x} + \frac{y}{z + x - y} + \frac{z}{x + y - z} \leq 0
\]

A 608. We will show more generally that if \(x_i \) (\(i = 1, 2, \ldots, n \)) are nonnegative and are not sides of an \(n \)-gon, then

\[
1 + \sum_{i=1}^{n} \frac{x_i}{S - 2x_i} \leq 0
\]

where \(S = \sum x_i \). Assume that \(2x_n > S \) and let \(x_n = T + 2a \) where \(T = x_1 + x_2 + \cdots + x_{n-1} \) and \(a > 0 \). Then we have to show equivalently that

\[
\frac{T + 2a}{2a} \geq 1 + \sum_{i=1}^{n-1} \frac{x_i}{2(a + T - x_i)}
\]

which follows from

\[
\frac{x_i}{2a} \geq \frac{x_i}{2(a + T - x_i)}
\]
We distinguish between the following two cases:

(1) \(n \) is odd. From (**) \[
\frac{2}{k_i} = \left(\frac{1}{k_i} + \frac{1}{k_{i+1}} \right) - \left(\frac{1}{k_{i+1}} + \frac{1}{k_{i+2}} \right) + \cdots - \left(\frac{1}{k_{i-2}} + \frac{1}{k_{i-1}} \right) + \left(\frac{1}{k_{i-1}} + \frac{1}{k_i} \right)
= -\frac{1}{a_{i+2}} + \frac{1}{a_{i+1}} - \cdots + \frac{1}{a_i} - \frac{1}{a_{i+1}}
\]
\[
k_i = 2 \left(\sum_{p=2}^{n+1} \frac{(-1)^{p+1}}{a_{i+p}} \right)^{-1}
\]
(2) \(n \) is even. \((**)\) is consistent if and only if \(\sum_{i=1}^{n}((-1)^i/a_i) = 0 \). Under this condition we have

\[
\frac{1}{k_i} = (-1)^{i+1}\lambda + \frac{1}{n} \sum_{p=1}^{n-1} \frac{(-1)^p(n-p)}{a_{i+p+1}}
\]

where \(\lambda \) is a parameter. (A standard algorithm leads to a solution in which \(x_n = \lambda_n \) is a parameter; the above expression is obtained by symmetrizing this parametric solution.) Thus, if \(n \) is even and if

\[
\sum_{i=1}^{n} \frac{(-1)^i}{a_i} = 0
\]

the given system admits besides the obvious solution \(x_i = a_{i+1} + a_{i+2} \) an infinite number of solutions given by

\[
x_i = a_{i+1} + a_{i+2} + \left\{ (-1)^{i+1}\lambda + \frac{1}{n} \sum_{p=1}^{n-1} \frac{(-1)^p(n-p)}{a_{i+p+1}} \right\}^{-1}
\]

where \(\lambda \) is an arbitrary parameter except that it cannot be chosen to make any \(1/k_i \) vanish.
ALGEBRA

Inequalities: fractions

Q 618. Submitted by M. S. Klamkin

If $1 \geq x, y, z \geq -1$, show that

$$\frac{1}{(1-x)(1-y)(1-z)} + \frac{1}{(1+x)(1+y)(1+z)} \geq 2$$

with equality if and only if $x = y = z = 0$.

A 618. More generally, we have

$$S = \prod_{i=1}^{m} (1-x_i)^{n_i} + \prod_{i=1}^{m} (1+x_i)^{n_i} \geq 2$$

where $-1 \leq x_i \leq 1$, $n_i < 0$ for $i = 1, 2, \ldots, m$. Since $a + b \geq 2\sqrt{ab}$ for $a, b \geq 0$ we have $S \geq 2 \prod_{i=1}^{m} (1-x_i^2)^{n_i/2} \geq 2$ with equality if and only if $x_i = 0$.

ANALYSIS

Maxima and minima: constraints

942. Proposed by M. S. Klamkin, University of Waterloo

Determine the maximum value of

$$S = \sum_{1 \leq i < j \leq n} \left(\frac{x_i x_j}{1-x_i} + \frac{x_i x_j}{1-x_j} \right)$$

where $x_i \geq 0$ and $x_1 + x_2 + \cdots + x_n = 1$.

Solution by Joseph Silverman, Student, Brown University. We have

$$2S = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{x_i x_j}{1-x_i} + \frac{x_i x_j}{1-x_j} \right) - \sum_{i=1}^{n} 2x_i^2 \frac{1}{1-x_i} = 2 \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j \frac{1}{1-x_i} - \sum_{i=1}^{n} 2x_i^2 \frac{1}{1-x_i}$$

$$= 2 \left(\sum_{j=1}^{n} x_j \right) \left(\sum_{i=1}^{n} \frac{x_i}{1-x_i} \right) - 2 \sum_{i=1}^{n} \frac{x_i^2}{1-x_i}$$

$$= 2 \sum_{i=1}^{n} \frac{x_i - x_i^2}{1-x_i} = 2 \sum_{i=1}^{n} x_i = 2$$

Thus $S = 1$.

134
ANALYSIS

Integral inequalities

Q 622. Submitted by M. S. Klamkin

If G, F are integrable, $a > 0$, $G(x) \geq F(x) \geq 0$ and $\int_0^1 xF(x) \, dx = \int_0^a xG(x) \, dx$, show that $\int_0^1 F(x) \, dx \leq \int_0^a G(x) \, dx$.

A 622. Since

$$\int_a^1 xF(x) \, dx = r \int_a^1 F(x) \, dx = \int_0^a x\{G(x) - F(x)\} \, dx = s \int_0^a \{G(x) - F(x)\} \, dx$$

where $1 \geq r \geq a$ and $a \geq s \geq 0$, we have that $\int_a^1 F(x) \, dx \leq \int_0^a \{G(x) - F(x)\} \, dx$ which is equivalent to the desired result.

Remarks. The problem arose in showing that the time of vertical ascent of a particle subject to gravity and air resistance is less than the time of descent. One can give another proof by showing that the speed of ascent is greater than the speed of descent at corresponding heights. The equality if and only if $x_i = 0$.

135
GEOMETRY

Butterfly problem

949. Proposed by P. Erdős, Hungarian Academy of Science, and M. S. Klamkin, University of Waterloo

In a circle with center O, OXY is perpendicular to chord AB (as shown).

\[DX \leq CY. \]

[This problem also appeared as

I. Solution by Mark Kleiman, Student, Stuyvesant High School, New York, N.Y. Draw DY and choose H on DY so that XH is perpendicular to DY. We have that $\angle XDH = \angle ZDY = \pi/2 - \angle XYZ$ since the intercepted arcs form a semicircle. Thus, right triangle XDH is similar to right triangle XCY and so $XH : DX = XY : CY$. Since $XH \leq XY, DX \leq CY$.

II. Solution by Donald Batman, Socotto, New Mexico. Let the end of the diameter be P and let PD intersect AB at E. Then, $EX = XC$ by the “butterfly problem”. (See, for example, Steven R. Conrad, Another simple solution to the butterfly problem, this Magazine, 46(1973) 278–280.) Applying the law of sines to triangles DEX and
\[\frac{DX}{\sin DEX} = \frac{EX}{\sin D} = \frac{XC}{\sin Y} = \frac{CY}{\sin YXC} \]

we find \(DX = CY \sin DEX \leq CY \).

Inequalities for a Triangle

910. [September, 1974]. Proposed by L. Carlitz, Duke University

[[Compare 867 above. — R.]].

Let \(P \) be a point in the interior of the triangle \(ABC \) and let \(r_1, r_2, r_3 \) denote the distances from \(P \) to the sides of \(ABC \). Let \(a, b, c \) denote the sides and \(r \) the radius of the incircle of \(ABC \). Show that

\[\frac{a}{r_1} + \frac{b}{r_2} + \frac{c}{r_3} \geq \frac{2s}{r} \]

(1)

\[ar_1^2 + br_2^2 + cr_3^2 \geq 2r^2s \]

(2)

\[(s - a)r_2r_3 + (s - b)r_3r_1 + (s - c)r_1r_2 \leq r^2s \]

(3)

\[ar_1^2 + br_2^2 + cr_3^2 + (s - a)r_2r_3 + (s - b)r_3r_1 + (s - c)r_1r_2 \geq 3r^2s \]

(4)

where \(2s = a + b + c \). In each case there is equality if and only if \(P \) is the incenter of \(ABC \).

Solution by M. S. Klamkin, University of Waterloo. Since \(ar_1 + br_2 + cr_3 = 2rs = 2\Delta \) (\(\Delta = \text{area of } ABC \)), it follows from Cauchy’s inequality that

\[\left(\frac{x}{r_1} + \frac{y}{r_2} + \frac{z}{r_3} \right) (ar_1 + br_2 + cr_3) \geq (\sqrt{ax} + \sqrt{by} + \sqrt{cz})^2 \]

(5)

\[(xr_1^2 + yr_2^2 + zr_3^2) \left(\frac{a^2}{x} + \frac{b^2}{y} + \frac{c^2}{z} \right) \geq (ar_1 + br_2 + cr_3)^2 \]

(6)

for all \(x, y, z \geq 0 \). Thus,

\[\frac{x}{r_1} + \frac{y}{r_2} + \frac{z}{r_3} \geq (\sqrt{ax} + \sqrt{by} + \sqrt{cz})^2 / 2\Delta \]

(7)

\[xr_1^2 + yr_2^2 + zr_3^2 \geq 4\Delta^2 \left\{ \frac{a^2}{x} + \frac{b^2}{y} + \frac{c^2}{z} \right\} \]

(8)

with equality in (7) and (8) respectively, if and only if

\[\frac{ar_1^2}{x} = \frac{br_2^2}{y} = \frac{cr_3^2}{z} \]

137
\[
\frac{x r_1}{a} = \frac{y r_2}{b} = \frac{z r_3}{c}
\]

It is to be noted that (6) is valid for all real \(r_1, r_2, r_3\). For the special case \((x, y, z) = (a, b, c)\), (7) and (8) reduce to (1) and (2). Incidentally, (2) will also follow immediately from (3) and (4).

We now show that (3) and (4) are special cases corresponding to \(n = 1\) of the known master triangle inequality

\[
u^2 + v^2 + w^2 \geq (-1)^{n+1}\{2vw \cos nA + 2wu \cos nB + 2uv \cos nC\} \tag{9}\]

[[misprint of \(2uc \cos nC\) in last term has been corrected. — R.]]

where \(u, v, w\) are arbitrary real numbers; \(A, B, C\) are angles of an arbitrary triangle. There is equality if and only if \(u/\sin nA = v/\sin nB = w/\sin nC\) (M. S. Klamkin, Asymmetric triangle inequalities, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No.357–No.380(1971) 33–44). Letting \(u = ax, v = by, w = cz\), (9) for \(n = 1\) is also equivalent to

\[
a^2x^2 + b^2y^2 + c^2z^2 \geq (b^2 + c^2 - a^2)yz + (c^2 + a^2 - b^2)zx + (a^2 + b^2 - c^2)xy \tag{10}\]

The latter inequality can be traced back to Wolstenholme (ibid.).

By multiplying (3) and (4) by 4s and using \(2rs = \sum ar_1\) they can be rewritten respectively as

\[
\sum_{\text{cyclic}} \{a^2r_2 - (b^2 + c^2 - a^2)r_2r_3\} \geq 0 \tag{11}
\]

\[
\sum_{\text{cyclic}} \{a(2b + 2c - a)r_1^2 + [(b + c)^2 - a^2 - 6bc]r_2r_3\} \geq 0 \tag{12}
\]

Now noting that if \(a_1^2 = a(2b + 2c - a), b_1^2 = b(2c + 2a - b)\) and \(c_1^2 = c(2a + 2b - c),\) then \(a_1, b_1, c_1\) are sides of a triangle, it follows that (11) and (12) are valid for all real \(r_1, r_2, r_3\) with equality if and only if \(r_1 = r_2 = r_3.\)

One can also obtain (8) as a special case of (10).

A further generalization of (2) is given by

\[
(x r_1^m + y r_2^m + z r_3^m)^{1/m} \left\{ \left(\frac{a^m}{x} \right)^{1/(m-1)} + \left(\frac{b^m}{y} \right)^{1/(m-1)} + \left(\frac{c^m}{z} \right)^{1/(m-1)} \right\}^{(m-1)/m} \geq 2\Delta
\]

where \(x, y, z, m-1 > 0;\) this follows from Hölder’s inequality.
ANALYSIS

Limits: sequences

958. Proposed by Murray S. Klamkin, University of Waterloo

Give direct proofs of the following two results:

a. If $\text{Re}(z_0) > 0$ and the sequence $\{z_n\}$ is defined for $n \geq 1$ by

$$z_n = \frac{1}{2} \left(z_{n-1} + \frac{A}{z_{n-1}} \right)$$

where A is real and positive, then $\lim_{n \to \infty} = \sqrt{A}$.

b. Suppose $\{x_n\}$ is a real sequence defined for $n \geq 1$ by

$$x_n = \frac{1}{2} \left(x_{n-1} - \frac{A}{x_{n-1}} \right)$$

where A is positive. Show that if p is a given integer greater than 1, then the initial term x_0 can be chosen so that $\{x_n\}$ is periodic with period p. (These results are contained implicitly in K. E. Hirst, A square root algorithm giving periodic sequences, J. London Math. Soc., (2) 6(1972) 56–60.)

Solution by L. van Hamme, Vrije Universiteit Brussel, Brussels, Belgium. a. If w is a complex number defined by

$$z_0 = \sqrt{A} \frac{1 + w}{1 - w}$$

then

$$\text{Re}(z_0) = \frac{z_0 + \bar{z}_0}{2} = \sqrt{A} \left(\frac{1 + w}{1 - w} + \frac{1 + \bar{w}}{1 - \bar{w}} \right) = \sqrt{A} \frac{1 - |w|^2}{|1 - w|^2}$$

The condition $\text{Re}(z_0) > 0$ is therefore equivalent to $|w| < 1$. Now

$$z_1 = \frac{1}{2} \left(\sqrt{A} \frac{1 + w}{1 - w} + \sqrt{A} \frac{1 - w}{1 + w} \right) = \sqrt{A} \frac{1 + w^2}{1 - w^2}$$

Using repeatedly the relation

$$z_n = \frac{1}{2} \left(z_{n-1} + \frac{A}{z_{n-1}} \right)$$

we find in the same way

$$z_n = \sqrt{A} \frac{1 + w^{2^n}}{1 - w^{2^n}}$$
Since $|w| < 1$ it follows that $\lim_{n \to \infty} z_n = \sqrt{A}$.

Remark. If $\text{Re}(z_0) < 0$ one finds $\lim_{n \to \infty} z_n = -\sqrt{A}$.

b. Take $x_0 = \sqrt{A} \cot(\pi/(2^p - 1))$. We will show that $x_n = \sqrt{A} \cot(\pi \cdot 2^n/(2^p - 1))$ for $n \geq 0$. This follows, by induction, from

$$x_{n+1} = \frac{\sqrt{A}}{2} \left[\cot \left(\frac{\pi \cdot 2^n}{2^p - 1} \right) - \tan \left(\frac{\pi \cdot 2^n}{2^p - 1} \right) \right] = \sqrt{A} \cot \left(\frac{\pi \cdot 2^{n+1}}{2^p - 1} \right)$$

Hence

$$x_{n+p} = \sqrt{A} \cot \left(\frac{\pi \cdot 2^{n+p}}{2^p - 1} \right) = \sqrt{A} \cot \left(\pi \cdot 2^n + \frac{\pi \cdot 2^n}{2^p - 1} \right) = \sqrt{A} \cot \left(\frac{\pi \cdot 2^n}{2^p - 1} \right) = x_n$$

and $\{x_n\}$ has period p.
SOLID GEOMETRY

Skew quadrilaterals

Q 630. Submitted by M. S. Klamkin and M. Sayrafiezadeh

Suppose a skew quadrilateral $ABCD$ with diagonal AC perpendicular to diagonal BD is transformed into the quadrilateral $A'B'C'D'$ so that the corresponding lengths of the sides are preserved. Prove that $A'C'$ is perpendicular to $B'D'$.

A 630. The result is a consequence of the following, which is elementary but apparently not widely known:

Theorem. Given vectors a, b, c and d such that $a + b + c + d = 0$, then $(a+b)$ is perpendicular to $(a+d)$ if and only if $|a|^2 + |c|^2 = |b|^2 + |d|^2$.

Proof. Using dot products,

$$c \cdot c = (-1)^2(d + a + b) \cdot (d + a + b) = |a|^2 + |b|^2 + |d|^2 + 2(a \cdot b + a \cdot d + d \cdot b)$$

$$= |b|^2 + |d|^2 - |a|^2 + 2(a \cdot a + a \cdot b + a \cdot d + d \cdot b)$$

Hence

$$|a|^2 + |c|^2 = |b|^2 + |d|^2 + 2(a + b) \cdot (a + d)$$

and the theorem follows.

Note. A more geometric proof can be given by considering spheres centered at some of the vertices of the figures and the powers of certain points with respect to them.

Trilinear Coordinates

Let \(XYZ\) be the pedal triangle of a point \(P\) with respect to the triangle \(ABC\). The find the trilinear coordinates \(x, y, z\) of \(P\) such that

\[YA + AZ = ZB + BX = XC + CY.\]

Solution by M. S. Klamkin, University of Waterloo. By drawing segments from \(P\) parallel to \(AB\) and \(AC\) respectively and terminating on \(BC\) it follows that

\[BX = x \cot B + z \csc B \quad CX = x \cot C + y \csc C\]

The other distances \(CY, AY, AZ, BZ\) follow by cyclic interchange. From the hypothesis,

\[(y + z)(\cot A + \csc A) = (z + x)(\cot B + \csc B) = (x + y)(\cot C + \csc C) = \frac{2s}{3}\]

where \(s = \text{semiperimeter.}\) Solving:

\[x = \frac{s}{3} \left(\tan \frac{B}{2} + \tan \frac{C}{2} - \tan \frac{A}{2} \right)\]

\[y = \frac{s}{3} \left(\tan \frac{A}{2} + \tan \frac{C}{2} - \tan \frac{B}{2} \right)\]

and

\[z = \frac{s}{3} \left(\tan \frac{A}{2} + \tan \frac{B}{2} - \tan \frac{C}{2} \right)\]
ANALYSIS

Differential equations: order 4

Q 631. Submitted by M. S. Klamkin, University of Waterloo

Solve the differential equation \((xD^4 - axD + 3a)y = 0\).

A 631. We solve the more general problem \((xD^{n+1} - k^nxD + k^n)y = 0\). The equation can be factored into \((D^n - k^n)(xD - n)y = 0\). Thus,

\[(xD - n)y = \sum_{i=0}^{n-1} A_i e^{k\omega^i x}\]

where \(\omega\) is a primitive \(n\)th root of unity and the \(A_i\) are arbitrary constants. Integrating again, we get

\[y = A_n x^n + x^n \sum_{i=0}^{n-1} A_i \int \frac{e^{k\omega^i x}}{x^{n+1}} dx x^{n+1}\]
ANALYSIS

Rate problems

The Longest Swim January 1975

926. Proposed by Melvin F. Gardner, University of Toronto

A swimmer can swim with speed \(v \) in still water. He is required to swim for a given length of time \(T \) in a stream whose speed is \(r < v \). If he is also required to start and finish at the same point, what is the longest path (total arc length) that he can complete? Assume the path is continuous with piecewise continuous first derivatives.

Solution by M. S. Klamkin, University of Waterloo. If \(\theta(t) \) denotes the angle heading of the swimmer with respect to the stream velocity, then

\[
\dot{x} = \frac{dx}{dt} = v \cos \theta + r \\
\dot{y} = \frac{dy}{dt} = v \sin \theta
\]

The length \(L \) of a closed path swum in time \(T \) is then given by

\[
L = \int_0^T \left\{ \dot{x}^2 + \dot{y}^2 \right\}^{1/2} dt = \int_0^T \left\{ v^2 + 2vr \cos \theta + r^2 \right\}^{1/2} dt
\]

\[
= \int_0^T \left\{ v^2 - r^2 + 2r\dot{x} \right\}^{1/2} dt
\]

Applying the Schwarz-Buniakowski inequality and noting that \(\int_0^T \dot{x} \, dt = 0 \)

\[
L^2 \leq \int_0^T \{v^2 - r^2 + 2r\dot{x}\} \, dt \cdot \int_0^T dt = T^2(v^2 - r^2)
\]

with equality if and only if \(\dot{x} = \) constant. Thus \(L_{\text{max}} = T(v^2 - r^2)^{1/2} \) for a back and forth segment path perpendicular to the stream velocity.

We can also find the closed path of minimum length for a given time \(T \). Since

\[
v^2 + 2vr + r^2 \geq (v + r \cos \theta)^2
\]

\[
L \geq \int_0^T (v + r \cos \theta) \, dt = \int_0^T \{v + r(\dot{x} - r)/v\} \, dt = (v^2 - r^2)T/v
\]

with equality if and only if \(\cos^2 \theta = 1 \). Thus \(L_{\text{min}} = (v^2 - r^2)T/v \) for a back and forth segment path parallel to the stream velocity.

The above results are generalized for the flight of an aeroplane in a three-dimensional irrotational wind field in a paper *On extreme length flight paths* submitted for publication.
NUMBER THEORY

Forms of numbers: sums of squares

Q 634. Submitted by M. S. Klamkin, University of Waterloo

If \(a, b, c, d\) are positive integers where \(ab = cd\), show that \(a^2 + b^2 + c^2 + d^2\) is always composite.

A 634. Since \(d = \frac{ab}{c}\), \(a = mn, b = rs, c = mr, d = ns\). The,

\[a^2 + b^2 + c^2 + d^2 = (m^2 + s^2)(n^2 + r^2)\]

This problem appeared on a West German Olympiad.

GEOMETRY

Equilateral triangles: orthogonal projection

Math. Mag., 49(1976) 211.

988. Proposed by Murray S. Klamkin, University of Waterloo

A given equilateral triangle \(ABC\) is projected orthogonally from a given plane \(P\) to another plane \(P'\). Show that the sum of the squares of the sides of triangle \(A'B'C'\) is independent of the orientation of the triangle \(ABC\) in plane \(P\).

Solution by W. Weston Meyer, General Motors Research Laboratories. We associate complex variables \(z = x + iy\) and \(z' = x' + iy'\) with \(P\) and \(P'\) respectively. Let \(\Pi\) be a closed \(n\)-sided polygom in \(P\) with vertices \(z_1, z_2, \ldots, z_n, z_{n+1} (z_{n+1} = z_1)\), and let \(\Pi'\) be the image of \(\Pi\) in \(P'\) under an affine transformation \(x' = ax + by + c, y' = dx + ey + f\). In terms of \(z'\) and \(z\) the transformation can be written \(z' = \alpha z + \beta \bar{z} + \gamma\) where \(\alpha, \beta, \gamma\) are complex constants and \(\bar{z}\) is the conjugate of \(z\). A side \(\Delta_j = z_{j+1} - z_j\) of \(\Pi\) will transform: \(\Delta'_j = \alpha \Delta_j + \beta \bar{\Delta}_j\). Applying the cosine law identity

\[|u + v|^2 = |u|^2 + |v|^2 + 2 \text{Re}(uv)\]

one obtains

\[|\Delta'_j|^2 = (|\alpha|^2 + |\beta|^2)|\Delta_j|^2 + 2 \text{Re}(\alpha \beta \bar{\Delta}_j)\]

for the squared length pf \(\Delta'_j\). Let

\[S = \sum_{j=1}^{n} |\Delta_j|^2 \quad S' = \sum_{j=1}^{n} |\Delta'_j|^2 \quad \text{and} \quad \sigma_k = \sum_{j=1}^{n} \Delta_j^k \quad (k = 1, 2)\]
Then $S' = (|\alpha|^2 + |\beta|^2)S + 2\text{Re}(\alpha\beta\sigma_2)$. Rotation of Π through an angle θ in plane P will leave S unchanged while causing each Δ_j^2, and hence σ_2, to rotate through an angle 2θ. The sum S' will be fixed for all θ if and only if the same is true of $\text{Re}(\alpha\beta\sigma_2)$, in other words if and only if $\alpha\beta\sigma_2 = 0$. We have the following theorem:

Under any affine transformation, other than a similarity transformation, for S' to be independent of the orientation of Π in P it is necessary and sufficient that Δ_1, Δ_2, ..., Δ_n be roots of $\Delta^n - p_{n-3}(\Delta) = 0$, where p_{n-3} is a polynomial of degree $n-3$ at most.

It is generally true that

$$(\Delta - \Delta_1)(\Delta - \Delta_2) \cdots (\Delta - \Delta_n) = \Delta^n - \sigma_1\Delta^{n-1} + \frac{1}{2}(\sigma_1^2 - \sigma_2)\Delta^{n-2} - p_{n-3}(\Delta).$$

In the present case, $\sigma_1 = 0$ because Π is closed; by excluding similarity (i.e., conformal) transformations we deny the value 0 to $\alpha\beta$ so that $\alpha\beta\sigma_2 = 0$ only if $\sigma_2 = 0$. Thus the theorem.

When $n = 3$, p_{n-3} must be a constant. This establishes the equilateral triangle as the only triangle with the O-I property (meaning that S' is orientation-independent). By reason of the cyclotomic equation, $\Delta^n = 1$, all regular polygons have the O-I property; but a polygon of more than three sides need not be regular to have it. Indeed, by the addition of a single vertex, any n-gon lacking the property can be expanded into an $(n+1)$-gon possessing it. We should mention, finally, that orthogonal projection from P to P' is a special case of affine transformation, non-conformal if the planes are not parallel.
GEOMETRY

Triangle inequalities: medians and sides

Q 638. Submitted by M. S. Klamkin, University of Waterloo

Let a, b and c denote the sides of an arbitrary triangle with respective medians m_a, m_b and m_c. Determine all integral p and q so that

$$
\left(\frac{\sqrt{3}}{2} \right)^p (a^p m_a^q + b^p m_b^q + c^p m_c^q) \geq \left(\frac{\sqrt{3}}{2} \right)^q (a^q m_a^p + b^q m_b^p + c^q m_c^p)
$$

A 639. If a is any integer, $(-1)^{|a|} = (-1)^a$. Hence,

$$
(-1)^{\sum |k_i - m_i|} = \prod (-1)^{|k_i - m_i|} = \prod (-1)^{(k_i - m_i)} = (-1)^{\sum (k_i - m_i)} = (-1)^0 = 1
$$

Thus $\sum |k_i - m_i|$ must be even.
ALGEBRA

Means

1000. Proposed by Murray S. Klamkin, University of Waterloo

Let T denote a cyclic permutation operator acting on the indices of a sequence $\{a_i\}$, that is, $T(a_1x_1 + a_2x_2 + \cdots + a_nx_n) = a_2x_1 + a_3x_2 + \cdots + a_1x_n$. If, for all i, $a_i \geq 0$ and $x_i > 0$, show that

$$\left\{ \sum_{i=1}^{n} \frac{a_i}{n} \right\}^n \geq \prod_{i=1}^{n} T^i \left\{ \frac{a_1x_1 + a_2x_2 + \cdots + a_nx_n}{x_1 + x_2 + \cdots + x_n} \right\} \geq \prod_{i=1}^{n} a_i$$

Solution by Jerry Metzger, University of North Dakota. Let

$$w_i = T^i \left\{ \frac{a_1x_1 + \cdots + a_nx_n}{x_1 + \cdots + x_n} \right\}$$

Since the geometric mean of the w_i never exceeds their arithmetic mean, we have

$$\sum_{i=1}^{n} \frac{a_i}{n} = \sum_{i=1}^{n} \frac{w_i}{n} \geq \left(\prod_{i=1}^{n} w_i \right)^{1/n}$$

which yields the left-hand inequality. Also, from the arithmetic mean-geometric mean inequality,

$$T^i \left\{ \frac{\sum a_i x_i}{\sum x_i} \right\} \geq \left\{ a_i^{x_1} \cdots a_{n-i+1}^{x_{n-i+1}} a_1^{n-i+2} \cdots a_{i-1}^{x_n} \right\}^{1/\sum x_i}$$

so that

$$\prod_{i=1}^{n} T^i \left\{ \frac{\sum a_i x_i}{\sum x_i} \right\} \geq \prod_{i=1}^{n} a_i$$
ALGEBRA

Rate problems: rivers

1004. Proposed by Murray S. Klamkin, University of Alberta

A river flows with constant speed w. A motorboat cruises with a constant speed v with respect to the river, where $v < w$. If the path travelled by the boat is a square of side L with respect to the ground, the time of traverse will vary with the orientation of the square. Determine the maximum and minimum time for the traverse.

Solution by Paul Y. H. Yiu, University of Hong Kong.

To travel along the side of a square making an angle $\theta \leq \pi/2$ with the direction of the current, the motorboat must be set in an appropriate direction, as shown in the diagram below, and the resultant speed is

$$
u_1 = \sqrt{v^2 - w^2 \sin^2 \theta} + w \cos \theta$$

The same diagram shows that the resultant speed along the opposite side is

$$u_2 = \sqrt{v^2 - w^2 \sin^2 \theta} - w \cos \theta$$

Replacing θ by $(\pi/2) - \theta$ we obtain the resultant speeds u_3 and u_4 along the other two sides. The time T of the traverse is $L(u_1^{-1} + u_2^{-1} + u_3^{-1} + u_4^{-1})$. Thus we find that

$$T = \frac{2L}{v^2 - w^2} \left[2v^2 - w^2 + \sqrt{(2v^2 - w^2)^2 - (w^2 \cos 2\theta)^2} \right]^{1/2}$$

We see that the minimum occurs when $\theta = 0$ and $T_{\text{min}} = 2L(v + \sqrt{v^2 - w^2})/(v^2 - w^2)$. The maximum occurs when $\theta = \pi/4$ and $T_{\text{max}} = 2L(4v^2 - 2w^2)^{1/2}/(v^2 - w^2)$.

[[On *Math. Mag.*, 50(1977) 47, in connexion with Problem 955 there is quoted:
SOLID GEOMETRY

Space curves

Coplanar Points

November 1975

962. Proposed by Curt Monash, The Ohio State University

Consider the space curve \(C(t) \) defined by \(C(t) = (t^k, t^m, t^n) \) for \(t \geq 0 \) and \(k, m, n \) integers.

a. Show that if \((k, m, n)\) equals \((1,2,3)\) or \((-2,-1,1)\), then \(C(t) \) does not contain four coplanar points.

b. Show that for \((k, m, n) = (1, 3, 4)\), \(C(t) \) does contain four coplanar points.

c. Find a characterization of \((k, m, n)\) so that \(C(t) \) does not contain four coplanar points.

I. Solution by Vaclav Konecny, Jarvis Christian College. Consider the equation of a plane in usual notation \(A \equiv ax + by + cz + d = 0 \). \(C(t) \) has common points with \(A \) if \(at^k + bt^m + ct^n + d = 0 \) (\(t \geq 0 \)). As \(k, m, n \) are integers this equation can be always rewritten as polynomial equation in \(t \). The number of changes of coefficients can be made maximum 3. Thus the number of positive roots is not greater than 3. Therefore \(C(t) \) does not contain four coplanar points except in some special cases (e.g., \(k = m; k = n; m = n; k = m = n \)) when the curve is in a plane.

[[the above solution, where the English could be improved, has been included, since it may be that Murray’s solution (where ‘1/6’ should ? be replaced by ‘6 times’) refers to conditions therein. I’m not clear about the ‘characterization’ — why does ‘b.’ have four coplanar points?]}

150
II. Solution by M. S. Klamkin, University of Alberta. We shall show that $C(t)$ never contains four coplanar points under the given constraints.

Let the four points correspond to a, b, c, d. Then there will be no four coplanar points if the alternant determinant

\[
\begin{vmatrix}
1 & a_1^k & a_2^m & a_3^n \\
1 & b_1^k & b_2^m & b_3^n \\
1 & c_1^k & c_2^m & c_3^n \\
1 & d_1^k & d_2^m & d_3^n
\end{vmatrix} \equiv |a^0 b^k c^m d^n| \neq 0
\]

(here the determinant is $1/6$ of the volume of the tetrahedron spanned by the four points).

It is a known result [1,2] that the generalized Vandermonde determinant $|a_1^{\alpha_1} a_2^{\alpha_2} \cdots a_n^{\alpha_n}|$, where a_1, a_2, \ldots, a_n are positive and $\alpha_1, \alpha_2, \ldots, \alpha_n$ are real numbers, is equal to zero if and only if either amongst the numbers a_i or amongst the numbers α_i some are equal. Note that, if say $a = 0$, the determinant reduces to the lower order one $|b^k c^m d^n|$. For the case where any of the (k, m, n) are negative, none of a, b, c, d can be zero. Then by clearing of fractions, we are back to the previous cases.

In particular, it is known that

\[
\begin{align*}
|a^0 b^1 c^3 d^4| &= D \sum ab \\
|a^0 b^1 c^3 d^5| &= D\left\{\sum a^2 b + 2 \sum abc\right\} \\
|a^0 b^2 c^3 d^5| &= D\left\{\sum a^2 bc + 3abcd\right\} \\
|a^0 b^1 c^4 d^5| &= D\left\{\sum a^2 b^2 + \sum a^2 bc + 2abcd\right\} \\
|a^0 b^1 c^3 d^6| &= D\left\{\sum a^3 b + \sum a^2 b^2 + 2 \sum a^2 bc + 3abcd\right\}
\end{align*}
\]

where the summations are symmetric sums over a, b, c, d and

\[
D = |a^0 b^1 c^2 d^3| = (a - b)(a - c)(a - d)(b - c)(b - d)(c - d)
\]

GEOMETRY

Triangle inequalities: interior point

A Geometric Inequality: Completed November 1975

959. Proposed by L. Carlitz, Duke University

Let P be a point in the interior of the triangle ABC and let r_1, r_2, r_3 denote the distances from P to the sides of the triangle.

Let R denote the circumradius of ABC. Show that

$$\sqrt{r_1} + \sqrt{r_2} + \sqrt{r_3} \leq 3\sqrt{R/2}$$

with equality if and only if ABC is equilateral and P is the center of ABC.

Comment by Murray S. Klamkin, University of Alberta. The n-dimensional extension of this problem (Jan. 1977) is not entirely complete. The verification of the extreme point was said to be easy and consequently was not done. However, since this is a maximum problem subject to the constraints $\sum e_i/h_i = 1$, $e_i \geq 0$, one has to check for extrema on all the boundaries of the constraint domain, which consists of very many faces of dimensions 0 to $n - 1$. Here we give a still further extension with a simple (non-calculus) proof using Hölder’s inequality.

We will show that

$$\left\{ \sum x_i^{2p/(2p-3)} \right\}^{(2p-3)/2p} \cdot \left\{ \frac{R^2(n+1)^3}{n^2} \right\}^{1/2p} \geq \sum x_i r_i^{1/p} \quad (1)$$

where x_i ($i = 1, 2, \ldots, n + 1$) are arbitrary non-negative numbers, r_i are the distances from an interior point P of an n-simplex to the $(n-1)$-dimensional faces, R is the circumradius of the simplex, and p is any number greater than 3/2. Letting $x_i = 1$ and $p \to 3/2$, we recapture the extension given previously by Gerber. For $n = 2$ and $p = 2$ we obtain

$$\frac{27R^2}{4} (x_1^4 + x_2^4 + x_3^4) \geq \left\{ x_1 \sqrt{r_1} + x_2 \sqrt{r_2} + \sqrt{r_3} \right\}^4$$

There is equality in (1) if and only if the simplex is regular, P is the centroid and the x_i are equal.

Proof. By Hölder’s inequality,

$$\left\{ \sum r_i/h_i \right\}^{1/p} \left\{ \sum x_i^{q} h_i^{q/p} \right\}^{1/q} \geq \sum x_i r_i^{1/p} \quad (2)$$
and
\[
\left\{ \sum x_i^{2p/(2p-3)} \right\}^{(2p-3)/2p} \cdot \left\{ \sum h_i^2 \right\}^{q/2p} \geq \sum x_i^q h_i^{q/p}
\]
where \(1/p + 1/q = 1\) and \(p > 3/2\). Combining (2) and (3), using \(\sum r_i/h_i = 1\) (\(r_i = e_i\) in Gerber’s notation and \(h_i = \text{altitude of simplex from vertex } i\)), we get
\[
\left\{ \sum x_i^{2p/(2p-3)} \right\}^{(2p-3)/2p} \cdot \left\{ \sum h_i^2 \right\}^{1/2p} \geq \sum x_i h_i^{-1/p}
\]
Finally, using
\[
\sum h_i^2 \leq \sum m_i^2
\]
where \(m_i\) is the median of the simplex from vertex \(i\) and
\[
n^2 \sum m_i^2 \leq R^2 (n+1)^3
\]
we obtain (1).

Although Gerber notes that (4) is an immediate consequence of Lagrange’s identity (which may have been known to Leibniz), we include a proof for completeness.

Let \(V_i\) and \(G\) denote vectors from the circumcenter \(O\) to the vertices \(V_i\) and to the centroid, respectively, of the simplex. Then
\[
\sum V_i^2 = \sum ((V_i - G) + G)^2 = \sum |V_i G|^2 + (n+1)|OG|^2
\]
Since \(|V_i|^2 = R^2\) and \(|V_i G| = nm_i/(n+1)\) we obtain (4). Further applications of this polar moment of inertia identity are given in this Magazine, 48(1975) 44–46.

[[the above comment includes references to the following article:

Geometric Inequalities via the Polar Moment of Inertia
M. S. Klamkin, Ford Motor Company, Dearborn, Michigan
and to the solution by Gerber, which is given below:]]

II. Solution (generalization) by Leon Gerber.. Let \(P\) be a point in an \(n\)-simplex \(A\) with inradius \(r\) and circumradius \(R\). Let the distances of \(P\) from the vertices and faces of \(A\) be respectively \(d_i\) and \(e_i\) for \(i \in \mathcal{I} = \{0, 1, \ldots, n\}\). Berkes [1] proved that
\[
\left(\frac{1}{n+1} \sum d_i^p \right)^{1/p} \geq nr
\]
(1)
for \(p = 1 \). Since the left side is a power mean, which increases with \(p \), the result follows for all \(p \geq 1 \). In [2, Theorem 4.4] we proved (1) for \(p \geq 2/[1 + \log(n + 1)] \) and also

\[
\left(\frac{1}{n+1} \sum e_i^p \right)^{1/p} \leq R/n \tag{2}
\]

for \(p \leq 0 \). The present problem is that of proving (2) for \(n = 2 \) and \(p = 1/2 \). We shall prove (2) for \(p = 2/3 \) and hence obtain:

Theorem. Inequality (2) is valid for all \(p \leq 2/3 \). Equality holds if and only if \(P \) is the center of a regular simplex. (We conjecture that the best possible exponent exceeds 2/3 and approaches 1 as \(n \) increases.)

Proof. Let \(h_i \) be the altitude to face \(i \), \(V_i \) the \(n \)-dimensional volume of the \(n \)-simplex with vertex \(P \) and opposite face \(i \), \(V \) the volume of the given simplex, and \(K_i \) the \((n-1)\)-dimensional area of face \(i \). Then

\[
\sum e_i h_i = \sum e_i K_i/(n + 1) = \sum V_i \frac{V}{V} = 1
\]

Hence the problem becomes

\[
\text{maximize } \sum e_i^{2/3} \text{ subject to } \sum \frac{e_i}{h_i} = 1
\]

The method of Lagrange multipliers yields

\[
\frac{2}{3} e_i^{-1/3} - \lambda h_i^{-1} = 0 \quad i \in \mathcal{I} \tag{3}
\]

for the extreme point; it is easy to verify that this yields a maximum. Then

\[
e_i = \left(\frac{2h_i}{3\lambda} \right)^3 1 = \sum e_i h_i = \left(\frac{2}{3\lambda} \right)^3 \sum h_i^2 \quad \text{and} \quad \lambda = \frac{2}{3} \left(\sum h_i^2 \right)^{1/3}
\]

Multiplying (3) by \(3e_i/(2(n + 1)) \) and summing, we get

\[
\left[\frac{1}{n+1} \sum e_i^{2/3} \right]^{3/2} = \left[\frac{3\lambda}{2(n+1)} \right]^{3/2} = (n+1)^{-3/2} \left(\sum h_i^2 \right)^{1/2}
\]

for the extreme point. Since this last expression is independent of \(\lambda \) and \(e_i \), we have

\[
\left[(n+1)^{-1} \sum e_i^{2/3} \right]^{3/2} \leq (n+1)^{-3/2} \left(\sum h_i^2 \right)^{1/2} \tag{4}
\]

for all points of \(\mathcal{A} \).

Let \(G \) be the centroid and \(C \) the circumcenter of \(\mathcal{A} \), and let \(A_iG_i \) \((i \in \mathcal{I})\) be the medians. Clearly \(h_i \leq A_iG_i \) \((i \in \mathcal{I})\), with equality if and only if \(\mathcal{A} \) is regular, in which
case equality holds in (4) if and only if \(P \) is the center. Further, it is an immediate consequence of Lagrange’s identity that

\[
0 \leq CG^2 = R^2 - (n+1)^{-1} \sum A_iG^2 = R^2 - n^2(n+1)^{-3} \sum A_iD_i^2
\]

with equality if and only if \(C = G \), which holds if and only if \(\mathcal{A} \) is regular. Thus

\[
\left[(n+1)^{-1} \sum e_i^{2/3} \right]^{3/2} \leq (n+1)^{-3/2} \left(\sum h_i^2 \right)^{1/2} \\
\leq (n+1)^{-3/2} \left(\sum A_iG_i^2 \right)^{1/2} \leq R/n
\]

[[The 50-year index contains the following Murray items:]]

A note on an n-th order differential equation, 32(1958) 33–34.

A probability of more heads, 44(1971) 146–149.

Circle through three given points, 44(1971) 279–282.

Duality in spherical triangles, 46(1973) 208–211.

On some problems in gravitational attraction, 41(1968) 130–132.

Perfect squares of the form $(m^2 - 1)a_n^2 + t$, 42(1969) 111–113.

(with Robert W. Gaskell and P. Watson) Triangulations and Pick’s theorem, 49(1976) 35–37; Comment, 49(1976) 105, 158.

[I just tried ‘Klamkin’ on MathSciNet – 115 hits, all of them Murray. Would be easy to pick them all up, if wanted. – R.]
Digit problems: primes

[Math. Mag., 51 (1978) 69.]

1029*. Proposed by Murray S. Klamkin, University of Alberta

Does there exist any prime number such that if any digit (in base 10) is changed to any other digit, the resulting number is always composite?

[Math. Mag., 52 (1979) 180–182.]

Solution by Paul Erdős, Hungarian Academy of Science. We prove a slightly stronger result and in the end make some comments and state a few more problems.

For every \(k > k_0 \) there are primes

\[
p = \sum_{i=0}^{k} a_i 10^i \quad a_0 > 0, \ a_k > 0, \ 0 \leq a_i \leq 9
\]

so that all the integers

\[
p + t \cdot 10^i \quad |t| \leq 10 \quad 0 \leq i \leq k
\]

are composite. In fact there are \(21(k+1) \) integers of the form (1). Put \(x = 10^{k+1} \).

We will determine \(p \mod q_i \) where the \(q_i \) will be suitably chosen primes whose product is less than \(x^\epsilon \) where \(\epsilon \) is small but fixed. Then by Linnik’s theorem (the smallest \(p \equiv a \pmod{b} \) is less than \(b^c \) for an absolute constant \(c \) if \((a,b) = 1 \) there is a \(p < x \) which satisfies all these congruences. The congruences will be chosen so that all of the numbers will be multiples of one of the \(q_i \); thus they are all composite.

By a well-known theorem of Bang-Birkhoff-Vandiver, there is always a \(q_j \) so that

\[
10^i \equiv 1 \pmod{q_j} \quad 1 \leq i \leq j \quad \text{and} \quad 10^i \not\equiv 1 \pmod{q_j} \quad 1 \leq i < j.
\]

(The theorem states: for every \(a \) and \(j \) [except \(2^6 - 1 \)] there is a \(q_j \) so that \(a^j - 1 \equiv 0 \pmod{q_j} \) and \(a_i - 1 \not\equiv 0 \pmod{q_j} \) for every \(1 \leq i < j \).) Consider these primes so that

\[
\prod_{j=1}^{r} q_j \leq x^{\epsilon/2} < \prod_{j=1}^{r+1} q_j
\]

since \(\prod_{j=1}^{r} q_j < 10^r \), \(r \) can be chosen as \([\epsilon \sqrt{\log x}] \). Now we determine the congruences. Suppose that the congruences

\[
p \equiv u_m \pmod{q_m} \quad 1 \leq m \leq j - 1
\]

have already been determined. Let \(b_1, \ldots, b_{s_{j-1}} \) be the integers of the form \(t \cdot 10^i, \ |t| \leq 10, \ 0 \leq i \leq k \) which do not satisfy any of the congruences

\[
t \cdot 10^i \equiv -u_m \pmod{q_m} \quad 1 \leq m \leq j - 1
\]
The numbers \(t \cdot 10^i \) determine at most \(21j \) residues mod \(q_j \) (since \(10^i \) takes exactly \(j \) distinct values by \(10^i \equiv 1 \pmod{q_j} \)). Therefore there is a \(u_j \) for which \(b_L \equiv -u_j \pmod{q_j} \), \(1 \leq L \leq j \) is satisfied by at least \(\{b_{s_j-1}\} \) values of \(L \) where \(\{N\} \) denotes the least integer \(\geq N \). Put \(p \equiv u_j \pmod{q_j} \). This determines the congruences

\[
p \equiv u_j \pmod{q_j}, \quad 1 \leq j \leq r = \lceil \epsilon \sqrt{\log x} \rceil
\]

(2)

The number of integers \(t \cdot 10^j, |t| \leq 10, 1 \leq j \leq k \) for which \(p + t \cdot 10^j \) (\(p \) satisfying the congruences (1)) is not a multiple of one of the \(q_j \) \(1 \leq j \leq r \) is at most

\[
21(k + 1) \prod_{j=2}^{r} \left(1 - \frac{1}{j} \right) < \frac{21 \log x}{r} < \frac{21\sqrt{\log x}}{\epsilon}
\]

Let \(v_1, v_2, \ldots, v_x, \quad x < \frac{21 \log x}{\epsilon} \) be those integers of the form \(t \cdot 10^j \). Let \(Q_1, Q_2, \ldots, Q_x \) be the consecutive primes which are not \(q_j \). Put

\[
p \equiv -v_i \pmod{Q_i}, \quad i = 1, \ldots, x
\]

(3)

There are \(r + x \) congruences (2) and (3). The product of the moduli equals

\[
\prod_{j=1}^{r} q_j \prod_{i=1}^{x} Q_i < x^{\epsilon/2} x^{\epsilon/2} = x^\epsilon
\]

(\(\prod Q_i < x^{\epsilon/2} \) is trivial from the prime number theorem or a much more elementary result.) This completes our proof since the primes \(p \) satisfying (2) and (3) satisfy (1) and as stated by Linnik there are primes \(p < x \).

Denote by \(l_a(p) \) the exponent of \(a \) mod \(p \).

I can prove

\[
\sum_{p < x} \frac{1}{l_a(p)} > x^c
\]

(4)

and in (4) probably \(c \) can be taken to be \(1 - \epsilon \), but this seems very difficult.

From (4) we can deduce by the methods used here that there are infinitely many primes \(p, 10^k < p < 10^{k+1} \), so that if we simultaneously alter \(\log k \) digits we always get a composite number.

Is it true that if \(a_m > c^m/m, \quad c > 1, \quad m = 1, 2, \ldots \) then there are always primes, in fact infinitely many of them, so that all the numbers \(p + a_m, a_m < p \) are composite? I do not know.

Editor’s Comment. Individual computer searches by Allan Wm. Johnson, Harry L. Nelson and Stanley Rabinowitz found six-digit primes which provide a solution. The complete list of such six-digit primes supplied by Nelson is: 294001, 505447, 584141, 604171 and 971767. Rabinowitz supplied the table below which shows a divisor for each number that can be formed from 294001 by changing one digit.
TRIGONOMETRY

Inequalities: tan and sec

Q 652. Submitted by M. S. Klamkin, University of Alberta

Show that \(\sum_{i=1}^{n} (1 + \tan \alpha_i) \leq \sqrt{2} \sum_{i=1}^{n} \sec \alpha_i \) when \(\sec \alpha_i > 0 \). When does equality hold? (This is a generalization of Q472, March 1970.)

A 652. We see that

\[
\sum_{i=1}^{n} (1 + \tan \alpha_i) = \sum_{i=1}^{n} \frac{\sin \alpha_i + \cos \alpha_i}{\cos \alpha_i} = \sqrt{2} \sum_{i=1}^{n} \frac{\sin(\alpha_1 + \pi/4)}{\cos \alpha_i} \leq \sqrt{2} \sum_{i=1}^{n} \sec \alpha_i
\]

Equality holds if and only if \(\sin(\alpha_i + \pi/4) = 1 \) for all \(i \). In particular, if \(\alpha_1, \alpha_2 \) and \(\alpha_3 \) are the angles of a triangle, then \(3 + \sum \tan 3\alpha_i/4 \leq \sqrt{2} \sum \sec 3\alpha_i/4 \) with equality if and only if the triangle is equilateral.

In the original answer to Q472 it was also shown that \(\sec \alpha + \sec \beta \geq 2 \). Again, this isn’t sharp. Since \(\sec x \) is convex in \((-\pi/2, \pi/2)\),

\[
\frac{1}{n} \sum_{i=1}^{n} \sec \alpha_i \geq \sec \left(\frac{\sum_{i=1}^{n} \alpha_i}{n} \right)
\]

with equality if and only if \(\alpha_i = \text{constant} \).
GEOMETRY

Triangle inequalities: radii

1043. Proposed by M. S. Klamkin, University of Alberta

If \((a_i, b_i, c_i)\) are the sides, \(R_i\) the circumradii, \(r_i\) the inradii, and \(s_i\) the semi-perimeters of two triangles \((i = 1, 2)\), show that

\[
\left\{ \frac{s_1}{r_1 R_1} \frac{s_2}{r_2 R_2} \right\}^{1/2} \geq 3 \left\{ \frac{1}{\sqrt{a_1 a_2}} + \frac{1}{\sqrt{b_1 b_2}} + \frac{1}{\sqrt{c_1 c_2}} \right\}
\]

(1)

with equality if and only if the two triangles are equilateral.

Also show that the analogous three triangle inequality

\[
\left\{ \frac{s_1}{r_1 R_1} \frac{s_2}{r_2 R_2} \frac{s_3}{r_3 R_3} \right\}^{1/2} \geq 9 \left\{ \frac{1}{\sqrt{a_1 a_2 a_3}} + \frac{1}{\sqrt{b_1 b_2 b_3}} + \frac{1}{\sqrt{c_1 c_2 c_3}} \right\}
\]

(2)

is invalid.

Solution by Paul Bracken, undergraduate, University of Toronto. We prove first that

\[
(a_1 + b_1 + c_1)(a_2 + b_2 + c_2) \geq 3 \left(\sqrt{a_1 a_2 b_1 b_2} + \sqrt{b_1 b_2 c_1 c_2} + \sqrt{a_1 a_2 c_1 c_2} \right)
\]

(3)

Apply the Schwarz inequality \(x_1 y_1 + x_2 y_2 \leq \sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2}\) to

\[
L = \sqrt{a_1 + b_1 + c_1} \sqrt{a_2 + b_2 + c_2}
\]

to obtain

\[
L \geq \sqrt{a_1 a_2} + \sqrt{b_1 b_2} + \sqrt{c_1 c_2}
\]

and

\[
L^2 \geq a_1 a_2 + b_1 b_2 + c_1 c_2 + 2 \left(\sqrt{a_1 a_2 b_1 b_2} + \sqrt{b_1 b_2 c_1 c_2} + \sqrt{a_1 a_2 c_1 c_2} \right)
\]

But certainly for positive \(x, y, z\) we know that \(x^2 + y^2 + z^2 \geq xy + yz + zx\). Set

\[
x = \sqrt{a_1 a_2}, \quad y = \sqrt{b_1 b_2} \quad \text{and} \quad z = \sqrt{c_1 c_2}
\]

in this inequality and apply it in the previous expression for \(L^2\). This gives (3) immediately.

Now \(L^2\) is \(4s_1 s_2\) and we have the well-known relation \(4r_i R_i = (a_i b_i c_i)/s_i\) \((i = 1, 2)\). Hence

\[
4s_1 s_2 = \sqrt{s_1 s_2/(r_1 R_1 r_2 R_2)} \cdot \sqrt{a_1 a_2 b_1 b_2 c_1 c_2}
\]

By using this in (3) and dividing both sides by \(\sqrt{a_1 a_2 b_1 b_2 c_1 c_2}\), (1) is proved. Equality will hold in (3) if and only if we have \(a_1 = a_2 = b_1 = b_2 = c_1 = c_2\); that is if both triangles are equilateral, since only then will equality hold in both of the inequalities that were used above.
By using $4r_iR_i = a_ib_ic_i/s_i$ equation (2) becomes analogous to (3):

$$p_1p_2p_3 \geq 9 \left(\sqrt{a_1a_2a_3b_1b_2b_3} + \sqrt{b_1b_2b_3c_1c_2c_3} = \sqrt{c_1c_2c_3a_1a_2a_3} \right)$$

This is not always true for triangles. Consider sides $a_1, a_1/100, 99a_1/100$ as a_1, b_1, c_1; $a_2, a_2/100, 99a_2/100$ as a_2, b_2, c_2; $a_3, a_3/100, 99a_3/100$ as a_3, b_3, c_3. The left hand side is $8a_1a_2a_3$. The right side is bigger than $(8.8)a_1a_2a_3$.

[[This needs checking. The triangles are degenerate and I’m sure that non-degenerate ones can be found. — R.]]

Comment by M. S. Klamkin, University of Alberta. As a companion inequality we also have

$$4 \left\{ \frac{1}{\sqrt{a_1}} + \frac{1}{\sqrt{b_1}} + \frac{1}{\sqrt{c_1}} \right\} \left\{ \frac{1}{\sqrt{a_2}} + \frac{1}{\sqrt{b_2}} + \frac{1}{\sqrt{c_2}} \right\} \geq \left\{ \frac{s_1}{r_1R_1} \cdot \frac{s_2}{r_2R_2} \right\}^{1/2}$$

or equivalently

$$\left\{ 2 \sum \sqrt{a_1b_1} \right\} \left\{ 2 \sum \sqrt{a_2b_2} \right\} \geq \left\{ \sum a_1 \right\} \left\{ \sum a_2 \right\} \quad (4)$$

The latter follows from the area of a triangle of sides $a^{1/4}, b^{1/4}, c^{1/4}$ being non-negative, i.e.,

$$2 \sum \sqrt{ab} - \sum a \geq 0$$

There’s equality in (4) if both triangles are degenerate (each having a vanishing side).
Lott’s Problem

November 1976

997. Proposed by John Lott, Student, Southwest High School, Kansas City, Missouri

Let P be a polynomial of degree n, $n \geq 2$ with simple zeros z_1, z_2, \ldots, z_n. Let \{\(g_k\)\} be the sequence of functions defined by $g_1 = 1/P’$ and $g_{k+1} = g_k’/P’$. Prove for all k that $\sum_{j=1}^{n} g_k(z_j) = 0$.

Editors’ Comment. M. S. Klamkin gives an extension by starting with the partial fraction expansion

$$
\frac{1}{(P(z))^m} = \sum_{i=1}^{m} \left\{ \frac{A_{i1}}{z - z_i} + \frac{A_{i2}}{(z - z_i)^2} + \cdots + \frac{A_{im}}{(z - z_i)^m} \right\}
$$

where the A_{ij} are functions of the roots. By expanding both sides of this equation in powers of $1/z$ and equating the coefficients of like powers of z, he obtains the following identities:

$$
\sum_i A_{i1} = 0 \quad \sum_i (A_{i1}z_i) = 0 \quad \sum_i (A_{i1}z_i^2 + 2A_{i2}z_i + A_{i3}) = 0 \quad \text{etc.}
$$

He then shows $(m - 1)!A_{i1} = g_m(z_i)$ and derives other recurrence relations for the remaining A_{ij}.
ANALYSIS

Curves: normals

1067. Proposed by M. S. Klamkin, University of Alberta

Problem P.M.11 on the first William Lowell Putnam Competition, April 16, 1938, was to find the length of the shortest chord that is normal to the parabola $y^2 = 2ax$, $a > 0$, at one end. A calculus solution is quite straightforward. Give a completely “non-calculus” solution.

Solution by J. M. Stark, Lamar University. Let t be a real parameter, $t > 0$. Then $P[t^2/(2a), t]$ is a point on that part of the parabola $y^2 = 2ax$ which lies above the x-axis.

A line with slope m passing through P has equation

$$y - t = m[x - (t^2/2a)] \quad (1)$$

Without use of the calculus, the tangent line to the parabola at point P is found by requiring that line (1) have a double point of intersection with the parabola at P. Solving (1) for y and substituting into $y^2 - 2ax$ gives a quadratic in x whose discriminant can be written in the form $(2a - 2mt)^2$. Requiring that this discriminant be zero gives $m = (a/t)$ as the slope of the tangent line to the parabola $y^2 = 2ax$ at the point $P[t^2/(2a), t]$, $t > 0$. By trigonometry the slope of the normal line to this parabola at P is $-t/a$, and so the normal line at P has equation

$$y - t = (-t/a)[x - (t^2/2a)] \quad (2)$$

Solving simultaneously (2) and $y^2 = 2ax$ gives that the normal line to the parabola $y^2 = 2ax$ at the point $P[t^2/(2a), t]$, $t > 0$, also intersects the parabola at the point $Q[(t^2 + 2a^2)^2/(2at^2), -(2a^2)/t]$.

Denote by L the length of the chord PQ, normal to $y^2 = 2ax$ at P. Using the formula for the distance between two points and factoring, it is easily obtained that

$$L^2 = (a^2/t^4)[4(t/a)^2 + 1][(t/a)^2 - 2]^2 + 27a^2 \quad (3)$$

Now (3) shows that $L^2 \geq 27a^2$ and that for $t > 0$ the shortest chord normal to the parabola at one end is obtained when $t = \sqrt{2}a$, and the shortest chord is $3\sqrt{3}a$.

163
ALGEBRA

Inequalities: exponentials

Math. Mag., 52(1979) 114, 118.

Q 658. Submitted by M. S. Klamkin, University of Alberta

If $a, b > 0$, prove that $a^b + b^a > 1$.

A 658. Since the inequality is obviously valid if either a or $b \geq 1$, it suffices to consider $a = 1 - x$ and $b = 1 - y$, where $0 < x, y < 1$. Our inequality now becomes

$$\frac{1 - x}{(1 - x)^y} + \frac{1 - y}{(1 - y)^x} > 1$$

By the mean value theorem

$$(1 - x)^y = 1 - \frac{xy}{(1 - \theta x)^{1-y}} \leq 1 - xy$$

Hence

$$\frac{1 - x}{(1 - x)^y} + \frac{1 - y}{(1 - y)^x} \geq \frac{1 - x + 1 - y}{1 - xy} = \frac{2 - x - y}{1 - xy} - 1 + 1 = \frac{(1 - x)(1 - y)}{1 - xy} + 1 > 1$$

The stated inequality appears in D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Heidelberg, 1970, p.281, where a more involved proof is given.

[This problem also appeared as CMB P261 by R. Schramm

GEOMETRY

Regular polygons: inscribed polygons

Math. Mag., 52(1979) 258.

1076. Proposed by M. S. Klamkin, University of Alberta

Let B be an n-gon inscribed in a regular n-gon A. Show that the vertices of B divide each side of A in the same ratio and sense if and only if B is regular.

Solution by Imelda Yeung, student, Oberlin College. Let $A_i, B_i (i = 1, 2, \ldots, n)$ denote the vertices of a regular n-gon A and the vertices of an inscribed n-gon B, respectively. Let a be the length of each side of A. If B_i divides A_iA_{i+1} into segments of length c and d, then by the law of cosines, we deduce that

$$
\overline{B_{i-1}B_i}^2 = c^2 + d^2 - 2cd \cos \theta = \text{constant}, \quad \text{where} \quad \theta = \frac{(k-2)\pi}{k}
$$

Thus $\triangle B_{i-1}A_iB_i \simeq \triangle B_iA_{i+1}$ and therefore angle $(B_{i-1}B_iB_{i+1}) = 180^\circ -(180^\circ - \theta) = \theta$. Hence the vertices B_i form a regular n-gon.

Conversely, if B is a regular n-gon, then angle $(B_{i-1}B_iB_{i+1}) = \theta$. It follows that

$$
\text{angle } (A_iB_iB_{i-1}) + \text{angle } (A_iB_{i-1}B_i - i) = \text{angle } (A_iB_iB_{i-1}) + \text{angle } (A_{i+1}B_iB_{i+1})
$$

and so angle $(A_iB_{i-1}B_i) = \text{angle } (A_{i+1}B_iB_{i+1})$. Therefore $\triangle B_{i-1}A_iB_i \simeq \triangle B_iA_{i+1}B_{i+1}$. Thus $\overline{B_{i-1}A_i} = \overline{B_iA_{i+1}}$ and $\overline{A_iB_i} = \overline{A_{i+1}B_{i+1}}$. Therefore the vertices of B divide each side of A in the same ratio and sense.

ANALYSIS

Maxima and minima: unit circle

Math. Mag., 52(1979) 259, 265.

Q 662. Submitted by M. S. Klamkin, University of Alberta

Determine the maximum of

$$
R = \frac{|z_1z_2 + z_2z_3 + z_3z_4 + z_4z_5 + z_5z_1|^3}{|z_1z_2z_3 + z_2z_3z_4 + z_3z_4z_5 + z_4z_5z_1 + z_5z_1z_2|^2}
$$

where z_1, z_2, z_3, z_4 and z_5 are complex numbers of unit length.

A 662. Divide the denominator by $|z_1z_2z_3z_4z_5|$ and use $1/z = \bar{z}$ to obtain (with $z_6 = z_1$) $R = |\sum z_i\bar{z}_{i+1}| \leq \sum |z_i\bar{z}_{i+1}| = 5$. The idea of this problem is based on Problem E3528 of A. A. Bennett in the Amer. Math. Monthly, 39(1932) p.115.
LINEAR ALGEBRA

Matrices: orthogonal matrices

Math. Mag., 52(1979) 259.

Really Orthogonal

1035. Proposed by H. Kestelman, University College, London

A is a real $n \times n$ matrix. Do there exist orthogonal matrices B such that $A + B$ is real orthogonal?

Solution by M. S. Klamkin, University of Alberta. Since there are $n + \binom{n}{2} = (n^2 + n)/2$ conditions for an $n \times n$ matrix to be orthogonal, we have $n^2 + n$ conditions on B. Consequently, we do not expect to find solutions. In particular, let

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

Then it would be necessary that $(2 + \cos \theta, 1 + \sin \theta)$ and $(1 - \sin \theta, 2 + \cos \theta)$ are orthogonal vectors or that $\cos \theta = -2$.

GEOMETRY

Maxima and minima: shortest paths

Math. Mag., 52(1979) 316.

1083. Proposed by M. S. Klamkin and A. Liu, University of Alberta

Given an equilateral point lattice with n points on a side, it is easy to draw a polygonal path of n segments passing through all the $n(n+1)/2$ lattice points. Show that it cannot be done with less than n segments.

Solution by Richard Beigel, Stanford University. Proof by induction. This is obvious for $n = 2$. Assume the proposition for $n-1$. If any segment is contained completely in an edge, then at least $n-1$ segments are required in order to cover the remaining points by the inductive hypothesis. Otherwise, each segment intersects an edge in at most one point. Since each edge has n points, the proposition holds. Clearly, the proof shows that the segments need not be connected.
ALGEBRA

Inequalities: finite sums

Math. Mag., 52 (1979) 317, 323.

Q 664. Submitted by M. S. Klamkin, University of Alberta

Prove that

\[\sum_{k=1}^{n} (x_k + 1/x_k)^a \geq \frac{(n^2 + 1)^a}{n^{a-1}} \]

where \(x_k > 0 \) (\(k = 1, 2, \ldots, n \)), \(a > 0 \) and \(x_1 + x_2 + \cdots + x_n = 1 \).

[[I’ve stuck in a label ‘(1)’ as it’s referred to several times – is it in the right place? Later: I’ve moved the label down below. Is that better? This is another of Murray’s not-so-quickies. — R.]]

A 664. The inequality is an immediate consequence of Jensen’s inequality for convex functions \(F \), i.e.,

\[\frac{\sum_{k=1}^{n} F(x_k)/n}{n} \geq F\left(\frac{\sum_{k=1}^{n} x_k/n}{n}\right) \]

With equality if and only if \(x_k = \) constant and followed by Cauchy’s inequality:

\[\sum_{k=1}^{n} (x_k + 1/x_k)^a \geq n \left\{ \sum_{k=1}^{n} (x_k + 1/x_k)/n \right\}^a \geq \frac{(n^2 + 1)^n}{n^{a-1}} \tag{1} \]

It now remains to show that the function \(y = (x + 1/x)^a \) is convex in the given domain \(0 < x < 1 \) or equivalently that \(y'' \geq 0 \). Here

\[y'' = a(x + 1/x)^{a-2} \left\{ a(1 - 1/x^2)^2 + 1/x^4 + 4/x^2 - 1 \right\} \]

Since \(1/x > 1 \), \(y'' \geq 0 \) for \(a \geq 0 \). It also follows that \(y'' < 0 \) for \(0 > a \geq -1 \). Consequently inequality (1) is reversed for this latter domain of \(a \). More generally,

\[\frac{\sum_{k=1}^{n} F(x_k + 1/x_k)/n}{n} \geq F\left(\frac{\sum_{k=1}^{n} (x_k + 1/x_k)/n}{n}\right) \geq F(n + 1/n) \]

for convex increasing \(F \) and the same domain as (1) for the outer inequality.

167
Determine the highest power of 1980 which divides \(\frac{(1980n)!}{(n!)^{1980}} \)

Solution by G. A. Heuer, Concordia College & Karl Heuer, Moorhead, Minnesota. Let \(V_m(x) \) be the exponent of the highest power of \(m \) which divides \(x \). If \(p \) is a prime,

\[
V_p\left(\frac{(mn)!}{(n!)^m}\right) = V_p((mn)!)-mV_p(n!) = \sum_{k \geq 1} \left(\left\lfloor \frac{mn}{p^k} \right\rfloor - m \left\lfloor \frac{n}{p^k} \right\rfloor \right)
\]

Thus, if \(m \) has the prime factorization \(m = \prod_{i=1}^{r} p_i^{e_i} \)

\[
V_m\left(\frac{(mn)!}{(n!)^m}\right) = \min_i \left[\frac{1}{e_i} \sum_{k \geq 1} \left(\left\lfloor \frac{mn}{p^k} \right\rfloor - m \left\lfloor \frac{n}{p^k} \right\rfloor \right) \right]
\]

The brackets \(\lfloor \cdot \rfloor \) in all cases denote the greatest integer, and we note that the summand is the \(m \)-residue of \(\lfloor mn/p^k \rfloor \). In particular, since \(1980 = 2^2 5^2 \cdot 3 \cdot 11 \),

\[
V_{1980}\left(\frac{(1980n)!}{(n!)^{1980}}\right) = \min_{1 \leq i \leq 4} \left[\frac{1}{e_i} \sum_{k \geq 1} \left(\left\lfloor \frac{1980n}{p^k} \right\rfloor - 1980 \left\lfloor \frac{n}{p^k} \right\rfloor \right) \right]
\]

where \(e_1 = e_2 = 2, e_3 = e_4 = 1 \) and \(p_1, p_2, p_3 \) and \(p_4 \) are 2, 3, 5 and 11 respectively. Depending upon \(n \), the minimum may occur in any of the four terms. \(V_p((mn)!/(n!)^m) \) is small when \(n \) is a power of \(p \), and for \(p^{k-1} \leq n < p^k \) it grows with the sum of the digits of \(n \) in base \(p \). If \(n = 8 \) the minimum in \(V_{1980} \) occurs when \(p = 2 \); if \(n = 9, 5 \) or 11 it occurs when \(p = 3, 5 \) or 11 respectively.
1093. Proposed by M. S. Klamkin, University of Alberta

Prove that for complex numbers \(u, v \) and \(w \),

\[
|u - v| + |u + v - 2w| + |u - v| < |u + v|
\]

if and only if

\[
|w - v| + |w + v - 2u + w| < |w + v|
\]

Editor’s Comment. While the result is true if the numbers are real, it is not necessarily true if the numbers are complex. J. M. Stark provides an example which can be simplified to \(u = 3i, v = 2i \) and \(w = i \) for which the first inequality is true, but the second is false.

1100. Proposed by M. S. Klamkin & M. V. Subbarao, University of Alberta

Suppose that \(F(x) \) is a power series (finite or infinite) with rational coefficients and \(A_k = \int_0^1 x^k F(x) \, dx \) for integers \(k \geq 0 \).

(i) If all the \(A_k \) are rational, must \(F(x) \) be a polynomial?

(ii) Does there exist an \(F(x) \) such that all the \(A_k \) except one are rational?

(iii) Does there exist an \(F(x) \) such that all the \(A_k \) except \(A_{P(k)} \), \(k = 0, 1, 2, \ldots, \) are rational, where \(P(k) \) is an integer valued polynomial, e.g., \(P(k) = 2k \)?

(iv)" Given a finite indexed set \(A_{m(k)} \) \(k = 0, 1, 2, \ldots, n \), does there exist an \(F(x) \) such that all the \(A_k \) except the \(A_{m(k)} \) are rational?

Solution by Paul J. Zwier, Calvin College. Note first that the series \(\sum_{i=0}^{\infty} \frac{1}{(k+i+1)(m+i+1)} \), where \(k \) and \(m \) are nonnegative integers, is rational if \(k \neq m \) and irrational if \(k = m \). This follows from the fact that if \(k \neq m \)

\[
\frac{1}{(k+i+1)(m+i+1)} = \frac{1}{m-k} \left[\frac{1}{k+1+1} - \frac{1}{m+i+1} \right]
\]

so that the series is telescopic and, if \(k = m \), converges to an irrational number since the series

\[
\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6}
\]

We can now answer questions (i), (ii) and (iv). If we define \(c_i = \frac{1}{(m+i+1)} \) and then \(F_m(x) = \sum c_i x^i \)

\[
A_k = \sum_{i=0}^{\infty} \frac{1}{(k+i+1)(m+i+1)}
\]

which is rational for \(k \neq m \) and irrational for \(k = m \). This gives a positive answer to (ii). If we are given a finite set \(\{m_1, m_2, \ldots, m_n\} \) then \(F_{m_1} + F_{m_2} + \cdots + F_{m_n} \) is a power series with the corresponding \(A_i \) rational except when \(k \) is one of the \(m_i \). This answers (iv) in the affirmative.

As to part (iii), if we take \(F(x) = (1 - x^2)^{-1/2} \), then \(F \) has a power series expansion with rational coefficients and

\[
A_k = \int_0^1 x^k (1 - x^2)^{-1/2} \, dx
\]

We find \(A_0 = \pi/2 \), \(A_1 = 1 \) and for \(k \geq 2 \),

\[
A_k = \frac{k-1}{k} A_{k-2}
\]

Thus \(A_{2k} \) is irrational and \(A_{2k+1} \) is rational.
Determine the maximum value of $\sin A_1 \sin A_2 \cdots \sin A_n$ if $\tan A_1 \tan A_2 \cdots \tan A_n = 1$.

Solution by Jeremy D. Primer, Columbia High School, Maplewood, New Jersey. Let P denote the product of the sines. From $\prod_1^n \sin A_i = \prod_1^n \cos A_i$ Then

$$P^2 = \prod_1^n \sin A_i \cos A_i = 2^{-n} \prod_1^n \sin 2A_i \leq 2^{-n}$$

Thus $|P| \leq 2^{-n/2}$ and equality is attained when $A_1 = A_2 = \cdots = A_n = \pi/4$. Therefore $2^{-n/2}$ is the maximum value.

Q 666. Submitted by M. S. Klamkin, University of Alberta

If w and z are complex numbers, prove that

$$2|w| \cdot |z| \cdot |w - z| \geq (|w| + |z|)|w|z| - z|w|$$

A 666. Let $w = re^{i\alpha}$ and $z = se^{i\beta}$. Then we have to show that $2|re^{i\alpha} - se^{i\beta}| \geq (r + s)|e^{i\alpha} - e^{i\beta}|$ or

$$4 \left\{ (r \cos \alpha - s \cos \beta)^2 + (r \sin \alpha - s \sin \beta)^2 \right\} \geq (r+s)^2 \left\{ (\cos \alpha - \cos \beta)^2 + (\sin \alpha - \sin \beta)^2 \right\}$$

This is equivalent to

$$2(r^2 + s^2 - 2rs \cos(\alpha - \beta)) \geq (r^2 + s^2 + 2rs)(1 - \cos(\alpha - \beta))$$

or finally $(r-s)^2(1 + \cos(\alpha - \beta)) \geq 0$. There is equality if $r = 0$ or $s = 0$ or $r = s$ or $\alpha - \beta = \pm \pi$.

171
Proposed by M. S. Klamkin, University of Alberta

It is known that \(\tan x + \sin x \geq 2x \) for \(0 \leq x < \pi/2 \), which is a stronger inequality than \(\tan x \geq x \). Establish the still stronger inequality

\[
a^2 \tan x (\cos x)^{1/3} + b^2 \sin x \geq 2xab
\]

for \(0 \leq x \leq \pi/2 \).

Solution by Anders Bager, Hjørring, Denmark. The stated inequality is valid for all pairs \((a,b) \in \mathbb{R} \times \mathbb{R} \) and all \(x \in [0, \pi/2) \), with equality if and only if either \(x = 0 \) or \((a,b) = (0,0) \).

Proof. The quadratic form

\[
a^2(\tan x)(\cos x)^{1/3} - 2xab + b^2 \sin x
\]

(in \((a,b) \), for fixed \(x \)) has the discriminant

\[
D = 4 \left(x^2 - (\tan x)(\cos x)^{1/3}(\sin x) \right)
\]

If \(x = 0 \), then \(D = 0 \) and the quadratic form vanishes. From now on we suppose \(0 < x < \pi/2 \). We shall prove that \(D < 0 \), which is equivalent to

\[
\cos x < \left(\frac{\sin x}{x} \right)^3
\]

and which implies that the quadratic form is positive, except when \((a,b) = (0,0) \). Since

\[
\cos x < 1 - \frac{x^2}{2} + \frac{x^4}{24} \quad \text{and} \quad \frac{\sin x}{x} > 1 - \frac{x^2}{6} \quad \text{for} \quad 0 < x < \frac{\pi}{2}
\]

we need only prove that

\[
1 - \frac{x^2}{2} + \frac{x^4}{24} < \left(1 - \frac{x^2}{6} \right)^3
\]

Since this is equivalent to \(x^2 < 9 \), hence true, the proof is complete.

It may be remarked that (1) is true for \(0 < x \leq \pi \), since \(\cos x \leq 0 \) for \(\pi/2 \leq x \leq \pi \).
Q 679. Submitted by M. S. Klamkin, University of Alberta & M. R. Spiegel, East Hartford, Connecticut

Let \(S_n \) be the sum of the digits of \(2^n \). Prove or disprove that \(S_{n+1} = S_n \) for some positive integer \(n \).

A 679. Let \(S(k) \) be the sum of the digits in the base-ten representation of the positive integer \(k \). Then \(k \equiv S(k) \pmod{9} \). Hence if \(S(2^{n+1}) = S(2^n) \) then

\[
2^{2^{n+1}} - 2^n \equiv S(2^{n+1}) - S(2^n) \equiv 0 \pmod{9}
\]

which is impossible, since \(9 \nmid 2^n \).

1172. Proposed by M. S. Klamkin University of Alberta, Canada

Determine the number of real solutions \(x \) (\(0 \leq x \leq 1 \)) of the equation

\[
(x^{m+1} - a^{m+1})(1 - a)^m = \{ (1 - a)^{m+1} - (1 - x)^{m+1} \} a^m
\]

where \(0 \leq a \leq 1 \) and \(m \) is a positive integer.

Solution by Vania D. Mascioni, student, ETH Zürich, Switzerland. Let \(f(x) = \text{l.h.s.} - \text{r.h.s.} \) and note that

\[
\text{sgn} \ f'(x) = \text{sgn} \ ((m+1) \ x^m (1-a)^m - (1-x)^m a^m)) \]

\[
= \text{sgn} \ (x(1-a) - (1-x)a) = \text{sgn} \ (x-a)
\]

Thus \(f(x) \) is minimal when \(x = a \). Since \(f(a) = 0 \), \(x = a \) is the only solution to the given equation.
Q 685. Submitted by M. S. Klamkin, University of Alberta, Canada.

If two altitudes of a plane triangle are congruent, then the triangle must be isosceles. Does the same result hold for a convex spherical triangle?

A 685. No. Consider a spherical triangle cut off from a lune AA' by an arc BC through its center. By symmetry, the altitudes from B and C are congruent.

\[A \quad A' \quad B \]

Q 686. Submitted by M. S. Klamkin, University of Alberta.

It is known that for any triangle of side lengths a, b and c:

\[3(bc + ca + ab) \leq (a + b + c)^2 \leq 4(bc + ca + ab) \]

Prove more generally that if a_1, a_2, ..., a_n are the sides of an n-gon, then

\[\frac{2n}{n-1} \sum_{i<j} a_i a_j \leq \left(\sum_{i=1}^{n} a_i \right)^2 \leq 4 \sum_{i<j} a_i a_j \]

and determine when there is equality.

A 686. The first inequality is equivalent to $\sum_{i<j} (a_i - a_j)^2 \geq 0$, with equality if and only if the polygon is equilateral. The second inequality is equivalent to $\sum_{i=1}^{n} a_i(p - a_i) \geq \sum_{i=1}^{n} a_i^2$ where $p = \sum_{i=1}^{n} a_i$, with equality only for the degenerate n-gon in which $n - 2$ of the sides are of length zero.
Show that
\[\sqrt{a^2 + b^2 + c^2} + \sqrt{b^2 + c^2 + d^2} + \sqrt{c^2 + d^2 + a^2} + \sqrt{d^2 + a^2 + b^2} \geq 3 \sqrt{a^2 + b^2 + c^2 + d^2} \]

A 688. \[|(a, b, c, 0)| + |(0, b, c, d)| + |(a, 0, c, d)| + |(a, b, 0, d)| \]
\[\geq |(a, b, c, 0)| + |(0, b, c, d)| + |(a, 0, c, d)| + (a, b, 0, d)| = 3|(a, b, c, d)| \]

Lore generally, let \(A_1, \ldots, A_n \) be vectors with sum \(S \). Then by the triangle inequality,
\[|S - A_1| + \cdots + |S - A_n| \geq (n - 1)|S| \]

The inequality to be proved corresponds to the special case in which \(n = 4 \) and the vectors \(A_i \) are mutually orthogonal. There is equality if and only if at least three of the four vectors are null.
1181. Proposed by George Tsintsifas, Thessaloniki, Greece

Let $A_1A_2A_3$ be a triangle and M an interior point. The straight lines MA_1, MA_2, MA_3 intersect the opposite sides at the points B_1, B_2, B_3 respectively. Show that if the areas of triangles A_2B_1M, A_3B_2M and A_1B_3M are equal, then M coincides with the centroid of triangle $A_1A_2A_3$.

II. Solution by Murray S. Klamkin, University of Alberta. Using barycentric coordinates, let $M = x_1A_1 + x_2A_2 + x_3A_3$, where x_1, x_2 and x_3 are positive and $x_1 + x_2 + x_3 = 1$. Then $x_1 = [MA_2A_3]/[A_1A_2A_3]$, etc., where $[PQR]$ denotes the area of PQR. Also

$$B_1 = \frac{x_2A_2 + x_3A_3}{x_2 + x_3}$$

etc.

Since $A_2B_1/A_2A_3 = x_3/(x_2 + x_3)$, we have

$$\frac{[A_2MB_1]}{[A_1A_2A_3]} = \frac{x_3x_1}{x_2 + x_3}$$

etc.

By hypothesis we have

$$\frac{x_3x_1}{x_2 + x_3} = \frac{x_1x_2}{x_3 + x_1} = \frac{x_2x_3}{x_1 + x_2}$$

or

$$x_2(1 - x_1) = x_3(1 - x_2) = x_1(1 - x_3)$$

Without loss of generality we assume that $x_1 \geq x_2 \geq x_3$. Then $x_1(1-x_3) = x_3(1-x_2) \leq x_3(1-x_3)$ and so $x_1 \leq x_3$. Thus $x_1 = x_2 = x_3$ and M is the centroid.

Q 702. Submitted by M. S. Klamkin, University of Alberta

Are there any integral solutions to the Diophantine equation $x^2 + y^2 + z^2 = xyz - 1$?

A 702. By parity considerations, exactly two of x, y, z must be even. Hence by the substitutions $x = 2a$, $y = 2b$, $z = 2c+1$ the equation reduces to $4a^2 + 4b^2 + 4c^2 + 4c + 2 = 4ab(2c + 1)$. This is impossible.

Q 704. Submitted by M. S. Klamkin, University of Alberta

Determine the maximum value of

$$\cos^2 \angle POA + \cos^2 \angle POD + \cos^2 \angle POC + \cos^2 \angle POD$$

where $ABCD$ is a face of a cube inscribed in a sphere with center O, and P is any point on the sphere.

A 704. We choose a rectangular coordinate system so that the direction cosines of OA, OB, OC and OD are $(\frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}})$. Let the direction cosines of OP be (u, v, w). Then

$$\sum \cos^2 \angle POA = \sum \left(\frac{u}{\sqrt{3}} \pm \frac{v}{\sqrt{3}} \pm \frac{w}{\sqrt{3}}\right)^2 = \frac{4}{3} \quad \text{(constant).}$$

The four vectors are null.
An Inequality for the Logarithm

March 1985

1212. Proposed by L. Bass and R. Výborný, The University of Queensland, Australia; and V. Thomée, Chalmers Institute of Technology, Sweden

Prove that if \(x > 1 \) and \(0 < u < 1 < v \), then

\[
\frac{v(x - 1)(x^v - 1)}{(v - 1)(x^v - 1)} < \log x < \frac{u(x - 1)(1 - x^u)}{(1 - u)(x^u - 1)}
\]

Solution by M. S. Klamkin, University of Alberta, Canada. The inequality can be rewritten as

\[
\frac{F(v - 2)}{F(v - 1)} < \frac{F(-1)}{F(0)} < \frac{F(u - 2)}{F(u - 1)} \quad \text{for } 0 < x \neq 1 \text{ and } u < 1 < v
\]

where

\[F(\lambda) = \int_1^x t^\lambda \, dt \quad \text{for } x > 0 \text{ and any real } \lambda. \]

Hence it suffices to show that \(F(\lambda)/F(\lambda + 1) \) decreases as \(\lambda \) increases. This follows from the continuity of \(F \) and the fact that

\[
\frac{d}{d\lambda} \left(\frac{F(\lambda)}{F(\lambda + 1)} \right) = \frac{1}{(F(\lambda + 1))^2} \left(\int_1^x t^{\lambda+1} \, dt \int_1^x t^\lambda (\log t) \, dt - \int_1^x t^\lambda \, dt \int_1^x t^{\lambda+1} (\log t) \, dt \right)
\]

\[
= \frac{1}{(F(\lambda + 1))^2} \int_1^x \int_1^x s^\lambda t^\lambda (\log t)(s - t) \, ds \, dt
\]

\[
= \frac{1}{2(F(\lambda + 1))^2} \int_1^x \int_1^x s^\lambda t^\lambda ((s - t)(\log t + (t - s) \log s)) \, ds \, dt
\]

\[
= -\frac{1}{2(F(\lambda + 1))^2} \int_1^x \int_1^x s^\lambda t^\lambda ((s - t)(\log s - \log t)) \, ds \, dt < 0 \quad \text{if } \lambda \neq -1
\]
Q 711. Submitted by M. S. Klamkin, University of Alberta, Canada

Determine the extreme values of the circumradii $R(\theta)$ of the set of triangles $T(\theta)$ whose sides are $\sin \theta$, $\cos \theta$, $\cos 2\theta$ for $0 < \theta < \pi/4$.

A 711. First one should verify that the triangles $T(\theta)$ actually exist for all θ in the given interval. This will follow from the elementary inequality $\cos 2\theta + \sin \theta > \cos \theta$. However, it will also follow from the subsequent geometry.

For $\theta = 0$ we get a degenerate triangle of sides 0, 1, 1 whose circumradius is $R = 1/2$. For $\theta = \pi/4$ we get a degenerate triangle of sides $1/\sqrt{2}, 1/\sqrt{2}, 0$ with $R = 1/2\sqrt{2}$. So it may appear that $1/2\sqrt{2} < R(\theta) < 1/2$. However, we will show that $R(\theta) = 1/2$ for all θ in the open interval $(0, \pi/4)$.

Consider a triangle ABC inscribed in a circle of readius 1/2 as shown, where AB and BC subtend angles of 2θ and $\pi - 4\theta$, respectively, at the center O. Here $AB = \sin \theta$, $BC = \cos 2\theta$ and $AC = \cos \theta$.

\[\begin{array}{ccc}
B & & C \\
& \pi - 4\theta & \\
A & 2\theta & O & 1/2 \\
& 1/2 & \\
\end{array} \]

Q 713. Submitted by M. S. Klamkin, University of Alberta

If one of the arcs joining the midpoints of the sides of a spherical triangle is 90°, show that the other two arcs are also 90°.

A 713. If A, B, C denote vectors from the center of the sphere to the vertices of the spherical triangle, we have to show equivalently that $|A| = |B| = |C|$ and $(B + C) \cdot (C + A) = 0$ imply that $(B + C) \cdot (A + B) = 0$ and $(A + B) \cdot (A + C) = 0$.

Since $(B + C) \cdot (C + A) - (B + C) \cdot (A + B) = (B + C) \cdot (C - B) = C^2 - B^2 = 0$, and $(B + C) \cdot (C + A) - (A + B) \cdot (A + C) = (C - A) \cdot (A + C) = 0$, the result is now immediate.
Are there any integral solutions to the Diophantine equation

\[x_1^{1987} + 2x_2^{1987} + 4x_3^{1987} + \cdots + 2^{1986}x_{1987}^{1987} = 1986x_1x_2 \cdots x_{1987} \]

(Note: This problem is an extension of a problem from the Wisconsin Talent Search.)

A 717. The only solution is the trivial one, \(x_1 = x_2 = \cdots = x_{1987} = 0 \). This follows by induction and infinite descent. Note that \(x_1 \) must be even. Thus \(x_1 = 2y_1 \) which gives the identical equation in the variables \(x_2, x_3, \ldots, x_{1987}, y_1 \).

Q 723. Submitted by M. S. Klamkin, University of Alberta

\(ABCD \) is a quadrilateral inscribed in a circle. Prove that the four lines, each passing through a midpoint of one of the sides of \(ABCD \) and perpendicular to the opposite side, are concurrent.

A 723. Let \(A, B, C, D \) be vectors from the center of the circle to the respective vertices \(A, B, C, D \). The four line will intersect at the point \(P \) given by \(P = (A + B + C + D)/2 \). Note that the vector from the midpoint of \(AB \) to \(P \) is \((C + D)/2\) and this is perpendicular to \(CD \) since \(|C| = |D| \), and similarly for the other segments \(BC, CD \) and \(DA \). It also hold for the diagonals \(AC \) and \(BD \), so that there are six concurrent lines.

Proposed by M. S. Klamkin University of Alberta, Canada

Determine the maximum area F of a triangle ABC if one side is of length λ and two of its medians intersect at right angles.

Solution by Cornelius Groenewoud, Bartow, Florida. We show that $F = \frac{3\lambda^2}{8}$ or $F + \frac{3\lambda^2}{4}$ depending on whether one of the perpendicular medians is drawn to the side of length λ or not.

Two cases are considered: (i) One of the perpendicular medians is drawn to the side AB of length λ; (ii) Neither of the perpendicular medians is drawn to AB.

Place the side AB along the positive x-axis with A at the origin of a rectangular coordinate system. For the first case let M be the midpoint of AB and N the midpoint of AC.

Imposing the negative reciprocal condition between the slopes of medians BN and CM showsthat the medians to AB and AC are perpendicular when C lies on a circle of radius $\frac{3\lambda}{4}$, centered at $P(\frac{5\lambda}{4},0)$. The area, $\lambda h/2$ will be meaximum when h attains its maximum of $\frac{3\lambda}{4}$. For this case $F = \frac{3\lambda^2}{8}$.

For the second case let L be the midpoint of BC. Imposing the negative reciprocal condition on the slopes of the medians to AL and BN shows that the medians to AC and BC are perpendicular if C lies on a circle of radius $\frac{3\lambda}{2}$ centered at the midpoint of AB. The area is $\lambda h/2$, but in this case the maximum value of h is $\frac{3\lambda}{2}$. The corresponding area is $F + \frac{3\lambda^2}{4}$.
II. Solution by Thomas Jager, Calvin College, Michigan. The maximum is $3\lambda^2/4$. Label triangle ABC as shown, where the medians from B and C intersect in an angle θ.

\[
\begin{array}{ccc}
A & & \\
& b & c \\
& s & t \\
& 2t & \theta & 2s \\
C & & a \\
& & & B \\
\end{array}
\]

By the law of cosines, $a^2 = 4t^2 + 4s^2 - 8st \cos \theta$, $(c/2)^2 = t^2 + 4s^2 - 4st \cos(\pi - \theta)$ and $(b/2)^2 = s^2 + 4t^2 - 4st \cos(\pi - \theta)$. These equations imply that $5a^2 - b^2 - c^2 = -8st \cos \theta$. It follows that the medians from B and C intersect in a right angle if and only if $5a^2 = b^2 + c^2$.

Suppose $\theta = \pi/2$. By the law of cosines, $a^2 = b^2 + c^2 - 2bc \cos A$, and thus,

\[
F^2 = (\frac{1}{2}bc \sin A)^2 = \frac{1}{4}b^2 c^2 - \frac{1}{4}b^2 c^2 \cos^2 A = \frac{1}{4}b^2 c^2 - \frac{1}{4} \left(\frac{b^2 + c^2 - a^2}{2} \right)^2 = \frac{1}{4}b^2 c^2 - a^4
\]

If $a = \lambda$, $F^2 = \frac{1}{4}b^2(5\lambda^2 - b^2) - \lambda^4$ and this is minimized when $b^2 = 5\lambda^2/2$, giving $F = 3\lambda^2/4$.

If $b = \lambda$, $F^2 = \frac{1}{4}\lambda^2(5a^2 - \lambda^2) - a^4 = \frac{9}{64}\lambda^4 - (a^2 - \frac{5}{8}\lambda^2)^2$ is maximized when $a = 5\lambda^2/8$, giving $F = 3\lambda^2/8$.

182
Math. Mag., 60(1987) 329.

1281. Proposed by M. S. Klamkin University of Alberta

a. Determine the least number of acute dihedral angles in a tetrahedron.

b*. Generalize the result for an n-dimensional simplex. Here a dihedral angle is the supplement of the angle between outward normals to two $(n-1)$-dimensional faces of the simplex.

Math. Mag., 61(1988) 320.

a. Solution by the proposer. There is at least one vertex of the tetrahedron such that its corresponding face angles are all acute. Otherwise, since the sum of two face angles at a vertex is greater than the third face angle, the sum of all face angles would be greater than 4π. However, since there are four faces, this sum must be equal to 4π.

We now give two lemmas obtained from the following two laws of cosines from spherical trigonometry for the face angles a, b, c and the opposite dihedral angles, respectively, of a trihedral angle:

\[
\sin b \sin c \sin A = \cos a - \cos b \cos c \quad \text{etc.}, \\
\sin B \sin C \cos a = \cos A + \cos B \cos C \quad \text{etc.},
\]

Lemma 1. If $\pi/2 > a \geq b \geq c$, then from (1), B and C are acute.

Lemma 2. If $A \geq B \geq \pi/2 > C$, then by (2), $a, b \geq \pi/2 > c$.

In a tetrahedron $PQRS$, we can take P as a vertex with all acute face angles. Then by Lemma 1, we can take PQ and PS as the edges of two acute dihedral angles. We now assume that there are no more acute dihedral angles and obtain a contradiction. By Lemma 2 applied to the trihedral angles at vertices Q and S, it follows that angles PQS and PSQ are both non-acute. Since this is impossible, there are always at least three acute dihedral angles in any tetrahedron.

b. Partial solution by L. P. Pook, Glasgow, Scotland. For finite n the $n(n-1)/2$ dihedral angles of a regular n-dimensional simplex are acute, so this is an initial upper bound.

A lower value for the upper bound is obtained by constructing a low altitude right hyper-pyramid, vertex V, with a regular $(n-1)$-dimensional simplex as base. The altitude is chosen such that the dihedral angles between pyramidal faces are obtuse; the remaining n dihedral angles between the base and the pyramidal faces must be acute.

Distorting the pyramid by moving V, in a hyperplane parallel to the base, to a position such that at least one dihedral angle at the base becomes obtuse results in at least an equal number of dihedral angles between pyramidal faces becoming acute. In view of this it is conjectured that n is indeed the required minimum number of acute dihedral angles.
Proposed by M. S. Klamkin University of Alberta

Two identical beads slide on two straight wires intersecting at right angles. If the beads start from rest in any position other than the intersection point of the wires and attract each other in an arbitrary mutual fashion but also subject to a drag proportional to the speed, show that the beads will arrive at the intersection simultaneously.

Solution by Yan-loi Wong (student), University of California, Berkeley. Resolving the attractive force $f(x, y)$ along the axes (the wires), the equations of motion for the two beads are given by

$$
x'' = -\frac{x f(x, y)}{\sqrt{x^2 + y^2}} + k x'
$$

$$
y'' = -\frac{y f(x, y)}{\sqrt{x^2 + y^2}} + k y'
$$

where k is a positive constant. Eliminating $f(x, y)$ we find that

$$
y x'' - x y'' = k (y x' - x y')
$$

$$(y x' - x y')' = k (y x' - x y')
$$

It follows that

$$
y x' - x y' = C e^{k t}
$$

for some constant C. Since $x'(0) = y'(0) = 0$, we have $y x' - x y' = 0$. Hence, until

$$
y(t) = 0 \quad \frac{d}{dt} \left(\frac{x}{y} \right) = 0
$$

so that $x(t) = Ay(t)$ for some nonzero constant A, and this gives the desired result.

Q 729. Submitted by M. S. Klamkin, University of Alberta

Determine the extreme values of

\[S = \frac{x + 1}{xy + x + 1} + \frac{y + 1}{yz + y + 1} + \frac{z + 1}{zx + z + 1} \]

where \(xyz = 1\) and \(x, y, z \geq 0\).

[[I don’t like that ‘= 0’ — R.]]

A 729. Let \(A = x/(xy + x + 1)\), \(B = y/(yz + y + 1)\), \(C = z/(zx + z + 1)\). Then

\[A = \frac{x}{1/z + x + 1} = \frac{zx}{zx + z + 1} = \frac{1}{yz + y + 1} \]
\[B = \frac{y}{1/x + y + 1} = \frac{xy}{xy + x + 1} = \frac{1}{zx + z + 1} \]
\[C = \frac{z}{1/y + z + 1} = \frac{yz}{yz + y + 1} = \frac{1}{xy + x + 1} \]

Therefore \(3(A + B + C) = 3\) and \(S\) has the constant value 2.

An alternative and quicker solution is

\[S = \frac{x + 1}{xy + x + 1} + \frac{y + 1}{yz + y + 1} + \frac{z + 1}{zx + z + 1} \]
\[= \frac{x + 1}{xy + x + 1} + \frac{1}{\frac{1}{xy} + 1} + \frac{1}{\frac{1}{xy} + 1} = 2 \]

[[I guess I’m too much of a sloth to follow this! — R.]]

A related open problem is to find the extremes of \(S\) if the condition \(xyz = 1\) is replaced by \(xyz = a\).
Determine the maximum value of

\[x_1^2x_2 + x_2^2x_3 + \cdots + x_n^2x_1 \]

given that \(x_1 + x_2 + \cdots + x_n = 1, x_1, x_2, \ldots, x_n \geq 0 \) and \(n \geq 3 \).

Math. Mag., 61 (1988) 137.

1. Solution by the 1988 Olympiad Math Team. The maximum is 4/27, achieved when the \(x_k \) comprise a cyclic permutation of \((2/3, 1/3, 0, \ldots, 0)\).

Suppose \(n > 3 \). Choose \(j \) so that \(x_{j+1} \geq x_j \) (where \(x_{n+1} = x_1 \)). The modified sequence \((\ldots, x_{j-2}, x_{j-1} + x_j, x_{j+1}), \ldots\), with only \(n-1 \) terms, gives at least as high a value for the objective function as does the original sequence, since

\[x_{j-2}^2(x_{j-1} + x_j) + (x_{j-1} + x_j)^2x_{j+1} \geq x_{j-2}^2x_{j-1} + (x_{j-1}^2 + x_j^2)x_{j+1} \]
\[\geq x_{j-2}^2x_{j-1} + x_{j-1}^2x_j + x_{j-1}^2x_j + x_j^2x_{j+1} \]

Thus it suffices to prove the bound of 4/27 only for \(n = 3 \).

So, suppose \(n = 3 \). Without loss of generality, cycle the three indices so that \(x_2 \) takes on the intermediate value. Then \((x_2 - x_1)(x_2 - x_3) \leq 0 \leq x_1x_2 \) so

\[x_1^2x_2 + (x_2 - x_1)(x_2 - x_3)x_3 \leq x_1^2x_2 + x_1x_2x_3 \]

These terms can be rearranged to give

\[x_1^2x_2 + x_2^2x_3 + x_3^2x_1 \leq (x_1 + x_3)^2x_2 = (1 - x_2)^2x_2 \]
\[\leq 4 \left(\frac{1}{2}(1 - x_2) + \frac{1}{2}(1 - x_2) + x_2 \right)^3 = \frac{4}{27} \]

the last by the AM-GM inequality whenever \(0 \leq x_2 \leq 1 \).

[[There’s also a longer solution by Eugene Lee. — R.]]
If A, B, C are the angles of a triangle, determine the maximum area of a triangle whose sides are $\cos(A/2), \cos(B/2), \cos(C/2)$.

A 733. Comment: One might start from the expression for the square of the area of the triangle, i.e.,

$$F^2 = s \left(s - \cos \frac{A}{2} \right) \left(s - \cos \frac{B}{2} \right) \left(s - \cos \frac{C}{2} \right)$$

where $2s = \cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2}$

and then maximize subject to the constraints $A + B + C = 180^\circ$ and $A, B, C \geq 0$.

Solution: First, one should verify that triangles with the given sides exist for all triangles ABC. If $A \geq B \geq C$, it suffices to show that

$$\cos \frac{A}{2} + \frac{B}{2} > \cos \frac{C}{2}$$

or equivalently

$$\cos \frac{A - B}{4} > \sin \frac{A + B}{4}$$

which follows.

An alternative proof of the existence of a triangle follows from the fact that the three sides are $\sin \frac{\pi - A}{2}, \sin \frac{\pi - B}{2}, \sin \frac{\pi - C}{2}$, and that the angles $(\pi - A)/2$, etc., are positive and add to 180°. Since in any triangle DEF of sides d, e, f, we have $d = 2R \sin D$, etc., where R is the circumradius, it follows that $\sin \frac{\pi - A}{2}, \sin \frac{\pi - B}{2}, \sin \frac{\pi - C}{2}$ are sides of a triangle with fixed circumradius $1/2$. It is well known and easy to prove that of all triangles inscribed in a given circle, the equilateral triangle has the maximum area. Thus, our maximum area corresponds to an equilateral triangle of sides $\cos 30^\circ$, or $3\sqrt{3}/16$.

As a bonus, by using the known result that the product of the sides of a triangle equals four times the product of its area and circumradius, we have the triangle identity

$$\cos^2 \frac{A}{2} \cos^2 \frac{B}{2} \cos^2 \frac{C}{2} = 4s \left(s - \cos \frac{A}{2} \right) \left(s - \cos \frac{B}{2} \right) \left(s - \cos \frac{C}{2} \right)$$

[[Another very slow quickie! — R.]]
Integral triangles tetrahedrons

a. What is the area of the smallest triangle with integral sides and integral area?

b. What is the volume of the smallest tetrahedron with integral sides and integral volume?

[[I wd make that ‘integer edges’ — R.]]

(a) Solution by M. S. Klamkin, University of Alberta. We will show that the area of a triangle with integral sides and integral area is divisible by 6. Since a 3-4-5 triangle has area 6, the smallest area is necessarily 6.

Let T be a triangle with integral sides and integral area. We may assume that $\gcd(a,b,c) = 1$. Let s denote the semiperimeter.

The inradius $r = \text{Area}/s$ and thus must be rational. Since $\tan(A/2) = r/(s-a)$, $\tan(A/2)$ is rational and let it equal n/m where $(m,n) = 1$. Similarly, $\tan(B/2) = q/p$ with $(p,q) = 1$. Then

$$\sin A = \frac{2mn}{(m^2+n^2)} \quad \cos A = \frac{(m^2-n^2)}{(m^2+n^2)} \quad \sin B = \frac{2pq}{(p^2+q^2)} \quad \text{etc.,}$$

and

$$\sin C = \sin(A+B) = \frac{2(mp+nq)(mp-nq)}{(m^2+n^2)(p^2+q^2)}$$

The sides of any triangle are proportional to the sines of the opposite angles; specifically, $a = 2R \sin A$, etc., where R is the circumradius. Let us take $4R = (m^2+n^2)(p^2+q^2)$ and let \tilde{T} be the triangle with sides

$$\tilde{a} = mn(p^2+q^2) \quad \tilde{b} = pq(m^2+n^2)$$

$$\tilde{c} = (mq+np)(mp-nq) = mn(p^2-q^2) + pq(m^2-n^2) \quad (1)$$

We may assume that mn is relatively prime to pq, otherwise we can divide out the common factor. \tilde{T} has integral area ($\text{Area} \tilde{T} = \frac{1}{2}\tilde{a}\tilde{b}\sin A$) and \tilde{T} is similar to T. Also

$$\text{Area} \tilde{T} = \frac{\tilde{a}\tilde{b}\tilde{c}}{4R} = mn pq \left(mn(p^2-q^2) + pq(m^2-n^2) \right) \quad (2)$$

Suppose that $\tilde{a} = da, \tilde{b} = db, \tilde{c} = dc$ for integer $d \geq 1$. Then, $\text{Area} \tilde{T} = d^2 \text{Area} T$.

188
Suppose \(d \) is even. Then, from (1) our supposition that \(\gcd(m, n, p, q) = 1 \) it must be the case that \(m, n, p, q \) are odd. In this case \(\bar{a}, \bar{b}, \bar{c} \) are divisible by 2 but not by 4; i.e., \(d \) is not divisible by 4. Also, \(\text{Area} \bar{T} \) is divisible by 8 (in (2), \(p^2 - q^2 \equiv m^2 - n^2 \equiv 0 \pmod{8} \)) and therefore \(\text{Area} T \) is even.

Equation (1), together with \(\gcd(m, n, p, q) = 1 \), shows that 3 is not a common factor of \(\bar{a}, \bar{b}, \bar{c} \); that is, \(d \) is not a multiple of 3.

If one of \(m, n, p, q \) is divisible by 3, then the sides are not divisible by 3, but \(\text{Area} \bar{T} \) (and \(\text{Area} T \)) is. If none of \(m, n, p, q \) is divisible by 3, \(\text{Area} \bar{T} \) (and \(\text{Area} T \)) is because \(p^2 - q^2 \equiv m^2 - n^2 \equiv 0 \pmod{3} \).

Thus, \(\text{Area} T \) is divisible by 6 and the proof is complete.

No solutions were received for Part (b). The proposer supplied computer generated evidence (a list of tetrahedra with small volumes) that suggests that the smallest volume is 6. Also, see *Crux Math.* (May 1985) 162–166 for a consideration of tetrahedra having integer-valued edge lengths, face areas, and volume.

Q 734. Submitted by M. S. Klainkin, University of Alberta, Canada

Determine the locus of all points whose parametric representation is given by

\[
\begin{align*}
x &= \frac{\xi(h \xi + k \eta + l \zeta)}{(\xi^2 + \eta^2 + \zeta^2)} \\
y &= \frac{\eta(h \xi + k \eta + l \zeta)}{(\xi^2 + \eta^2 + \zeta^2)} \\
z &= \frac{\zeta(h \xi + k \eta + l \zeta)}{(\xi^2 + \eta^2 + \zeta^2)}
\end{align*}
\]

where the parameters \(\xi, \eta, \zeta \) take on all values in \([0,1]\) and \(h, k, l \) are positive constants.

A 734. Geometrically, if one wants the locus of points which are the orthogonal projections of the fixed point \((h, k, l)\) on all lines through the origin with direction numbers \((\xi, \eta, \zeta)\), one can obtain the given parametric representation. From this interpretation, it follows quickly that the locus is that portion of the sphere with the segment joining the origin to \((h, k, l)\) as a diameter and which lies in the first orthant.

Alternatively, it follows that

\[
x^2 + y^2 + z^2 = hx + ky + lz
\]

Thus the surface is that part of the sphere with radius \(r = \sqrt{h^2 + k^2 + l^2}/2 \) and center \((h/2, k/2, l/2)\) which lies in the first orthant.

[[There’s a Note by Murray: Symmetry in probability distributions.]]

Q 737. Submitted by M. S. Klamkin, University of Alberta, Edmonton, Canada

Determine $P_n(n^2)$ where

$$P_n(x) = \frac{x-1^2}{2!^2} - \frac{(x-1^2)(x-2^2)}{3!^2} + \cdots + \frac{(-1)^n(x-1^2)(x-2^2) \cdots (x-(n-1)^2)}{n!^2}$$

A 737. We show more generally by induction that if

$$Q_n(x) = 1 - \frac{x}{a_1} + \frac{x(x-a_1)}{a_1a_2} - \cdots + \frac{(-1)^n(x)(x-a_1) \cdots (x-a_{n-1})}{a_1a_2 \cdots a_n}$$

(1)

then

$$Q_n(x) = \frac{(a_1-x)(a_2-x) \cdots (a_n-x)}{a_1a_2 \cdots a_n}$$

so that

$$P_n(x) = \frac{Q_n(x) - 1 + x/a_1}{x}$$

where $a_i = i^2$. Thus, $P_n(n^2) = 1 - 1/n^2$.

Assume (1) is valid for $n = k$. Then

$$Q_{k+1}(x) = \frac{(a_1-x)(a_2-x) \cdots (a_k-x)}{a_1a_2 \cdots a_k} + \frac{(-1)^{k+1}(x)(x-a_1) \cdots (x-a_k)}{a_1a_2 \cdots a_{k+1}}$$

$$= \frac{(a_1-x)(a_2-x) \cdots (a_k-x)}{a_1a_2 \cdots a_k} \left(1 - \frac{x}{a_{k+1}} \right)$$

Thus our result is also true for $n = k+1$. Since the result also holds for $n = 1$, it holds for all n.

190
Q 739. Submitted by M. S. Klamkin, University of Alberta, Edmonton, Canada

Determine the largest value of the constant \(k \) such that the inequality

\[
(x_1 + x_2 + \cdots + x_n)^2(x_1x_2 + x_2x_3 + \cdots x_nx_1) \geq (x_1^2x_2^2 + x_2^2x_3^2 + \cdots + x_n^2x_1^2)
\]

is valid for all \(x_1, x_2, \ldots, x_n \geq 0 \).

A 739. Without loss of generality we can let \(x_1 + x_2 + \cdots + x_n = 1 \). The letting \(n = 2, x_1 = x_2 = 1/2 \), we must satisfy \(1/4 \geq k/4^2 \). Thus \(k \) must be \(\leq 4 \). For \(k = 4 \), the inequality becomes

\[
x_1x_2(1 - 4x_1x_2) + x_2x_3(1 - 4x_2x_3) + \cdots + x_nx_1(1 - 4x_nx_1) \geq 0
\]

and this inequality holds since \(\max(x_ix_j) = 1/4 \). There is equality if and only if one variable equals 1 or else two successive variables equal 1/2, or trivially, if all the variables are zero.
Proposed by M. S. Klamkin and A. Liu, University of Alberta, Canada

Determine all real values of \(\lambda \) such that the roots of

\[
P(x) \equiv x^n + \lambda \sum_{r=1}^{n} (-1)^r x^{n-r} = 0 \quad (n > 2)
\]

are all real.

I. Solution by Seung-Jin Bang, Seoul, Korea. If \(\lambda = 0 \) then all the roots of \(P \) are real. We will show that if \(\lambda \neq 0 \) then \(P \) has at least one nonreal root.

Suppose \(\lambda \neq 0 \) and set \(x = -1/y \). The equation becomes

\[
G(y) \equiv 1/\lambda + \sum_{r=1}^{n} y^r
\]

Suppose the roots \(r_1, r_2, \ldots, r_n \) are all real. Then the roots of \(G \) are \(s_i \equiv 1/r_i \) (\(i = 1, 2, \ldots, n \)), and

\[
\sum_{i=1}^{n} s_i^2 = \left(\sum_{i} s_i \right)^2 - 2 \sum_{i<j} s_i s_j = 1^2 - 2 = -1,
\]

a contradiction.

II. Solution by David Callan, University of Bridgeport, Bridgeport, Connecticut. If \(\lambda = 0 \) obviously all roots are real. Suppose \(\lambda \neq 0 \). We can write \(P(x) \) as \(Q(x)/(x+1) \) where \(Q(x) = x^{n+1} + (1-\lambda)x^n + (-1)^n \lambda \). Since \(P(0) \neq 0 \) the number of real roots of \(P \) is the number of positive roots of \(P(x) \) plus the number of positive roots of \(P(-x) \). By Descartes’s rule of signs, the number of positive roots of \(Q(x) \) (resp., \(Q(-x) \)) is at most the number of sign changes in the list of coefficients 1, \(1-\lambda \), \((-1)^n \lambda \) (resp. 1, \(\lambda-1 \), \(-\lambda \)). The total of these sign changes is clearly \(\leq 3 \). Noting [[that]] \(P(-x) = Q(-x)/(1-x) \) and so \(x = 1 \) counts as a positive root of \(Q(-x) \) one more time than it does as a root of \(P(-x) \), the above results for \(Q \) imply that \(P \) has at most two real roots.
Let
\[S_n = \frac{\sin^{2n+2} \theta}{\sin^{2n} \alpha} + \frac{\cos^{2n+2} \theta}{\cos^{2n} \alpha} \]

If \(S_k = 1 \) for some positive integer \(k \), show that \(S_n = 1 \) for \(n = 1, 2, \ldots \).

A 742. More generally, let
\[S_n = \sum_{i=1}^{n} \frac{x_i^{2n+2}}{y_i^{2n}} \]

where
\[x_1^2 + x_2^2 + \cdots + x_n^2 = y_1^2 + y_2^2 + \cdots y_n^2 \]

Then if \(S_k = 1 \) for some positive integer \(k \), \(S_n = 1 \) for \(n = 1, 2, \ldots \).

[[I don’t follow – has this sentence been misplaced? — R.]]

By Hölder’s inequality
\[\left(\sum_{i=1}^{n} \frac{x_i^{2k+2}}{y_i^{2k}} \right)^{1/(k+1)} \left(\sum_{i=1}^{n} y_i^2 \right)^{k/(k+1)} \geq \sum_{i=1}^{n} x_i^2 \]

Since we have the equality case by the hypotheses, we must have \(x_i^{2k+2}/y_i^{2k} = \lambda y_i^2 \) or \(x_i^2 = cy_i^2 \) for all \(i \). It then follows that \(c = 1 \) and \(S_n = 1 \) for \(n = 1, 2, \ldots \).

(Comment: The initial problem for the special case \(k = 1 \) appears in E. W. Hobson, A Treatise on Plane and Advanced Trigonometry, Dover, New York, 1957, p.96.)
If V_i denotes the $(n-1)$-dimensional volume of the face F_i opposite the vertex A_i of the $(n-1)$-dimensional simplex $S_n : A_0A_1\ldots A_n$, show that

$$V_0 + V_1 + \cdots + V_n > 2V$$

for all i.

Orthogonally project the faces $F_0, F_1, \ldots, F_{i-1}, F_{i+1}, \ldots, F_n$ onto the space of F_i. If A_i' (the projection of A_i) lies in the convex hull H_i of $A_0, A_1, \ldots, A_{i-1}, A_{i+1}, \ldots, A_n$ then

$$V'_0 + V'_1 + \cdots + V'_{i-1} + V'_{i+1} + \cdots + V'_n = V_i$$

where V'_j denotes the $(n-1)$-dimensional volume of the orthogonal projection of face F_j. If A_i' lies outside the convex hull H_i then

$$V'_0 + V'_1 + \cdots + V'_{i-1} + V'_{i+1} + \cdots + V'_n > V_i$$

Finally, since $V_j > V_j'$ we are done. Note that there is equality only in the case of a degenerate simplex in which case one vertex lies in the convex hull of the remaining vertices.

Note that for $n = 2$ we have $a_1 + a_2 + a_3 > 2a_i$ for the sides of a triangle, and for $n = 3$ we have $F_1 + F_2 + F_3 + F_4 > 2F_i$ for the areas of the faces of a tetrahedron.
On pp.198–199 of Math. Mag., 62(1989) we read:

Murray Klamkin was awarded the MAA’s Award for Distinguished Service to Mathematics in 1988, largely in recognition of his many contributions to problem solving. In this issue we further recognize this work: every problem posed in this issue is a proposal of Murray Klamkin’s.

[[we don’t really need that double genitive — R.]]

1322. An n-gon of consecutive sides a_1, a_2, \ldots, a_n is circumscribed about a circle of unit radius. Determine the minimum value of the product of all of its sides.

Solution by the proposer. If we denote the consecutive angles of the n-gon by $2A_1, 2A_2, \ldots, 2A_n$ then

$$P \equiv \prod a_i = \prod (\cot A_i + \cot A_{i+1})$$

where the products and sums here and subsequently are cyclic over i and $\sum A_i = (n-2)\pi/2$ with $A_i < \pi/2$.

First, we consider $n > 4$. By taking two consecutive angles very close to π, we can make P arbitrarily small; that is to say, there is no minimum in this case.

Consider the case $n = 4$. Since $\cot x$ is convex in $(0, \pi/2)$

$$\cot x + \cot y \geq 2 \cot \frac{(x+y)}{2}$$

Hence

$$P = a_1a_2a_3a_4 \geq 16 \cot \frac{A_1 + A_2}{2} \cdot \cot \frac{A_2 + A_3}{2} \cdot \cot \frac{A_3 + A_4}{2} \cdot \cot \frac{A_4 + A_1}{2}$$

Then, since

$$\cot \frac{A_3 + A_4}{2} = \frac{1}{\cot \frac{A_3 + A_4}{2}} \quad \text{and} \quad \cot \frac{A_4 + A_1}{2} = \frac{1}{\cot \frac{A_4 + A_1}{2}}$$

we get that

$$a_1a_2a_3a_4 \geq 16$$

This is a stronger result than the minimum perimeter circumscribed quadrilateral is a square. [[‘quadrilateral’s being’? — R.]]
Now consider the case $n = 3$. We start with the known inequality \([\text{known to whom?}]\)
\[(a_1a_2a_3)^2 \geq (4F/\sqrt{3})^3\]
where F is the area of the triangle and equality holds if $a_1 = a_2 = a_3$. Since $a_1a_2a_3 = 4RF$, where R is the circumradius, a geometrical interpretation of this inequality is that the inscribed triangle of largest area in a circle of radius R is the equilateral one. Now $F = \cot A_1 + \cot A_2 + \cot A_3$ and it is known that the minimum area circumscribed triangle is the equilateral one. This follows easily from the convexity of $\cot x$ for x in $(0, \pi/2)$. Again there is equality only for the equilateral problem. Thus $\min(a_1a_2a_3) = 24\sqrt{3}$, or equivalently,
\[
\prod (\cot A_i + \cot A_{i+1})^2 \geq \left(4 \sum \cot A_i/\sqrt{3}\right)^3
\]

1323. Submitted by M. S. Klamkin, University of Alberta, Canada

A parallelepiped has the property that all cross sections that are parallel to any fixed face F have the same area as F. Are there any other polyhedra with this property?

Solution by the proposer. First, the polyhedron must be convex. If not, there would be a pair of reentrant faces and the area of cross sections parallel to one of these two faces could not be the same. We now show that the polyhedron must be a parallelepiped. Consider three parallel sections whose distances from a face F are x, x_1 and x_2 where $x = w_1x_1 + w_2x_2$ and $w_1 + w_2 = 1$ and $w_1, w_2 > 0$. It then follows by the Brun-Minkowski inequality (L. A. Lyusternik, Convex Figures and Polyhedra, Dover, New York, 1963, pp.117–118), that the areas of the three sections must satisfy
\[
A(x) \geq w_1A(x_1) + w_2A(x_2)
\]
and equality holds if and only if the region between the outer sections is a cylindrical solid. Since we have equality by hypothesis, the figure must be a prism with respect to each face and hence must be a parallelepiped.

Comment from the proposer: I set the same problem with *area* replaced by *perimeter* in the 1980 Canadian Mathematics Olympiad. In this case the figure could also be a regular octahedron. Whether or not there are any other solutions for this problem is still open.
Determine the maximum value of
\[x_1 x_2 \cdots x_n (x_1^2 + x_2^2 + \cdots + x_n^2) \]
where \(x_1 + x_2 + \cdots + x_n = 1 \) and \(x_1, x_2, \ldots, x_n \geq 0 \).

Solution by Eugene Lee, Boeing Commercial Airplanes, Seattle, Washington. The maximum is \((1/n)^{n+1}\). To prove this we establish inductively the proposition \(P_n \): The function
\[f_n(x_1, \ldots, x_n) \equiv x_1 \cdots x_n (x_1^2 + \cdots + x_n^2) \]
over the simplex \(\sigma_n(\lambda) \equiv \{(x_1, \ldots, x_n) : x_i \geq 0, \sum_1^n x_i = \lambda\} \), any \(\lambda > 0 \), attains its maximum uniquely when \(x_1 = \cdots = x_n \).

One way to prove \(P_2 \) is to observe that
\[f_2(x, \lambda - x) = f_2(\lambda/2, \lambda/2) - 2(x - \lambda/2)^4 \]
Now let \(n \geq 3 \). Fix \(x_n \) \(0 < x_n < \lambda \) and rewrite \(f_n \) as
\[f_n(x_1, \ldots, x_n) = x_n f_{n-1}(x_1, \ldots, x_{n-1}) + x_n^3 \prod_{i=1}^{n-1} x_i \]
The induction hypothesis says that \(f_{n-1}(x_1, \ldots, x_{n-1}) \) has a unique maximum over \(\sigma_{n-2}(\lambda - x_n) \) at \(x_1 = \cdots = x_{n-1} \). But the same is true of \(\prod_{i=1}^{n-1} \) (from the arithmetic mean-geometric mean inequality). Hence, for any fixed \(0 < x_n < \lambda \), \(f_n(x_1, \ldots, x_{n-1}, x_n) \) attains its maximum uniquely when \(x_1 = \cdots = x_{n-1} \).

The role of \(x_n \) being replaceable by any \(x_k \), we have proved \(P_n \). (For if \((x_1, \ldots, x_n) \) lies in the interior of \(\sigma_{n-1}(\lambda) \) with \(x_i \neq x_j \) for some \(i, j \), then, taking \(k \) different from \(i \) or \(j \) and letting \(y_k = x_k \) \(y_r = (\lambda - x_k)/(n - 1) \) for \(r \neq k \), we see that \(f_n(x_1, \ldots, x_n) < f_n(y_1, \ldots, y_n) \).)
II. Solution by Professor Freidkin, University of the Witwatersrand, Johannesburg, Republic of South Africa. Let \(F(x_1, x_2, \ldots, x_n) \equiv x_1 x_2 \cdots x_n (x_1^2 + x_2^2 + \cdots + x_n^2) \). We will show that \(F \) attains its maximum value (of \(n^{-(n+1)} \)) when all of the arguments are equal.

Suppose that two of the arguments of \(F \), say \(x_1 \) and \(x_2 \), are not equal. Then we have the following.

\[
F(x_1, x_2, \ldots, x_n) = x_1 x_2 \prod_{i=3}^{n} x_i \left(x_1^2 + x_2^2 + \sum_{i=3}^{n} \frac{x_i^2}{x_i^2} \right)
\]

\[
= \left(\frac{x_1 + x_2}{2} + \frac{x_1 - x_2}{2} \right) \left(\frac{x_1 + x_2}{2} - \frac{x_1 - x_2}{2} \right)
\]

\[
\times \prod_{i=3}^{n} x_i \left(\frac{1}{2}(x_1 + x_2)^2 + \frac{1}{2}(x_1 - x_2)^2 + \sum_{i=3}^{n} x_i^2 \right)
\]

\[
= \frac{1}{8} \left((x_1 + x_2)^4 - (x_1 - x_2)^4 \right) \prod_{i=3}^{n} x_i
\]

\[
+ \frac{1}{4} \prod_{i=3}^{n} x_i \left((x_1 + x_2)^2 - (x_1 - x_2)^2 \right) \sum_{i=3}^{n} x_i^2
\]

\[
< \frac{1}{8} (x_1 + x_2)^4 \prod_{i=3}^{n} x_i + \frac{1}{4} \prod_{i=3}^{n} x_i (x_1 + x_2)^2 \sum_{i=3}^{n} x_i^2
\]

\[
\equiv F\left(\frac{x_1 + x_2}{2}, \frac{x_1 + x_2}{2}, x_3 \ldots, x_n \right)
\]

Thus the maximum must occur when all the \(x_i \) are equal.

III. Solution by the proposer. We will show that

\[
\left(\frac{x_1 + x_2 + \cdots + x_n}{n} \right)^{n+2} \geq x_1 x_2 \cdots x_n \left(\frac{x_1^2 + x_2^2 + \cdots + x_n^2}{n} \right)
\] \hspace{1cm} (1)

so that the desired maximum value is \(n^{-(n+1)} \) and is taken on when all the \(x_i \) are equal.

Our proof is by induction. First, (1) is valid for \(n = 2 \), since it reduces to \((x_1 - x_2)^4 \geq 0\).

We now assume (1) is valid for \(n = k \) and we will prove it valid for \(n = k + 1 \). Let \(A = (x_1 + x_2 + \cdots + x_k)/k \) and \(P = x_1 x_2 \cdots x_k \). Then from (1) with \(n = k \),

\[
P x_1^2 + x_2^2 + \cdots + x_k^2 + P x^3 \leq k x A^{k+2} + P x^3 \leq k x A^{k+2} + x^3 A^k
\]
It now suffices to show that
\[(k + 1) \left(\frac{x_1 + x_2 + \cdots + x_k + x}{k + 1} \right)^{k+3} = (k + 1) \left(\frac{kA + x}{k + 1} \right)^{k+3} \geq kxA^{k+2} + x^3A^k\]
or equivalently, that \(kxA^{k+2} + x^3A^k \leq k + 1\), where, without loss of generality, we have assumed that \(kA + x = k + 1\).

Using the standard calculus technique, we differentiate with respect to \(A\) and set it to zero,
\[D_A(kxA^{k+2} + x^3A^k) = k(k + 2)xA^{k+1} + kx^3A^{k-1} + (kA^{k+2} + 3x^2A^k)(-k) = 0\]
or
\[(kt^3 - (k + 2)t^2 + 3t - 1)t^{k-1} = 0\]
where \(t = A/x\). The cubic factors into \((t - 1)(kt^2 - 2t + 1)\). The only real roots are 0 and 1. The maximum occurs for \(A = x = 1\) and we have proved the case for \(n = k + 1\). Thus the result is valid for all \(n = 2, 3, 4, \ldots\).
1325. Submitted by M. S. Klamkin, University of Alberta, Canada

a. Determine the minimum value of

$$\max_{0 \leq x_i \leq 1} |F_1(x_1) + F_2(x_2) + \cdots + F_n(x_n) - x_1x_2\cdots x_n|$$

over all possible real-valued functions $F_i(t)$, $0 \leq t \leq 1$, $1 \leq i \leq n$.

b. Determine the minimum value of

$$\max_{0 \leq x_i \leq 1} |F_1(x_1)F_2(x_2)\cdots F_n(x_n) - (x_1 + x_2 + \cdots + x_n)|$$

over all possible real-valued functions $F_i(t)$, $0 \leq t \leq 1$, $1 \leq i \leq n$.

Solution by the proposer.

a. We will show that the minimum is $\frac{n-1}{2n}$. The first part of the proof is indirect. Assume that for any F_i and all x_i that

$$|F_1(x_1) + F_2(x_2) + \cdots + F_n(x_n) - x_1x_2\cdots x_n| < a \leq \frac{n-1}{2n}$$

Let

$$S_0 = F_1(0) + F_2(0) + \cdots + F_n(0)$$

$$S_1 = F_1(1) + F_2(1) + \cdots + F_n(1)$$

We have

$$|S_0| < a \quad |1 - S_1| < a$$

and for $j = 1, 2, \ldots, n$,

$$|S_1 - F_j(1) + F_j(0)| < a$$

Thus,

$$a + (n-1)a + na > |S_0| + (n-1)|1 - S_1| + \sum_{j=1}^{n} |S_1 - F_j(1) + F_j(0)|$$

and therefore

$$2na > | - S_0 + (n-1)(1 - S_1) + (n-1)S_1 + S_0| = n - 1$$

Hence

$$T_1 \equiv |F_1(x_1) + F_2(x_2) + \cdots + F_n(x_n) - x_1x_2\cdots x_n| \geq \frac{n-1}{2n}$$
for some choice of the x_i. That the minimum is $(n - 1)/2n$ will follow by the choice of functions

$$F_i(x_i) \equiv \frac{x_i}{n} - \frac{n - 1}{2n^2}$$

for all i. Here

$$T_1 = \left| \sum_{i=1}^{n} \left(\frac{x_i}{n} - \frac{n - 1}{2n^2} \right) - x_1x_2 \cdots x_n \right|$$

and all we need now show is that $T_{\text{max}} = (n - 1)/2n$. Since T is linear in the x_i its maximum will be taken on by each variable being 0 or 1. For all ones, $T = (n - 1)/2n$.

For $r (\leq n)$ ones and $n-r$ zeros,

$$T = \left| \frac{r}{n} - \frac{n - 1}{2n} \right| \leq \frac{n - 1}{2n}$$

and with equality only for $r = n - 1$.

b. First consider the even case; that is, replace n by $2n$. We will show that the minimum is $n/4$ The first part of the proof is indirect. Assume that for any F_i and all x_i that

$$|F_1(x_1)F_2(x_2) \cdots F_{2n}(x_{2n}) - x_1 - x_2 - \cdots - x_{2n}| < a \leq n/4$$

Let

$$P_0 = |F_1(0)F_2(0) \cdots F_{2n}(0)|$$

$$P_1 = |F_1(1)F_2(1) \cdots F_{2n}(1)|$$

We then have

$$-a < P_0 < a \quad 2n - a < P_1 < 2n + a \quad P_0P_1 < a(2n + a)$$

$$n - a < |F_1(0)F_2(0) \cdots F_{2n}(0)F_{n+1}(1)F_{n+2}(1) \cdots F_{2n}(1)| < n + a$$

We now take all combinations similar to the last inequality with n zeros and n ones and multiply them to give

$$(n - a)^\alpha < (P_0P_1)^{\alpha/2} < (n + a)^\alpha$$

where $\alpha = \binom{2n}{n}$. Equivalently,

$$(n - a)^2 < P_0P_1 < (n + a)^2$$

201
Also
\[(n - a)^2 < P_0 P_1 < a(2n + a)\]
and from this we get \(a > n/4\). Hence
\[T_2 \equiv \left| F_1(x_1)F_2(x_2) \cdots F_{2n}(x_{2n}) - x_1 - x_2 - \cdots - x_{2n} \right| \geq n/4\]
for some choice of the \(x_i\). That the minimum is \(n/4\) will follow by the choice of functions
\(F_i(x_i) \equiv ax_i + b\) for all \(i\) where \(a, b\) are taken to satisfy
\[(a + b)^{2n} = 2n + n/4\quad \text{and} \quad a^{2n} = n/4\]
Here
\[T_2 = \left| \prod_{i=1}^{2n} (ax_i + b) - x_1 - x_2 - \cdots - x_{2n} \right|\]
\[(a + b)^{2n-1} = \frac{n(n - 1)}{2(2n - 1)}\quad \text{and} \quad a^{2n-1} = \frac{n(n - 1)}{2(2n - 1)}\]
Since \(T_2\) is linear in the \(x_i\) it takes on its extreme values when all the \(x_i\) are 0 or 1. Thus it now remains to show that
\[(a + b)^r a^{2n-1-r} < \frac{n(n - 1)}{2(2n - 1)} + r\]
or, equivalently, that
\[(9n^2 - 9r + 2)^r (n^2 - n)^{2n-1-r} \leq (n^2 + n(4r - 1) - 2r)^{2n-1}\]
for \(r = 0, 1, \ldots, 2n-1\). The proof goes through as before using concavity.
A particle is projected vertically upwards in a uniform gravitational field and subject to a drag force mv^2/c. The particle in its ascent and descent has equal speeds at two points whose respective heights above the point of projection are x and y. It has been shown by Newton that if a denotes the maximum height of the particle, then x and y are related by

$$e^{2(a-x)/c} + e^{-2(a-y)/c} = 2 \quad (1)$$

Consider the same problem except that the drag force is now $F(mv^2/c)$ where F is a smooth function. Show that if (1) still holds for all possible y values, then $F(u) = u$.

Solution by Michael Golomb, Purdue University, West Lafayette, Indiana. We may assume [[that]] the unit of mass is chosen so that $m = 1$. The equation of motion during ascent is

$$v \frac{dv}{dx} = -g - F(v^2/c), \quad v(0) = v_0 > 0$$

At the maximum height a the velocity is 0, thus

$$\int_0^a \frac{v \, dv}{g + F(v^2/c)} = - \int_a^x \, dx = a - x$$

We set $v^2/c = u$ and obtain

$$\int_0^{v^2/c} \frac{du}{g + F(u)} = \frac{2}{c} (a - x)$$

In the same way, we obtain for the descent

$$\int_0^{v^2/c} \frac{du}{g - F(u)} = \frac{2}{c} (a - y)$$

Thus, if (1) is to hold then

$$\exp \left(\int_0^{v^2/c} \frac{du}{g + F(u)} \right) + \exp \left(\int_0^{v^2/c} \frac{du}{-g + F(u)} \right) = 2 \quad (2)$$

Set

$$w = v^2/c \quad P(w) = \frac{1}{g + F(w)} \quad Q(w) = \frac{1}{-g + F(w)}$$

Then differentiating (2) twice with respect to w, we obtain

$$(P' + P^2)e^{\int_0^w P} + (Q' + Q^2)e^{\int_0^w Q} = 0 \quad (3)$$
But $P' = -F'P^2$, $Q' = -F'Q^2$, hence (3) becomes

$$(1 - F')(P^2 e^{J_0 P} + Q^2 e^{J_0 P}) = 0$$

Since $P^2 e^{J_0 P} + Q^2 e^{J_0 Q} > 0$ we conclude that $F'' = 1$, i.e., $F(w) = w + k$, where k is a constant. With this F, (2) becomes

$$\frac{g + v^2/c + k}{g + k} + \frac{-g + v^2/c + k}{-g + k} = 2$$

It is readily seen that this equation implies $k = 0$, thus $F(w) = w$.
Q 748. Submitted by M. S. Klamkin, University of Alberta, Canada

Determine the maximum value of

\[F = \frac{(x^{2n} - a^{2n})(b^{2n} - x^{2n})}{(x^{2n} + a^{2n})(b^{2n} + x^{2n})} \]

over all real \(x \).

A 748. On dividing,

\[F = -1 + \frac{2(a^{2n} + b^{2n})x^{2n}}{x^{4n} + (a^{2n} + b^{2n})x^{2n} + a^{2n}b^{2n}} \]

Now by the arithmetic mean-geometric mean inequality,

\[x^{2n} + \frac{a^{2n}b^{2n}}{x^{2n}} + (a^{2n} + b^{2n}) \]

takes on its minimum value when \(x^2 = ab \) (we can assume that \(a, b \geq 0 \)). Finally,

\[F_{\text{max}} = \frac{(b^n - a^n)^2}{(b^n + a^n)^2} \]

Q 749. Submitted by M. S. Klamkin, University of Alberta, Canada

Prove that

\[\frac{x^{\lambda+1}}{y^{\lambda}} + \frac{y^{\lambda+1}}{z^{\lambda}} + \frac{z^{\lambda+1}}{x^{\lambda}} \geq x + y + z \]

where \(x, y, z, \lambda > 0 \).

A 749. Expanding out, we have to show that

\[z^{\lambda}x^{\lambda}(x^{\lambda+1} - y^{\lambda+1}) + x^{\lambda}y^{\lambda}(y^{\lambda+1} - z^{\lambda+1}) + y^{\lambda}z^{\lambda}(z^{\lambda+1} - x^{\lambda+1}) \geq 0 \]

Since the inequality is cyclic, we can assume without loss of generality that (i) \(x \geq y \geq z \) or else (ii) \(x \geq z \geq y \).

For (i) we can rewrite the inequality in the obvious form

\[z^{\lambda}(x^{\lambda} - y^{\lambda})(x^{\lambda+1} - y^{\lambda+1}) + y^{\lambda}(x^{\lambda} - z^{\lambda})(y^{\lambda+1} - z^{\lambda+1}) \geq 0 \]

For (ii) we rewrite the inequality in the form

\[z^{\lambda}(x^{\lambda} - y^{\lambda})(x^{\lambda+1} - z^{\lambda+1}) + x^{\lambda}(z^{\lambda} - y^{\lambda})(z^{\lambda+1} - y^{\lambda+1}) \geq 0 \]
More generally, the given inequality is the special case \(a = y, b = z, c = x\) of the inequality

\[
\frac{x^{\lambda+1}}{a^\lambda} + \frac{y^{\lambda+1}}{b^\lambda} + \frac{z^{\lambda+1}}{c^\lambda} \geq \frac{(x + y + z)^{\lambda+1}}{(a + b + c)^\lambda}
\]

where \(\lambda = (x + y + z)/(a + b + c)\) and \(x, y, z, a, b, c > 0\).

To prove this, let

\[
F(\lambda) \equiv \left(\frac{a(x/a)^{\lambda+1} + b(y/b)^{\lambda+1} + c(z/c)^{\lambda+1}}{a + b + c}\right)^{1/(\lambda+1)}
\]

Then by the power mean inequality

\[
F(\lambda) \geq F(0)
\]

which gives the desired result. It is to be noted that \(\lambda\) may be 0 and the inequality can be extended to

\[
\sum_i \frac{x_i^{\lambda+1}}{a_i^\lambda} \geq \left(\sum_i x_i^{\lambda+1}\right) / \left(\sum_i a_i^\lambda\right)
\]

Another proof of

\[
\frac{x_1^{\lambda+1}}{x_2^\lambda} + \frac{x_2^{\lambda+1}}{x_3^\lambda} + \cdots + \frac{x_n^{\lambda+1}}{x_1^\lambda} \geq x_1 + x_2 + \cdots + x_n
\]

follows immediately from the rearrangement inequality; i.e., if \(a_1 \geq a_2 \geq \cdots \geq a_n \geq 0, b_1 \geq b_2 \geq \cdots \geq b_n \geq 0\), and the \(c_i\) are a permutation of the \(b_i\) then \(a_1c_1 + a_2c_2 + \cdots + a_nc_n \geq a_1b_1 + a_2b_2 - 1 + \cdots + a_nb_n\).

[[Another not-so-quick quickie. — R.]]

Q 750. Submitted by M. S. Klamkin, University of Alberta, Canada

Ptolemy’s inequality states that \(ac + bd \geq ef\), where \(a, b, c, d\) are consecutive sides of a quadrilateral (it need not be planar), and \(e, f\) are its diagonals. There is equality if and only if the quadrilateral is cyclic (has a circumcircle). Determine a corresponding inequality for a spherical quadrilateral.

A 750. Let \(a, b, c, d\) and \(e, f\) denote the sides and diagonals of a spherical quadrilateral. Then the chord lengths of the spherical arcs of the sides and diagonals are given by \(a' = 2R\sin(a/2), b' = 2R\sin(b/2), \) etc., where \(R\) is the radius of the sphere. Then by Ptolemy’s inequality above

\[
\sin(a/2) \cdot \sin(c/2) + \sin(b/2) \cdot \sin(d/2) \geq \sin(e/2) \cdot \sin(f/2)
\]

Again there is equality if and only if the quadrilateral is cyclic.
Q 751. Submitted by M. S. Klamkin, University of Alberta, Canada

If \(z_1, z_2, \ldots, z_5 \) are complex numbers such that
\[
|z_{i+1} + z_{i+2}| = |z_{i+3} + z_{i+4} + z_{i+5}|
\]
for \(i = 1, 2, \ldots, 5 \) and \(z_{i+5} + z_i \) prove that \(z_1 + z_2 + \cdots + z_5 = 0 \).

A 751. We will show more generally that if \(A_1, A_2, \ldots, A_n \) are vectors in \(E^n \) such that
\[
|A_{i+1} + A_{i+2} + \cdots + A_{i+r}| = A_{i+r+1} + A_{i+r+2} + \cdots + A_{i+n}
\]
for \(2r < n, i = 0, 1, \ldots, n-1 \) and \(A_{i+n} = A_i \), then
\[
A_1 + A_2 + \cdots + A_n = 0
\]

Proof. Let \(S_i = A_{i+1} + A_{i+2} + \cdots + A_{i+r} \) and \(S = A_1 + A_2 + \cdots + A_n \). The given relations become \(|S_i| = |S - S_i| \) which on squaring becomes \(S^2 = 2S \cdot S_i \). On summing over \(i \), we get \(nS^2 = 2rS^2 \). Hence \(S = 0 \).

Q 758. Submitted by M. S. Klamkin, University of Alberta, Alberta, Canada

Evaluate
\[
I = \int_0^a x^n(2a - x)^n \, dx \div \int_0^a x^n(a - x)^n \, dx
\]

A 758. Letting \(x = 2t \) in the first integral, we get
\[
I = 2^{2n+1} \int_0^{a/2} t^n(a - t)^n \, dt \div \int_0^a t^n(a - t)^n \, dt
\]

Since
\[
\int_0^a t^n(a - t)^n \, dt = \int_0^{a/2} t^n(a - t)^n \, dt + \int_{a/2}^a t^n(a - t)^n \, dt = 2 \int_0^{a/2} t^n(a - t)^n \, dt,
\]
\[
I = 2^{2n}.
\]

This problem is due to E. B. Elliott and appears in Mathematical Problems from the Educational Times, where each integral is evaluated separately.
If $a_1, a_2, \ldots, a_{n+1} > 0$, prove that

$$a_1 a_2 \cdots a_{n+1}(a_1^{-n} + a_2^{-n} + \cdots + a_{n+1}^{-n}) \geq a_1 + a_2 + \cdots + a_{n+1}$$

A 761. Letting $P = \prod_{i=1}^{n+1} a_i$, $S = \sum_{i=1}^{n+1} a_i^{-n}$, the inequality can be written as

$$P \left[(S - a_1^{-n}) + (S - a_2^{-n}) + \cdots + (S - a_{n+1}^{-n}) \right] \geq n \sum_{i=1}^{n+1} a_i$$

Since by the arithmetic mean - geometric mean inequality,

$$S - a_i^{-n} \geq na_i/P$$

we get the desired inequality. There is equality if and only if all the a_i are equal.

Alternative solution with generalization. Letting $a_k = 1/x_k$ we then have to show equivalently that

$$x_1^n + x_2^n + \cdots + x_{n+1}^n \geq x_1 x_2 \cdots x_n + x_2 x_3 \cdots x_{n+1} + \cdots + x_n x_1 \cdots x_{n-1}$$

for $x_k > 0$. More generally, we have

$$x_1^p + x_2^p + \cdots + x_{n+1}^p \geq x_1 x_2 \cdots x_p + x_2 x_3 \cdots x_{p+1} + \cdots + x_n x_1 \cdots x_{p-1}$$

for all positive integers p and n. A proof follows immediately by applying Hölder’s inequality to

$$(x_1^p + x_2^p + \cdots + x_n^p)^{1/p} (x_1^p + x_3^p + \cdots + x_1^p)^{1/p} \cdots (x_p^p + x_{p+1}^p + \cdots + x_{p+n-1}^p)^{1/p}$$

where $x_{n+k} = x_k$.

Comment

Q 761. In Vol.63, No.2, April 1990, p.133 Murray Klamkin offered the following generalization to his Quickie (Q761): “For positive integers n and p and numbers $x_1, \ldots, x_n > 0$,

$$x_1^p + x_2^p + \cdots + x_n^p \geq x_1 x_2 \cdots x_p + x_2 x_3 \cdots x_{p+1} + \cdots + x_n x_1 \cdots x_{p-1}$$

where each subscript on the right is understood to be reduced nodulo n to one of $1, 2, \ldots, n$.” Peter D. Johnson, Jr., Auburn University, offers the following generalization.
We start with the well-known rearrangement inequality (e.g., see Inequalities, Hardy, Littlewood & Pólya, Chapter 10): If \(a_1 \leq \cdots \leq a_n\) and \(b_1 \leq \cdots \leq b_n\) and \(\pi\) is a permutation of \(\{1,2,\ldots,n\}\), then \(\sum_i a_i b_i \geq \sum_i a_i b_{\pi(i)}\).

For non-negative sequences this generalizes, by induction on \(p\), to the following.

If \(p \geq 2\) and \(n\) are positive integers, and \(A = (a_{ij})\) is a \(p \times n\) matrix of non-negative numbers with non-decreasing rows, then for any permutations \(\pi_2, \pi_3, \ldots, \pi_p\) of \(\{1,2,\ldots,n\}\),

\[
\sum_{j=1}^n a_{1j} a_{2j} \cdots a_{pj} \geq \sum_{j=1}^n a_{1j} a_{2,\pi_2(j)} \cdots a_{p,\pi_p(j)}
\]

Klamkin’s inequality is obtainable from this by taking the rows of \(A\) to be equal (to a non-decreasing rearrangement of \(x_1, \ldots, x_n\)) and the permutations \(\pi_2, \ldots, \pi_p\) to be successive powers of a certain cycle (\(\pi_2\)).

\textbf{Q 763. Submitted by M. S. Klamkin, University of Alberta, Edmonton, Canada}

Determine all real solutions of the simultaneous equations

\[
\begin{align*}
2x(1 + y + y^2) &= 3(1 + y^4) \\
2y(1 + z + z^2) &= 3(1 + z^4) \\
2z(1 + x + x^2) &= 3(1 + x^4)
\end{align*}
\]

\textbf{A 763.} Since \(1 + x + x^2 > 0\), etc., it follows that \(x, y, z\) are all positive. Without loss of generality we may assume \(x \geq y \geq z\). Then

\[
2x(1 + x + x^2) \geq 3(1 + x^4)
\]

so that

\[
0 \geq (x - 1)^2(3x^2 + 4x + 3)
\]

Thus \(x = 1\) giving the one real solution \(x = y = z = 1\).
Determine the extreme values of
\[F ≡ x_1 x_2 \cdots x_n - (x_1 + x_2 + \cdots + x_n) \]
where \(b ≥ x_i ≥ a ≥ 0 \) for all \(i \).

Solution by Christos Athanasiadis, student, Massachusetts Institute of Technology, Cambridge, Massachusetts. We note that as a function of \(x_j \) alone, \(F \) is linear, so it attains its extreme values at \(x_j = a \) and \(x_j = b \). It easily follows that the extreme values of \(F \) are attained at \(n \)-tuples \((x_1, x_2, \ldots, x_n)\) for which \(x_i ∈ \{a, b\} \) for all \(i \). Thus, by the symmetry of \(F \), the extreme values of \(F \) are among the numbers \(c_0, c_1, \ldots, c_n \) defined by
\[c_k = a^{n-k} b^k - (n - k)a - kb \]
Note that \(c_{k+1} - c_k = (a^{n-k-1} b^k - 1)(b - a) \) for \(k = 0, 1, \ldots, n-1 \). We now distinguish three cases.

Case 1. \(a ≥ 1 \). Then \(c_{k+1} ≥ c_k \) for all \(k \), so the minimum of \(F \) is \(c_0 = a^n - na \) and the maximum is \(c_n = b^n - nb \).

Case 2. \(b ≤ 1 \). Then \(c_{k+1} ≤ c_k \) for all \(k \) so the minimum is \(c_n \) and the maximum is \(c_0 \).

Case 3. \(a < 1 < b \). In this case, \(c_{k+1} |geq c_k \) if and only if
\[k ≥ \frac{(n - 1) \log(1/a)}{\log(b/a)} \quad \text{(\(*)\)} \]
Thus, if \(k \) is the smallest integer for which \((*) \) holds, then the minimum of \(F \) is \(c_k \), while the maximum is \(\max\{c_0, c_n\} \).
Show that

\[(a + b + c)^n(a^{2n} + b^{2n} + c^{2n}) \geq (a^n + b^n + c^n)(a^2 + b^2 + c^2)^n\]

where \(a, b, c \geq 0\) and \(n \geq 1\).

A 768. By the power mean inequality,

\[\frac{\sum a^{2n}}{\sum a^n} = \frac{\sum a^n \cdot a^n}{\sum a^n} \geq \left(\frac{\sum a^n \cdot a}{\sum a^n} \right)^n\]

where the sums here and subsequently are symmetric over \(a, b, c\). Then

\[\frac{\sum a^{n+1}}{\sum a^n} \geq \frac{\sum a^2}{\sum a}\]

since it is equivalent to

\[\sum ab(a^{n-1} - b^{n-1})(a - b) \geq 0\]

The inequality can be easily extended for a more general combination of exponents and to any number of variables.
Comments

1311. Murray Klamkin notes that the result of this problem is equivalent to a generalization he gave to a USA Olympiad Problem (M. S. Klamkin, *USA Mathematical Olympiads, 1972–1976*, MAA, Washington, D.C., 1988, p.84). Moreover, the result in this reference is valid for both the odd and even cases.

[[The problem referred to is

1311. Proposed by Mihály Bencze, Brașo, Romania

Let $0 < m \leq x_1, x_2, \ldots, x_{2n+1} \leq M$. Prove that

$$(M - m)^2 + 4Mm \left(\sum_{k=1}^{2n+1} x_k \right) \left(\sum_{k=1}^{2n+1} \frac{1}{x_k} \right) \leq (2n + 1)^2(M + m)^2$$

]]

1362. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

If \((a_i, b_i, c_i)\) are the sides, \(R_i\) the circumradii, \(r_i\) the inradii, and \(s_i\) the semi-perimeters of \(n\) triangles \((i = 1, 2, 3, \ldots, n)\) respectively, show that

\[
3 \left(\prod a_i^{-1/n} + \prod b_i^{-1/n} + \prod c_i^{-1/n} \right) \leq \prod \left(\frac{s_i}{r_i R_i} \right)^{1/n} \leq 2^n \prod \left(a_i^{-1/n} + b_i^{-1/n} + c_i^{-1/n} \right)
\]

where the sums and products are over \(i = 1\) to \(n\).

(We regret that the statement of the problem inadvertently contained an extra summation sign [[removed from the above]] which rendered the problem meaningless, and omitted the necessary condition that \(n > 1\).)

Solution by Jiro Fukuta, Motosu-gun, Gifu-ken, Japan. From Hölder’s inequality,

\[
3 \left(\prod a_i^{-1/n} + \prod b_i^{-1/n} + \prod c_i^{-1/n} \right) \leq 3 \prod \left(a_i^{-1/n} + b_i^{-1/n} + c_i^{-1/n} \right)^{1/n}
\]

Now \((a_i + b_i + c_i)^2 = a_i^2 + B_i^2 + c_i^2 + 2(b_i c_i + c_i a_i + a_i b_i) \geq 3(b_i c_i + c_i a_i + a_i b_i)\) and therefore \(3(a_i^{-1} + b_i^{-1} + c_i^{-1}) \leq (a_i + b_i + c_i)^2/(a_i b_i c_i) = s_i/(r_i R_i)\). It follows that

\[
3 \left(\prod a_i^{-1/n} + \prod b_i^{-1/n} + \prod c_i^{-1/n} \right) \leq \prod \left(\frac{s_i}{r_i R_i} \right)^{1/n}
\]

For the other inequality, it is enough to prove that if \(a, b, c\) are the lengths of the three sides of a triangle,

\[
\left(\frac{(a + b + c)^2}{abc} \right)^{1/n} \leq 2(a^{-1/n} + b^{-1/n} + c^{-1/n})
\]

or

\[
(a + b + c)^2 \leq \left(2(b c)^{1/n} + 2(c a)^{1/n} + 2(ab)^{1/n} \right)^n
\]

Let \(A = a^{1/n}, B = b^{1/n}\) and \(C = c^{1/n}\). Then the preceding equation can be rewritten as

\[(A^n + B^n + C^n)^2 \leq (2BC + 2CA + 2AB)^n\]

But

\[(2BC + 2CA + 2AB)^n = \left(A(B + C - A) + B(C + A - B) + C(A + B - C) + A^2 + B^2 + C^2 \right)^n \geq (A^2 + B^2 + C^2)^n\]
because \((B + C)^n = (b^{1/n} + c^{1/n})^n \geq b + c \geq a = A^n\) and thus \(B + C \geq A\) and so on.

Applying Jensen’s inequality, we have

\[
(A^n + B^n + C^n)^2 \leq (A^2 + B^2 + C^2)^n
\]

for \(n > 0\). The result follows.

\[\text{Math. Mag., 63}(1990)\ 351, 357.\]

Q 770. Submitted by Murray S. Klamkin, University of Alberta, Edmonton, Canada

Determine the minimum value of \(x^2 + y^2 + z^2\) given that

\[xyz - x - y - z = 2 \quad \text{and} \quad x, y, z \geq 0.\]

A 770. The constraint condition can be rewritten as

\[
1/(1 + x) + 1/(1 + y) + 1/(1 + z) = 1
\]

Then by Jensen’s inequality for convex functions,

\[
1/(1 + x) + 1/(1 + y) + 1/(1 + z) \geq 3/(1 + A)
\]

where \(A + (x + y + z)/3\). Thus, \(A \geq 2\). Then by the power mean inequality,

\[
(x^2 + y^2 + z^2)/3 \geq A^2
\]

so that \(x^2 + y^2 + z^2 \geq 12\) and with equality if and only if \(x = y = z = 2\).

More generally, if \(\sum 1/(1+x_i) = 1\) and \(x_i \geq 0\) for \(i = 1, 2, \ldots, n\), then \(\sum x_i^p \geq n(n-1)^p\) for \(p \geq 1\) and with equality if and only if \(x_i = n - 1\).

\[\text{Math. Mag., 63}(1990)\ 328–329.\]

[[There’s a Note:]]

A Single Inequality Condition for the Existence of Many \(r\)-gons

Murray S. Klamkin & Zrzysztof Witczynski
Comments

Q759. In this problem, proposed by Norman Schaumberger, Bronx Community College, \(a, b, c\) and \(d\) are the lengths of the sides of a quadrilateral and \(P\) is its perimeter. Then

\[
\frac{abc}{d^2} + \frac{bcd}{a^2} + \frac{cda}{b^2} + \frac{dab}{c^2} > P
\]

unless \(a = b = c = d\).

Murray Klamkin, University of Alberta, makes the following comments.

First, one can obtain the given inequality in one step by an application of Hölder’s inequality, i.e.,

\[
(a^3b^3c^3 + b^3c^3d^3 + c^3d^3a^3 + d^3a^3b^3)^{1/3} \times (d^3a^3b^3 + a^3b^3c^3 + b^3c^3d^3 + c^3d^3a^3)^{1/3}
\]

\[
\times (c^3d^3a^3 + d^3a^3b^3 + a^3b^3c^3 + b^3c^3d^3)^{1/3} \geq a^3b^2c^2d^2 + b^3c^2d^2a^2 + c^3d^2a^2b^2 + d^3a^2b^2c^2
\]

For a generalization of this, one can start with the \(m\)-th root of the cyclic sum (with respect to the \(a_i\)) whose first term is \(a_1a_2^\alpha_1 \cdots a_n^\alpha_n\) and multiplying by \((m-1)\) \(m\)-th roots of successive permutations of this sum as above (\(1 \leq m \leq n\)).

The given inequality is also a special case of Muirhead’s inequality [Hardy, Littlewood & Pólya, Inequalities, Cambridge University Press, London, 1934, pp.44–48]:

Let

\[
[\alpha_1, \alpha_2, \ldots, \alpha_n] = \frac{1}{n!} \sum a_1^{\alpha_1}a_2^{\alpha_2} \cdots a_n^{\alpha_n}
\]

where the sum is over the \(n!\) terms obtained from \(a_1a_2^\alpha_1 \cdots a_n^\alpha_n\) by all possible permutations of the \(a_i\) and \(a_i > 0, \alpha_i > 0\). If

\[
\{\alpha_1, \alpha_2, \ldots, \alpha_n\} \text{ majorizes } \{\beta_1, \beta_2, \ldots, \beta_n\} \quad \beta_i \geq 0
\]

that is,

\[
\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_n \quad \beta_1 \geq \beta_2 \geq \cdots \geq \beta_n
\]

\[
\alpha_1 + \alpha_2 + \cdots + \alpha_k \geq \beta_1 + \beta_2 + \cdots + \beta_k \quad n > k \geq 1
\]

\[
\alpha_1 + \alpha_2 + \cdots + \alpha_n = \beta_1 + \beta_2 + \cdots + \beta_n
\]

then

\[
[\alpha_1, \alpha_2, \ldots, \alpha_n] \preceq [\beta_1, \beta_2, \ldots, \beta_n]
\]

Since \(\{3, 3, 3, 0\} \text{ majorizes } \{3, 2, 2, 2\}\), we obtain the original given inequality. It also follows that

\[
[9, 0, 0, 0] \preceq [6, 3, 0, 0] \preceq [3, 3, 3, 0] \preceq [3, 3, 3, 1] \preceq [3, 2, 2, 2], \text{ etc.}
\]

Q 774. Submitted by Murray S. Klamkin, University of Alberta, Edmonton, Canada

If A, B, C, D are distinct coplanar vectors with equal lengths such that $A \cdot B + C \cdot D = A \cdot D + B \cdot C$, show that $A \cdot B + C \cdot D = 0$.

A 774. If O is the origin of the vectors, then their endpoints A, B, C, D, respectively, lie on a circle centered at O. Since $(A - C) \cdot (B - D) = 0$, $AC \perp BD$. Hence, A, B, C, D are in consecutive order on the circle and do not lie on any semicircle.

Referring to the preceding figure, we have to show that $\cos \alpha + \cos \delta = 0$. Since $90^\circ = \angle APB = \frac{1}{2}(\text{arc } AB + \text{arc } CD)$, $\alpha + \delta = 180^\circ$ and we are done.

Comments

Q774. In the Quickie Solution (Vol.64, No.1, pp.61,67) to this problem, the author states that “A, B, C, D are in consecutive order on the circle and do not lie on any semicircle.” The following example, pointed out by Mike Schramm (student) and Kevin Farrell, Lyndon State College, shows that this conclusion is false. Let $A=(5,14)$, $B=(14,-5)$, $C=(-5,14)$ and $D=(14,5)$. These vectors satisfy the hypotheses of the theorem, namely, they are distinct coplanar vectors with equal lengths and $A \cdot B + C \cdot D = A \cdot D + B \cdot C$. They do not satisfy the conclusion stated above. They are not in consecutive order and do lie on a semicircle.

Murray Klamkin, University of Alberta comments: In the solution, it was assumed that AC and BD, which must be perpendicular chords of a circle, intersect at a point P lying within or on a circle. The example given above shows that P might lie outside the circle. Here is a simpler solution that takes care of both cases.

Choose a rectangular coordinate system with origin at the center O of the circle and with axes parallel to AC and BD. Then the four vectors have the representations

$$
\begin{align*}
B \\
A \\
P \\
C \\
\alpha \\
\beta \\
\gamma \\
\delta \\
D
\end{align*}
$$

Referring to the preceding figure, we have to show that $\cos \alpha + \cos \delta = 0$. Since $90^\circ = \angle APB = \frac{1}{2}(\text{arc } AB + \text{arc } CD)$, $\alpha + \delta = 180^\circ$ and we are done.
\[A = (\alpha, \beta), \quad C = (-\alpha, \beta) \quad B = (\gamma, \delta) \quad D = (\gamma, -\delta). \]
(Note that \(\alpha \) need not be positive, etc.)
Finally,
\[A \cdot B + C \cdot D = \alpha \gamma + \beta \delta - \alpha \gamma - \beta \delta = 0 \]

Since also
\[A^2 + B^2 + C^2 + D^2 - (A - B)^2 - (C - D)^2 = 2(A \cdot B + C \cdot D) = 0 \]
we have equivalently that
\[AP^2 + BP^2 + CP^2 + DP^2 = 4R^2 \quad (R = \text{radius of the circle}) \]

The latter corresponds to the known result (\textit{Crux Mathematicorum}, 15(1989) 293, #1) that the sum of the areas of the four circles whose diameters are \(AP, BP, CP \) and \(DP \) is equal to the area of the given circle. In this result it is assumed that \(P \) lies within the circle. But the above proof shows that it is valid if \(P \) is outside the circle. This four-circle result apparently has been generalized (\textit{Crux Mathematicorum}, 16(1990) p.109, #1535) to a result concerning two intersecting chords in an ellipse. However, the ellipse result can be shown to follow from the circle result by an affine transformation.

Q 777. Submitted by Murray S. Klamkin and Andy Liu, University of Alberta, Edmonton, Alberta, Canada

\(T_1 \) and \(T_2 \) are two acute triangles inscribed in the same circle. If the perimeter of \(T_1 \) is greater than the perimeter of \(T_2 \), must the area of \(T_1 \) also be greater than the area of \(T_2 \) ?

A 777. By considering two triangles with angles \((80^\circ, 50^\circ, 50^\circ)\) and \((70^\circ, 70^\circ, 40^\circ)\) the answer is in the negative.

The result would be valid for two general triangles if the angles of \(T_2 \) majorized those of \(T_1 \), that is, if \(A_1 \geq B_1 \geq C_1, A_2 \geq B_2 \geq C_2 \), then \(A_2 \geq A_1 \) and \(A_2 + B_2 \geq A_1 + B_1 \). Then by the majorization inequality,
\[F(A_1) + F(B_1) + F(C_1) \geq F(A_2) + F(B_2) + F(C_2) \quad (1) \]

for concave functions \(F \). The rest follows since the perimeter and area of a triangle \(ABC \) is \([area]\) given by \(2R(sin A + sin B + sin C)\) and \(2R^2 \sin A \sin B \sin C\) respectively, and \(\sin x \) and \(\ln \sin x \) are concave on \((0, \pi)\).

\textit{Comments.} For the special case when \(T_1 \) and \(T_2 \) have a common angle (or equivalently a common side), then the angles of \(T_2 \) majorize those of \(T_1 \). It would be of interest to give an elementary geometric proof of (1) for \(F(x) = \sin x \) or \(\ln \sin x \).
Determine the best upper and lower bounds for the sum

\[
\frac{a}{f + a + b} + \frac{b}{a + b + c} + \frac{c}{b + c + d} + \frac{d}{c + d + e} + \frac{e}{d + e + f} + \frac{f}{e + f + a}
\]

where \(a, b, c, d, e\) and \(f\) are nonnegative and no denominator is zero.

A 779. Let \(S\) be the given sum and \(T = a + b + c + d + e + f\). Then

\[
S > \frac{a}{T} + \frac{b}{T} + \frac{c}{T} + \frac{d}{T} + \frac{e}{T} + \frac{f}{T} = 1
\]

That 1 is the best possible bound follows by choosing

\[
a = 1/\epsilon^6 \quad b = 1/\epsilon^5 \quad c = 1/\epsilon^4 \quad d = 1/\epsilon^3 \quad e = 1/\epsilon^2 \quad \text{and} \quad f = 1/\epsilon
\]

where \(\epsilon \ll 1\).

[[The last ‘f’ was misprinted as ‘e’]]

The least upper bound is 3 and follows from

\[
\frac{a}{f + a + b} + \frac{b}{a + b + c} \leq \frac{a + b}{a + b} = 1
\]

\[
\frac{c}{b + c + d} + \frac{d}{c + d + e} \leq \frac{c + d}{c + d} = 1
\]

\[
\frac{e}{d + e + f} + \frac{f}{e + f + a} \leq \frac{e + f}{e + f} = 1
\]

The 3 bound is achievable by either setting \(a = c = e = 0\) or else by setting \(b = d = f = 0\).
converging to a single point. This is clearly impossible. On the other hand, there certainly exist regular lattice n-gons for $n = 3$ and $n = 6$. For $n = 3$, $B_1B_2B_3 = A_1A_2A_3$. For $n = 6$, $B_1 = B_2 = B_3 = B_4 = B_5 = B_6$ and the construction cannot be repeated.

Quadrilateral subdivision

Let $ABCD$ be a convex quadrilateral in the plane with trisection points joined as in the figure to form nine smaller quadrilaterals.

a. Show that the area of $A'B'C'D'$ is one-ninth the area of $ABCD$.

b. Give necessary and sufficient conditions so that all nine quadrilaterals have equal area.

\[
\begin{array}{c}
D' \\
\hline
D & C' \\
A' & B' \\
\end{array}
\]

Q 786. Submitted by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Evaluate the absolute value of the $n \times n$ determinant of the matrix (a_{rs}), where $a_{rs} = \omega^{rs} \quad (r,s = 1, 2, \ldots, n)$ and ω is a primitive root of $x^n = 1$.

219
A 786. The rs-th term of the matrix $(a_{rs})(a_{rs})$ is given by

$$\omega^{r+s} + \omega^{2(r+s)} + \ldots + \omega^{n(r+s)}$$

The latter is 0 unless $r + s = n$ or $2n$, in which case it is equal to n. Thus,

$$\det(a_{rs})(a_{rs}) = \det \begin{pmatrix}
0 & 0 & 0 & \ldots & 0 & n & 0 \\
0 & 0 & 0 & \ldots & n & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & n & \ldots & 0 & 0 & 0 \\
0 & n & 0 & \ldots & 0 & 0 & 0 \\
n & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & n
\end{pmatrix} = \pm n^n$$

and therefore $|\det(a_{rs})| = n^{n/2}$

Q 792. Submitted by Murray S. Klamkin, University of Alberta, Edmonton, Canada

Determine all positive integer triples (x, y, z) satisfying the Diophantine equation

$$x^4 + y^4 + z^4 = 2y^2z^2 + 2z^2x^2 + 2x^2y^2 - 3$$

A 792. The equation is equivalent to

$$(x + y + z)(y + z - x)(z + x - y)(x + y - z) = 3$$

Hence $x + y + z = 3$ and then $x = y = z = 1$.

A more interesting problem is to find integers w such that

$$(x + y + z)(y + z - x)(z + x - y)(x + y - z) = 3w^4$$

has solutions other than $x = y = z = w$. Geometrically, this problem is equivalent to finding integer triangles having the same area as an equilateral triangle of side w.

[[is this an unsolved problem? — R.]]
Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Determine the maximum value of the sum

\[x_1^p + x_2^p + \cdots + x_n^p - x_1^q x_2^r - x_2^q x_3^r - \cdots - x_n^q x_1^r \]

where \(p, q, r \) are given numbers with \(p \geq q \geq r > 0 \) and \(0 \leq x_i \leq 1 \) for all \(i \).

Solution by David Jonathan Barrett, New York, New York. We show that \(\lfloor n/2 \rfloor \) is the maximum value.

Let \(f_{p,q,r}(x_1, \ldots, x_n) \) denote the given expression. Then for the \(x_i \) as given

\[f_{p,p,p}(x_1, \ldots, x_n) \geq f_{p,q,r}(x_1, \ldots, x_n) \quad (1) \]

We show that the left side reaches its maximum at some point where equality holds. For \(n = 2 \) it is easy to check that \(f_{p,p,p}(x_1, x_2) \) reaches its maximum of 1 at \((1,0)\) and \((0,1)\).

Assume \(n \geq 3 \). For fixed \(p, x_3, x_n \) let

\[g(x_1, x_2) = x_1^p + x_2^p - x_1^q x_2^r - x_2^q x_3^r - x_3^q x_1^r \]

Then \(f_{p,p,p}(x_1, \ldots, x_n) \) is the sum of \(g(x_1, x_2) \) and some function independent of \(x_1 \) and \(x_2 \). To maximize \(f_{p,p,p}(x_1, \ldots, x_n) \) with respect to \(x_1, x_2 \) we need only to maximize \(g(x_1, x_2) \). Since the latter has no relative extremum in the interior of the unit square, it must reach its maximum on the boundary, that is, where at least one of \(x_1, x_2 \) is 0 or 1. Examination reveals that either \((1,0)\) or \((0,1)\) must be a maximal point.

But the same argument goes through for any two adjacent variables in the function, so that some \(n \)-tuple of 0s and 1s (with never more than two consecutive 0s and 1s) must be a maximal point for \(f_{p,p,p}(x_1, \ldots, x_n) \). In fact, by starting with \(x_1 = 1 \) and alternating 0s and 1s, we get the desired maximum at a point where equality in \((1)\) holds.
The general problem of Appolonius [sic] is to draw a circle tangent to three given circles. Special cases ensue when all or some of the circles are replaced by points or lines. Solve the problem in the case of two points O, Q and a circle C, where O is the center of C and Q is an interior point of C.

A 794. The center(s) of the desired tangent circle(s) is (are) the midpoint(s) of the hypotenuse(s) of the right triangle(s) drawn as in the figure.

[[Note: only one solutions was given. The above has been written with a plural alternative, and the diagram includes the second solution. — R.]]
Determine the maximum and minimum values of

\[S = \sin^2 x + \sin^2 y + 2k \sin x \sin y \]

where \(x, y \geq 0, x + y = \alpha \) and \(\alpha, k \) are given constants with \(0 \leq \alpha \leq \pi \).

A 797. We rewrite \(S \) in the form

\[S = \sin^2 x + \sin^2 y + 2 \cos \alpha \sin x \sin y + 2(k - \cos \alpha) \sin x \sin y \]

and it then follows easily that

\[S = \sin^2 \alpha + 2(k - \cos \alpha) \sin x \sin y \\
= \sin^2 \alpha + (k - \cos \alpha)(\cos(x - y) - \cos(x + y)) \]

Case 1. \(k \geq \cos \alpha \).

\[\max S = \sin^2 \alpha + (k - \cos \alpha)(1 - \cos \alpha) = (1 + k)(1 - \cos \alpha) \]
\[\min S = \sin^2 \alpha \]

Case 2. \(k < \cos \alpha \).

\[\min S = (1 + k)(1 - \cos \alpha) \]
\[\max S = \sin^2 \alpha \]

This problem was suggested by the following Quickie problem by the late Joe Konhauser (private communication).
From a point \(A \) on the circular arc (radius \(R \)) of a sector of a nonobtuse angle \(\alpha \), drop perpendiculars to the sides. If the two feet are \(B \) and \(C \), determine the extreme values of \(BC \). Since \(OBAC \) is cyclic, the circumradius of \(ABC \) is the same as that of \(OAB \), which is \(OA/2 \) since \(\angle OBA \) is a right angle. Then since the product of the sides of triangle \(BAC = 4 \times \) its circumradius \(\times \) its area,

\[
bc \cdot BC = 4(R/2)(bc \sin(\pi - \alpha))/2
\]

or \(BC = R \sin \alpha = \) constant.

Q791. Murray Klamkin, *University of Alberta, Canada*, points out that this problem, generalizations, and the continuous analogues, have appeared in the following notes

1. Murray S. Klamkin, A probability of more heads, this *Magazine*, **44**(1971) 146–149.

[[**Q791** was:

Q791. Proposed by Barry Cipra, Northfield, Minnesota

Suppose you have \(n \) coins and your opponent has \(n + 1 \). You each toss all your coins and count the number of heads. You lose if you have fewer heads, otherwise you win (i.e., you win all ties). Assuming that the coins are fair, is this game fair?

A791. For each combination of coin tosses \(C \), let \(C' \) be the combination produced by reversing every coin. It is clear that this association yields an involution on the set of all combinations of coin tosses. But it is also easy to see that it reverses the win-loss outcome of any combination. Therefore the number of winning combinations equals thenumber of losing combinations, so the game is fair.]]

Q 802. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Prove that if one altitude intersects two other altitudes of a tetrahedron, then all four altitudes of the tetrahedron are concurrent.

[[I think that this occurs somewhere else as well. — with hindsight, it must be E2226 in the MONTHLY: see below — R.]]

A 802. Let the vertices of the tetrahedron be A_0, A_1, A_2, A_3 and assume the altitude from A_0 intersects the altitudes from A_1 and A_2. We now choose a vector origin to be the point P that is the intersection of the altitude from A_0 with the altitude from A_1. The vector $\mathbf{A}_i, \ 1 = 1, 2, 3, 4$ will denote the vector from P to A_i. Since A_0 is orthogonal to the face opposie A_0, we immediately have

$$\mathbf{A}_0 \cdot \mathbf{A}_1 = \mathbf{A}_0 \cdot \mathbf{A}_2 = \mathbf{A}_0 \cdot \mathbf{A}_3$$

(1)

and similarly

$$\mathbf{A}_1 \cdot \mathbf{A}_0 = \mathbf{A}_1 \cdot \mathbf{A}_2 = \mathbf{A}_1 \cdot \mathbf{A}_3$$

(2)

The intersection of the altitudes from A_0 and A_2 is $k\mathbf{A}_0$ for some k. Then as above, we also have

$$(\mathbf{A}_2 - k\mathbf{A}_0) \cdot \mathbf{A}_0 = (\mathbf{A}_2 - k\mathbf{A}_0) \cdot \mathbf{A}_1 = (\mathbf{A}_2 - k\mathbf{A}_0) \cdot \mathbf{A}_3$$

Then using (1) and (2), we have that all the $\mathbf{A}_i \cdot \mathbf{A}_j \ (i \neq j)$ are equal. Hence P is the orthocenter of the tetrahedron.

Proceeding in the same way, it follows that if one altitude of an n-dimensional simplex intersects $n-1$ other altitudes, all $n+1$ altitudes are concurrent.

This problem first appeared as Problem E2226 in the Amer. Math. Monthly. This solution is much simpler than the one published there (February 1971, Vol.78, No.2, p.200).
Q 805. Submitted by Murray S. Klamkin and A. H. Rhemtulla, University of Alberta, Edmonton, Alberta, Canada

Let S be a semigroup.

(i) Given that $x^r y^r = y^r x^r$ for all $x, y \in S$ and for $r = 2, 3, \ldots$, must S be commutative?

(ii) Given that $x^2 = x^3 = x^4 = \cdots$ for all $x \in S$, must S be commutative?

A 805. Let S be the multiplicative semigroup with generators

\[
A = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 0 & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]

with a, b, c nonzero real numbers. Then for any matrix D in S, $D^r = 0$ for $r = 2, 3, \ldots$. However

\[
AB = \begin{pmatrix} 0 & 0 & ab \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = BA.
\]
Determine the remainder when \((x^2 - 1)(x^3 - 1)\cdots(x^{16} - 1)(x^{18} - 1)\) is divided by \(1 + x + x^2 + \cdots + x^{16}\)

The remainder is 17. More generally, for \(p\) an odd prime, the remainder when \(F_p(x) = (x^2 - 1)(x^3 - 1)\cdots(x^{p-1} - 1)(x^{p+1} - 1)\) is divided by \(\Phi(x) = 1 + x + x^2 + \cdots + x^{p-1}\) is the constant \(p\).

To see this, write \(F_p(x) = Q(x)\Phi_p(x) + R(x)\) where \(R(x)\) is a polynomial of degree at most \(p - 2\). Let \(\zeta\) be a root of \(\Phi_p(x)\), that is, a primitive \(p\)th root of unity. Clearly \(F_p(\zeta) = R(\zeta)\). But

\[
F_p(\zeta) = (\zeta^2 - 1)\cdots(\zeta^{p-1})(\zeta^{p+1} - 1) = (1 - \zeta)(1 - \zeta^2)\cdots(1 - \zeta^{p-1})
\]

where we have used \(\zeta^{p+1} = \zeta\) and the standard factorization \(\Phi(x) = (x - \zeta)(x - \zeta^2)\cdots(x - \zeta^{p-1})\), as well as the fact that \(p - 1\) is even (to reverse each factor).

From this we learn that \(R(\zeta) = F_p(\zeta) = \Phi_p(1) = 1 + 1 + \cdots + 1 = p\), the given prime. But this is true for each of the \(p - 1\) primitive \(p\)th roots of unity. Since the polynomial \(R(x)\) has degree no larger than \(p - 2\), \(R(x) \equiv p\) for all \(x\), proving the claim.

Note: For a positive integer \(n\), recall that a complete positive reduced residue system modulo \(n\) is a set \(\kappa = \{k_1, k_2, \ldots, k_{\phi(n)}\}\) of positive integers, no two of which are congruent modulo \(n\) and each of which is coprime to \(n\). For \(n\) and \(\kappa\) as above, define \(E_\kappa(x) = \prod_{k \in \kappa} (x^k - 1)\). Then, for \(n \geq 3\), the remainder when \(E_\kappa(x)\) is divided by the \(n\)th cyclotomic polynomial \(\Phi_n(x)\) is the integer \(\Phi_n(1)\). The proof given above, mutatis mutandis, works here as well.

Q 809. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

If the four altitudes of a tetrahedron are concurrent, prove that the six midpoints of the edges of the tetrahedron are cospherical.

A 809. Let \(A, B, C, D \) denote vectors from the orthocenter to the vertices \(A, B, C, D \), respectively, of the tetrahedron. Because \(A \) is orthogonal to \(B - C \) and \(C - D \), etc., it follows that

\[
A \cdot B = A \cdot C = A \cdot D = B \cdot C = B \cdot D = C \cdot D = \lambda
\]

We now show that the six midpoints of the edges \((A + B)/2, (A + C)/2, \) etc., are all equidistant from the centroid \((A + B + C + D)/4 \). All we need to show is that 16 times the square of one of the six distances, say

\[
16|(A + B)/2 - (A + B + C + D)/4|^2 = |A + B - C - D|^2, \ldots
\]

is symmetric with respect to \(A, B, C, D \). Expanding out and using the above identities, we get

\[
|A|^2 + |B|^2 + |C|^2 + |D|^2 - 4\lambda.
\]
Determine the maximum value of
\[(x + y + z) \left(\sqrt{a^2 - x^2} + \sqrt{b^2 - y^2} + \sqrt{c^2 - z^2} \right)\]

A 812. The problem can be done in several ways using multivariate calculus. Here is a generalization by elementary means.

We determine the maximum value of
\[P = \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} \sqrt{a_i^2 - x_i^2}\]

Let \(x_i = a_i \sin \theta_i, \ -\pi/2 \leq \theta_i \leq \pi/2, \ a_i > 0\), so that
\[
P = \sum_{i=1}^{n} a_i \sin \theta_i \cdot \sum_{i=1}^{n} a_i \cos \theta_i
= \frac{1}{2} \left(\sum_{i=1}^{n} a_i^2 \sin 2\theta_i + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} a_i a_j \sin(\theta_1 + \theta_j) \right)
\]

Clearly the maximum is taken on when all \(\theta_i = \pi/4\) so that
\[
\max P = \frac{1}{2} \left(\sum_{i=1}^{n} a_i \right)^2
\]

Q 815. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

\(ABCD\) is a convex quadrilateral inscribed in the base of a right circular cone of vertex \(P\). Show that for the pyramid \(PABCD\), the sum of the dihedral angles with edges \(PA\) and \(PC\) equals the sum of the dihedral angles with edges \(PB\) and \(PD\).

A 815. Equivalently, we want to show that for a cyclic spherical quadrilateral, the sum of one pair of opposite angles equals the sum of the other pair of opposite angles. Let \(O\) be the pole of the circumcircle of \(ABCD\). Since triangles \(AOB, BOC, COD\) and \(DOA\) are isosceles, the result follows. Note that it does not matter if \(O\) lies in the interior of \(ABCD\) or not.
Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Canada

Determine the least number of times the graph of

\[y = \frac{a^2}{x^2 - 1} + \frac{b^2}{x^2 - 4} + \frac{c^2}{x^2 - 9} - 1 \]

intersects the x-axis (a, b, c are nonzero real constants).

Solution by Jerrold W. Grossman, Oakland University, Rochester, Michigan. The graph always intersects the x-axis six times. By symmetry, it suffices to consider \(x \geq 0 \). It is clear that \(y < 0 \) when \(x = 0 \), that \(\lim_{x \to n^-} y = -\infty \) for \(n = 1, 2, 3 \), that \(\lim_{x \to n^+} y = \infty \) for \(n = 1, 2, 3 \), and that \(\lim_{x \to \infty} y = -1 \). Furthermore

\[\frac{dy}{dx} = -2x \left(\frac{a^2}{(x^2 - 1)^2} + \frac{b^2}{(x^2 - 4)^2} + \frac{c^2}{(x^2 - 9)^2} \right) \]

so \(y \) is decreasing on \((0,1), (1,2), (2,3)\) and \((3,\infty)\). Since \(y \) is also continuous on these intervals, it follows from all these statements that there is precisely one x-intercept in each of \((1,2), (2,3)\) and \((3,\infty)\) and no x-intercept in \((0,1)\).
Let $E_{n+1} = x^{E_n}$ where $E_0 = 1$, $n = 0, 1, \ldots$, and $x \geq 0$ ($E_1 = x$, $E_2 = x^x$, etc.) It is easy to show that for $x \geq 1$, E_n ($n > 1$) is a strictly increasing convex function.

[[Not true for $x = 1$? – Later: the analysis below sets this straight – R.]]

Prove or disprove each of the following.

(i) E_{2n} is a unimodal convex function for $n > 1$ and all $x \geq 0$.

(ii) E_{2n+1} is an increasing function for $x \geq 0$, and is concave in a small enough interval $[0, \epsilon(n)]$.

Composite analysis by Richard Holzsager, The American University, Washington, DC, and George Gilbert, Texas Christian University, Fort Worth, Texas. Neither statement gives the correct concavity. For instance, one can set up a recursion and let the computer calculate that $E_2''(0.02) \approx -15.5$. Also, a straightforward calculation shows that $\lim_{x \to 0^+} E_3''(x) = \infty$, so that E_3 cannot be concave in any interval containing 0.

In fact, the function E_n is convex in some interval of the form $[0, \epsilon_n)$ for $n > 1$. To see this, call a function f “small of order r” near 0 if, for any $\delta > 0$, $f(x)/x^{r-\delta} \to 0$ as $x \to 0^+$. Note that $x^r \ln^k x$ is small of order r for all k. Let κ_r stand for any function that is small of order r. The convexity follows once we establish that, for $n \geq 1$

\[
E_{2n} = 1 + x \ln x + \kappa_2 \quad E_{2n}' = \ln x + 1 + \kappa_1 \quad E_{2n}'' = 1/x + \kappa_0 \quad (1)
\]

\[
E_{2n+1} = x^2 \ln^2 x + \kappa_3 E_{2n+1}' = 1 + 2x(\ln^2 x + \ln x) + \kappa_2 E_{2n+1}'' = 2(\ln^2 x + 3 \ln x + 1) + \kappa_1 \quad (2)
\]

From $E_{n+1} = x^{E_n}$ we find that

\[
E_{n+1}'' = E_{n+1} \left(\frac{E_n}{x} + E_n' \ln x \right)
\]

and

\[
E_{n+1}'' = E_{n+1} \left(\frac{E_n^2}{x^2} + \frac{2E_nE_n' \ln x}{x} + E_n'' \ln^2 x - \frac{E_n}{x^2} + E_n'' \ln x \right)
\]

It is easy to show that these formulas hold for $n = 1$. Furthermore, one finds that $(1)_n$ implies $(2)_n$ and $(2)_n$ implies $(1)_{n+1}$ so, by induction, (1) and (2) hold for all $n \geq 1$. This completes the proof of our claim.

Finally, we show that E_{2n+1} is increasing for $x \geq 0$. We need only consider $0 < x < 1$. For such x, $a < b$ implies $x^b < x^a$ and applying this repeatedly we see that, for $0 < x < 1$

\[
x = E_1 < E_3 < \cdots < E_{2n+1} < \cdots < E_2 < \ldots < E_2 < E_0 = 1
\]
Repeated application of the recurrence $E_n' = E_n(E_{n-1}/x + E_{n-1}' \ln x)$ yields

$$E_n' = \frac{E_n E_{n-1}}{x}(1 + E_{n-2} \ln x + E_{n-2} E_{n-3} \ln^2 x + \cdots + E_{n-2} E_{n-3} \cdots E_0 \ln^{n-1} x)$$

For a given x in (0,1)

$$E_{2n+1}' = \frac{E_{2n+1} E_{2n}}{x} \left[(1 + E_{2n-1} \ln x) + E_{2n-1} E_{2n-2} \ln^2 x(1 + E_{2n-3} \ln x) + \cdots + E_{2n-1} \cdots E_2 \ln^{2n-2} x(1 + E_1 \ln x) + E_{2n-1} \cdots E_0 \ln^{2n} x\right]$$

is positive unless $1 + E_{2j+1} \ln x < 0$ for some j. However, in this case $1 + E_{2k} \ln x < 0$ for all k, hence, rearranging

$$E_{2n+1}' = \frac{E_{2n+1} E_{2n}}{x} \left[1 + E_{2n-1} \ln x(1 + E_{2n-2} \ln x) + \cdots + E_{2n-1} \cdots E_1 \ln^{2n-1} x(1 + E_0 \ln x)\right]$$

we see that each summand is positive, proving that E_{2n+1} is increasing.

The second step of iterating the recurrence yields

$$E_{2n+2}' = E_{2n+2} E_{2n+1} \left[1 + \frac{E_{2n} \ln x}{x} + E_{2n}' \ln^2 x\right]$$

Note that $x^x > 1/e$ and that $x^{x^{1/e}}$ decreases on $(0,e^{-e})$. If $E_{2n} > 1/e$ on $(0,e^{-e})$, then also

$$E_{2n+2} > x^{E_{2n}} > x^{x^{1/e}} > (e^{-e})^{(e^{-e})^{1/e}} = \frac{1}{e}$$

[[shd that first ‘>’ be an ‘=’ ? – R.]]

It follows that $1 + E_{2n} \ln x < 0$ on $(0,e^{-e})$, hence that $E_{2n}' < 0$ on $(0,e^{-e})$ for all $n \geq 1$. If E_{2n} were convex for $x \geq e^{-e}$, unimodality would be established. One final observation: Because $1 + E_{2n} \ln x$ increases with n, if $E_{2n}'(x) > 0$ for a given x, then $E_{2n+2k}'(x) > 0$ for all integers $k > 0$.

232
Q 824. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Determine all positive rational solutions of $x^x = y^y$ with $x \geq y > 0$.

A 824. Obviously, one set of solutions is $x = y$. To obtain all the others, we let $x = 1/u$ and $y = 1/v$ to give $u^v = v^u$ where $v > u$. It is known that all the solutions of the latter equation are given by

$$v = (1 + 1/m)^{m+1} \quad u = (1 + 1/m)^m \quad m = 1, 2, \ldots$$

Hence

$$x = (1 + 1/m)^{-m} \quad y = (1 + 1/m)^{-1-m}$$

Q 826. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Which of the two integrals

$$\int_0^1 \left(\sqrt{1 + x^{2r} \tan^2 \alpha} - x^r \sec \alpha \right)^{1/s} \, dx \quad \int_0^1 \left(\sqrt{1 + x^{2s} \tan^2 \alpha} - x^s \sec \alpha \right)^{1/r} \, dx$$

is larger, given that $r > s > 0$ and $\pi/2 > \alpha > 0$?

A 826. The first integral equals the area in the first quadrant bounded by the x and y axes and the curve

$$(y^s + x^r \sec \alpha)^2 = 1 + x^{2r} \tan^2 \alpha$$

which simplifies to

$$y^{2s} + 2y^s x^r \sec \alpha + x^{2r} = 1$$

Since the mirror image of the latter curve across the $x = y$ line is

$$y^{2r} + 2y^r x^s \sec \alpha + x^{2s} = 1$$

the two integrals are equal in value.
Q 830. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Determine \(\int_0^1 (1 - x^m)^n \, dx \div \int_0^1 (1 - x^m)^{n-1} \, dx \) \(m, n > 0 \) without using beta function integrals.

A 830. Integrating by parts,

\[
F_n \equiv \int_0^1 (1 - x^m)^n \, dx = mn \int_0^1 x^m(1 - x^m)^{n-1} \, dx
\]

\[
= mn \int_0^1 ((x^m - 1)(1 - x^m)^{n-1} + (1 - x^m)^{n-1}) \, dx
\]

or, \(F_n(1 + mn) = mnF_{n-1} \). Hence

\[
\frac{F_n}{F_{n-1}} = \frac{mn}{1 + mn}
\]
Let ABC be a given triangle and θ an angle between -90° and 90°. Let A', B', C' be points on the perpendicular bisectors of BC, CA, AB, respectively, so that $\angle BCA'$, $\angle CAB'$, $\angle ABC'$ all have measure θ. Prove that the lines AA', BB', CC' are concurrent, provided that points A', B', C' are not equal to A, B, C, respectively.

II. Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.

Since $BA' = CA' = \frac{1}{2} \sec \theta$, it follows that the areal coordinates of A' are

$$\frac{1}{4} (a^2 \tan \theta, ab \sec \theta \sin (C - \theta), ac \sec \theta \sin (B - \theta))$$

If V denotes a vector from a given origin to a point V, then the vector representation of A' is given by

$$A' = \frac{1}{4} (Aa^2 \tan \theta + Bab \sec \theta \sin (C - \theta) + Bac \sec \theta \sin (B - \theta))$$

It now follows that the line AA' intersects BC in a point A'' such that

$$\frac{BA''}{A''C} = \frac{c \sin (B - \theta)}{b \sin (C - \theta)}$$

and similarly for the other two lines (by cyclic interchange). Then since

$$\frac{c \sin (B - \theta)}{b \sin (C - \theta)} \frac{a \sin (C - \theta)}{c \sin (A - \theta)} \frac{b \sin (A - \theta)}{a \sin (B - \theta)} = 1$$

it follows by Ceva’s theorem that the lines AA', BB', CC' are concurrent, provided that the points A', B', C' are not equal to A, B, C, respectively.

The two angles of θ that must be excluded are -90° and 90°.

Comments

S1452. Concurrent Lines in a Triangle

Peter Yff writes that “the locus of the point of concurrence is a conic known as Kiepert’s hyperbola. This is a rectangular hyperbola passing through A, B, C, the centroid, the orthocenter, the Spieker center, the isogonic centers and the Napoleon points.” He refers to page 223 of R. A. Johnson’s Advanced Euclidean Geometry.
1481. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

It is known that if a point moves on a straight line with constant acceleration and \(s_1, s_2, s_3 \) are its positions at times \(t_1, t_2, t_3 \) respectively, then the constant acceleration is given by

\[
2 \left(\frac{(s_2 - s_3)t_1 + (s_3 - s_1)t_2 + (s_1 - s_2)t_3}{(t_2 - t_3)(t_3 - t_1)(t_1 - t_2)} \right)
\]

Show that this property characterizes uniformly accelerated motion; that is, if a particle moves on a straight line and \(s_1, s_2, s_3 \) are its positions at any times \(t_1, t_2, t_3 \) respectively, then if

\[
\frac{(s_2 - s_3)t_1 + (s_3 - s_1)t_2 + (s_1 - s_2)t_3}{(t_2 - t_3)(t_3 - t_1)(t_1 - t_2)} = \text{constant}
\]

the motion is one of constant acceleration.

Solution by Victor Kutsenok, St. Francis College, Fort Wayne, Indiana. Fix \(t_2 \neq t_3 \).

Then

\[
\frac{(s_2 - s_3)t + (s_3 - s)t_2 + (s - s_2)t_3}{(t_2 - t_3)(t_3 - t)(t - t_2)} = \frac{a}{2}
\]

for some real number \(a \) and \(t \neq t_2, t_3 \), where \(s \) is the position corresponding to time \(t \).

Then \((s_2 - s_3)t + (s_3 - s)t_2 + (s - s_2)t_3 = (a/2)(t_2 - t_3)(t_3 - t)(t - t_2) \) for all \(t \). Solving for \(s \) yields a quadratic for \(t \), so the given motion is one of constant acceleration with \(s'' = a \).

Q 840. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

If \(A_1A_2A_3A_4 \) is an aplane cyclic quadrilateral and \(H_i \) is the orthocenter of triangle \(A_{i+1}A_{i+2}A_{i+3} \) where \(A_{i+4} = A_i \) for \(i = 1, 2, 3, 4 \), prove that

(i) \(\text{Area}(A_1A_2A_3A_4) = \text{Area}(H_1H_2H_3H_4) \) and

(ii) the lines \(A_1H_1, A_2H_2, A_3H_3, A_4H_4 \) are concurrent.

A 840. A vector proof is particularly apt here since if \(\mathbf{A}_i \) is a vector from the circumcenter of \(A_1A_2A_3A_4 \) to the vertex \(A_i \), the orthocenter of \(A_{i+1}A_{i+2}A_{i+3} \) is given simply by \(H_i = \mathbf{S} - \mathbf{A}_i \) \(i = 1, 2, 3, 4 \), where \(\mathbf{S} = \mathbf{A}_1 + \mathbf{A}_2 + \mathbf{A}_3 + \mathbf{A}_4 \) (note for example that \((H_1 - A_2) \cdot (A_3 - A_4) = A_2^2 - A_4^2 = 0 \)). It follows that \(H_1H_2H_3H_4 \) is congruent to \(A_1A_2A_3A_4 \), which establishes (i).

For (ii), the lines \(H_iA_i \) are given by \(\mathbf{A}_i + \lambda_i(\mathbf{H} - \mathbf{A}_i) \), where \(\lambda_i \) are scalar parameters. Letting \(\lambda_i = 1/2 \), the four lines are concurrent at the point given by \(\mathbf{S}/2 \).
III. Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.

If we let $\alpha_i = x_n + 1$, (ii) becomes

$$\frac{n + 1}{x_n} - \frac{n - 1}{x_{n-1}} = -1$$

Then, with $x_n = n(n + 1)F_n$ we get the telescoping difference equation

$$\frac{1}{F_n} - \frac{1}{F_{n-1}} = -n$$

Hence,

$$F_n = \frac{2F_1}{2 - (n + 2)(n - 1)F_1}$$

and thus

$$\alpha_n = \frac{2 + (n^2 + n + 2)F_1}{2 - (n^2 + n - 2)F_1}$$

Since $2F_1 = \alpha_1 - 1$, (i) implies that $F_1 > -1/2$. Since α_n is positive for $n = 2, 3, \ldots$, it must be the case that $F_1 = 0$, or equivalently, $\alpha_n = 1$ for $n = 1, 2, \ldots$. Finally, from (ii) with $i = 1$, we get $\alpha_0 = 1$.

Q 841. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada, and Stanley Rabinowitz, MathPro Press, Westford, Massachusetts

Prove that the sequence $u_n = 1/n, n = 1, 2, \ldots$, cannot be the solution of a nonhomogeneous linear finite-order difference equation with constant coefficients.

[[N.B. On p.391 of Math. Mag., 69(1996) there is a correction from “nonhomogeneous” to “homogeneous” ! — R.]]]

A 841. Assume to the contrary that it is possible. Then there exist constants a_i, not all zero, such that

$$a_0 + \frac{a_1}{n} + \frac{a_2}{n+1} + \cdots + \frac{a_r}{n+r-1} = 0$$

for $n = 1, 2, \ldots$. It then follows that the left-hand side of (1), which is a rational function of n, must identically vanish for all n. Letting $n \to 0$, it follows that $a_1 = 0$. Then letting $n \to -1$, it follows that $a_2 = 0$, and similarly, all the a_i are zero, and this is a contradiction.

In a similar way, it follows that no strictly rational function can be the solution of a linear finite-order difference equation with constant coefficients.
Q 843. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Evaluate the following two $n \times n$ determinants:

(i) $D_1 = \det(a_{rs})_{r,s=1,...,n}$ where $a_{rr} = a_r$, $r = 2, \ldots, n$ and all the remaining elements are 1.

(ii) $D_2 = \det(b_{rs})_{r,s=1,...,n}$ where $b_{rr} = b_r$, $r = 1, 2, \ldots, n$ and all remaining elements are 1.

A 843. (i) On setting any $a_r = 1$, D_1 vanishes. Hence $(a_2 - 1)(a_3 - 1) \cdots (a_n - 1)$ is a factor of D_1. The remaining factor can only be the constant 1 since D is a polynomial in the a_i with leading term $a_2a_3 \cdots a_n$.

(ii) If $b_r = 1$ for some r, the determinant reduces to the case considered in (i), so we will assume that that none of the b_r is equal to 1. Replace b_r by $x/b_r + 1$ so that

$$x_1x_2 \cdots x_n D_2 = D'_2 = \det(c_{rs}) \text{ where } c_{rr} = x + x_r \text{ and } c_{rs} = x_r \text{ for } r \neq s$$

By setting $x = 0$ in D'_2 we get n rows that are proportional. Hence x^{n-1} is a factor of D'_2. The other factor must be linear in x having the form $x + \lambda$ since the the coefficient of x^n in D'_2 must be 1. It is clear that $\lambda = \sum x_1$ since the coefficient of x^{n-1} can only come in from the main diagonal. Finally

$$D'_2 = \left(x + \sum_{i=1}^{n} \right) x^{n-1} \quad \text{and} \quad D_2 = \left(1 + \sum_{i=1}^{n} \frac{1}{b_i - 1} \right) \prod_{i=1}^{n} (b_i - 1)$$

Alternatively, one can split the first row as $(1, 1, \ldots, 1) + (b_1 - 1, 0, \ldots, 0)$ and then use the linearity of the determinant in a row, part (i), and induction.
Find a solution to the differential equation \(\frac{d^2 y}{dx^2} = -\frac{kx}{y^4} \), \(k > 0 \), other than one of the form \(y = ax^{3/5} \).

I. Solution by Hongwei Chen, Christopher Newport University, Newport News, Virginia. The given differential equation is a special case of the Emden-Fowler equation \(\frac{d^2 y}{dx^2} = Ax^n y^m \). All possible solvable cases are given in A. D. Polyanin & V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, CRC Press, 1995, 241–250.

We claim that the general solution to the differential equation is given in the parametric form

\[
\begin{align*}
x &= \left(C_2 \pm \int \left(\frac{2k}{3} t^{-3} + C_1 \right)^{-1/2} dt \right)^{-1} \\
y &= t \left(C_2 \pm \int \left(\frac{2k}{3} t^{-3} + C_1 \right)^{-1/2} dt \right)^{-1}
\end{align*}
\]

where \(t \) is a parameter, \(C_1 \) and \(C_2 \) are arbitrary constants.

The transformation \(x = 1/s, \ y = t(s)/s \) changes the equation into

\[
\frac{d^2 t}{ds^2} = \frac{1}{s^3} \frac{d^2 y}{dx^2} = -kt^{-4}
\]

By using the substitution \(w(t) = \frac{dt}{ds} \) this equation is reduced to the first order equation

\[
\frac{dw}{dt} = \frac{dw/ds}{dt/ds} = \frac{d^2 t/ds^2}{w} = -\frac{kt^{-4}}{w}
\]

Integrate to obtain

\[
w^2 = \frac{2k}{3} t^{-3} + C_1
\]

where \(C_1 \) is a constant. Thus,

\[
\frac{dt}{ds} = \pm \left(\frac{2k}{3} t^{-3} \right)^{1/2}
\]

so that

\[
\pm \int \left(\frac{2k}{3} t^{-3} \right)^{-1/2} dt = \int ds
\]
and therefore
\[s = C_2 \pm \int \left(\frac{2k}{3} t^{-3} \right)^{-1/2} dt \]
where \(C_2 \) is an additional constant. Hence, the general solution of the original equation is given by
\[x = \left(C_2 \pm \int \left(\frac{2k}{3} t^{-3} + C_1 \right)^{-1/2} dt \right)^{-1} \]
\[y = t \left(C_2 \pm \int \left(\frac{2k}{3} t^{-3} + C_1 \right)^{-1/2} dt \right)^{-1} \]

Setting \(C_1 = 0 \) leads to
\[x = \left(C_2 \pm \sqrt{\frac{6}{25k}} \right)^{-1} \]
so that
\[t = \left(C + \sqrt{\frac{25k}{6}} x^{-1} \right)^{2/5} \]
and
\[y = x \left(C + \sqrt{\frac{25k}{6}} x^{-1} \right)^{2/5} \]

II. Solution by the proposer. Setting \(y = xt(x) \) we get
\[x^4 \frac{d^2t}{dx^2} + 2x^3 \frac{dt}{dx} = -\frac{k}{t^4} \]
Multiplying by the integrating factor \(2 \frac{dt}{dx} \) we get
\[\frac{d}{dx} \left(x^4 \left(\frac{dt}{dx} \right)^2 \right) = \frac{d}{dx} \left(\frac{2k}{3t^3} \right) \]
Integrating and taking square roots yields
\[\frac{dt}{dx} = \pm \sqrt{\frac{2k}{3x^4} + C_1} \]
As in the first solution above, separation of variables leads to the parametric solution, and setting \(C_1 = 0 \) allows us to perform the integral to obtain the analytic solution.
Q 851. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Prove that among all parallelepipeds of given edge lengths, the rectangular one has the greatest sum of the lengths of the four body diagonals.

A 851. Let a, b and c be the given edge lengths. Let vectors \mathbf{A}, \mathbf{B} and \mathbf{C} denote three corresponding vectors along three coterminous edges of the parallelepiped. We want to maximize

$$S = |\mathbf{A} + \mathbf{B} + \mathbf{C}| + |\mathbf{A} + \mathbf{B} - \mathbf{C}| + |\mathbf{A} - \mathbf{B} + \mathbf{C}| + |- \mathbf{A} + \mathbf{B} + \mathbf{C}|$$

We may write

$$\mathbf{B} \cdot \mathbf{C} = bc \cos \alpha \quad \mathbf{C} \cdot \mathbf{A} = ca \cos \beta \quad \mathbf{A} \cdot \mathbf{B} = ab \cos \gamma$$

where α, β and γ denote the angles between the pairs of vectors. Hence

$$| \pm \mathbf{A} \pm \mathbf{B} \pm \mathbf{C} | = (a^2 + b^2 + c^2 \pm 2bc \cos \alpha \pm 2ca \cos \beta \pm 2ab \cos \gamma)^{1/2}$$

where the appropriate \pm signs are chosen. Since \sqrt{x} is concave for $x \geq 0$

$$S \leq 4(a^2 + b^2 + c^2)^{1/2}$$

with equality if and only if the four body diagonals are equal, or, equivalently, if the parallelepiped is rectangular.
Let a and b be positive numbers satisfying $a + b \geq (a - b)^2$. Prove that

$$x^a(1-x)^b + x^b(1-x)^a \leq \frac{1}{2^{a+b-1}}$$

for $0 \leq x \leq 1$ with equality if and only if $x = 1/2$.

I. Solution by Robert L. Doucette, McNeese State University, Lake Charles, Louisiana.

With the change of variables $x = \frac{1}{2} - \frac{1}{2}y$ the given inequality becomes

$$(1 - y)^a(1 + y)^b + (1 - y)^b(1 + y)^a \leq 2$$

for $|y| \leq 1$. Let $g(y)$ be the left-hand side of (1).

If $a = b$ then (1) becomes $(1 - y^2)^a \leq 1$, which is clearly true for $|y| \leq 1$.

We assume in the following that $b > a$. Note that the maximum of g on the interval $[-1, 1]$ must occur at some interior point of the interval. A routine calculation shows that $g'(y) = 0$ if and only if

$$\left(\frac{1 + y}{1 - y}\right)^{b-a} = \frac{1 + \frac{b+a}{b-a} y}{1 - \frac{b+a}{b-a} y}$$

(2)

Observe that the left-hand side of (2) is always positive on $(-1, 1)$, while the right-hand side is positive only for $|y| < (b-a)/(b+a)$. Using the series representation

$$\ln \left(\frac{1 + y}{1 - y}\right) = 2 \sum_{n=0}^{\infty} \frac{1}{2n+1} y^{2n+1} \quad |y| < 1$$

to expand each side of (2), we seek $|y| < (b-a)/(b+a)$ such that

$$y \sum_{n=0}^{\infty} \frac{1}{2n+1} \left[\left(\frac{b+a}{b-a} \right)^{2n+1} - (b-a) \right] y^{2n} = 0$$

(3)

From the conditions imposed on a and b, it follows that

$$\left(\frac{b+a}{b-a} \right)^{2n+1} - (b-a) \geq \left(\frac{b+a}{b-a} \right) - (b-a) \geq 0$$

where the first inequality is strict for $n > 0$. This means [[that]] (3), and hence the equation $g'(y) = 0$, has the unique solution $y = 0$ in the interval $(-1, 1)$. It follows easily that $g(y) \leq g(0) = 2$ on $[-1, 1]$, with strict inequality for $y \neq 0$.

243
II. Solution by Joseph G. Gaskin, SUNY College at Oswego, Oswego, New York. Let
\[f(x) = x^a(1-x)^b + x^b(1-x)^a \]
where \(0 \leq x \leq 1\). If \(a = b\), then \(f(x) \leq f(1/2) = 2(1/4)^a\),
with equality if and only if \(x = 1/2\). So, supposing that \(a \neq b\), we may assume \(a < b\).

Since \(f(0) = f(1) = 0\) and since \(f\) is differentiable and positive on \((0,1)\), it follows that
\(f\) is maximized at a critical point in \((0,1)\). From
\[f'(x) = x^{a-1}(1-x)^{a-1} \left[(a - (a+b)x)(1-x)^{b-a} + (b - (a+b)x)x^{b-a} \right] \]
we see that \(f'(x) = 0\) for \(x \in (0,1)\) if and only if
\[g(x) = \frac{(a+b)x-a}{b-(a+b)x} \left(\frac{1-x}{x} \right)^{b-a} = 1 \]

Note that \(g(1/2) = 1\) and that if \(g(x) = 1 > 0\) on \((0,1)\), then \(a/(a+b) < x < b/(a+b)\).

After a bit of algebra we find that
\[g'(x) = \frac{b-a}{(b-(a+b)x)^2} \left(\frac{1-x}{x} \right)^{b-a} \frac{[(a+b) - (a+b)^2] (x-x^2) + ab}{x(1-x)} \]

Every factor is clearly positive on \((a/(a+b), b/(a+b))\) except possibly for
\[[(a+b) - (a+b)^2] (x-x^2) + ab \]
This term is clearly positive if \((a+b) - (a+b)^2 \geq 0\). Otherwise, the hypothesis \((a+b) \geq (a-b)^2\) implies
\[[(a+b) - (a+b)^2] (x-x^2) + ab \geq \frac{[(a+b) - (a+b)^2]}{4 + ab} \]
\[\geq \frac{[(a-b)^2 - (a+b)^2]}{4 + ab} = 0 \]
with strict inequality for \(x \neq 1/2\). We conclude that \(g\) is strictly increasing on \((a/(a+b), b/(a+b))\), thereby proving that the only critical point of \(f(x)\) is when \(x = 1/2\). The inequality \(f(x) \leq f(1/2) = 2^{1-a-b}\) follows immediately.
Show that the Diophantine equation
\[x^2 + 27y^2z^2(y + z)^2 = 4(y^2 + yz + z^2)^3 \]
has an infinite number of integral solutions \((x, y, z)\) with \(x, y, z\) relatively prime and \(xyz \neq 0\).

A 858. I. Since \(4(y^2 + yz + z^2)^3 - 27y^2z^2(y + z)^2 = (y - z)^2(2y + z)^2(z + 2y)^2\) the general solution is immediate.

II. Provided by the Editors. The roots of \(f(t) = t^3 - (y^2 + yz + z^2)t + yz(y + z)\) are \(y, z\) and \(-y - z\). Therefore the discriminant of the cubic satisfies
\[4(y^2 + yz + z^2)^3 - 27y^2z^2(y + z)^2 = (y - z)^2(2y + z)^2(z + 2y)^2 \]
Thus every integral pair \((y, z)\) with \(yz(y - z)(y + 2z)(2y + z) \neq 0\) gives rise to two integral solutions \((x, y, z)\) to the given equation with \(xyz \neq 0\). In particular, we may take \(y\) and \(z\) to be distinct, relatively prime, positive integers.

Q 863. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Prove that
\[n \left[\sum_{i=1}^{n} a_i b_i + \left(\sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2 \right)^{1/2} \right] \geq 2 \sum_{i=1}^{n} a_i \sum_{i=1}^{n} b_i \]
where the \(a_i\) and \(b_i\) are real. Determine when equality holds.

A 863. Let \(a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n)\) and \(c\) denote \(n\)-dimensional vectors. The given inequality will follow from the more general \(|c|^2(a \cdot b + |a||b|) \geq 2(a \cdot c)(b \cdot c)\) by setting \(c = (1, \ldots, 1)\). Let \(\alpha, \beta, \gamma\) denote the angles between \(a\) and \(c\), between \(b\) and \(c\), and between \(a\) and \(b\), respectively. The general inequality is now equivalent to \(|a||b|\cos \gamma + |a||b| \geq 2|a||b|\cos \alpha \cos \beta\), or \(\cos \gamma + 1 \geq 2\cos \alpha \cos \beta\). Since in the trihedral angle \(\alpha + \beta \geq \gamma\) and \(2\pi - (\alpha + \beta) \geq \gamma\), it suffices to show that
\[1 + \cos(\alpha + \beta) \geq 2\cos \alpha \cos \beta \quad \text{or} \quad 1 \geq \cos(\alpha - \beta) \]
Equality holds if and only if \(\alpha = \beta\) and either \(\alpha + \beta = \gamma\) or \(\alpha + \beta = 2\pi - \gamma\). In particular, \(a, b\) and \(c\) must be linearly dependent if equality holds.
1538. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada, and George T. Gilbert, Texas Christian University, Fort Worth, Texas

Find all integer solutions to \(2(x^5 + y^5 + 1) = 5xy(x^2 + y^2 + 1)\).

I. Solution by Brian D. Beasley, Presbyterian College, Clinton, South Carolina. We show that the given equation holds for integers \(x\) and \(y\) if and only if \(x + y + 1 = 0\).

The given equation is true if and only if

\[
2(x^5 + y^5 + 1) - 5xy(x^2 + y^2 + 1) = (x + y + 1)f(x, y) = 0
\]

where

\[
f(x, y) = 2x^4 - 2x^3y + 2x^2y^2 - 2xy^3 + 2y^4 - 2x^3 - x^2y - xy^2 - 2y^3 + 2x^2 - xy + 2y^2 - 2x - 2y + 2
\]

Thus we need only show that \(f(x, y) \neq 0\) for all integers \(x\) and \(y\). Observe that in any solution of the original equation \(x\) and \(y\) must have opposite parity. By symmetry, we may assume without loss of generality that \(x\) is even and \(y\) is odd. Then

\[
f(x, y) \equiv 2y^4 - xy^2 - 2y^3 - xy + 2y^2 - 2y + 2 \pmod{4}
\]

However, each of the expressions \(2y^4 - 2y^3 = 2y^3(y - 1)\), \(-xy^2 - xy = -xy(y + 1)\) and \(2y^2 - 2y = 2y(y - 1)\) is divisible by 4 for \(x\) even, leaving \(f(x, y) \equiv 2 \pmod{4}\).

II. Solution by Lenny Jones and students Karen Blount, Dennis Reigle and Beth Stockslager, Shippensburg University, Shippensburg, Pennsylvania. The only solutions are ordered pairs of integers \((x, y)\) with \(x + y + 1 = 0\).

To see this, factor \(2(x^5 + y^5 + 1) - 5xy(x^2 + y^2 + 1)\) as \((x + y + 1)f(x, y)\) where

\[
f(x, y) = [2x^3(x - y - 1)] + [x(2y^2 - y + 2)(x - y - 1)]
\[
\frac{2y^4 - 2y^3}{2y^2 - 2y} + 2
\]

If \(y = x\), then \(f(x, y) = 2x^4 - 6x^3 + 3x^2 - 4x + 2\), which has no integer roots by the rational root theorem. Note that \(x\) and \(y\) cannot both be negative. By symmetry, it suffices to show that \(f(x, y) \neq 0\) for \(x \geq y + 1\) with \(x \geq 0\). In this case, observe that each of the bracketted terms in \(f(x, y)\) is nonnegative, so that \(f(x, y) > 0\).

Acknowledgements. The editors would like to thank Murray S. Klamkin, Loren C. Larson, Efton Park, Daniel H. Ullman and Peter Yff for their help in reviewing problem proposals over the last two years.]

[[On p.230 of *Math. Mag.*, **71**(1998) we read, in connexion with

1528. Proposed by Florin S. Pirvănescu, Slatina, Romania

Let M be a point in the interior of convex polygon $A_1A_2\ldots A_n$. If d_k is the distance from M to A_kA_{k+1} ($A_{n+1} = A_1$), show that

$$(d_1 + d_2)(d_2 + d_3)\cdots(d_n + d_1) \leq 2^n \cos^\frac{n}{n} \cdot MA_1 \cdot MA_2 \cdots \cdot MA_n$$

and determine when equality holds.

the following

Comment. Murray Klamkin observed that the result follows from the stronger inequality with d_k redefined to be the length of the angle bisector of $\angle A_kMA_{k+1}$, referring to D. S. Mitrinović, J. E. Pecarić & V. Volenc, *Recent Advances in Geometric Inequalities*, p.423.]]

Q 883. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Given N rays in \mathbb{R}^n forming a non-degenerate n-hedral angle with vertex O and a point P in the interior of this angle, find points on the rays minimizing the volume of the simplex formed by the points and O under the restriction that P is in the hyperplane formed by the points.

(This generalizes Q847 from the April 1996 issue of this Magazine.)

A 883. Choosing the origin to be at O, let v_i denote the unique vector from O along the ith ray such that $v_1 + \cdots + v_n = P$. If the chosen points are $x_i v_i$ then the restriction implies that $1/x_1 + \cdots + 1/x_n = 1$. The volume of the simplex is

$$x_1 \cdots x_n \det(v_1 \ldots v_n)/n!$$

The arithmetic-geometric mean inequality implies that the volume is minimized when

$$x_1 = \cdots = x_n = n$$

so that P is the centroid of the $(n-1)$-simplex formed by the n chosen points.

[[On p.396 of Math. Mag., 71(1998) we read

Acknowledgements. The editors would like to thank Murray S. Klamkin, Loren C. Larson, Harvey Schmidt and Daniel H. Ullman for their help in reviewing problem proposals over the last year.]]

248
1456. Proposed by Michael Golomb, Purdue University, West Lafayette, Indiana

Let S be a given n-dimensional simplex with centroid C. A hyperplane through C divides the simplex into two regions, one or both of which are simplexes. Find the extrema of the volumes of those regions which are simplexes.

Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada.

We will show that the maximum volume is $\frac{\text{vol}(S)}{2}$ and the minimum volume is $\left[\frac{n}{n+1}\right]^{n} \text{vol}(S)$ where $\text{vol}(S)$ denotes the volume of S.

Let V_1, V_2, \ldots, V_n and C denote vectors from one vertex to all other vertices of S and C, respectively. Let a hyperplane through C cut these vectors at points given by $x_1 V_1, x_2 V_2, \ldots, x_n V_n$ respectively, where the x_i lie in $[0,1]$. The, since $C = \sum_{i=1}^{n} V_i/(n+1)$ lies in the hyperplane, there are nonnegative weights w_1, w_2, \ldots, w_n with sum 1, such that $\sum_{i=1}^{n} w_i x_i V_i = \sum_{i=1}^{n} V_i/(n+1)$. Since the V_i are linearly independent, $w_i x_i = 1/(n+1)$, so that $\sum_{i=1}^{n} 1/x_i = n + 1$. Since the volume cut off the simplex is

$$\text{vol}(S) \prod_{i=1}^{n} x_i \geq \text{vol}(S) \left(\frac{1}{n} \sum_{i=1}^{n} 1/x_i\right)^n = \text{vol}(S) \left[\frac{n}{n+1}\right]^{n}$$

so that the minimum volume occurs when $x_i = n/(n+1)$ for all i.

To obtain the maximum volume, we let $1/x_i = 1 + y_i$ so that we now want to minimize $\prod_{i=1}^{n} (1 + y_i)$ subject to $\sum_{i=1}^{n} y_i = 1$. Expanding the product, we see that

$$\prod_{i=1}^{n} (1 + y_i) \geq 1 + \sum_{i=1}^{n} y_i = 2$$

with equality if and only if one y_i is 1 and the rest are 0. This yields a maximum volume of $\text{vol}(S)/2$.

249
Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

From the vertices A_0, A_1, \ldots, A_n of a simplex S, parallel lines are drawn intersecting the hyperplanes containing the opposite faces in the corresponding points B_0, B_1, \ldots, B_n. Determine the ratio of the volume of the simplex determined by B_0, B_1, \ldots, B_n to the volume of S.

Solution by L. R. King, Davidson College, Davidson, NC. The ratio for n-dimensional simplexes is n. Without loss of generality we may consider the standard simplex S_0 with one vertex at the origin and the others at e_1, e_2, \ldots, e_n, where e_1, \ldots, e_n denotes the usual basis for \mathbb{R}^n. (The translate $S - A_0$ is the image $L(S_0)$ for some linear transformation $L : \mathbb{R}^n \rightarrow \mathbb{R}^n$. Because L has rank n, ratios of volumes are invariant under L.)

Let $B_0 = (s_1, s_2, \ldots, s_n)$ be the intersection point of the line from the origin with the face opposite the origin, so $s_1 + s_2 + \cdots + s_n = 1$. We then find $B_k = e_k - \frac{1}{s_k}B_0$ and $B_k - B_0 = e_k - t_kB_0$ where $t_k = \left(1 + \frac{1}{s_k}\right)$. (Note that $s_k \neq 0$ because otherwise the line through e_k and parallel to B_0 would be parallel to the face opposite e_k.) The volume of the simplex with vertices B_0, \ldots, B_n is

$$\frac{1}{n!} \left| \det(B_1 - B_0, \ldots, B_k - B_0, \ldots, B_n - B_0) \right|$$

$$= \frac{1}{n!} \left| \det(e_1 - t_1B_0, \ldots, e_k - t_kB_0, \ldots, e_n - t_nB_0) \right|$$

$$= \frac{1}{n!} \left| \det(e_1, \ldots, e_n) - t_1 \det(B_0, e_2, \ldots, e_n) - t_2 \det(e_1, B_0, \ldots, e_n) \right.$$

$$- \ldots - t_n \det(e_1, \ldots, e_{n-1}, B_0) \right|$$

$$= \frac{1}{n!} \left| 1 - (t_1s_1 + t_2s_2 + \cdots + t_ns_n) \right|$$

$$= \frac{1}{n!} \left| 1 - n - \sum_{k=1}^{n} s_k \right| = \frac{1}{n!} n$$

Because the standard simplex has volume $1/n!$ the ratio of the volumes is n.

Comment: Leon Gerber notes that this problem has a long history and that it appeared, with his solution, as a problem in Amer. Math. Monthly, 80(1973) 1145–1146.
Q 905. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Determine the maximum volume of a tetrahedron given the lengths of three of its medians.

A 905. Let $ABCD$ be the tetrahedron, m_A, m_B, m_C and m_D the median lengths, the last three given, and G the centroid. The medians are concurrent and are such that $AG = 3m_A/4$, $BG = 3m_B/4$, $CG = 3m_C/4$ and $DG = 3m_D/4$. Thus the volume of $ABCD$ is four times the volume of $GBCD$. Furthermore the latter volume will be a maximum when BG, CG and DG are mutually orthogonal. Hence the maximum volume is $4(BG \cdot CG \cdot DG/6) = 9m_Bm_Cm_D/32$.

This easily generalizes to determining the maximum volume of an n-dimensional simplex given the lengths of n of its medians.

Q 910. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB, Canada

Given [[a]] positive integer k, it is easy to find two base 10 numbers whose product has more than k digits and all digits the same. As an example, take 9 and $(10^n - 1)/9$ with $n > k$. Give examples for which the two numbers have the same number of digits.

A 910. First note that $10^{3+6n} + 1 \equiv 0 \pmod{7}$ and that $(10^{3+6n} - 1)/9$ and $(10^{3+6n} + 1)/7$ have the same number of digits. We then have

$$\left[(10^{3+6n})/7\right]\left[7(10^{3+6n})/9\right] = (10^{6+12n} - 1)/9$$
An ellipsoid is tangent to each of the six edges of a tetrahedron. Prove that the three segments joining the points of tangency of the opposite edges are concurrent.

Solution by Michel Bataille, Rouen, France. Under a suitable affine transformation, the ellipsoid becomes a sphere, and concurrency and tangency are preserved. Thus we need only consider the case in which the ellipsoid is a sphere that is tangent at points R, S, T, U, V and W to sides BC, CA, AB, DA, DB and DC, respectively, of tetrahedron $ABCD$. Because all segments of tangents from a vertex to the point of tangency on the sphere have the same length, we can set $x = AS = AT = AU$, $y = BT = BR = BV$, $z = CR = CS = CW$ and $t = DU = DV = DW$. Denoting by M the vector from the point M, let I be the point determined by

$$mI = zt(yA + xB) + xy(tC + zD) = zt(y + x)T + xy(t + z)W$$

Because $zt(y + x)$ and $xy(t + z)$ are positive and sum to m, it follows that I lies on segment TW. Similarly,

$$mI = yz(tA + xD) + tx(zB + yC) = yz(t + x)U + tx(z + y)R$$

and

$$mI = ty(zA + xC) + zx(tB + yD) = ty(z + x)S + zx(t + y)V$$

showing that I lies on segments UR and SV as well. Thus the three segments joining points of tangency of opposite edges are concurrent at I.

Q 911. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB, Canada

Two points P and Q are on opposite sides of a given plane in \mathbb{R}^3. Describe how to determine a point R in the plane so that $|PR - QR|$ is maximal.

A 911. Let Q' be the reflection across the plane of Q, so $QR = Q'R$. By the triangle inequality, $|PR - Q'R| \le PQ'$. The maximal value PQ' is achieved when R is the intersection of line PQ' with the plane. In the event that PQ' is parallel to the plane, the value PQ' is approached as R approaches the point at infinity in the plane that is in the direction of line PQ'.
Q 913. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB, Canada

Let F be a function that has a continuous third derivative on $[0,1]$. If $F(0) = F'(0) = F''(0) = F'(1) = F''(1) = 0$ and $F(1) = 1$, prove that $F'''(x) \geq 24$ for some x in $[0,1]$.

A 913. Consider the Taylor series expansions about the points $x = 0$ and $x = 1$,

$$
F(x) = F(0) + F'(0)x + \frac{F''(0)}{2}x^2 + \frac{F'''(c_1)}{6}x^3
$$

$$
F(x) = F(1) + F'(1)(x - 1) + \frac{F''(1)}{2}(x - 1)^2 + \frac{F'''(c_2)}{6}(x - 1)^3
$$

where $0 \leq c_1 \leq x$ and $x \leq c_2 \leq 1$. These reduce to

$$
F(x) = \frac{F'''(c_1)}{6}x^3 \quad \text{and} \quad F(x) = 1 + \frac{F'''(c_2)}{6}(x - 1)^3
$$

Setting $x = 1/2$ we find that there are c_1 and c_2 with $F'''(c_1) + F'''(c_2) = 48$. Thus at least one of $F'''(c_1)$ and $F'''(c_2)$ is greater than or equal to 24.

Q 916. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Do there exist any integers k such that there are an infinite number of relatively prime positive integer triples (x, y, z) satisfying the Diophantine equation

$$
x^2y^2 = k^2(x + y + z)(y + z - x)(z + x - y)(x + y - z).
$$

A 916. In order for the right-hand side of the equation to be positive, x, y, z must be the lengths of the sides of a triangle. If A is the area of the triangle and α is the angle between the sides of lengths x and y, then

$$
\frac{4A^2}{\sin^2 \alpha} = 16k^2 A^2
$$

so $\sin \alpha = \frac{1}{2k}$. By the Law of Cosines,

$$
z^2 = x^2 + y^2 - 2xy \cos \alpha = x^2 + y^2 \pm \frac{xy}{k} \sqrt{4k^2 - 1}
$$

Because the left-hand side is an integer and the right-hand side is irrational, there are no solutions.
1641. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Show that if the midpoints of the six edges of a tetrahedron lie on a sphere, then the tetrahedron has an orthocenter.

Solution by Daniele Donini, Bertinoro, Italy. Let \(A_1, A_2, A_3 \) and \(A_4 \) be the vertices of the tetrahedron, and let \(O \) and \(r \) be, respectively, the center and radius of the sphere. Fix an orthogonal coordinate system with origin \(O \). Given a point \(P \), let \(\mathbf{P} \) denote the vector from \(O \) to \(P \). By hypothesis, \(||A_i + A_j|| = r \) for each pair of distinct indices \(i, j \).

The orthocenter of \(A_1 A_2 A_3 A_4 \) is a point \(H \) such that the vectors \(A_i - A_j \) and \(A_k - H \) are orthogonal, that is, such that

\[
(A_i - A_j) \cdot H = 0
\]

for any triple of distinct indices \(i, j, k \).

By (1), this condition is equivalent to

\[
(A_i - A_j) \cdot H = \frac{1}{2} (A_i \cdot A_i + A_j \cdot A_j)
\]

which is in turn equivalent to the conditions

\[
(A_i - A_1) \cdot H = \frac{1}{2} (A_1 \cdot A_1 + A_i \cdot A_i)
\]

for any index \(i = 2, 3, 4 \) (2)

Note that the reverse implication follows from

\[
(A_i - A_j) \cdot H = (A_i - A_1) \cdot H - (A_j - A_1) \cdot H
\]

\[
= \frac{1}{2} (A_1 \cdot A_j - A_i \cdot A_i) - \frac{1}{2} (A_1 \cdot A_j - A_i \cdot A_i)
\]

\[
= \frac{1}{2} (A_j \cdot A_j - A_i \cdot A_i)
\]

Now consider (2) as a system of three linear equations in three unknowns; the unknowns are the three coordinates of \(H \). Because the three vectors \(A_2 - A_1, A_3 - A_1 \) and \(A_4 - A_1 \) are linearly independent, the system has exactly one solution. The solution gives the coordinates of the orthocenter \(H \).
The ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) is inscribed in a parallelogram. Determine the area of the parallelogram if two of the points of tangency are \((a \cos u, b \sin u)\) and \((a \cos v, b \sin v)\), with \(0 \leq u < v < \pi\).

Under the transformation \((x, y) \rightarrow (bx/a, y)\) the parallelogram is transformed into another parallelogram and the ellipse is transformed into an inscribed circle of radius \(b\). The circle is tangent to the image parallelogram at the points \((b \cos u, b \sin u)\) and \((b \cos v, b \sin v)\). Draw radii to the four points of tangency. The result is two quadrilaterals of area \(b^2 \tan(\frac{v-u}{2})\) and two of area \(b^2 \tan(\frac{\pi-v+u}{2})\), for a total area of \(4b^2 \csc(v-u)\). Because ratios of areas are preserved under the transformation, the desired area is \(4ab \csc(v-u)\).

Q 920. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB, Canada

Two directly homothetic triangles are such that the incircle of one of them is the circumcircle of the other. If the ratio of their areas is 4, prove that the triangles are equilateral.

Let the sides, area, circumradius and inradius of the larger triangle be \(a, b, c, F, R\) and \(r\) respectively, and let the corresponding sides and area of the smaller triangle be \(a', b', c'\) and \(F'\). We then have

\[
\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'} = 2 \quad 4FR = abc \quad \text{and} \quad 4F'r = a'b'c'
\]

It follows that

\[
\frac{FR}{F'r} = \frac{abc}{a'b'c'} = 8
\]

and hence that \(R = 2r\). However, it is known that \(R \geq 2r\) with equality if and only if the triangle is equilateral.
Let $x_k, y_k, (1 \leq k \leq n)$ be positive real numbers and let r, s be real numbers with $\sum_{k=1}^{n} x_k^r = \sum_{k=1}^{n} y_k^s = 1$. Prove that if $\sum_{k=1}^{n} (x_k^{r(m+1)}/y_k^{s(m)}) = 1$ for some positive integer m, then $\sum_{k=1}^{n} (x_k^{r(m+1)}/y_k^{s(m)}) = 1$ for every positive integer m.

A 923. Applying Hölder’s inequality for the particular value of m we find

$$1 = \sum_{k=1}^{n} x_k^r = \sum_{k=1}^{n} \frac{x_k^r}{y_k^{sm/(m+1)}} y_k^{sm/(m+1)}$$

$$\leq \left(\sum_{k=1}^{n} \frac{x_k^{r(m+1)}}{y_k^{sm}} \right)^{1/(m+1)} \left(\sum_{k=1}^{n} k_k^s \right)^{m/(m+1)} = 1$$

Because we have equality and $\sum x_k^r = \sum y_k^s$ it follows that $x_k^r = y_k^s, 1 \leq k \leq n$. The desired result follows immediately.
A Centroidal Equality

October 2001

1630. Proposed by Geoffrey A. Kandall, Hamden, CT

Let P be in the interior of $\triangle ABC$, and let lines AP, BP and CP intersect sides BC, CA and AB in L, M and N respectively. Prove that if

$$\frac{AP}{PL} + \frac{BP}{PM} + \frac{CP}{PN} = 6$$

then P is the centroid of $\triangle ABC$.

Solution by Murray S. Klamkin, University of Alberta, Edmonton, AB, Canada. We prove the following generalization:

Let P be a point in the interior of the n-dimensional simplex $A_0A_1A_2\ldots A_n$ and for $0 \leq k \leq n$ let the cevian from A_k through P intersect the opposite face in B_k. If

$$\sum_{k=0}^{n} \frac{A_kP}{PB_k} = n(n+1)$$

then P is the centroid of the simplex.

We use barycentric coordinates. Let P, A_k and B_k denote vectors from a common origin to the points P, A_k and B_k respectively. Then $P = \sum_{k=0}^{n} x_k A_k$ where $\sum_{k=0}^{n} x_k = 1$ and each $x_k > 0$, and $B_k = (P - x_k A_k)/(1 - x_k)$. We then have

$$A_kP = \|A_k - P\|$$

$$A_kB_k = \|A_k - (P - x_k A_k)/(1 - x_k)\| = \|A_k - P\|/(1 - x_k)$$

and

$$B_kP = A_kB_k - A_kP = x_k\|A_k - P\|/(1 - x_k)$$

It follows that

$$n(n+1) = \sum_{k=0}^{n} \frac{A_kP}{PB_k} = \sum_{k=0}^{n} \left(\frac{1}{x_k} - 1 \right)$$

so $\sum_{k=0}^{n} 1/x_k = (n+1)^2$. However, by the Cauchy-Schwarz inequality

$$\sum_{k=0}^{n} \frac{1}{x_k} = \left(\sum_{k=0}^{n} x_k \right) \left(\sum_{k=0}^{n} \frac{1}{x_k} \right) \geq (n+1)^2$$

with equality if and only if $x_k = 1/(n+1)$, $0 \leq k \leq n$. It follows that P is the centroid of the simplex.
This completes the solution of the problem. However, other similar results also hold. Indeed, it also follows that if any of the following three equations holds, then P is the centroid of the simplex:

\[
\sum_{k=0}^{n} \frac{PB_k}{A_kP} = \frac{n+1}{n} \quad \sum_{k=0}^{n} \frac{A_kB_k}{A_kP} = \frac{(n+1)^2}{n} \quad \sum_{k=0}^{n} \frac{A_kB_k}{PB_k} = (n+1)^2
\]

If the first of these equations is true, then

\[
\frac{n+1}{n} = \sum_{k=0}^{n} \frac{PB_k}{A_kP} = \sum_{k=0}^{n} \frac{x_k}{1-x_k} = -(n+1) + \sum_{k=0}^{n} \frac{1}{1-x_k}
\]

so $\sum_{k=0}^{n} 1/(1-x_k) = (n+1)^2/n$. By the Cauchy-Schwarz inequality

\[
\sum_{k=0}^{n} 1/(1-x_k) \geq (n+1)^2 / \sum_{k=0}^{n} (1-x_k) = (n+1)^2/n
\]

with equality if and only if $x_k = 1/(n+1)$, $0 \leq k \leq n$. Similar arguments can be used to show that if either of the other two equations is true, then P is the centroid of the simplex.

Note: Miguel Amengual Covas of Spain points out that the triangle version of this problem appeared on a Romanian Mathematics Competition. See *Revista de Matematica din Timisora*, Annul II (seria a 4-a), nr.1-1997, pp.16–17. The triangle version of this problem also appeared as problem E 1043 in the *Amer. Math. Monthly*, 59(1952) p.697, with solution in 60(1953) p.421.

Q 925. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Evaluate the determinant

\[
\begin{vmatrix}
\frac{y+z}{x} & \frac{x}{y+z} & \frac{x}{y} \\
\frac{z+x}{z} & \frac{y}{z+x} & \frac{y}{z} \\
\frac{x+y}{x} & \frac{z+y}{x+y} & \frac{z}{x+y}
\end{vmatrix}
\]

A 925. Let \(D \) be the value of the determinant. Clearing fractions we have

\[xyz(y + z)(z + x)(x + y)D = \begin{vmatrix}
(y + z)^2 & x^2 & x^2 \\
y^2 & (z + x)^2 & y^2 \\
z^2 & z^2 & (x + y)^2
\end{vmatrix}\]

Because the resulting determinant vanishes when \(x = 0 \) or \(y = 0 \) or \(z = 0 \), it has \(xyz \) as a factor. Next note that if \(x + y + z = 0 \), then the determinant has three proportional rows. Hence the determinant in \((*)\) also has \((x + y + z)^2\) as a factor. Thus the determinant in \((*)\) has the form

\[Pxyz(x + y + z)^2\]

Because this determinant is a symmetric, homogeneous polynomial of degree 6, it follows that \(P = k(x + y + z) \) for some constant \(k \). To determine \(k \), set \(x = y = z = 1 \). The determinant in \((*)\) then has value 54 and it follows that \(k = 2 \). We then find

\[D = \frac{2(x + y + z)^3}{(y + z)(z + x)(x + y)}\]
Q 926. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

Find the maximum value of

\[
\sin^2(2A) + \sin^2(2B) + \sin^2(2C) + 2 \cos(2A) \sin(2B) \sin(2C) \\
+ 2 \cos(2B) \sin(2C) \sin(2A) + 2 \cos(2C) \sin(2A) \sin(2B)
\]

where \(A, B, C\) are the angles of a triangle \(ABC\).

A 926. Let the vertices of \(\triangle ABC\) be given in counter-clockwise order, let \(D\) be a point in the plane of the triangle, and let \(A, B\) and \(C\), respectively, be the vectors from \(D\) to \(A, B\) and \(C\). It is known that

\[
\]

where \([XYZ]\) denotes the directed area of \(\triangle XYZ\). Now let \(D\) be the circumcenter of \(\triangle ABC\). Then

\[
[DBC] = \frac{1}{2} \|B\| \|C\| \sin(\angle BDC) = \frac{1}{2} \|B\| \|C\| \sin(2A)
\]

with similar expressions for \([DCA]\) and \([DAB]\). Substitute these results into (*), then calculate the length of the resulting expression. Noting that \(B \cdot C = \|B\| \|C\| \cos(2A)\), with similar expressions for \(C \cdot A\) and \(A \cdot B\), we have

\[
= \frac{\|A\|^2 \|B\|^2 \|C\|^2}{4} (\sin^2(2A) + \sin^2(2B) + \sin^2(2C) + 2 \cos(2A) \sin(2B) \sin(2C) \\
+ 2 \cos(2B) \sin(2C) \sin(2A) + 2 \cos(2C) \sin(2A) \sin(2B))
\]

Thus the expression in the problem statement is identically 0.
Because the square root function is concave, Jensen’s inequality implies $x S$ is the minimum value. Thus 1667. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB, Canada

Let a, b and c be nonnegative constants. Determine the maximum and minimum values of

$$\sqrt{a^2x^2 + b^2y^2 + c^2z^2} + \sqrt{a^2y^2 + b^2z^2 + c^2x^2} + \sqrt{a^2z^2 + b^2x^2 + c^2y^2}$$

subject to $x^2 + y^2 + z^2 = 1$.

I. Solution by Michael Andreoli, Miami-Dade Community College, North Campus, Miami, Fl. Let $S = \sqrt{a^2x^2 + b^2y^2 + c^2z^2} + \sqrt{a^2y^2 + b^2z^2 + c^2x^2} + \sqrt{a^2z^2 + b^2x^2 + c^2y^2}$. We show that if $x^2 + y^2 + z^2 = 1$, then the maximum and minimum values of S are $\sqrt{3(a^2 + b^2 + c^2)}$ and $a + b + c$, respectively.

Because the square root function is concave, Jensen’s inequality implies

$$\frac{1}{3} S \leq \sqrt{\frac{1}{3}(a^2x^2 + b^2y^2 + c^2z^2) + (a^2y^2 + b^2z^2 + c^2x^2) + (a^2z^2 + b^2x^2 + c^2y^2)}$$

$$= \sqrt{\frac{1}{3}(a^2 + b^2 + c^2)(x^2 + y^2 + z^2)} = \sqrt{\frac{1}{3}(a^2 + b^2 + c^2)}$$

Thus $S \leq \sqrt{3(a^2 + b^2 + c^2)}$. Because equality holds if $x = y = z = 1/\sqrt{3}$, this value of S is the minimum value.

Because $x^2 + y^2 + z^2 = 1$, it also follows from Jensen’s inequality that

$$\sqrt{a^2x^2 + b^2y^2 + c^2z^2} \geq \sqrt{a^2x^2 + b^2y^2 + c^2z^2} = ax^2 + by^2 + cz^2$$

and similar inequalities hold for $\sqrt{a^2y^2 + b^2z^2 + c^2x^2}$ and $\sqrt{a^2z^2 + b^2x^2 + c^2y^2}$. It follows that

$$S \geq (a + b + c)(x^2 + y^2 + z^2) = a + b + c$$

Because equality occurs when $x = 1$ and $y = z = 0$, this value is the minimum value for S.

II. Solution by Michel Bataille, Rouen, France. Let

$$u = \sqrt{a^2x^2 + b^2y^2 + c^2z^2} \quad v = \sqrt{a^2y^2 + b^2z^2 + c^2x^2} \quad w = \sqrt{a^2z^2 + b^2x^2 + c^2y^2}$$

and $S = u + v + w$, and observe that $u^2 + v^2 + w^2 = a^2 + b^2 + c^2$ when $x^2 + y^2 + z^2 = 1$. Hence, by the Cauchy-Schwarz inequality,

$$S = u + v + w \leq \sqrt{1^2 + 1^2 + 1^2} \sqrt{u^2 + v^2 + w^2} = \sqrt{3(a^2 + b^2 + c^2)}$$

with equality when $x = y = z = 1/\sqrt{3}$.
Again by the Cauchy-Schwarz inequality,

\[uv = \sqrt{(ax)^2 + (by)^2 + (cz)^2} \geq \sqrt{(ca)^2 + aby^2 + bcz^2} \]

with analogous inequalities for \(vw \) and \(wu \). Summing we find

\[uv + vw + wu \geq (ab + bc + ca)(x^2 + y^2 + z^2) = ab + bc + ca \]

Thus

\[
S^2 = a^2 + b^2 + c^2 + 2(uv + vw + wu) \geq a^2 + b^2 + c^2 + 2(ab + bc + ca) \\
= (a + b + c)^2
\]

so \(S \geq a + b + c \). Equality holds when \(x = 1 \) and \(y = z = 0 \).

Q 934. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

A tetrahedron has base with sides \([\text{edges?}]\)of length \(a, b, c \) and an altitude of length \(h \) to this base. Determine the minimum possible surface area for the tetrahedron.

A 934. Let the distances from the foot of the altitude to the sides of length \(a, b, c \) be \(x, y, z \) respectively. Then the sum of the areas of the three lateral faces is

\[
\frac{1}{2} a \sqrt{x^2 + h^2} + \frac{1}{2} b \sqrt{y^2 + h^2} + \frac{1}{2} c \sqrt{z^2 + h^2}
\]

By Minkowski’s inequality, this quantity is greater than or equal to

\[
\frac{1}{2} \sqrt{h^2(a + b + c)^2 + (ax + by + cz)^2} = \frac{1}{2} \sqrt{h^2(a + b + c)^2 + 4F^2}
\]

where \(F \) is the area of the base. Equality occurs if and only if \(x = y = z = r \), where \(r \) is the radius of the incircle of the base; that is, if and only if the incentre of the base is the foot of the given altitude. Thus the minimal surface area is \(\frac{1}{2}(a + b + c)(r + \sqrt{h^2 + r^2}) \)

1683. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada

For integer \(n \geq 2\) and nonnegative real numbers \(x_1, x_2, \ldots, x_n\) define

\[
A_n = (x_1^2 + x_2^2)(x_2^2 + x_3^2)\cdots(x_n^2 + x_1^2)/2^n
\]
\[
B_n = (x_1x_2 + x_2x_3 + \cdots + x_nx_1)^n/n^n
\]

(a) Determine all \(n\), if any, such that \(A_n \geq B_n\) for all choices of \(x_k\).

(b) Determine all \(n\), if any, such that \(B_n \geq A_n\) for all choices of \(x_k\).

Solution by Roy Barbara, American University of Beirut, Beirut, Lebanon.

a. We show that \(A_n \geq B_n\) always holds for \(n = 2, 3\), but need not hold for \(n \geq 4\). For \(n = 2\) the inequality follows immediately from \((x_1 - x_2)^2 \geq 0\). For the case \(n = 3\), let \(S_1 = x_1 + x_2 + x_3\), \(S_2 = x_1x_2 + x_2x_3 + x_3x_1\) and \(S_3 = x_1x_2x_3\). We may assume that \(S_2 = 1\). Then the \(n = 3\) case of the inequality becomes

\[
\frac{1}{8}(x_1^2 + x_2^2)(x_2^2 + x_3^2)(x_3^2 + x_1^2) \geq \frac{1}{27}
\]

To prove this, first observe that

\[
S_1^2 = x_1^2 + x_2^2 + x_3^2 + 2S_2 \geq 3S_2 = 3, \quad \text{so} \quad S_1 \geq \sqrt{3}
\]

and by the arithmetic-geometric mean inequality

\[
\frac{1}{3} = \frac{S_2}{3} \geq S_3^{2/3}, \quad \text{so} \quad S_3 \leq \frac{\sqrt{3}}{9}
\]

Thus

\[
\frac{1}{8}(x_1^2 + x_2^2)(x_2^2 + x_3^2)(x_3^2 + x_1^2) \geq \left(\frac{x_1 + x_2}{2}\right)^2 \left(\frac{x_2 + x_3}{2}\right)^2 \left(\frac{x_3 + x_1}{2}\right)^2
\]
\[
= \frac{1}{64}(S_1 - x_3)^2(S_1 - x_1)^2(S_1 - x_2)^2
\]
\[
= \frac{1}{64}(S_1S_2 - S_3^2) \geq \frac{1}{64} \left(\sqrt{3} - \frac{\sqrt{3}}{9}\right)^2 = \frac{1}{27}
\]

as desired.

Now let \(n \geq 4\). Setting \(x_1 = x_2 = 0\) and \(x_3 = x_4 = \cdots = x_n = 1\), we get \(A_n = 0\) and \(B_n > 0\), showing that \(A_n < B_n\) is possible.

263
b. For $n \geq 2$, the inequality $B_n \geq A_n$ does not hold for all real x_k. Set $x_k = 1$ for k odd and $x_k = 0$ for k even. Then for even $n \geq 2$,

$$B_n = 0 < \frac{1}{2^n} = A_n$$

and for odd $n \geq 2$,

$$B_n = \frac{1}{n^n} < \frac{1}{2^{n-1}} = A_n$$
Let \(p, r \) and \(n \) be integers with \(1 < r < n \) and let \(k \) be a positive constant. Determine the maximum and minimum values of

\[
\sum_{j=1}^{n} \frac{t_j^p}{1 + kt_j}
\]

where \(t_j = x_j + x_{j+1} + \cdots + x_{j+r-1} \) with \(x_i \geq 0 \) (\(1 \leq i \leq n \)), \(x_1 + x_2 + \cdots + x_n = 1 \) and \(x_{i+n} = x_i \).

Solution by the proposer. The second derivative of \(F(t) = t^p/(1 + kt) \) is

\[
F''(t) = \frac{t^{p-2}(p(p-1) + 2kp(p-2)t + k^2(p-1)(p-2)t^2)}{(1 + kt)^3}
\]

Thus \(F \) is concave for \(p = 1 \) and convex for \(p \geq 2 \) and \(p \leq 0 \).

Noting that for any choice of the \(t_j \) we have \(t_1 + t_2 + \cdots + t_n = r \), we apply a majorization result due to Hardy, Littlewood & Pólya (see A. W. Marshall & I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, NY, 1979).

Given a vector \(y = (y_1, \ldots, y_n) \), let \(y_1 \geq y_2 \geq \cdots \geq y_n \) be the components of \(y \) in decreasing order. For vectors \(y \) and \(z \), write \(y \prec z \) if \(\sum_{j=1}^{k} y_{[j]} \leq \sum_{j=1}^{k} z_{[j]} \) for \(1 \leq k < n \) and \(\sum_{j=1}^{n} y_{[j]} = \sum_{j=1}^{n} z_{[j]} \). If \(g \) is convex on \([a, b] \), \(y, z \in [a, b]^n \), and \(y \prec z \), then \(\sum_{j=1}^{n} g(y_{[j]}) \leq \sum_{j=1}^{n} g(z_{[j]}) \).

For all choices of the \(x_j \) we have

\[
\left(\frac{r}{n}, \frac{r}{n}, \ldots, \frac{r}{n} \right) \prec (t_1, t_2, \ldots, t_n) \prec (1, 1, \ldots, 1, 0, \ldots, 0)
\]

where the last \(n \)-tuple consists of \(r \) ones followed by \(n-1 \) zeroes. Thus, if \(p = 1 \) (so that \(F \) is concave), we have

\[
\sum_{i=1}^{n} F(t_i) \leq nF\left(\frac{r}{n}\right) = \frac{n r}{n + k r} \quad \text{and} \quad \sum_{i=1}^{n} F(t_i) \geq r F(1) + (n-r) F(0) = \frac{r}{1+k}
\]

If \(p \geq 2 \) or \(p \leq 0 \) (so that \(F \) is convex), then

\[
\sum_{i=1}^{n} F(t_i) \geq nF\left(\frac{r}{n}\right) = \frac{r^p}{n^{p-2}(n + kr)}
\]
and for $p \geq 2$ or $p = 0$,

$$\sum_{i=1}^{n} F(t_i) \leq rF(1) + (n - r)F(0) = \frac{r}{1 + k}$$

If $p < 0$, the sum is not bounded above.

1701. Proposed by Murray S. Klamkin, University of Alberta, Edmonton [sic], AB

Prove that for all positive real numbers a, b, c, d,

$$a^4b + b^4c + c^4d + d^4a \geq abcd(a + b + c + d)$$

I. Solution by Zuming Feng, Philips Exeter Academy, Exeter, NH.

By the arithmetic-geometric mean inequality,

$$a^4b + abc^2d + abcd^2 \geq 3a^2bcd$$

Similarly,

$$b^4c + abcd^2 + a^2bcd \geq 3ab^2cd$$
$$c^4d + a^2bcd + ab^2cd \geq 3abc^2d$$
$$d^4a + ab^2cd + abc^2d \geq 3abcd^2$$

Adding the four inequalities leads to the desired result.

II. Solution by Chip Curtis, Missouri Southern State University, Joplin MO.

Note that

$$(a^4b)^{23/51}(b^4c)^{7/51}(c^4d)^{1/51}(d^4a)^{10/51} = a^2bcd$$

so by the weighted arithmetic-geometric mean inequality,

$$\frac{23}{51}a^4b + \frac{7}{51}b^4c + \frac{1}{51}c^4d + \frac{10}{51}d^4a \geq a^2bcd$$

Adding this to the analogous results for b^2cda, c^2dab, d^2abc gives the desired inequality.

Note. A few readers proved that if a_1, a_2, \ldots, a_n are nonnegative real numbers, then

$$a_1^n a_2 + a_2^n a_3 + \cdots + a_n^n a_1 \geq a_1 a_2 \cdots a_n (a_1 + a_2 + \cdots + a_n)$$
Q945. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB, Canada

Determine the maximum value of
\[
\prod_{k=1}^{n+1} \left(1 + \tanh x_k\right) \div \prod_{k=1}^{n+1} \left(1 - \tanh x_k\right)
\]
for real numbers \(x_1, x_2, \ldots, x_{n+1}\) with \(\sum_{k=1}^{n+1} x_k = 0\).

A945. Because
\[
\tanh(a + b) = \frac{\tanh a + \tanh b}{1 + \tanh a \tanh b}
\]

it follows that
\[
\tanh(x_1 + x_2 + \cdots + x_n) = \frac{T_1 + T_3 + T_5 + \cdots}{1 + T_2 + T_4 + \cdots}
\]
where
\[
T_k = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} \tanh x_{i_1} \tanh x_{i_2} \cdots \tanh x_{i_k}
\]
is the symmetric sum of the products of the \(\tanh x_j\) taken \(k\) at a time. Hence
\[
1 + \tanh x_{n+1} = 1 - \tanh(x_1 + x_2 + \cdots + x_n) = \frac{1 - T_1 + T_2 - T_3 + \cdots}{1 + T_2 + T_4 + T_6 + \cdots}
\]
and
\[
1 - \tanh x_{n+1} = \frac{1 + T_1 + T_2 + T_3 + \cdots}{1 + T_2 + T_4 + T_6 + \cdots}
\]
We then have
\[
\frac{\prod_{k=1}^{n+1}(1 + \tanh x_k)}{\prod_{k=1}^{n+1}(1 - \tanh x_k)} = \frac{1 + T_1 + T_2 + T_3 + \cdots}{1 - T_1 + T_2 - T_3 + \cdots} \cdot \frac{1 + \tanh x_{n+1}}{1 - \tanh x_{n+1}} = 1
\]
showing that the expression is identically 1.

Q946. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB, Canada

Let \(ABCD\) be a tetrahedron. Let \(\ell_A\) denote the line through the centroid of face \(BCD\) and perpendicular to the face, and let \(\ell_B, \ell_C\) and \(\ell_D\) be defined in a similar way. Prove that \(\ell_A, \ell_B, \ell_C\) and \(\ell_D\) are concurrent if and only if the four altitudes of the tetrahedron are concurrent.

A946. Let \(X\) denote the vector from the origin to the point \(X\). First assume that \(\ell_A, \ell_B, \ell_C\) and \(\ell_D\) are concurrent at \(P\). Then \(\ell_A\) is parallel to the vector \(\frac{1}{3}(B + C + D) - P\). The altitude from \(A\) is parallel to \(\ell_A\) so has vector equation
\[
\mathbf{R}_A(t) = \mathbf{A} + t \left(\frac{1}{3}(\mathbf{B} + \mathbf{C} + \mathbf{D}) - \mathbf{P}\right)
\]
Setting \(t = 3 \) we obtain \(\mathbf{R}_A(3) = 4\mathbf{G} - 3\mathbf{P} \), where \(\mathbf{G} \) is the centroid of \(\mathbf{ABCD} \). By a similar argument, each of the other three altitudes also contains this point. Hence the four altitudes are concurrent.

Next assume that the altitudes are concurrent at \(H \). Then the vector equation of \(\ell_A \) is

\[
\mathbf{L}_A(t) = \frac{1}{3}(\mathbf{B} + \mathbf{C} + \mathbf{D}) + t(\mathbf{A} - \mathbf{H})
\]

Setting \(t = \frac{1}{3} \) we obtain \(\mathbf{L}\left(\frac{1}{3}\right) = \frac{4}{3}\mathbf{G} - \frac{1}{3}\mathbf{H} \). By a similar argument, \(\ell_B, \ell_C \) and \(\ell_D \) also contain this point, so the four lines are concurrent.

40 Years ago in the MAGAZINE

Readers who enjoyed Kung’s noye, “A Butterfly Theorem for Quadrilaterals”, might enjoy recalling Klamkin’s “An Extension of the Butterfly Problem”. 38(1965) 206–208. His main result can be summarized as follows:

Let \(\mathbf{AB} \) be an arbitrary chord of a circle with midpoint \(\mathbf{P} \), and let chords \(\mathbf{JH} \) and \(\mathbf{GI} \) intersect \(\mathbf{AB} \) at \(\mathbf{M} \) and \(\mathbf{N} \) respectively. If \(\mathbf{MP} = \mathbf{PN} \), the if \(\mathbf{AB} \) intersects \(\mathbf{JI} \) at \(\mathbf{C} \) and \(\mathbf{GH} \) at \(\mathbf{D} \) we have \(\mathbf{CP} = \mathbf{PD} \). Furthermore, if line segments \(\mathbf{AB}, \mathbf{GJ} \) and \(\mathbf{IH} \) are extended so that \(\mathbf{AB} \) intersects \(\mathbf{GJ} \) and \(\mathbf{IH} \) at \(\mathbf{E} \) and \(\mathbf{F} \) respectively, the \(\mathbf{EO} + \mathbf{OF} \),

\[
\begin{array}{cccccc}
J & \mathbf{E} & \mathbf{A} & \mathbf{M} & \mathbf{P} & \mathbf{D} & \mathbf{B} & \mathbf{F} \\
& C & & & & \mathbf{N} & \\
& & & \mathbf{H} & & & \\
& & & & \mathbf{I} & \\
\end{array}
\]
This edition started on 2005-10-27
This is the (lost count!) of a number of files listing problems, solutions and other writings of Murray Klamkin.
The easiest way to edit is to cross things out, so I make no apology for the proliferation below. Just lift out what you want.
3202. Inequalities Concerning the Arithmetic, Geometric and Harmonic Means

In mathematical note 5168 [Math. Gaz., 50 (1966) 310], Mitrinović establishes by a usual calculus approach that

\[
\left\{ \frac{G_n}{A_n} \right\}^n \leq \left\{ \frac{G_{n-1}}{A_{n-1}} \right\}^{n-1} \leq \cdots \leq \left\{ \frac{G_2}{A_2} \right\} \leq \frac{G_1}{A_1} = 1
\]

where

\[
A_n = \frac{1}{n} \sum_{r=1}^{n} a_r, \quad G_n = \prod_{r=1}^{n} a_r^{1/n} \quad (n = 1, 2, \ldots)
\]

and \(a_1, a_2, \ldots\) are arbitrary positive numbers. Here we give a more elementary proof, starting with the well known inequality \(A_n \geq G_n\) which can also be derived in an elementary fashion without calculus. In addition, we give some analogous inequalities involving the harmonic mean

\[
H_n = n \left(\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} \right)
\]

By the A.M.–G.M. inequality,

\[
\left[n \left(\frac{a_1 + a_2 + \cdots + a_n}{n} \right) + a_{n+1} \right] / (n+1) \geq \left(\frac{a_1 + a_2 + \cdots + a_n}{n} \right)^n a_{n+1}
\]

or, equivalently,

\[
\left(\frac{a_1 + a_2 + \cdots + a_{n+1}}{n+1} \right) / (a_1 a_2 \cdots a_{n+1}) \geq \left(\frac{a_1 + a_2 + \cdots + a_n}{n} \right)^n / (a_1 a_2 \cdots a_n)
\]

which implies the desired result.

It also follows immediately that

\[
\left\{ \frac{G_{n+1}}{H_{n+1}} \right\}^{n+1} \geq \left\{ \frac{G_n}{H_n} \right\}^n \quad (n = 1, 2, \ldots)
\]

Using the A.M.–G.M. inequality for \(n = 2\), one can easily show that the minimum value (over \(x\)) of

\[
(A + x)(B + 1/x) = (AB + 1 + Bx + A/x), \quad (A, B, x \geq 0)
\]
occurs when \(x = \sqrt{A/B} \). Thus,

\[
(A + x)(B + 1/x) \geq \{\sqrt{AB} + 1\}^2
\]

Now letting

\[
A = a_1 + a_2 + \cdots + a_n
\]

\[
B = \frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n}
\]

\[
x = \frac{1}{a_{n+1}}
\]

we obtain

\[
(n + 1) \cdot \sqrt{\left(\frac{A_{n+1}}{H_{n+1}}\right)} - n \cdot \sqrt{\left(\frac{A_n}{H_n}\right)} \geq 1 \quad (n = 1, 2, \ldots)
\]

Note that by successive addition of the last relation for \(n = 1, 2, \ldots \), we obtain

\(A_n \geq H_n \) with equality if and only if \(a_1 = a_2 = \cdots = a_n \).

Scientific Laboratory,
Ford Motor Company,
Dearborn,
Michigan,
U.S.A.

Murray S. Klamkin
3249. On the roots of a certain determinantal equation

In a recent note in this Gazette, 51(1967), Vermeulen showed that the roots of the determinantal equation \(A_n = 0 \) are all real and negative where

\[
A_n = \begin{vmatrix}
\lambda + a_1 + e_1 & a_1 & \ldots & a_1 \\
a_2 & \lambda + a_2 + e_2 & \ldots & a_2 \\
\vdots & \vdots & \ddots & \vdots \\
a_n & a_n & \ldots & \lambda + a_n + e_n
\end{vmatrix}
\]

and the \(a_i \) and \(e_i \) are strictly positive.

In this note we establish the result more elementarily and in addition give simple bounds for the roots.

It follows easily, as was done by Vermeulen, that

\[
A_n = (\lambda + e_n)A_{n-1} + a_n \prod_{i=1}^{n-1} (\lambda + e_i)
\]

This difference equation is solved simply by letting

\[
A_n = \phi_n \prod_{i=1}^{n} (\lambda + e_i)
\]

whence we find

\[
A_n = \left\{1 + \frac{a_1}{\lambda + e_1} + \frac{a_2}{\lambda + e_2} + \cdots + \frac{a_n}{\lambda + e_n}\right\} \prod_{i=1}^{n} (\lambda + e_i) \tag{1}
\]

Without loss of generality we can assume that \(0 < e_i < E_{i+1} \). Now consider the graph of

\[
y = 1 + \frac{a_1}{x + e_1} + \frac{a_2}{x + e_2} + \cdots + \frac{a_n}{x + e_n}
\]

where at first the \(e_i \) are assumed to be distinct. The graph is continuous except at the points \(x = e_1, e_2, \ldots e_n \) which correspond to vertical asymptotes. It follows by continuity that there are \(n \) real negative roots \(-\lambda_i\) such that

\[
e_1 < \lambda_1 < e_2 < \lambda_2 < e_3 < \cdots < e_{n-1} < \lambda_{n-1} < e_n < \lambda_n
\]

A typical graph is shown in the figure for \(n = 3 \).
If some of the e_i coincide, it follows from (1) that there will be roots at the $-e_i$ which coincide and the others are located as before. For example, if $n = 6$ and the only equalities are $e_1 = e_2 = e_3$ and $e_5 = e_6$, then three roots are $-e_1$, $-e_1$, $-e_5$ and the other three roots occur in the intervals $(-\infty, -e_5)$, $(-e_5, -e_4)$ and $(-e_4, -e_3)$.

The special case corresponding to $e_1 = e_2 = \cdots = e_n = 0$ is well known. Here the roots are $-\sum a_i$, 0, 0, \ldots, 0.

Murray S. Klamkin

Ford Scientific Laboratory, P.O. Box 2053, Dearborn, Michigan 48121

66.27 An algebraic theorem related to the theory of relativity

In a previous note with the same title (Gazette, December 1972) M. D. Dampier establishes the following theorem which has an application to the special theory of relativity.

THEOREM. If \(K(x, y, z, t) \) is a homogeneous quadratic function of \(x, y, z, t \) with the property that \(K(x, y, z, t) = 0 \) whenever \(x, y, z, t \) are real numbers such that
\[
x^2 + y^2 + z^2 - t^2 = 0
\]
(1)
then there exists a constant \(a \) such that
\[
K(x, y, z, t) = a(x^2 + y^2 + z^2 - t^2).
\]

Here we give extensions with a more transparent proof.

THEOREM. If \(K(x, y, z, t) \) is a polynomial in \(x, y, z, t \) with the property that \(K(x, y, z, t) = 0 \) whenever \(x, y, z, t \) are real numbers such that
\[
x^2 + y^2 + z^2 - t^2 = 0
\]
then \(K \) is divisible by \(x^2 + y^2 + z^2 - t^2 \).

PROOF. It follows by division of \(K \) by \(t^2 - x^2 - y^2 - z^2 \) that
\[
K(x, y, z, t) = F(x, y, z, t)(t^2 - x^2 - y^2 - z^2) + A(x, y, z)t + B(x, y, z)
\]
where \(F, A \) and \(B \) are polynomials. Since \(K \) vanishes for all real values \(t = \pm \sqrt{x^2 + y^2 + z^2} \)
\[
A(x, y, z)\sqrt{x^2 + y^2 + z^2} + B(x, y, z) = 0
\]
\[
-A(x, y, z)\sqrt{x^2 + y^2 + z^2} + B(x, y, z) = 0
\]
for all real \(x, y, z \). Thus \(A \) and \(B \) must vanish identically.

The previous result can easily be extended to the case where equation (1) is replaced by
\[
\sum_{i=1}^{p} x_i^2 - \sum_{i=p+1}^{n} x_i^2 = 0
\]
and \(K \) is a polynomial in the \(n \) variables.

M. S. KLAMKIN

Department of Mathematics, University of Alberta, Canada T6G 2G1
The Mathematical Gazette started a Problems Corner in 1980. I’ve skimmed through it, and may have missed some items, but the first mention of Marray that I noticed was in the list of solvers of

79.I (C.F. Parry) ABC is a scalene triangle with sides \(a\), \(b\) and \(c\). If

\[
c^2(b^2-c^2)^2 = a^2(c^2-a^2)^2 = b^2(a^2-b^2)^2
\]

show that

\[
\frac{(b^2 + c^2)(c^2 + a^2)(a^2 + b^2)}{(b^2 - c^2)(c^2 - a^2)(a^2 - b^2)} = 13.
\]

Solutions were usually published editorially, with little or no attribution to particular individuals. [Though later this improved somewhat as is evidenced by some of the quotes below.]

The next mention that I found was in connexion with

83.K (C. F. Parry)

\(A_1B_1C_1\) and \(A_2B_2C_2\) are two arbitrary triangles. Show that

\[
cot A_1(\cot B_2 + \cot C_2) + \cot B_1(\cot C_2 + \cot A_2) + \cot C_1(\cot A_2 + \cot B_2) \geq 2
\]

with equality only in the equiangular case, i.e., when \(A_1 = A_2, \ B_1 = B_2\) and \(C_1 = C_2\).

The inequality

\[
cot A_1(\cot B_2 + \cot C_2) + \cot B_1(\cot C_2 + \cot A_2) + \cot C_1(\cot A_2 + \cot B_2) \geq 2
\]

[“\(\geq 2\)” is missing here]

is another representation of the known Neuberg-Pedoe inequality

\[
a_1^2(b_2^2 + c_2^2 - a_2^2) + b_1^2(c_2^2 + a_2^2 - b_2^2) + c_1^2(a_2^2 + b_2^2 - c_2^2) \geq 16F_1F_2
\]
where \(a, b, c \) and \(F \) are the sides and area of a triangle. A number of proofs and generalizations are given in [1, pp.354–364]. The equivalence is obtained by noting that
\[
\cot B + \cot C = \frac{\sin A}{\sin B \sin C} = \frac{2Ra}{bc} = \frac{a^2}{2F}
\]
and
\[
\cot A = \frac{R(b^2 + c^2 - a^2)}{abc} = \frac{b^2 + c^2 - a^2}{4F}
\]
The following simple geometric interpretation is due to Pedoe:

Let \(\triangle A_1'B_1'C_1' \) be similar to \(\triangle A_2B_2C_2 \) with sides \(a_1, b_2a_1/a_2, c_2a_1/a_2 \) and superimpose \(\triangle A_2'B_2'C_2' \) on \(\triangle A_1B_1C_1 \) by letting \(B_2'C_2' \) coincide with \(B_1C_1 \) and \(A_1, A_2' \) be on the same side of \(B_1C_1 \). Then the Neuberg-Pedoe inequality is simply \((A_1A_2')^2 \geq 0 \) (just use the law of cosines in \(\triangle A_1B_1A_2' \) and expand out \(\cos(B_1 - B_2) \)).

Reference

Murray features in

85.G (Lee Ho-Joo)

From a point inside a triangle ABC perpendiculars OP, OQ, OR are drawn to its sides BC, CA, AB respectively. Prove that

$$OA \cdot OB + OB \cdot OC + OC \cdot OA \geq 2(OA \cdot OP + OB \cdot OQ + OC \cdot OR)$$

From the few responses to this problem we have chosen Michel Bataille’s solution.

By the sine rule, $\frac{QR}{\sin A} = OA$, $\frac{PR}{\sin B} = OB$ and $\frac{PQ}{\sin C} = OC$. Now, using the cosine rule,

$$QR^2 = OR^2 + OQ^2 + 2OR \cdot OQ \cos A = OR^2 + OQ^2 - 2OR \cdot OQ \cos (B + C)$$

$$= (OR \cos B - OQ \cos C)^2 + (OR \sin B + OQ \sin C)^2$$

$$\geq (OR \sin B + OQ \sin C)^2$$

so that $QR \geq OR \sin B + OQ \sin C$.

56
In the same way, we obtain \(PR \geq OP \sin C + OR \sin A \) and \(PQ \geq OQ \sin A + OP \sin B \).

It follows that for any positive real numbers \(r, s, t \)
\[
roA + sOB + tOC \geq r\frac{OR\sin B + OQ\sin C}{\sin A} + s\frac{OP\sin C + OQ\sin A}{\sin B} + t\frac{OQ\sin A + OQ\sin B}{\sin C}
\]
\[
= OP\left(s\frac{\sin C}{\sin B} + t\frac{\sin B}{\sin C} \right) + OQ\left(t\frac{\sin A}{\sin C} + r\frac{\sin C}{\sin A} \right) + OR\left(r\frac{\sin B}{\sin A} + s\frac{\sin A}{\sin B} \right)
\]
\[
\geq 2(\sqrt{stOP} + \sqrt{trOQ} + \sqrt{rsOR})
\]

[the latter because of the general inequality \(a + b \geq 2\sqrt{ab} \) for positive \(a, b \)].

Thus \(roA + sOB + tOC \geq 2(\sqrt{stOP} + \sqrt{trOQ} + \sqrt{rsOR}) \).

Taking \(r = (OB\cdot OC)^2, s = (OC\cdot OA)^2, t = (OA\cdot OB)^2 \) and dividing out by \(OA\cdot OB\cdot OC \) now yields the desired result.

Remark. Taking \(r = s = t = 1 \) instead yields the well-known Erdős-Mordell inequality \(OA + OB + OC \geq 2(OP + OQ + OR) \).

W. Janous and M. S. Klamkin cite a 1961 paper on this problem \[1\], and the latter has sent the following commentary.

With \(OP, OQ, OR \) denoted by \(r_1, r_2, r_3 \) respectively and \(OA, OB, OC \) denoted by \(R_1, R_2, R_3 \) respectively, Oppenheim showed that for any homogeneous inequality \(I(R_1, R_2, R_3, r_1, r_2, r_3) \geq 0 \) we also have two further dual inequalities, i.e.,

\[
I(R_1, R_2, R_3, r_1, r_2, r_3) \geq 0 \iff I(1/r_1, 1/r_2, 1/r_3, 1/R_1, 1/R_2, 1/R_3) \geq 0
\]

\[
\iff I(R_2R_3, R_3R_1, R_1R_2, r_1R_1, r_2R_2, r_3R_3) \geq 0.
\]

Applying these duality transformation relations repeatedly to the Erdős-Mordell inequality
\[
R_1 + R_2 + R_3 \geq 2(r_1 + r_2 + r_3) \quad (1)
\]

he gets the following set of equivalent inequalities.

\[
P(1) \quad \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} \geq 2 \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right)
\]

\[
Q(1) \quad R_2R_3 + R_3R_1 + R_1R_2 \geq 2(r_1R_1 + r_2R_2 + r_3R_3)
\]

where here \(P(1) \) and \(Q(1) \) denote the first and second transformations on \((1) \) respectively. Then we have
\[\frac{R_2 R_3}{r_1} + \frac{R_3 R_1}{r_2} + \frac{R_1 R_2}{r_3} \geq 2(R_1 + R_2 + R_3) \]

\[\frac{1}{r_2 r_3} + \frac{1}{r_3 r_1} + \frac{1}{r_1 r_2} \geq 2\left(\frac{1}{r_1 R_1} + \frac{1}{r_2 R_2} + \frac{1}{r_3 R_3}\right) \]

\[r_1 R_1 + r_2 R_2 + r_3 R_3 \geq 2(r_2 r_3 + r_3 r_1 + r_1 r_2) \]

\[r_1 R_1 + r_2 R_2 + r_3 R_3 \geq 2(r_2 r_3 + r_3 r_1 + r_1 r_2) \]

Finally, L. J. Mordell proves the result, \(R_1 R_2 R_3 \geq (r_2 + r_3)(r_3 + r_1)(r_1 + r_2) \), in his October 1962 *Gazette* article “On geometric problems of Erdős and Oppenheim” pp.213–215.

Reference

Murray is acknowledged on *Math. Gaz.,* 86(2002) 152 as a solver of

85.H (N. Lord)

Let \(L_n, S_n \) denote the arc length and surface area of revolution (about the \(x \)-axis) of the astroid-like curve \(x = \cos^n t, \ y = \sin^n t \) \((0 \leq t \leq \frac{\pi}{2})\). Prove or disprove the geometrically plausible assertions: \(L_n \to 2 \) and \(S_n \to \pi \) as \(n \to \infty \).

Murray features in

87.C (Nick Lord)

Find the smallest value of \(\alpha \) for which

\[\frac{1}{27} - xyz \leq \alpha \left[\frac{1}{3} - (yz + zx + xy) \right] \]

holds for all non-negative \(x, y, z \) satisfying \(x + y + z = 1 \). (That \(\alpha = \frac{7}{9} \) works is the substance of British Mathematical Olympiad 2(1999) qn.3.)

This was a popular problem which attracted a wide variety of different methods of solution ranging from ingenious algebra and roots of cubics to polar coordinates and calculus of one or more variables.
Li Zhou’s solution is striking in its brevity:

By symmetry, we may assume that \(x \leq y \leq z \). Then \(x \leq \frac{1}{3} \). Substituting \(x = 0 \) and \(y = z = \frac{1}{2} \) into the given inequality, we get \(\frac{1}{27} \leq \alpha(\frac{1}{3} - \frac{1}{4}) \), thus \(\alpha \geq \frac{4}{9} \). When \(\alpha = \frac{4}{9} \) we use \(yz \leq \left(\frac{y+z}{2} \right)^2 \) and \(y+z = 1-x \) to obtain

\[
\alpha \left[\frac{1}{3} - (yz + zx + xy) \right] - \frac{1}{27} + xyz = -(\frac{4}{9} - x)yz - \frac{4}{9}x(y+z) + \frac{1}{9} \\
\geq -(\frac{4}{9} - x)\left(\frac{1-x}{2}\right)^2 - \frac{4}{9}x(1-x) + \frac{1}{9} \\
= \frac{1}{4}x(x - \frac{1}{3})^2 \geq 0.
\]

Hence the smallest value of \(\alpha \) is \(\frac{4}{9} \).

Mario Catalani’s solution typified those which used calculus.

We can rewrite the desired inequality as

\[
\frac{\frac{1}{27} - xyz}{\frac{1}{3} - (yz + zx + xy)} \leq \alpha
\]

Let \(g(x, y, z) \) be the LHS. Then

\[
g(x, y, z) = \frac{1}{9} \times \frac{1 - 27xyz}{1 - 3(yz + zx + xy)}
\]

\[
= \frac{1}{9} \times \frac{1 - 27xy(1-x-y)}{1 - 3(xy + x(1-x-y) + y(1-x-y))}
\]

\[
\leq \frac{1}{9} \times \frac{1}{1 - 3(1-x)x}
\]

where we used the restrictions \(z = 1 - x - y \), \(0 \leq y \leq 1 - x \) and \(x \geq 0 \). Now consider the function

\[
f(x) = \frac{1}{9} \times \frac{1}{1 - 3(1-x)x}
\]

Either by calculus or completing the square, we readily see that \(f(x) \) attains its maximum at \(x = 0.5 \) and \(f(0.5) = \frac{4}{9} \). It follows

\[
f(x) \leq \frac{4}{9}
\]

Then

\[
g(x, y, z) \leq \frac{4}{9}
\]
Now it is easy to compute
\[g(0.5, 0.5, 0) = \frac{4}{9} \]
This shows that \(\alpha = \frac{4}{9} \).

Michel Bataille and Murray Klamkin point out that, when \(\alpha = \frac{4}{9} \), the inequality rearranges to
\[x(x - y)(x - z) + y(y - z)(y - x) + z(z - x)(z - y) \geq 0 \]
which is a case of Schur’s inequality discussed, for example, in P. Ivády’s June 1983 Gazette article (pp.126–127).

Murray Klamkin and Walther Janous further observe that, writing \(T_1 = \sum x \), \(T_2 = \sum yz \), \(T_3 = xyz \), when \(\alpha = \frac{4}{9} \) the given inequality is the same as \(T_3^3 \geq 4T_1T_2 - 9T_3 \) which is the best inequality of a homogeneous symmetric inequality of three non-negative variables \(x, y, z \) with equality if \(x = y = z \). For if \(T_3^3 \geq aT_1T_2 + bT_3 \), the latter condition forces \(9a + b = 27 \). But then
\[4T_1T_2 - 9T_3 \geq aT_1T_2 + (27 - 9a)T_3 \]
since \(T_1T_2 \geq 9T_3 \).

Perhaps Murray’s last contribution to Math. Gaz. appears at
87.I (Michel Bataille)
Let \(A, B, C \) and \(D \) be distinct points on a circle with radius \(r \). Show that
\[AB^2 + BC^2 + CD^2 + DA^2 + AC^2 + BD^2 \leq 16r^2 \]
When does equality occur?

This extremely popular problem attracted a wide range of solutions. Notable for its algebraic elegance was that of I. G. Macdonald.

We may assume that \(r = 1 \) and that \(A, B, C, D \) are represented by four complex numbers \(t_1, \ldots, t_4 \) of modulus 1 (so that \(\bar{t}_i = t_i^{-1} \)). Then
\[AB^2 = |t_1 - t_2|^2 = (t_1 - t_2)(t_1^{-1} - t_2^{-1}) = 2 - t_1t_2^{-1} - t_2t_1^{-1} \]
and so on, so that
\[
S = AB^2 + BC^2 + \cdots + BD^2 = \sum_{i<j} (2 - t_i t^{-1}_j - t_j t^{-1}_i)
\]
\[
= 12 - \sum_{i\neq j} t_i t^{-1}_j
\]
\[
= 16 - e_1 \bar{e}_1
\]
\[
= 16 - |e_1|^2
\]

where \(e_1 = t_1 + t_2 + t_3 + t_4 \). Hence \(S \leq 16 \) and \(S = 16 \) if and only if \(e_1 = 0 \). This means that the quartic equation whose roots are \(t_1, \ldots, t_4 \) is of the form \(x^4 + e_2 x^2 + e_4 = 0 \) (because the coefficient of \(x^3 \) is \(-e_1 = 0\) and that of \(x \) is \(-e_1 e_4 = 0\)). Hence \(S = 16 \) if and only if \(ABCD \) is a rectangle.

John Rigby observed that the inequality may be extended to \(n \) points on a circle. Several solvers used vectors: these gave rise to the shortest proofs. Moreover, Murray S. Klamkin (quoted) and Li Zhou noted that the proof extends (unchanged) to more than 2 dimensions to give the definitive generalisation: if \(P_1, \ldots, P_n \) are \(n \) points (distinct or otherwise) all distance \(r \) from \(O \) in \(\mathbb{R}^d \), then
\[
\sum_{i<j} |P_i P_j|^2 \leq n^2 r^2
\]

To see this, write \(p_i = \overrightarrow{OP}_i \) and observe that \(\sum_{i<j} |p_i - p_j|^2 \leq n^2 r^2 \) in expanded-out form is equivalent to \(n^2 r^2 + 2 \sum_{i<j} p_i \cdot p_j \geq 0 \). This now follows since the LHS is also the expansion of \((p_1 + p_2 + \cdots + p_n)^2\). There is equality if and only if \(p_1 + p_2 + \cdots + p_n = 0 \), i.e., the centroid of \(P_1, P_2, \ldots, P_n \) coincides with \(O \).

It is interesting to note that, in the 3-dimensional extension of 87.I with four points, equality holds for inscribed isosceles tetrahedra (which includes rectangles in a circle of radius \(r \) as a degenerate case). And equality also holds for the Platonic solids—a pretty observation!

Finally, Christopher Bradley noted that a proof of the \(n = 3 \) case was the key to Problem 3 of the 1996 Lithuanian Mathematical Olympiad (Crux Mathematicorum, 26 275–277).

Readers will be saddened to learn of the passing of Murray Klamkin who died aged 83 in August 2004. He was universally admired as the doyen of problemists worldwide with an encyclopaedic knowledge which he was delighted to share. His problems and solutions graced the columns of every mathematics journal which has a problems section; in particular, he responded regularly to the problems in the Gazette. His last contribution (July 2004, pp.324–325) typified his elegant, incisive style.

Nick Lord
Excerpts from Murray Klamkin, SIAM Rev. 1959–98

Richard K. Guy

June 22, 2006

This is the first of a number of files listing problems, solutions and other writings of Murray Klamkin. [I haven’t accessed Vols. 1 and 2 of SIAM Rev. Murray may have been Problems Editor from the start? YES! He was – see page 4 below.]

The easiest way to edit is to cross things out, so I make no apology for the proliferation below. Just lift out what you want.

SEE PAGES 24–25 FOR FURTHER REMARKS ABOUT EDITING.

The rest may be of use to others who are wishing to make collections of Murray’s work.

To reduce confusion, my own remarks from now on will be in double brackets:

[[Perhaps Bruce S. and Andy L. (and presumably wewouls welcome input from others?) will give me some detail as to the format. Not just a catalog of Murray problems?

Is there any record of any of Murray’s excellent problem-solving talks? E.g., those he gave at training sessions for IMO teams. (The appendix to) the following article gives a glimpse of what I’d like to see in the way of general introduction.]]
APPENDIX

1. Solve
\[y'(x^2 + 1) = xy + \sqrt{x^3 + x - y^2} \]

2. Given four mutually external circles \(C_1, C_2, C_3, C_4 \), with radii \(r_1, r_2, r_3, r_4 \), respectively, find the relation among the circles if they have a common tangent circle (Casey’s relation).

3. \(ABCD \) is a parallelogram circumscribing a conic. Show that its diagonals are conjugate diameters.

4. If the side-lines of a skew quadrilateral touch a sphere, the points of contact are coplanar.

5. Through a point \(P \) inside an ellipse, draw a line cutting off a minimum area from the ellipse.

6. Show that it is possible to “weight” a pair of dice, such that ten of the eleven sums which can come up have equal probability.

7. Is it possible to “weight” \(N \) \((N > 2)\) dice such that all possible sums have equal probability of coming up?

8. Construct a linkage which will convert circular motion into straight-line motion.

9. Determine the condition on two circles such that a closed Steiner chain can be formed.

10. Determine the leading term in the asymptotic expansion of \(A_n \), where
\[A_{n+1} = A_n + A_n^{-1} \quad (A_0 = 1) \]

11. Determine the number of ways of inserting parentheses to form products \(r + 1 \) at a time in \((a_1a_2a_3 \cdots a_n) \).

12. What is the analogue of problem 11 as a dissection of a convex \(n \)-gon?

13. The points of contact of the sides of triangles of minimum area circumscribing an ellipse are the mid-points of the sides (also true if the ellipse is replaced by a convex oval).
14. Show that
\[
\int_0^1 \frac{dt}{[1-t^{2n}]^{1/n}} \div \int_0^1 \frac{dt}{[1+t^{2n}]^{1/n}} = sec \frac{\pi}{2n} \quad n = 2, 3, \ldots
\]
without integrating.

15. Construct the mid-point of a line segment with compass alone.

16. Construct the straight line joining two given points with a straightedge alone whose length is too small to span the two points.

17. Determine the shape of a smooth curve such that the time of descent (to the bottom) of a particle sliding down is independent of the initial position of the particle.

18. Sum
\[
S_n = \sum_{r=1}^{\infty} \frac{a(r, n)}{r}
\]
where \(n\) is an integer >! and \(a(r, n) = \begin{cases} 1 & \text{if } n \nmid r \\ 1-n & \text{if } n \mid r \end{cases}\)

19. Show that the theorems of Menelaus and Ceva are dual.

20. Show that one cannot decompose the integers into a finite number of arithmetic progressions such that all the common differences are distinct.

21. Determine a four parameter solution of the Diophantine equation
\[
x_1^2 + x_2^2 + x_3^2 + x_4^2 = (a_1^2 + a_2^2 + a_3^2 + a_4^2)z^n \quad (n > 1, a_r \text{ given})
\]
[Let me backtrack. I’ve now got access to the first two volumes of SIAM Review, and there’s some important stuff, Murray-wise:]

SIAM Rev., 1(1959) 68–70.

PROBLEMS

EDITED BY MURRAY S. Klamkin, AVCO Manufacturing Corporation

All problems should be sent to Murray S. Klamkin, R-6 Physics, AVCO Research and Advanced Development Division, Wilmington, Massachusetts.

The editors of the SIAM Review desire the development and continuance of a Problems Section. To this end, Murray S. Klamkin has been appointed an editor of the Problem Section, and he seeks contributed problems, with or without solution, which would be of interest to the SIAM membership. Each problem should be cast in its applied or industrial setting, complete with references and indications of known approaches; solutions to problems must be self-contained. Discussions should, where applicable, call attention to areas where there is a need for the development of mathematical techniques. Problems (as well as solutions) should be submitted in accordance with the instructions given on the inside front cover. Solutions will be published, and the editors will list annually the problems yet to be solved. An asterisk placed beside a problem number indicates that the problem was submitted without solution.

Problem 59-1*, The Ballot Problem*, by Mary Johnson (American Institute of Physics) and M. S. Klamkin.

A society is preparing 1560 ballots for an election for three offices for which there are 3, 4 and 5 candidates, respectively. In order to eliminate the effect of the ordering of the candidates on the ballot, there is a rule that each candidate must occur an equal number of times in each position as any other candidate for the same office. What is the least number of different ballots necessary?

It is immediately obvious that 60 different ballots would suffice. However, the following table gives a solution for 9 different ballots:

<table>
<thead>
<tr>
<th>No. of ballots</th>
<th>312</th>
<th>78</th>
<th>130</th>
<th>234</th>
<th>182</th>
<th>104</th>
<th>208</th>
<th>286</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. . . .</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>2. . . .</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>F</td>
<td>G</td>
<td>E</td>
</tr>
<tr>
<td>3. . . .</td>
<td>H</td>
<td>I</td>
<td>K</td>
<td>I</td>
<td>K</td>
<td>J</td>
<td>J</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>
Another solution (by C. Berndtson) is given by

<table>
<thead>
<tr>
<th>Office</th>
<th>No. of ballots</th>
<th>260</th>
<th>182</th>
<th>78</th>
<th>234</th>
<th>52</th>
<th>130</th>
<th>104</th>
<th>312</th>
<th>208</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. . .</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. . .</td>
<td>D</td>
<td>F</td>
<td>E</td>
<td>G</td>
<td>G</td>
<td>D</td>
<td>G</td>
<td>E</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>3. . .</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>J</td>
<td>H</td>
<td>I</td>
<td>K</td>
<td>L</td>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>

The above tables just give the distribution for the first position on the ballot for each office. The distributions for the other positions are obtained by cyclic permutations.

We now show that 9 is the least possible number of ballots. Let us consider the distribution for office 3 using only 8 different ballots. We must have the following (for simplicity we consider a total of 60 ballots):

<table>
<thead>
<tr>
<th>No. of ballots</th>
<th>x</th>
<th>12 − x</th>
<th>y</th>
<th>12 − y</th>
<th>z</th>
<th>12 − z</th>
<th>12</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. . .</td>
<td>H</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

Now to get a total of 15 representations for each position for office 2, we must have $x = y = 3, z = 6$. But this does not satisfy the requirements for office 1. Similarly no number of ballots fewer than 8 will suffice.

It would be of interest to solve this problem in general. The problem is to determine a distribution of the candidates such that the system of linear equations for the number of each type of ballot, which contains more equations than unknowns, is solvable in positive integers.

A trick solution to the problem can be obtained using 5 different ballots: add two fictitious names to the group of 3 and one to the group of 4. We then have 3 offices for which there are 5 “candidates” for each. This would also provide a survey on the effect of ordering of the candidates on the ballot.
Problem 59-2, *N-dimensional Volume*, by Maurice Eisenstein (AVCO Manufacturing Corporation) and M. S. Klamkin.

Determine the volume in N-space bounded by the region

\[
0 \leq a_1 x_1 + a_2 x_2 + \cdots + a_N x_n < 1 \quad (a_r \geq 0)
\]

\[
b_r \geq x_r \geq c_r \quad (r = 1, 2, \ldots, N)
\]

This problem has arisen from the following physical situation: a series-parallel circuit of N resistances is given where each of the resistances \(R_i \) are not known exactly but are uniformly distributed in the range \(R_i \pm \epsilon_i R_i \) (\(\epsilon_i \ll 1 \)). We wish to determine the distribution function for the circuit resistance

\[
R = F(R_1, R_2, \ldots, R_N)
\]

To first order terms

\[
\Delta R = \sum_{i=1}^{N} \frac{\partial F}{\partial R_i} dR_i \quad (|dR_i| \leq \epsilon_i R_i)
\]

The probability that the circuit resistance lies between \(R \) and \(R + \Delta R \) will be proportional to the volume bounded by the region

\[
0 \leq \sum_{i=1}^{N} \frac{\partial F}{\partial R_i} x_i \leq \Delta R \quad (-\epsilon_i R_i \leq x_i \leq \epsilon_i R_i)
\]

Special cases of the problem arise in the two following examples:

(A) A sequence of independent random variables with a uniform distribution is chosen from the interval (0,1). The process is continued until the sum of the chosen numbers exceeds \(L \). What is the expected number of such choices? The expected number \(E \) will be given by

\[
E = 1 + F_1 + F_2 + F_3 + \cdots
\]

where \(F_i \) is the probability of failure up to and including the \(i \)th trial. Geometrically, \(F_i \) will be given by the volume enclosed by

\[
x_1 + x_2 + \cdots + x_i \leq L
\]

\[
0 \leq x_r \leq 1 \quad (r = 1, 2, \ldots, i)
\]

For the case \(L = 1 \)

\[
E = \sum_{m=0}^{\infty} \frac{1}{m!} = e
\]
(D. J. Newman & M. S. Klamkin, Expectations for sums of powers, Avco Research and Development Division, RAD-U-58-13; to be published shortly in the American Mathematical Monthly.)

(B) What is the probability that N points picked at random in a plane form a convex polygon?

If we denote the interior angles by θ_i, the probability that the polygon will be convex will be proportional to the volume of the region given by

$$\theta_1 + \theta_2 + \theta_3 + \cdots + \theta_N = (N-2)\pi$$

$$0 \leq \theta_r < 2\pi$$

(we are assuming that the angles are uniformly distributed).

SIAM Rev., 2(1960) 41–45

Solution by I. J. Schoenberg, University of Pennsylvania.

Let B_ω denote the volume of the n-dimensional polyhedron

$$0 \leq x_i \leq a_i \quad i = 1, 2, \ldots, n \quad (1)$$

$$0 \leq \lambda_1 x_1 + \lambda_2 x_2 + \cdots \leq \omega \quad (2)$$

where $\lambda_1^2 + \lambda_2^2 + \cdots + \lambda_n^2 = 1$ and a_r, λ_r, $\omega \geq 0$. Also, let $b_i = a_i \lambda_i$. If $F(u)$ is a function of one variable u, we define the operator L_n by

$$L_n F(u) = \sum_{(\alpha_1, \alpha_2, \ldots, \alpha_i)} (-1)^{n-i} F(b_{\alpha_1 + b_{\alpha_2 + \cdots + b_{\alpha_i}}}) \quad (3)$$

where $(\alpha_1, \alpha_2, \ldots, \alpha_i)$ runs through all the 2^n combinations of the n quantities b_1, b_2, \ldots, b_n. For example

$$L_1 F(u) = F(b_1) - F(0)$$

$$L_2 F(u) = F(b_1 + b_2) - F(b_1) - F(b_2) + F(0)$$

It follows that

$$L_n F(u) = L_{n-1} F(u + b_n) - L_{n-1} F(u)$$

If $F(u)$ is sufficiently smooth,

$$\int_B \cdots \int F^{(n)}(\lambda_1 x_1 + \cdots + \lambda_n x_n) \, dx_1 \cdots dx_n = \prod r = 1^n \lambda_r^{-1} L_n F(u) \quad (4)$$
where B denotes the box defined by (1). To establish (4) we assume it holds for $n = 1, 2, \ldots, n - 1$. Then

$$
\int_0^{a_n} dx_n \int \cdots \int_{x_n \text{ fixed}} F^{(n)}(\lambda_1 x_1 + \cdots + \lambda_n x_n) dx_1 \cdots dx_{n-1}
$$

\[= \frac{1}{\lambda_1 \cdots \lambda_{n-1}} \int_0^{a_n} L_{n-1} F'(u + \lambda_n x_n) dx_n \]

\[= \frac{1}{\lambda_1 \cdots \lambda_{n-1}} \left\{ L_{n-1} F(u + b_n) - L_{n-1} F(u) \right\} \]

\[= \prod \lambda_i^{-1} L_n F(u) \]

Since (4) is valid for $n = 1$ it is valid for all n by induction. One consequence of (4) is that $L_n F(u) = 0$ whenever $F(u)$ is a polynomial of degree less than n. By a known theorem of Peano we can write

$$
L_n F(u) = \int_{-\infty}^{\infty} \Phi_n(x) F^{(n)}(x) dx \quad (5)
$$

where the kernel Φ_n may be described as follows: If we define the truncated power function x^k_+ by

$$
x^k_+ = \begin{cases} x^k & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases} \quad k = 0, 1, 2, \ldots \quad (6)
$$

then

$$
\Phi_n(x) = L_n \frac{(u - x)^{n-1}}{(n - 1)!} \quad (7)
$$

where the right side x is treated as a parameter and L_n operates on the variable u. Since $\Phi_n(x) = 0$ if $x < 0$ or $x > \sum_1^n b_r = b$,

$$
\int_B \cdots \int F^{(n)}(\lambda_1 x_1 + \cdots + \lambda_n x_n) dx_1 \cdots dx_n = \prod \lambda_i^{-1} \int_0^b \Phi_n(x) F^{(n)}(x) dx \quad (8)
$$

Equation (8) shows that $\prod \lambda_i^{-1} \Phi_n(x)$ is the area of the intersection of the box B with the hyperplane $\lambda_1 x_1 + \cdots + \lambda_n x_n = x$ (x fixed). To see this more clearly, we choose $F(x)$ in (8) such that

$$
F^{(n)}(x) = \begin{cases} 1 & \text{if } x \leq \omega \\ 0 & \text{if } x > \omega \end{cases} \quad \text{i.e.}
$$

$$
F(x) = (-1)^n \frac{(\omega - x)^n}{n!} \quad (9)
$$

8
Equation (8) now reduces to

$$B_\omega = \prod \lambda_r^{-1} \int_0^\omega \Phi_n(x) \, dx \quad (9)$$

Since the operator L_n commutes with the integration

$$\prod \lambda_r B_\omega = L_n \int_0^\omega \frac{(u-x)_+^{n-1}}{(n-1)!} \, dx = -L_n \left\{ \frac{(u-x)_+^n}{n!} \right\}^{x=\omega}_{x=0}$$

$$= \frac{1}{n!} L_n u_+^n - \frac{1}{n!} L_n (u - \omega)_+^n$$

Writing $B = a_1 a_2 \cdots a_n$ and observing that if $\omega \geq b$ then $L_n(u - \omega)_+^n = 0$ and $B_\omega = B$. We may now write our final result as

$$B_\omega = B - \frac{\prod \lambda_r^{-1}}{n!} L_n (u - \omega)_+^n \quad (10)$$

As an example, let us consider the hypercube when $a_r = 1$ and $\lambda_r = n^{-1/2}$, $r = 1, 2, \ldots, n$. Then also $b_r = n^{-1/2}$ and (10) gives

$$B_\omega = 1 - \frac{n^{n/2}}{n!} \Delta^n (u - \omega)_+^n \bigg|_{u=0} \quad (11)$$

where Δ^n is the ordinary n^{th} order advancing difference operator of step $h = n^{-1/2}$. Now, if $\omega = 0$ then $B_\omega = 0$ and (11) gives

$$\Delta^n u_+^n \big|_{u=0} = \Delta^n u^n \big|_{u=0} = n^{-n/2} n!$$

which is a known relation. If $\omega = n^{-1/2}$ then again for the ordinary power function

$$\Delta^n (u - \omega)_+^n \big|_{u=0} = n^{-n/2} n! \quad (12)$$

Passing to the truncated power function only one term of the left side of (12) drops out so that

$$\Delta^n (u - \omega)_+^n \big|_{u=0} = n^{-n/2} \{n! - 1\}.$$

Finally (11) gives for $\omega = n^{-1/2}$ the value

$$B_{n^{-1/2}} = \frac{1}{n!}$$

which is also known.

The expression (7) shows that $\Phi_n(x)$ is what has been called elsewhere [Bull. Amer. Math. Soc., 64(1958) 352–357] a spline curve of degree $n - 1$, i.e. a composite of different polynomials of degree $n - 1$ having $n - 2$ continuous derivatives while $\Phi_n^{(n-1)}$
has jumps at the “knots” \(x = b_{\alpha_1} + \cdots + B_{\alpha_i} \). The Laplace transform of \(\Phi_n(x) \), however, has the simple form

\[
\int_{-\infty}^{\infty} e^{-sx} \Phi_n(x) \, dx = \prod_{r=1}^{n} \frac{1 - e^{-sb_r}}{s}
\]

(13)

This transform is particularly useful if we wish to discuss the limit properties of the distribution \(\Phi_n(x) \) for large \(n \). \textit{Remark}: No originality is claimed for the matters presented here. The operator \(L_n \) was studied by M. Frechet, T. Popoviciu and others. Laplace transforms of the kind obtained here were already derived by Laplace himself. Finally, G. Pólya’s Hungarian doctoral dissertation \textit{[Mathematikai es Physikai Lapok XXII]} is devoted to an intensive study of the transforms (13). As a matter of fact, Pólya starts from the problem of determining the volume \(B_\omega \) and also stresses the relations with probability theory which are obtained if \(n \) is allowed to tend to infinity.

Also solved by Larry Shepp who shows that the probability that an \(n+1 \) sided polygon be convex (the angles of which are assumed uniformly distributed) is

\[
P_{n+1} = \frac{2^n - n - 1}{(n-1)^n - \binom{n+1}{1}(n-3)^n + \cdots + (-1)^{\lfloor n/2 \rfloor + 1}\binom{n+1}{\lfloor n/2 \rfloor - 1}(n-2\lfloor n/2 \rfloor + 1)^n}
\]

This generalizes the result of H. Demir for the case \(n = 3 \) (\textit{Pi Mu Epsilon J.}, Spring 1958).

By a spline function of degree \(n - 1 \) is meant a function of the form

\[
S_{n-1,k}(x) = P_{n-1}(x) + \sum_{\nu=1}^{k} C_{\nu}(x - \xi_{\nu})_{+}^{n-1},
\]

where \(P_{n-1}(x) \) is a polynomial of degree \(\leq n - 1 \) and \(x_{+}^{n-1} = x^{n-1} \) for \(x \geq 0 \) and 0 if \(x < 0 \). In this research announcement a fundamental theorem of algebra is given for spline functions and applications are indicated to mechanical quadrature formulas of Gauss and Radau type. The determination of the knots \((\xi_{\nu}) \) of a spline function with given zeros is made to depend upon a refinement of a theorem of Carathéodory on convex hulls.

Reviewed by P. J. Davis]
[I’ve now got myself out of chronological order, since next is Problem 60-11, which is below.]

SIAM Rev., 1(1959) 172.

Problem 59-6, *The Smallest Escape Asteroid*, by M. S. Klamkin (AVCO Research and Advanced Development Division).

A problem which was solved in the American Mathematical Monthly (May, 1953, p.332) was to determine the largest asteroid that one could jump “clear” off (escape). A more interesting and more difficult problem would be to determine the smallest asteroid that one could jump “clear” off. The difficulty arises in the reaction of the asteroid. For a large one the reaction is negligible. But this is not true for a small one. [I don’t think that a solution was ever offered.]

SIAM Rev., 2(1960) 41.

Problem 60-3, *A Center of Gravity Perturbation*, by M. S. Klamkin (AVCO Research and Advanced Development Division).

Determine a vector \(Z = (z_1, z_2, \ldots, z_n) \) which maximizes \((A \cdot Z)^2 + (B \cdot Z)^2 \) where \(A \) and \(B \) are given vectors and \(|z_r| \leq 1, \ r = 1, 2, \ldots, n \). This problem arises from the following physical situation:

A composite body consists of \(n \) component masses \(\{m_r\} \) with individual cC.G.s at \((x_r, y_r) \). The masses will not be known exactly but can vary within a tolerance of \(\pm \epsilon_r m_r \ (\epsilon_r \ll 1) \). What is the greatest distance the C.G. can be from the C.G. which is calculated by using the nominal masses?

If the origin of our coordinate system is taken at the nominal C.G., then to first order terms the perturbation in the position of the C.G. due to perturbations in the masses will be given by

\[
\Delta x = \frac{\sum x_r \Delta m_r}{\sum m_r}
\]
\[
\Delta y = \frac{\sum y_r \Delta m_r}{\sum m_r}
\]

Then

\[
\Delta x^2 + \Delta y^2 = (A \cdot Z)^2 + (B \cdot Z)^2
\]

where

\[
A = \left\{ \frac{\epsilon_r m_r x_r}{\sum m_r} \right\} \quad r = 1, 2, \ldots, n
\]
\[
B = \left\{ \frac{\epsilon_r m_r y_r}{\sum m_r} \right\} \quad r = 1, 2, \ldots, n
\]
\[
Z = \{z_r\} \quad |z_r| \leq 1, \quad r = 1, 2, \ldots, n
\]
It follows that the maximizing vector \(Z \) (emanating from the origin) will terminate on one of the vertices of the hypercube \((\pm 1, \pm 1, \ldots, \pm 1)\). The difficulty in the problem resides in the fact that in the actual problem involved, \(n = 43 \) and thus the number of vertices is \(2^{43} \) which is much too large to check each one. Crude upper and lower bounds can be immediately obtained by considering \(Z \) to terminate on the circumscribed and inscribed hyperspheres, respectively. In these cases the maximizing vector will lie in the plane of \(A \) and \(B \) and is easily determined. The ratio of these bounds is \(\sqrt{n} \). The lower bound can be improved by choosing the “closest” vertex vector to the latter maximizing vector.

[[No solution appeared until:]]

Solution by John Quinn (St. Francis Xavier University, Nova Scotia, Canada).

We let

\[
\Omega = \{(A \cdot Z, B \cdot Z) : |z_i| \leq 1, \ i = 1, \ldots, n\}
\]

Our problem is to find a point \((\alpha, \beta)\) in \(\Omega\), whose distance \(r\) from the origin is a maximum. If \((\bar{\alpha}, \bar{\beta})\), \(\bar{r}\) is optimal, then the vector \((\bar{\alpha}, \bar{\beta})\) is an outward normal to the disk of radius \(\bar{r}\) about the origin, and to a line of support to the centro-symmetric convex polygon \(\Omega\) at the vertex \((\bar{\alpha}, \bar{\beta})\). This line has equation

\[
\alpha \bar{\alpha} + \beta \bar{\beta} = \bar{r}^2
\]

and intersects \(\Omega\) only at \((\bar{\alpha}, \bar{\beta})\). It follows that the corresponding \(-Z\) is uniquely determined by the condition that

\[
\bar{\alpha} \sum_{i=1}^{n} a_i z_i + \bar{\beta} \sum_{i=1}^{n} b_i z_i = \sum_{i=1}^{n} (\bar{\alpha} a_i + \bar{\beta} b_i) z_i
\]

is maximum, where \(A = (a_i), B = (b_i)\). Thus \(-Z\) is given by

\[
z_i = \begin{cases}
+1 & \text{if } \bar{\alpha} a_i + \bar{\beta} b_i > 0 \\
-1 & \text{if } \bar{\alpha} a_i + \bar{\beta} b_i < 0
\end{cases} \quad (1)
\]

and, rather than maximizing \((A \cdot Z)^2 + (B \cdot Z)^2\) over all \(Z\) with \(|z_i| \leq 1\), we need only consider \(Z\) given by \((1)\) as \((\bar{\alpha}, \bar{\beta})\) ranges over all nonzero vectors in \(R^2\). But \((1)\) simply states that \(z_i = 1\) or \(-1\), according to whether \((a_i, b_i)\) lies above or below the line

\[\ell : \bar{\alpha} \alpha + \bar{\beta} \beta = 0.\]

If \(\ell\) is rotated, the corresponding \(-Z\) changes only when \(\ell\) intersects one of the points \((a_i, b_i)\). Since there are only \(n\) such points, there are at most \(n\) distinct \(-Z\) generated by \((1)\). We shall refer to these \(Z\) as the suspects.
A systematic way of generating the suspects is to use lines having normal vectors \((-b_j, a_j)\). We then define \(Z^{(j)}\) for \(j = 1, 2, \ldots, n\) by

\[
z_i^{(j)} = \begin{cases}
+1 & \text{if } -b_j a_i + a_j b_i \geq 0 \\
-1 & \text{if otherwise}
\end{cases}
\]

and determine \(j\) so that

\[(A \cdot Z^{(j)})^2 + (B \cdot Z^{(j)})^2\]

is a maximum.

Note. The above method generalizes to, for example, the problem of finding

\[
\max \{ A \cdot Z + B \cdot Z + C \cdot Z \}.
\]

The argument involving a family of lines is replaced by one involving a family of planes through the origin, and the \(n\) suspects \(Z^{(j)}\) for a maximum are replaced by \(Z^{(j,k)}\), \(j = 1, 2, \ldots, n; k = 1, 2, \ldots, n; k \neq j\), where

\[
z_i^{(j,k)} = \begin{cases}
+1 & \text{if } (a_i, b_i, c_i) N^{(j,k)} \geq 0 \\
-1 & \text{if otherwise}
\end{cases}
\]

and

\[N^{(j,k)} = (a_j, b_j, c_j) \times (a_k, b_k, c_k).\]

Editorial comment. It is to be noted that for the solution given here, the number of calculations necessary to determine the optimum \(Z\) is \(O(n^2)\). This is far better than trying all vectors \(Z = (\pm 1, \pm 1, \ldots, \pm 1)\), which requires \(O(2^n)\) calculations. An open problem is to determine whether or not one can do better than \(O(n^2)\). [M.S.K.]

[[Now I’m back on track, but out of order. Chronologically, but not logically, the reader should step back to the (Appendix to the) article by MSK & D.J.Newman.]]
Problem 61-4, Flight in an Irrotational Wind Field, by M. S. Klamkin (AVCO) and D. J. Newman (Yeshiva University)

If an aircraft travels at a constant air speed, and traverses a closed curve in a horizontal plane (with respect to the ground), the time taken is always less when there is no wind, than when there is any constant wind. Show that this result is also valid for any irrotational wind field and any closed curve (the constant wind case is due to T. H. Matthews, Amer. Math. Monthly, Dec. 1945, Problem 4132).

Solution by the proposers.

If we let $W = $ wind velocity, $V =$ actual plane velocity (which is tangential to the path of flight), then $|V - W|$ is the constant air speed of the airplane (without wind) and will be taken as unity for convenience.

We now have to show that

$$\oint \frac{ds}{|V|} \geq \oint \frac{ds}{1} \quad (1)$$

By the Schwarz inequality

$$\oint |V| ds \cdot \oint \frac{ds}{|V|} \geq \left(\oint ds \right)^2 \quad (2)$$

Since

$$\oint |V| ds = \oint V \cdot dR = \oint (V - W) \cdot dR + \oint W \cdot dR$$

and

$$\oint W \cdot dR = 0 \quad (W \text{ is irrotational})$$

$$\oint |V| ds \leq \oint |V - W| |dR| = \oint ds. \quad (3)$$

(1) now follows from (2) and (3).

[Articles:]

Problem 60-11 A Parking Problem, by M. S. Klamkin (AVCO), D. J. Newman (Yeshiva University) and L. Shepp (University of California, Berkeley).

Let $E(x)$ denote the expected number of cars of length 1 which can be parked on a block of length x if cars park randomly (with a uniform distribution in the available space). Show that $E(x) \sim cx$ and determine the constant c.

This problem was obtained third-hand by the proposers and attempts were made to track down the origin of the problem. These efforts were unsuccessful until after the problem was published. Subsequently, H. Robbins, Stanford University, has informed me that he had gotten the problem from C. Derman and M. Klein of Columbia University in 1957 and that in 1958 he had proven jointly with A. Dvoretzky that

$$E(x) = cx - (1 - c) + O(x^{-n}) \quad n \geq 1$$

plus other results like asymptotic normality of x etc. They had intended to publish their results but did not when they found that A. Rényi had published a paper proving (8) [i.e., the above displayed formula] in 1958, i.e., “On a One-Dimensional Problem Concerning Random Place Filling,” Mag. Tud. Akad. Kut. Mat. Intézet. Közleményei, pp.109–127. Also (8) is proven by P. Ney in his Ph.D. thesis at Columbia.

A reference to the Rényi paper was also sent in by T. Dalenius (University of California, Berkeley).

An abstract of the Rényi paper was sent in anonymously from the National Bureau of Standards. The abstract appears in the International Journal of Abstracts: Statistical Theory and Method, Vol.I, No.1, July 1959, Abstract No.18. According to the abstract, there is a remark due to N. G. DeBruijn in the Rényi paper stating that a practical application of the Rényi result is in the parking problem that was proposed here. In addition, the constant c has been evaluated to be 0.748.
Problem 62-15, A Property of Harmonic Functions, by M. S. Klamkin (University of Buffalo).

A. For what functions F do there exist harmonic functions ϕ satisfying

$$\left(\frac{\partial \phi}{\partial x}\right)^2 + \left(\frac{\partial \phi}{\partial y}\right)^2 + \left(\frac{\partial \phi}{\partial z}\right)^2 = F(\phi)$$

B. Give a physical interpretation for (A).

[[No solution appeared until]]

Solution by O. G. Ruehr (Graduate Student, University of Michigan (1962)—Professor Emeritus, Michigan Technological University (1998)).

The following generalization and solution for part (A) is taken entirely from [2], with motivation in [1]. We treat the Helmholtz equation $\nabla^2 \phi + k^2 \phi = 0$ in n dimensions, k is constant. To illustrate the procedure we will work out the cases $n = 1, 2$. For $n = 1$, we differentiate $F(\phi) = \phi_x^2$ with respect to x and divide by ϕ_x to get $F'(\phi) = 3\phi_{xx}$. From the Helmholtz equation we find that $F'(\phi) + 2k^2 \phi = 0$. For $n = 2$, we differentiate $F(\phi) = \phi_x^2 + \phi_y^2$ twice with respect to x and with respect to y to get

$$F' \phi_x = 2\phi_x \phi_{xx} + 2\phi_y \phi_{yx}$$
$$F' \phi_y = 2\phi_x \phi_{xy} + 2\phi_y \phi_{yy}$$
$$F'' \phi_x^2 + F' \phi_{xx} = 2\phi_{xx}^2 + 2\phi_x \phi_{xxx} + 2\phi_{xy}^2 + 2\phi_y \phi_{yxx}$$
$$F'' \phi_y^2 + F' \phi_{yy} = 2\phi_{xy}^2 + 2\phi_x \phi_{xyy} + 2\phi_{yy}^2 + 2\phi_y \phi_{yyy}$$

Adding the last two equations and using the Helmholtz equation and the definition of F yields

$$FF'' - k^2 \phi F' = 4\phi_{xy}^2 + 2(\phi_{xx}^2 + \phi_{yy}^2) - 2k^2 F$$

From the first two equations we obtain

$$(F' - 2\phi_{xx})(F' - 2\phi_{yy}) = 4\phi xy^2$$
Combining the last two equations we have
\[FF'' - k^2 \phi F' = F'' + 2k^2 \phi F - 2k^2 F + 4 \phi_{xx} \phi_{yy} + 2(\phi_{xx}^2 + \phi_{yy}^2) \]

Since the last two terms are just twice the square of the Helmholtz equation, we obtain
finally the differential equation for \(F \) as follows:
\[FF'' = F'' + 3k^2 \phi F' - 2k^2 F + 2k^4 \phi^2 \]

From now on let us agree to write \(f(x) \) for \(F(\phi) \). The function \(f \) satisfies the differential equation \(\beta_n = 0 \), where the differential polynomials \(\beta \) are defined by
\[
\beta_1 = \frac{df}{dx} + 2k^2 x \\
\beta_2 = 2f \frac{d\beta_{i-1}}{dx} - \left(i \frac{df}{dx} + 2k^2 x \right) \beta_{i-1} \quad i = 2, 3, \ldots, n
\]

These relationships are found formally by repeated differentiation and algebraic simplification. For \(n = 1 \) we have \(f' + 2k^2 x = 0 \), for \(n = 2 \) we have \(f(f'' + 2k^2) - (f' + k^2x)(f' + 2k^2x) = 0 \), in agreement with the cases worked out above. For a solution of the differential equation for \(f \) when \(n = 2 \) and \(k = 1 \), see [3]. It is to be emphasized that these are necessary conditions that \(f \) must satisfy, and we say nothing about the existence of the solutions of the partial differential equations themselves. Similar results are found in [2] for the heat equation in \(n \) dimensions and it is shown there that such restrictions cannot exist for the scalar wave equation (because of d’Alembert’s solution).

Again, omitting details, which are in [2], we find a parametric solution for the differential equation \(\beta_n = 0 \) for arbitrary \(n \) as follows:
\[f = \left(\frac{dx}{dt} \right)^2 \]
and
\[
\frac{d^2x}{dt^2} + \frac{dx}{dt} \left(\frac{1}{(t - c_1)} + \frac{1}{(t - c_2)} + \cdots + \frac{1}{(t - c_{n-1})} \right) + k^2 x = 0
\]

Verification of this solution is facilitated by writing \(f = \dot{x}^2, \ddot{x} + \dddot{x}/s + k^2 x = 0 \) and finding by induction that \(\beta_i = -2^i \dddot{x}/s \). Since \(\beta_n = 0 \), \(s \) is an arbitrary polynomial of degree \(n - 1 \) and the result follows as indicated.

Returning to the case \(n = 3 \) and harmonic functions \((k = 0) \), we obtain the differential equation
\[4f^2 f''' - 10ff'f'' + 6f'^3 = 0 \]

17
which has solutions \(f(x) = Be^{Ax}, A\sinh^4(Bx + C) \) and \(A(x - B)^4 \), where \(A, B, C \) are arbitrary constants and the results come from eliminating the parameter \(t \) from the general solution given above.

The solver cannot resist remarking on the irony that the solution had been accomplished before the problem was published. I was not aware of the problem nor was Murray Klamkin aware of my solution during the more than twenty years we worked together.

REFERENCES

Problem 63-9, *An optimal search*, by RICHARD BELLMAN (The Rand Corporation)

Suppose that we know that a particle is located in the interval \((x, x + dx)\), somewhere along the real line \(-\infty < x < \infty\) with a probability density function \(g(x)\). We start at some initial point \(x_0\) and can move in either direction. What policy minimizes the expected time required to find the particle, assuming a uniform velocity and

(a) assuming that the particle will be recognized when we pass \(x\), or

(b) assuming that there is a probability \(p > 0\) of missing the particle as go past it?

Also, what would be the optimum starting point \(x_0\)?

Editorial note. A related class of two dimensional search problems are the following “swimming in a fog” problems. A person has been shipwrecked in a fog and wishes to determine the optimal path of swimming to get to shore (in the least expected time—assuming a uniform rate of swimming). The boundary conditions can be any of the following:

1. The ocean is a half-plane,

2. Condition (1) plus the knowledge that the initial distance to shore is \(\leq D\) (with a uniform distribution),

3. The ocean boundary is a given closed curve, i.e., a circle,rectangle, or possibly not closed (a parabola),

4. Condition (2) and (3), etc.
Comment by Wallace Franck (University of Missouri–Columbia)

I had given a necessary and sufficient condition for this problem in this Journal (7(1965) 503–512). In the comment by Anatole Beck on this problem in the September 1985 Problem Section, p.447, he had given a counterexample to the necessity condition. The purpose of this comment is to alert the reader to my erratum (8(1966) 524) which gives the correct form for this condition. I have corresponded with Professor Beck and he agrees that the corrected condition is indeed correct.

Problem 63 − 13*, An Infinite Permutation, by M. S. Klamki+n (State University of New York at Buffalo).

Consider the infinite permutation

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & \cdots & n & \cdots \\
1 & 3 & 2 & 5 & 7 & 4 & \cdots & f(n) & \cdots
\end{pmatrix}
\]

where

\[
\begin{align*}
f(3n - 2) &= 4n - 3 \\
f(3n - 1) &= 4n - 1 \\
f(3n) &= 2n
\end{align*}
\]

We now write \(P \) as a product of cycles:

\[
P = (1)(2, 3)(4, 5, 7, 9, 6)(8, 11, 15, \ldots) \cdots
\]

It is conjectured that the cycle \((8, 11, 15, \ldots)\) is infinite. Other problems concerning \(P \) are

(a) Can \(P \) be expressed as a product of a finite number of cycles?
(b) Are there any other finite cycles other than those indicated?

Editorial Note: For a similar problem where there are cycles of every length, see Problem 5109, Amer. Math. Monthly, May, 1963. A major difference between the two permutations is that in the latter case, the ratio of odd to even numbers of \(f(n) \) approaches 1, whereas in the former case, the ratio approaches 2.
Given the infinite permutation

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \cdots \\
1 & 2 & 4 & 3 & 5 & 7 & 6 & 8 & 10 & 12 & \cdots
\end{pmatrix}
\]

where the second row is formed by taking in order from the natural numbers, 1 odd, 2 even, 3 odd, \ldots, \(2n\) even, \(2n + 1\) odd, \ldots. What is the cycle structure of this permutation?

Solution by George Bergman, Harvard University. Let \(I_n\) designate the set of integers \(\{i \mid \frac{1}{2} n(n-1) < i \leq \frac{1}{2} n(n+1)\}\). Examination of the given permutation shows that it acts on \(I_n\) by the law: \(i \rightarrow 2i - u_n\) where \(u_n = \frac{1}{2} n^2\) if \(n\) is even, \(u_n = \frac{1}{2} (n^2 + 1)\) if \(n\) is odd. The “pivot” of this action is \(u_n\); \(u_n\) is fixed, numbers of \(I_n\) less than \(u_n\) are decreased, numbers of \(I_n\) greater than \(u_n\) are increased. But we see that even the greatest integer of \(I_n\) is not increased as far as \(u_n + 1\), and even the least integer of \(I_{n+1}\) is not decreased as far as \(u_n\); hence the interval \(J_n = \{i \mid u_n \leq i < u_{n+1}\}\) is sent into itself. This \(J_n\) contains \(2\lceil \frac{n}{2} \rceil + 1\) elements. Let us represent them by the integers 0 through \(2\lceil \frac{n}{2} \rceil\), writing \(j\) for \(u_n + j\). Then the action of our permutation is: \(j \rightarrow 2j\) for \(j \leq \lceil \frac{n}{2} \rceil\), \(j \rightarrow 2j - 2\lceil \frac{n}{2} \rceil - 1\) otherwise. In other words the elements of \(J_n\) are permuted exactly as the residue classes (mod \(2\lceil \frac{n}{2} \rceil + 1\)) are permuted under multiplication by 2.

The nature of the permutation is as follows: for each divisor \(d\) of \(2\lceil \frac{n}{2} \rceil + 1\) the elements \(i = u_n + j\) of \(J_n\) such that \((2\lceil \frac{n}{2} \rceil + 1, j) = d\), form a cycle of order \(f((2\lceil \frac{n}{2} \rceil + 1)/d)\), where \(f(k)\) is the least \(m\) such that \(k \mid 2^m - 1\). This number-theoretic function is described in the standard texts. For example, let \(n = 15\), \(J_n = \{i \mid 113 \leq i < 128\}\), represented by \(\{j \mid 0 \leq j < 15\}\). The permutation for these integers is

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
2 & 4 & 6 & 8 & 10 & 12 & 14 & 1 & 3 & 5 & 7 & 9 & 11 & 13
\end{pmatrix}
\]
The cycles are given by:
\[d = 1: \ (1 \ 2 \ 4 \ 8), \ (7 \ 14 \ 13 \ 11) \sim (114 \ 115 \ 117 \ 121), \ (120 \ 127 \ 126 \ 124) \]
\[d = 3: \ (3 \ 6 \ 12 \ 9) \sim (116 \ 119 \ 125 \ 122) \]
\[d = 5: \ (5 \ 19) \sim (118 \ 123) \]
\[d = 15: \ (0) \sim (113), \text{ fixed.} \]

\[f \] takes on every integral value (for \(f(2^m - 1) = m \)); therefore all cycles are finite, and there are infinitely many cycles of every finite order.

Also solved by L. Carlitz, Donald Liss, P. Catherine Varga and Oswald Wyler.

[I continue from SIAM Rev. The following comment from Dan Shanks, (and another from Oliver Atkin) deserves quoting, especially as it helps to establish the provenance of connecting Collatz’s name with the 3\(x + 1\) problem. Collatz mentioned the problem to me, later, so it’s nice to have this earlier corroboration. — RKG]

Comment by Daniel Shanks (David Taylor Model Basin).

These problems date back, at least, to 1950 when L. Collatz mentioned them in personal conversations during the International Congress at Harvard. In 1955, on one of the first 650’s, the writer found that the cycle (8, 11, ...) contained members > 10\(^{10}\) and would not close under that limit. Further, the cycle (14, 19, ...) behaved similarly; it could not be made either to close or to join the cycle (8, 11, ...). Many other such open and nonjoining cycles (with the limit 10\(^{10}\)) were found.

However, the cycle (44, 59, ..., 66) closes with a period of 12. The known finite cycles therefore have periods 1, 2, 5 and 12. These periods are consistent with the following approximate theory.

Let \(m \) be a member of a finite cycle, and let there be \(a \), \(b \) and \(c \) transformations respectively of the form \(f(3n + 1) = 4n + 1 \), \(f(3n - 1) = 4n - 1 \) and \(f(3n) = 2n \) before the cycle returns to \(m \). Then we have approximately

\[m \left(\frac{4}{3} \right)^a \left(\frac{4}{3} \right)^b \left(\frac{2}{3} \right)^c \approx m \]

Thus

\[2^{2a+2b+c} \approx 3^{a+b+c} \]

or

\[\log_2 3 \approx \frac{2a + 2b + c}{a + b + c} \]

The most likely periods for a finite cycle, which are here given by the sum \(a + b + c \), are therefore the denominators in the best rational approximations of \(\log_2 3 \). Since the
continued fraction
\[
\log_2{3} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{1 + \cdots}}}}}
\]

has the convergents
\[
\frac{1}{1'}, \frac{2}{1'}, \frac{3}{2'}, \frac{8}{5'}, \frac{19}{12'}, \frac{65}{41'}, \ldots
\]
we do find denominators of 1, 2, 5, 12.

However, it has not been proven [[sic]] that these denominators constitute the only allowable periods. Nor has a finite cycle of period 41 been discovered. Nor have any other finite cycles been so far discovered.

[[edited to avoid repetition of what’s in Shanks’s comment.]]

We give a method applicable in principle to the problem of finding all cycles (if any) of given period \(p\), although the computation required becomes formidable if \(q/p\) is a good approximation to \(\log_2{3}\). The method utilizes a quantitative refinement of the “approximate theory” given by Shanks. We show that there are no new cycles of period less than 200; in particular, there are none of periods 41 and 53 which are denominators of convergents to \(\log_2{3}\).

Suppose that there is a cycle \((a_r)\) of period \(p\), and that \(h\) is its least term. If there are \(p - k\) transformations of the form \(f(3n) = 2n\) and \(k\) transformations of the other two kinds, then
\[
1 = \left(\frac{2}{3}\right)^{p-k} \left(\frac{4}{3}\right)^k \prod_{r=1}^{k} \left(\frac{3f(a_r)}{4a_r}\right)
\]
reordering the \(a_r\) if necessary.

Also for all \(r, 1 \leq r \leq k\), we have
\[
|1 - 3f(a_r)/4a_r| \leq 1/4m
\]
Hence
\[
(1 - 1/4m)^k \leq 3^p / 2^{p+k} \leq (1 + 1/4m)^k
\]
Now for \(0 < x < 1\) we have
\[
\log(1 + x) < x
\]
\[
\log(1 - x) > -x - x^2 / (1 - x)
\]
so that
\[
-63k/248m \leq p \log(3/2) - k \log 2 \leq k/4m
\]
Thus for a given p we must have

$$m \leq \frac{63}{248} \min_k \left\{ \frac{p}{k} \log(1.5) - \log 2 \right\} = g(p), \text{ say.}$$

A program was run on the I.C.T. Atlas computer of the Science Research Council at Chilton, to show that all cycles, other than the known ones, with least terms less than 5000 have at least 342 terms in their periods. Next, for $p \leq 341$, a tabulation of $g(p)$ showed that $g(p) < 5000$ except when $p = 200, 253, 306$. Hence the only possible periods of new cycles are $p = 200, 253, 306$ and $p > 341$.

A similar run was performed for the permutations obtained by permuting the values of f. For instance, with $f(3n) = 4n + 3$, $f(3n + 1) = 2n$, $f(3n + 2) = 4n + 1$, there is a cycle of period 94, least term 140. While $149/94$ is a good approximation to $\log 2$ it is not a convergent. As the referee points out, however, there is more chance of such a (nondenominator) period here since, for example, $(4n + 3)/3n$ is further from $\frac{4}{3}$ than $(4n + 3)/(3n + 2)$. [[I wasn’t the referee, but note that $\frac{149}{94} = \frac{65+84}{41+53}$ is a mediant. – RKG]]

My general conjecture, on a probability basis, is that for any “congruence” permutation of this kind, the number of finite cycles is finite, since (here) the “expected” value of $f(t)/t$ is about $(\frac{2}{3} \frac{4}{4} \frac{3}{3})^{1/3}$ and that of $f^{-1}(t)/t$ is $(\frac{3}{2} \frac{3}{2} \frac{3}{2})^{1/4}$ so that most cycles tend to infinity in both directions. Dr. D. A. Burgess of Nottingham University has given an elegant proof that these expected ratios cannot be unity for any congruence permutation.

Editorial note. R. Eddy (David Taylor Model Basin) notes that that there are “near” closures at periods 41, 53 and at “counterexample” periods 17 and 29 for the original permutation. Here

- $36 \rightarrow 37 : 17$ transforms,
- $46 \rightarrow 47 : 17$ transforms,
- $78 \rightarrow 77 : 29$ transforms,
- $50 \rightarrow 49 : 41$ transforms,
- $554 \rightarrow 553 : 53$ transforms.

[[Article:]]

1. What about further editorial comments by the editors of the volume under construction?

2. What is Canadian English?

3. How far must one be precise in making quotations?

4. Other typographical considerations.

1. The last problem is a good example of where we should step in with additional comments. (Note the asterisk, denoting absence of a submitted solution.) This is an analog of the notorious $3x + 1$ problem, and the subject of the classic paper J. H. Conway, Unpredictable iterations, in *Proc. Number Theory Conf.*, Boulder CO, 1972, 49–52; *MR* 52 #13717.

It is discussed in UPINT E17 where there a couple of other references.

I have yet to discover what more appeared in *SIAM Rev*. Later: quite a bit, which I’ve appended.

2. What is Canadian English? No doubt the simplest example is ‘centre’ (I hope!) which is the same in both Canadian languages and consistent with its etymology, Greek ‘kentrum’, a sharp point. [The other spelling has been copied many times in going through *SIAM Rev.*] I hope that it [i.e., ‘Canadian English’] includes ‘proved’ when used in mathematical contexts; ‘proven’ being the p.p. of the obsolete verb *preve*, meaning ‘test’.

3. In regard to quotations, these should be [sic]! But I’m strongly tempted to remove one of the ‘others’ from part (b) of the last problem of Murray above. Also I’d like to give Rényi his accent five times in the Editorial Note quoted above. [Later: I did so!] But presumably I’m not allowed to change ‘proven’, even if we agree on ‘proved’ in our own writings. There’s another example below in which ‘steady-state’ is hyphenated in one sentence and not in the next. [there are occasions on which one would want to use both forms, but this isn’t one of them.] And in the next sentence, does one really need commas round the y?

4. Other typographical matters. E.g., will references normally be in *MR* style, with journal titles in ital., vol. nos. in bold followed by year nos. in paren.? But in this document I have often copied the typographical conventions (fonts, capitalization) of the original. I hope soon to send this file to interested parties to ensure that I’m not involving them in extra work, and that I’m not unnecessarily using my own time.

LATER: I’ve taken it upon myself to do some minor editing as I took stuff from
periodicals, e.g., references put more or less into MR style, and adding MR references occasionally.

I should also warn other editors of some of my idiosyncrasies, so that they can do a query-replace if they object to any of them.

(a) I do not automatically put a comma before ‘and’ or ‘or’.

(b) I prefer equation numbers to be on the right. Because the numbers can’t conveniently run consecutively throughout this document, I’ve cooked their appearance, and they’re not flush right, as they should be.

(c) I object to the use of the genitive in place of a plural. E.g., there’s no need for apostrophe esses in ‘Here the S_i and the c_i are given’.

(d) But I do like an apostrophe ess (and I do like it to be pronounced) in “Pythagoras’s”, “Lucas’s”, “Shanks’s”, etc., else we tend to wind up with “Shank’s”, etc.

(e) I prefer not to punctuate displayed formulas. Punctuation is to get the reader to pause. Good writing minimizes the number of occasions on which we have to warn the reader to take a breath. A displayed formula always gives pause, and should never be punctuated if it ends with a subscript:

\[X = \sum_{i=1}^{n} x_i, \quad X = \sum_{j'}^{n} x_{j'}, \quad ??? \]

[[As to what we include is concerned, there’s an interesting test case at SIAM Rev., 5(1963) 157–158. Five solutions to W. L. BADE’s Problem 61-9* (note the asterisk) are carefully edited by Murray, but there’s no indication that any of them are due to him in the first instance. If we’re short on material, which I’m sure we’re not, this would be an excellent example of Murray’s very competent editing.]]
Problem 61-7*, One-Dimensional Steady-State Ablation, by Tom Munson (AVCO Research and Advanced Development Division).

The second order boundary value problem arises in a consideration of steady-state ablation in thermally decomposing, non-charring plastic materials. The problem results from the mathematical model when the steady state ablation is combined with the assumption that the specific heat of the decomposition products is negligible with respect to that for the undecomposed material. The coordinate, \(y\), is measured from the receding surface and the boundary conditions correspond to a specification of the initial temperature of the material and the effective heat flux at the receding surface.

\[
\{D^2 + (a + be^{-\lambda y})D + c\}T = d, \quad T(\infty) = k, \quad \left[\frac{dT}{dy}\right]_{y=0} = Q
\]

Solution by M. S. Klamkin (State University of New York at Buffalo).

Let \(mx = be^{-\lambda y}\). This transforms the equation into

\[
\left\{x^2D^2 + \left[1 - \frac{a}{\lambda} - \frac{mx^2}{\lambda}\right] + \frac{c}{\lambda^2}\right\}T = \frac{d}{\lambda^2}
\]

The solution of the equation

\[
\{x^2D^2 + (\alpha x + 2\beta)xD + [\beta(\beta - 1) + (\alpha + \beta)(1 - \alpha - \beta)]\}T = 0
\]

is given by

\[
T = x^{1-a-2\beta}e^{-ax} \left\{C_1 + C_2 \int x^{2\alpha+2\beta-2}e^{ax} dx\right\}
\]

(Kamke, E., Differentialgleichungen, Chelsea, New York, 1948, p. 451). We now have to identify the constants, i.e.,

\[
\begin{align*}
1 - \frac{a}{\lambda} &= 2\beta \\
-\frac{m}{\lambda} &= \alpha \\
\frac{c}{\lambda^2} &= \beta(\beta - 1) + (\alpha + \beta)(1 - \alpha - \beta)
\end{align*}
\]
These 3 equations suffice to determine m, α and β in terms of a, c and λ. The solution will be complicated for the case α and m complex. To obtain the general solution, the particular solution $T_p = d/c$ is added to the complementary one. The two arbitrary constants C_1 and C_2 suffice in general to satisfy the two boundary conditions.

Also solved by Bernard G. Grunebaum [[but we’re presumably not interested in his solution]].

SIAM Rev., 6(1964) 61.

Problem 64-5, *A Physical Characterization of a Sphere*, by M. S. Klamkin (University of Buffalo).

Consider the heat conduction problem for a solid:

$$\frac{\partial T}{\partial t} = \nabla^2 T$$

Initially, $T = 0$. On the boundary, $T = 1$.

The solution to this problem is well known for a sphere and, as to be expected, it is radially symmetric. Consequently, the equipotential (isothermal) surfaces do not vary with the time (the temperature on them, of course, varies). It is conjectured for the boundary value problem above, that the sphere is the only bounded solid having the property of invariant equipotential surfaces. If we allow unbounded solids, then another solution is the infinite right circular cylinder which corresponds to the spherical solution in two dimensions.

[[Interpolation by RKG: Also the infinite halfspace, corresponding to the 1-dimensional solution. — Later: I’m now up to 1986 and haven’t found any solution to this unsolved problem.]]
Problem 64-10, A Boundary Value Problem, by M. S. Klamkin (University of Buffalo).

The Thomas-Fermi equation

\[
\frac{d^2y}{dx^2} = \sqrt{\frac{y^3}{x}} \tag{1}
\]

subject to the boundary conditions \(y(0) = 1\), \(y(\infty) = 0\) arises in the problem of determining the effective nuclear charge in heavy atoms (H. T. Davis, *Introduction to Nonlinear Differential and Integral Equations*, U. S. Atomic Energy Commission, 1960, pp. 405–407).

Transform this boundary value problem into an initial value one.

If we let \(x = 1/t\), then (1) is transformed into

\[
\{t^4D^2 + 2t^3D\}y = \sqrt{y^3t}
\]

subject to the boundary conditions \(y(0) = 0\), \(y(\infty) = 1\). Now let \(y'(0) = \lambda\) (to be determined) and (see M. S. Klamkin, *On the transformation of a class of boundary value problems into initial value problems for ordinary differential equations*, *SIAM Rev.*, 4(1962) 43–47; MR 27 #5950)

\[
y(t) = \lambda^{3/2}F(\lambda^{-1/2}t) \tag{2}
\]

It follows that \(F(x)\) satisfies the initial value problem

\[
\{x^4D^2 + 2x^3D\}F = \sqrt{F^3t}, \quad F(0) = 0, \quad F'(0) = 1
\]

Then by letting \(t \to \infty\) in (2) we have \(\lambda = F(\infty)^{-2/3}\). Consequently, the initial boundary value problem has been transformed into two similar initial-value problems. This avoids interpolation techniques for numerically determining \(\lambda\).

[[It is stated that ‘the solutions [to the problem stated below] by E. Deutsch (Institute of Mathematics, Bucharest, Rumania), Thomas Rogge (Iowa State University), J. Ernest Wilkins Jr. (General Dynamics Corporation) and M. S. Klamkin (University of Buffalo) were essentially the same and are given by [what follows the statement of the problem below].’ Since Murray was the Editor, he modestly puts his name last, but as the original submission was as an unsolved problem, and as Murray extended the problem and its solution [see ref at end], it may qualify as a Murray original. — RKG]]

Problem 62-1*, A Steady-State Temperature, by Alan L. Tritter (Data Processing Inc.) and A. I. Mlavsky (Tyco, Inc.)

Consider the steady-state temperature \((T(r, z))\) distribution boundary-value problem for an infinite solid bounded by two parallel planes:

\[
\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2} = 0, \quad 0 < z < H, \quad r \geq 0, \quad (1)
\]

\[
\begin{aligned}
\left\{ \begin{array}{l}
-k \frac{\partial T}{\partial z} = Q, & r < R \\
0, & r > R \\
\end{array} \right\} \quad z = 0
\end{aligned}
\]

\[
\{T = 0\}_{z = H} \quad \{T\} < M \quad \text{(boundedness condition), (all the parameters involved are constants).}
\]

Determine the temperature at the point \(r = z = 0\).

[[Solution by MSK et al.]] Letting

\[
\phi(\lambda, z) = \int_0^\infty rJ_0(\lambda r)T(r, z) \, dr
\]

it follows by integration by parts that the Hankel transform of Eq. (1) is

\[
\{D^2 - \lambda^2\} \phi = 0
\]

subject to the boundary conditions

\[
k \left. \frac{\partial \phi}{\partial z} \right|_{z = 0} = \int_0^R Q r J_0(\lambda r) \, dr = \frac{QRJ_1(\lambda R)}{\lambda}, \quad \{\phi = 0\}_{z = H}
\]

Consequently

\[
\phi(\lambda, z) = \frac{QR}{k} \frac{J_1(\lambda R)}{\lambda^2} \sinh \lambda (H - z)
\]

Inverting the latter transform:

\[
T(r, z) = \frac{QR}{k} \int_0^\infty \frac{\sinh \lambda (H - z)}{\lambda \cosh \lambda H} J_0(\lambda r) J_1(\lambda R) \, d\lambda
\]
On letting $H \to \infty$ we obtain

$$
\lim_{H \to \infty} T(r, z) = \frac{QR}{k} \int_0^\infty E^{-\lambda z} J_0(\lambda r) J_1(\lambda R) \frac{d\lambda}{\lambda}
$$

In particular, the temperature at $r = 0, z = 0$ is given by

$$
T(0, 0) = \frac{QR}{k} \int_0^\infty \lambda^{-1} J_1(\lambda R) \tanh \lambda H \, d\lambda
$$

The series expansion

$$
T(0, 0) = \frac{QR}{k} \left\{ \frac{R}{H} \sum_{m=1}^\infty \frac{(-1)^{m+1}}{m + \sqrt{m^2 + R^2/4H^2}} \right\}
$$

is obtained by expanding $\tanh \lambda H$ into the exponential series

$$
tanh \lambda H = 1 - 2 \sum_{m=1}^\infty (-1)^{m+1} e^{-2m\lambda H}
$$

and employing the integral

$$
\int_0^\infty \lambda^{-1} e^{-a\lambda} J_1(\lambda R) \, d\lambda = (\sqrt{a^2 + R^2} - a)/R
$$

[[There follows further detail from Deutsch, Wilkins, D. E. Amos & J. E. Warren, about which we needn’t bother, but we should add:]]

For extensions of this problem to the unsteady-state in finite or infinite cylinders see Unsteady Heat Transfer into a Cylinder Subject to a Space- and Time-Varying Surface Flux, by M. S. Klamkin, TR-2-58-5, AVCO Research and Advanced Development Division, May, 1958.
Problem 64-15, On a Probability of Overlap, by M. S. Klamkin (University of Minnesota).

Prove directly or by an immediate application of a theorem in statistics that the conjecture in the following abstract from Mathematical Reviews, March 1964, p.589 is valid:

“Oleskiewicz, M.

The probability that three independent phenomenon [sic] of equal duration will overlap. (Polish, Russian and English summaries) Prace Mat. 4(1960) 1–7.

The value P_3 of the probability that 3 stochastically independent phenomenon of equal duration t_0 which all occur during the time $t + t_0$ will overlap is shown by geometrical methods to be equal to $(3tt_0^2 - 2t_0^3)/t^3$. The author makes the conjecture that a similar formula holds for n independent events, namely $P_n = (ntt_0^{n-1} - (n - 1)t_0^n)/t^n$.”

Editorial Note. Hemmer also gives two related problems:

1. Determine the probability of overlap of n independent events of durations t_1, t_2, ..., t_n which all occur during the time t.
2. Determine the distribution of the duration of the overlap.
Editorial Note. A published solution to this problem appeared prior to the appearance of the problem and solution in this Review as indicated in the following abstract from Mathematical Reviews, November, 1966, p.111:

ZUBRZYCKI, S. A problem concerning simultaneous duration of several phenomena. (Polish, Russian and English summaries) Prace Mat. 7(1962) 7–9.

The author proves a conjecture formulated by M. Oleszkiewicz [same Prace 4(1960) 1–7; MR 27 #3006]. The theorem proved by the author reads as follows: Let n independent events start at moments randomly chosen in $0 < t < T$ under the assumption of a uniform probability distribution. Let each event last t_0 time units ($t_0 < T$). Then the probability P_n that the n events will have a common interval of duration is given by

$$P_n = \frac{nTt_0^{n-1} - (n-1)t_0^n}{T^n}$$
Evaluate, in closed form, the following two integrals occurring in the calculation of the elastic strain energy of a rectangular dislocation loop [1].

\[I_1 = \int_0^1 \frac{1 - J_0(\lambda x)}{x \sqrt{1 - x^2}} \, dx \]
\[I_2 = \int_0^1 \frac{J_2(\lambda x)}{x \sqrt{1 - x^2}} \, dx \]

Solution by D. P. Thomas (Queen’s College, Dundee, Scotland).

Using the result [2, p.45]

\[1 - J_0(\lambda x) = x \int_0^\lambda J_1(yx) \, dy \]

and making the substitution \(x = \sin \theta \), we find that

\[I_1 = \int_0^{\pi/2} \int_0^\lambda J_1(y \sin \theta) \, dy \, d\theta = \int_0^\lambda \int_0^{\pi/2} J_1(y \sin \theta) \, d\theta \, dy \]
\[I_2 = \int_0^{\pi/2} J_2(\lambda \sin \theta) \csc \theta \, d\theta \]

The identity [2, p.374]

\[\int_0^{\pi/2} J_\mu(z \sin \theta)(\sin \theta)^{1-\mu} \, d\theta = \left(\frac{\pi}{2z} \right)^{1/2} H_{\mu-1/2}(z) \]

where \(\mu \) is unrestricted and \(H_\nu \) is the Struve function of order \(\nu \) [2, p.328], enables us to evaluate the integrals with respect to \(\theta \). Hence

\[I_1 = \int_0^\lambda \left(\frac{\pi}{2x} \right)^{1/2} H_{1/2}(x) \, dx = \int_0^\lambda \frac{1 - \cos x}{x} \, dx \]
\[I_2 = \left(\frac{\pi}{2x} \right)^{1/2} H_{3/2}(\lambda) \]
Tables exist for \(I_1 \) and \(2I_2 \) [3]. Note also that
\[
I_1 = \log \lambda + \gamma - \text{Ci}(\lambda) \\
I_2 = \frac{1}{2} - \frac{\sin \lambda}{\lambda} + \frac{1 - \cos \lambda}{\lambda^2}
\]
where \(\gamma \) is Euler’s constant and
\[
\text{Ci}(\lambda) = \int_{\infty}^{\lambda} \frac{\cos x}{x} \, dx
\]

REFERENCES

[[Article:]]

[[Short Note:]]

The authors prove \(x^n D^{2n} = [xD^2 - (n - 1)D]^n \) and \(x^{2n} D^n = [x^2 D - (n - 1)x]^n \), where \(D = d/dx \) (and point out that the second of these relations is equivalent to a result of Glaisher [Nouvelle Corr. Math., 2(1876) 240–243, 349–350]); and they use these relations to solve the differential equations \(x^n D^{2n} y = y \), \(x^{2n} D^n y = y \), and \(D^2 x^4 D^2 u = x^2 u \). They also give some generalizations of their identities and solve some further differential equations.

Reviewed by A. Erdélyi]
Problem 68-10, *Rank and Eigenvalues of a Matrix*, by SYLVAN KATZ (Aeronutronic Division, Philco-Ford Corporation) and M. S. KLAMKIN (Ford Scientific Laboratory).

Determine the rank and eigenvalues of the $n \times n$ ($n \geq 3$) matrix $\|A_{r,s}\|$ where $A_{r,s} = \cos(r - s)\theta$ and $\theta = 2\pi/n$. This problem arose in a study of electromagnetic wave propagation.

[[Solutions of 68-10 by G. J. Foschini, Carlene Arthur & Cecil Rousseau, S. H. Eisman; a generalization by Harry Applegate and an editorial note. Here are the first solution, the generalization and the note. — R.]]

Solution by G. J. Foschini (Bell Telephone Laboratories, Holmdel, New Jersey).

From elementary complex algebra it follows that if k is an integer then

$$
\sum_{j=1}^{n} e^{i\theta kj} = \begin{cases}
0, & k \not\equiv 0 \pmod{n} \\
n, & k \equiv 0 \pmod{n}
\end{cases} \quad (1)
$$

Using (1) we see that the Vandermonde $\|n^{-1/2}e^{i\theta rs}\|$ has inverse $\|n^{-1/2}e^{-i\theta rs}\|$ and furthermore that

$$
\|n^{-1/2}e^{i\theta rs}\| \cdot \|A_{r,s}\| \cdot \|n^{-1/2}e^{-i\theta rs}\| = \|n^{-1/2}e^{i\theta rs}\| \cdot \frac{e^{i\theta(r-s)}}{2} + \frac{e^{-i\theta(r-s)}}{2} \| \cdot \|n^{-1/2}e^{-i\theta rs}\|
$$

has zero entries except in the (1,1) and $(n-1, n-1)$ positions, where 1/2 appears. Thus the rank of $\|A_{r,s}\|$ is 2 and its eigenvalues are $1/2$ and 0 with multiplicities 2 and $n-2$ respectively.

Additionally, the same similarity transformation of $\|\sin(r - s)\theta\|$ yields a matrix with zero entries except in the (1, $n-1$) and $(n-1, 1)$ positions, where 1/2i appears. Thus the rank of $\|\sin(r - s)\theta\|$ is 2 and its eigenvalues are 0 (multiplicity $n-2$), $i/2$ and $-i/2$.

Generalization by HARRY APPLEGATE (City College of New York).

Let t_1, t_2, \ldots, t_n be n real numbers ($n \geq 2$) such that at least one difference $t_i - t_j$ is not a multiple of π. Then the matrix A with entries $a_{ij} = \cos(t_i - t_j)$ has rank 2.

Proof. Define vectors

$$
c = \begin{pmatrix}
\cos t_1 \\
\cos t_2 \\
\vdots \\
\cos t_n
\end{pmatrix}, \quad s = \begin{pmatrix}
\sin t_1 \\
\sin t_2 \\
\vdots \\
\sin t_n
\end{pmatrix}
$$

It is easy to see that $A = cc^T + ss^T$ where T means transpose. The condition that some difference $t_i - t_j$ is not a multiple of π shows that c and s are linearly independent. If
x is an arbitrary vector, $Ax = (c, x)c + (s, x)s$ where $(,)$ is the usual scalar product. Hence $Ax = 0$ if and only if $(c, x) = (s, x) = 0$. This shows that the kernel of A is the orthogonal complement of the 2-dimensional subspace generated by c and s. Hence $\dim(\ker A) = n - 2$ which implies $\text{rank } A = 2$.

If $n \geq 3$ and $t_i = 2\pi i/n$ we get the problem as stated.

Remark. We get a similar result if $a_{ij} = \sin(t_i - t_j)$.

Problem 69-5, A Quartic, by H. Holloway and M. S. Klamkin (Ford Scientific Laboratory).

Solve the quartic equation

\[x^4 + (1-b)x^3 + (1-3a-b+3a^2+3ab+b^2)x^2 + b(2-3a-2b+b^2) = 0 \]

Also show that if \(0 < a + b < 1\), \(a, b > 0\), then all the roots have absolute value less than unity.

The quartic arises from an analysis of x-ray diffraction by faulted cubic close-packed crystals. The crystal lattice may be regarded as an array of close-packed \(\{1, 1, 1\}\) planes which can occupy three sets of stacking positions. In a faulted crystal the stacking has randomness and the diffraction problem requires specification of the probable stacking relationships between pairs of layers. This can be done by using genealogical tables of stacking arrangements to generate difference equations which give the probability for a given stacking relationship as a function of the fault probability and of the separation between the layers. Growth faulting and intrinsic faulting both generate second order difference equations \([1,2]\). A more complex model for growth faulting \([3]\) gives a fourth order difference equation, and the quartic which results was solved numerically. Analysis of diffraction by crystals with both intrinsic and extrinsic faulting also yields a fourth order difference equation whose solution involves solution of the above quartic, where \(a\) and \(b\) are the intrinsic and extrinsic fault probability.

REFERENCES

The given quartic can be factored into the following complex form:

\[\{x^2 + [\omega(1-b) - (\omega+\omega^2)a] x + \omega b\} \{x^2 + [-\omega^2(1-b) + (\omega+\omega^2)a] x - \omega^2 b\} = 0 \]

where \(\omega = (1 + i\sqrt{3})/2\) (a cube root of \(-1\)). Thus the four roots are

\[
\frac{1}{2} \left\{ \omega^2(1-b) - (\omega + \omega^2)a \pm \left[-\omega(1-b)^2 - 3a^2 + 2(1+\omega)a(1-b) + 4\omega^2b\right]^{1/2} \right\}
\]

\[
\frac{1}{2} \left\{ -\omega(1-b) + (\omega + \omega^2)a \pm \left[\omega^2(1-b)^2 - 3a^2 + 2(1-\omega^2)a(1-b) - 4\omega b\right]^{1/2} \right\}
\]
To show that the absolute values of the roots are less than one, we use the following theorem of Cauchy [M. Marden, *Geometry of Polynomials*, American Mathematical-Society, Providence RI, 1966, p.122]:

All the roots of

\[a_0 + a_1z + \cdots + a_nz^n = 0, \quad a_n \neq 0 \]

lie in the circle \(|z| \leq r\), where \(r\) is the positive root of the equation

\[|a_0| + |a_1|z + \cdots + |a_{n-1}|z^{n-1} - |a_n|z^n = 0 \]

Taking one of the quadratic factors above, \(r\) is the positive root of

\[b + |\omega(1 - b) - (\omega + \omega^2)a|z - z^2 = 0 \]

or

\[z^2 = z \left\{ \left(\frac{1 - b}{2} \right)^2 + 3 \left(\frac{1 - b}{2} - a \right) \right\}^{1/2} + b \]

and \(r\) will be less than one if

\[(1 - b)^2 > \left(\frac{1 - b}{2} \right)^2 + 3 \left(\frac{1 - b}{2} - a \right)^2 \]

or \(3a(1 - b - a) > 0\) (and similarly for the other quadratic term).

For applications of the solution, see the authors’ paper Diffraction by fcc crystals with intrinsic and extrinsic faults, J. Appl. Phys., 40(1969) 1681–1689.

Comment by Stanley Rabinowitz (Westford, Massachusetts).

In the published solution [1], the quartic was factored as the product of two quadratic polynomials having complex coefficients. Since its zeros occur in complex conjugate pairs, the quartic must also factor as the product of two quadratics with real coefficients. The editor [M.S.K.] requested that I find these two factors.

The four roots are known. In [1], Holloway and Klamkin pointed out that the equation can be written \((x^2 + \alpha x + b\omega)(x^2 + \bar{\alpha} + b\bar{\omega}) = 0\), where \(\omega = (1 + i\sqrt{3})/2\), and

\[\alpha = (1 - b)\omega - ia\sqrt{3} = \frac{(1 - b) + i(1 - 2a - b)\sqrt{3}}{2} \]

Thus the roots of the equation are \(z_1, \bar{z}_1, z_2, \bar{z}_2\), where

\[z_1 = -\frac{\alpha + \sqrt{\alpha^2 - 4b\omega}}{2} \quad \text{and} \quad z_2 = -\frac{\alpha - \sqrt{\alpha^2 - 4b\omega}}{2} \]
Note that $\alpha^2 - 4b\omega = (p + iq\sqrt{3})/2$, where

\[p = (1 - b)^2 + 6a(1 - b) - 6a^2 - 4b \quad \text{and} \quad q = (1 - b)^2 - 2a(1 - b) - 4b \]

We need to determine $z_1 + \bar{z}_1$, $z_2 + \bar{z}_2$, $z_1\bar{z}_1$ and $z_2\bar{z}_2$ in terms of a and b. The required complex square root is

\[
\sqrt{\frac{p + iq\sqrt{3}}{2}} = \frac{1}{2} \left[\sqrt{\sqrt{p^2 + 3q^2} + p} + isgn q \sqrt{\sqrt{p^2 + 3q^2} - p} \right]
\]

(See, for example, [2, p.95].) Thus

\[
z_1 + \bar{z}_1 = \frac{1}{2} \left[b - 1 + \sqrt{p^2 + 3q^2} + p \right] \quad \text{and} \quad z_2 + \bar{z}_2 = \frac{1}{2} \left[b - 1 - \sqrt{p^2 + 3q^2} + p \right]
\]

Also

\[
z_1\bar{z}_1 = \frac{1}{16} \left[\left(b - 1 + \sqrt{p^2 + 3q^2} + p \right)^2 + \left(2a + b - 1 \right) \sqrt{3} + sgn q \sqrt{p^2 + 3q^2} - p \right]^2
\]

and

\[
z_2\bar{z}_2 = \frac{1}{16} \left[\left(b - 1 - \sqrt{p^2 + 3q^2} + p \right)^2 + \left(2a + b - 1 \right) \sqrt{3} - sgn q \sqrt{p^2 + 3q^2} - p \right]^2
\]

Thus the desired factors are

\[
x^2 - \frac{1}{2} \left(b - 1 + \sqrt{p^2 + 3q^2} + p \right) x + (P_1 + P_2 + P_3)
\]

and

\[
x^2 - \frac{1}{2} \left(b - 1 - \sqrt{p^2 + 3q^2} + p \right) x + (P_1 - P_2 - P_3)
\]

where

\[
P_1 = \frac{(b - 1)^2 + 3(2a + b - 1)^2 + 2\sqrt{p^2 + 3q^2}}{16}
\]

\[
P_2 = \frac{(b - 1)\sqrt{p^2 + 3q^2} + p}{8}
\]

\[
P_3 = \frac{(2a + b - 1)\sqrt{3 \left(\sqrt{p^2 + 3q^2} - p \right)}}{8}
\]

Problem 70-14*, Conductors of Unit Resistance, by M. S. KlAMKIN (Ford Scientific Laboratory).

A known result due to Rayleigh [1,2] is that conjugate conductors have reciprocal resistances.

Here the conductor is a two-dimensional simply connected region R with boundary arcs a and b as terminals. The complementary part of the boundary consists of two arcs c and d which are insulated (see Fig. 1). The conjugate conductor consists of a region congruent to R but now the arcs c and d are the terminals and the arcs a and b are insulated.

A self-conjugate conductor is one in which the region R is a reflection of itself in the straight line connecting the initial point A of terminal a with the initial point C of terminal b (see Fig. 2). It follows immediately by Rayleigh’s result and symmetry that a self-conjugate conductor has unit resistance.
If a given region has unit resistance for arbitrary chords BD which are perpendicular to a given chord AC, it is then conjectured that the conductor is self-conjugate (i.e., AC' is an axis of symmetry) (see Fig. 3).

REFERENCES

If \(D_i, D_e, D_m \) denote the number of diagonals which, except for their endpoints, lie in the interior, the exterior, or neither in the interior nor exterior, respectively, of a simple \(n \)-gon \(P \), then

\[
D_i + D_e + D_m = \left(\frac{n}{2} \right) - n.
\]

It is obvious and well known that \(\max D_i = \left(\frac{n}{2} \right) - n \) occurring when \(P \) is convex.

The determination of \(\max D_e \) is given by Problem E2214 (Amer. Math. Monthly, 77(1970) 79). To complete this classification, determine \(\max D_m \). Also consider the corresponding problem for higher-dimensional polytopes.

[[The problem referred to, and its solution, are inserted here. — R.]]

E2214. Proposed by M. S. Klamkin, Ford Scientific Laboratory and B. Ross Taylor, York High School

It is intuitive that every simple \(n \)-gon (\(n > 3 \)) possesses at least one interior diagonal. For a simple \(n \)-gon what is the least number of diagonals which, except for their endpoints, lie wholly in its interior?

Solution by Anders Bager, Hjørring, Denmark. The two tangents from a point \(P \) outside a circle \(\Gamma \) touch \(\Gamma \) in points \(A \) and \(B \). Connect \(A \) and \(B \) with a broken line consisting of \(n - 2 \) chords succeeding each other along the smaller arc from \(A \) to \(B \). Join \(P \) to \(A \) and \(B \) to obtain a simple \(n \)-gon with exactly \(n - 3 \) inner diagonals (all issuing from \(P \)).

The number \(n - 3 \) is minimal. This is trivially so if \(n = 3 \). Suppose it true for some \(n \) and consider an arbitrary simple \((n + 1) \)-gon. From this cut off a triangle such that two sides are sides of the \((n + 1) \)-gon, and the third side an inner diagonal. This is always possible and leaves a simple \(n \)-gon which, by assumption, has at least \(n - 3 \) inner diagonals. Hence the \((n + 1) \)-gon has at least \((n - 3) + 1 = (n + 1) - 3 \) inner diagonals. Thus the assertion of the problem is true by induction.

[[Also solved by ten others, including the proposers and . . .]]
Problem 71-14, An Expected Value, by M. S. Klamkin (Ford Motor Company).

N numbers are chosen independently at random, one from each of the N intervals \([0, L_i] (i = 1, 2, \ldots, N)\). If the distribution of each random number is uniform with respect to length in the interval it is chosen from, determine the expected value of the smallest of the N numbers chosen.

Solution by O. G. Ruehr (Michigan Technological University).

If the random variable \(x_i\) be associated with the interval \([0, L_i]\) and if \(X = \min(x_i)\), \(L = \min(L_i)\), then

\[
F(x) = \Pr\{X \leq x\} = 1 - \Pr\{X > x\} = 1 - \prod (1 - x/L_i)
\]

The expected value of \(X\) is then

\[
E(X) = \int_0^L x dF(x) = xF(x)|_0^L - \int_0^L F(x) \, dx = \int_0^L \{1 - F(x)\} \, dx
\]

\[
\frac{1}{S_n} \left\{ LS_n - \frac{L^2}{2} S_{n-1} + \frac{L^3}{3} S_{n-2} - \cdots (-1)^n \frac{L^{n+1}}{n+1} \right\}
\]

where the \(S_i\) are the elementary symmetric functions of the \(L_i\). e.g., \(S_1 = \sum L_i\), \(S_2 = \sum_{i \neq j} L_i L_j\)

[[In connexion with the following, note that the Editor, the Proposer, and a member of the Putnam Questions Committee, were all MSK — R.]]

Comment by the proposer. The special case \(n = 3\) occurs in the 31st William Lowell Putnam Mathematical Competition (Amer. Math. Monthly, Sept. 1971 – p.765, Problem A-6.). A more involved set of problems is to determine \(E\{M_i(x_1, x_2, \ldots, x_n)\}\) where \(M_i\) denotes the \(i\)th smallest of the \(x_i\). For \(i > 1\) the above method is apparently not applicable. Here, we indicate how to solve this general class of problems by determining the result for the two cases \(i = 2\) and \(n\). Letting

\[
\Phi(r, n) = \int_0^{L_n} \cdots \int_0^{L_n} \int_0^{L_{n-1}} \cdots \int_0^{L_1} \frac{x_1}{\max(x_i)} \left(\prod_{i=1}^{n+r-1} dx_i \right)
\]

we obtain symbolically that

\[
\Phi(r, n) = \left\{ \int_0^{L_n} + \int_0^{L_{n-1}} \right\} \cdots \int_0^{L_1} \max(x_i) \prod dx_i
\]

\[
= \Phi(r+1, n-1) + F(r, n)
\]
where

\[F(r, n) = \sum_{j=0}^{r-1} \binom{r}{j} \left\{ \int_{L_{n-1}}^{L_n} \right\}^{r-j} \left\{ \int_{0}^{L_{n-1}} \right\} \cdots \int_{0}^{L_{n-2}} \cdots \int_{0}^{L_1} \max(x_i) \prod dx_i \]

It is to be noted that \(\Phi(r, n) \) and \(F(r, n) \) are also functions of \(L_1, L_2, \ldots, L_n \) but we have left them out for convenience. The summand for \(F \) equals

\[\binom{r}{j} L_1 L_2 \cdots L_{n-2} L_{n-1}^{j+1} \int_{L_{n-1}}^{L_n} \cdots \int_{L_{n-1}}^{L_n} \cdots \int_{L_1}^{L_1} \max(x_i) \prod_{k=1}^{r-j} dx_k \]

In a manner similar to the above or otherwise, we obtain

\[\int_{0}^{a} \cdots \int_{0}^{a} M_r(x_i) dx_1 \cdots dx_m = \frac{ra^{m+1}}{m+1} \]

Thus

\[F(r, n) = \sum_{j=0}^{r-1} \binom{r}{j} L_1 L_2 \cdots L_{n-2} L_{n-1}^{j+1} \left(L_n - L_{n-1} \right)^{r-j} \frac{(r-j)L_n + L_{n-1}}{r-j+1} \]

It follows from the recurrence equations that

\[\Phi(r, n) = \Phi(r+n-1, 1) + F(r+n-2, 2) + F(r+n-3, 3) + \cdots + F(r, n) \]

where

\[\Phi(r, 1) = rL_1^{r+1}/(r+1) \]

Finally

\[E\{\max(x_1, x_2, \ldots, x_n)\} = \Phi(1, n)/L_1 L_2 \cdots L_n \]

To obtain \(E\{M_2(x_1, x_2, \ldots, x_n)\} \) we first consider

\[\psi(r, n) = \int_{0}^{L_n} \cdots \int_{0}^{L_2} \int_{0}^{L_1} M_2(x_i)_{i=1}^{n+r-1} \prod_{i=1}^{n+r-1} dx_i \]

Then using \(\int_{0}^{L_n} = \int_{0}^{L_2} + \int_{L_2}^{L_n} \) we obtain

\[\psi(r, n) = \psi(r+1, n-1) + (L_n - L_2)\psi(r, n-1) \]

Whence

\[\psi(r, n) = \psi(r+n-2, 2) + S_1 \psi(r+n-3, 2) + S_2 \psi(r+n-4, 2) + \cdots + S_{n-2} \psi(r, 2) \]

where the \(S_i \) are the elementary symmetric functions of

\[L_3 - L_2, L_4 - L_2, \ldots, L_n - L_2 \]

44
It now remains to determine

$$\psi(r, 2) = \int_0^{L_2} \cdots \int_0^{L_2} \int_0^{L_1} M_2(x_i) \, dx_1 \, dx_2 \cdots \, dx_{r+1}$$

Symbolically,

$$\psi(r, 2) = \sum_{j=0}^{R} \binom{r}{j} \left\{ \int_{L_1}^{L_2} \right\}^{r-j} \left\{ \int_0^{L_1} \right\}^{j+1} M_2(x_i) \, dx_1 \, dx_2 \cdots \, dx_{r+1}$$

or

$$\psi(r, 2) = L_1 \int_{L_1}^{L_2} \cdots \int_{L_1}^{L_2} \min(x_i) \, dx_1 \, dx_2 \cdots \, dx_r$$

$$+ \sum_{j=1}^{r} \binom{r}{j} (L_2 - L_1)^{r-j} \int_0^{L_1} \cdots \int_0^{L_1} M_2(x_i) \, dx_1 \, dx_2 \cdots \, dx_{j+1}$$

$$= \frac{L_1(L_2 - L_1)^{r}(rL_1 + L_2)}{r + 1} + \sum_{j=1}^{r} \binom{r}{j} \frac{2L_1^{j+2}(L_2 - L_1)^{r-j}}{j + 2}$$

Then

$$E\{M_2(x_1, x_2, \ldots, x_n)\} = \psi(1, n)/L_1 L_2 \cdots L_n$$

The previous problems become even more involved if we replace the intervals \([0, L_i]\) by \([K_i, L_i]\).

[[also solved by a dozen others as well as the proposer]]
Determine the largest value of the constant k such that

$$a^3 + b^3 + c^3 \geq 3abc + K(a - b)(b - c)(c - a)$$

for all nonnegative a, b, c.

The arithmetico-geometric mean inequality gives

$$a^3 + b^3 + c^3 \geq 3abc$$

for all nonnegative a, b, c. Hence, taking k to be positive, we need only consider the case where $(a - b)(b - c)(c - a) > 0$. Without loss of generality, we can require that $a < b < c$. The desired value of k is given by

$$k = \min_{a, b, c \geq 0, a < b < c} \frac{a^3 + b^3 + c^3 - 3abc(a - b)(b - c)(c - a)}{a^3 + b^3 + c^3}$$

Using the identity

$$a^3 + b^3 + c^3 - 3abc = \frac{1}{2}(a + b + c)[(a - b)^2 + (b - c)^2 + (c - a)^2]$$

we write

$$k = \min_{a \geq 0, s > t > 0} \frac{(3a + s + t)[s^2 + t^2 + (s - t)^2]}{2st(s - t)}$$

where $s = c - a$ and $t = b - a$. From the above equation it is clear that $a = 0$ for the minimum. Hence, letting $c = bx$, we have simply

$$k = \min_{x > 1} \frac{x^3 + 1}{x(x - 1)}$$

By elementary calculus the desired value of x is the real root, greater than 1, of the quartic equation

$$x^4 - 2x^3 - 2x + 1 = 0$$

The quartic equation can be factored to yield

$$[x^2 + (\sqrt{3} - 1)x + 1][x^2 - (\sqrt{3} + 1)x + 1] = 0$$
It follows that the desired value of \(k \) is given by

\[
k = \frac{\alpha^3 + 1}{\alpha(\alpha - 1)}
\]

where \(\alpha = \frac{1}{2}(1 + \sqrt{3} + \sqrt{12}) \). An approximate numerical value is \(k \approx 4.403669475 \) [[solved by a dozen others and the proposers. Followed by the following MSK note:]]

Editorial note. A simpler expression for \(k \), as was noted by the proposers and several of the solvers, is \(k = \sqrt{9 + 6\sqrt{3}} \). D. Shanks and the proposers also noted that it follows symmetrically that the smallest permissible value for the constant is \(-\sqrt{9 + 6\sqrt{3}}\).

If \(a, b, c \) denote the sides of an arbitrary triangle, then the largest and smallest permissible values of \(k \) are \(\pm\sqrt{9 + 6\sqrt{3}} \). This follows from a duality relation established by the first proposer (\textit{Duality in triangle inequalities}, Ford Motor Company Preprint, July 1971. Also see Notices Amer. Math. Soc., August 1971, p.782); i.e., if \(a, b, c \) are the sides of a triangle, then there exist three nonnegative numbers \(x, y, z \) such that

\[
x = s - a, \quad y = s - b, \quad z = s - c, \quad 2s = a + b + c
\]

and, conversely, for any three numbers \(x, y, z \) there exist sides of a triangle \(a, b, c \) and here

\[
a = y + z, \quad b = z + x, \quad c = x + y
\]

Then, corresponding to any inequality in \(x, y, z \) we have a corresponding inequality in \(a, b, c \) and conversely, i.e.,

\[
F(x, y, z) \geq 0 \Rightarrow F(s - a, s - b, s - c) \geq 0
\]

\[
G(a, b, c) \geq 0 \Rightarrow G(y + z, z + x, x + y) \geq 0
\]

[[An MSK editorial note which is worth repeating, since it bears on problem solving. – R.]]

Editorial note. Gould also notes that he has never seen anything “essentially” new obtained by lattice-point enumerations which could not be obtained from [the generalized Vandermonde convolution]. This is analogous to the view that any integral which is obtained by contour integration can also be obtained without it. However, it is always advantageous to have more than one method for solving a class of problems. [M.S.K.]
Determine all real solutions of the polynomial Diophantine equation

\[P(x)^2 - P(x^2) = x\{Q(x)^2 - Q(x^2)\} \] \hspace{1cm} (1) \]

From the given equation it follows that

\[P(x^4) - x^2Q(x^4) = P^2(x^2) - x^2Q^2(x^2) = \{P(x^2) - xQ(x^2)\}\{p(x^2) + xQ(x^2)\} \]

Letting \(F(x) = P(x^2) - xQ(x^2) \) we have

\[F(x^2) = F(x)F(-x) \] \hspace{1cm} (2) \]

Conversely, any solution of (1) may be obtained from a solution of (2) by taking

\[P(x) = \frac{1}{2} \{F(\sqrt{x}) + F(-\sqrt{x})\} \]

\[Q(x) = \frac{1}{2x} \{-F(\sqrt{x}) + F(-\sqrt{x})\} \]

Polynomial solutions of (2) may be written in the form

\[F(x) = C(x - \alpha_1)(x - \alpha_2)\cdots(x - \alpha_n) \] \hspace{1cm} (C is a constant) \]

Then

\[F(-x) = (-1)^nC(x + \alpha_1)(x + \alpha_2)\cdots(x + \alpha_n) \]

so that

\[F(x)F(-x) = (-1)^nC^2(x - \alpha_1)(x + \alpha_1)(x - \alpha_2)(x + \alpha_2)\cdots(x - \alpha_n)(x + \alpha_n) \]

On the other hand, taking \(\beta_i \) such that \(\beta_i^2 = \alpha_i \) \((i = 1, \ldots, n)\), we find

\[F(x^2) = C(x - \beta_1)(x + \beta_1)(x - \beta_2)(x + \beta_2)\cdots(x - \beta_n)(x + \beta_n) \]

Therefore, in view of (2), excluding the trivial case \(C = 0 \), we obtain \(C = (-1)^n \) and \((\alpha_i)_{i=1}^n \) is a permutation of \((\beta_i)_{i=1}^n \).
Finite, squaring-invariant subsets of the complex plane can only contain 0 and roots of unity of odd order. The irreducible polynomials corresponding to these roots are

\[\lambda_0(x) = x, \quad \lambda_k(x) = \prod_{l=1}^{(2k-1,l)=1} \left[x - \exp\left\{ \frac{2\pi il}{(2k-1)} \right\} \right], \quad k = 1, 2, 3, \ldots \]

(the cyclotomic polynomials). Since for all \(k = 1, 2, 3, \ldots \) the set

\[\left\{ \exp\left\{ \frac{2\pi il}{(2k-1)} \right\} \right\}_{l=1}^{(2k-1,l)=1} \]

is squaring-invariant and the set of solutions of (2) is closed under multiplication, the general polynomial solution of (2) is

\[F(x) = (-1)^{\deg F} \prod_{k=0}^{\infty} (\lambda_k(x))^{n_k} \]

the \(n_k \) being non-negative integers, \(n_k \neq 0 \) for a finite number of indices \(k \). These polynomials all have integer coefficients.

Also solved by the proposer who notes that one can give extensions by considering higher order roots of unity. For example, letting \(\omega^3 = 1 \), consider \(F(x^3) = F(x^3) = F(x)F(\omega x)F(\omega^2 x) \), where \(F(x) = P(x^3) + \omega xQ(x^3) + \omega^2 x^2R(x^3) \).

[[Article:]]
Problem 74-5*, On the norm of a matrix exponential, by J. C. Cavendish (General Motors Research Laboratories).

The following problem arose in a study of discrete approximations to heat flow problems.

(A) Let \(A \) denote any \(n \times n \) diagonally dominant matrix such that \(a_{ii} \geq 0 \). Show that \(\| e^{-tA} \|_\infty \leq 1 \) for all \(t \geq 0 \), where \(e^{-tA} \) is the matrix exponential and \(\| \cdot \|_\infty \) is the usual maximum row sum norm.

(B) Conjecture. Let \(A \) denote any real \(n \times n \) matrix whose eigenvalues all have non-negative real parts. Then there exists a constant \(K \), independent of \(n \), such that \(\| e^{-tA} \|_\infty \leq K \) for all \(t \geq 0 \).

Editorial comment by MSK. The most commonly used reference for proofs of

\[\| e^{tA} \| \leq e^{t\mu[A]} \quad \text{for all } t \geq 0 \]

where

\[\mu[A] = \lim_{h \to 0^+} \frac{\| I + hA \| - 1}{h} \]

is the logarithmic form associated with \(\| \cdot \| \), and of

\[\mu_\infty[-A] = -\min_{t} \left\{ \Re a_{ii} - \sum_{\substack{j=1 \atop j \neq i}}^{n} |a_{ij}| \right\} \]

were W. A. Coppel, Stability and asymptotic behavior of Differential Equations, Heath, Boston, 1965, pages 59 and 41. Several solvers pointed out that if \(A \in \mathbb{C}^{n,n} \) is a matrix whose eigenvalues have nonnegative real parts and whose pure imaginary eigenvalues are simple roots of the minimum polynomial of \(A \), then \(\| e^{-tA} \|_\infty \leq K(A) \) for all \(t \geq 0 \), where \(K(A) \) is independent of \(t \) but dependent on \(A \) and hence on \(n \). However, part (B) was meant to be an extension of part (A), in which the proposer was seeking a characterization of the class \(T_K \) of all real \(n \times n \) matrices for which \(\| e^{-tA} \|_\infty \leq K \) for all \(t \geq 0 \) and \(A \in T_K \). A complete characterization of \(T_1 \) was provided by J. C. Willems (University of Groningen, Groningen, The Netherlands) and W. W. Meyer (General Motors Research Laboratories), both of whom proved that \(\| e^{-tA} \|_\infty \leq 1 \) for all \(t \geq 0 \) if and only if \(a_{ii} \geq \sum_{j \neq i} |a_{ij}|, 1 \leq i \leq n \). It should be pointed out that the proofs given by Willems and Meyer were not valid for \(A \in \mathbb{C}^{n,n} \).
Problem 74-9, *Bounds for the zero of a polynomial*, by V. E. Hoggatt (San Jose State University).

Determine upper and lower bounds for the positive zero of the polynomial equation

\[x^{r+1} - (kx)^r - (...) - 1 = 0 \]

\((k > 1, r \geq 1)\) whose difference \(\to 0\) as \(r \to \infty\).

Editorial comment by MSK. The Lossers solution is more general then the others in that \(k > 0\); it also has the best lower bound

\[k^r + \frac{1}{k} - \{k^{r+2}(k^{r^2} - 1) + k^{-r^2}\}^{-1} \]

The problem appears in a different form in A. M. Ostrowski, *Solution of Equations and Systems of Equations*, Academic Press, New York, 1966, pp. 102–103. However, the corresponding difference of the upper and lower bounds do not \(\to 0\) as \(r \to \infty\).

Problem 74-23*, *Bounds for the zero of a polynomial, An Optimal Strategy*, by M. S. Klamkin (University of Waterloo, Ontario, Canada).

A father, mother and son decide to hold a certain type of board game family tournament. The game is a two-person one with no ties. Since the father is the weakest player, he is given the choice of deciding the two players of the first game. The winner of any game is then to play the person who did not play in that game, and so on. The first player to win \(N\) games wins the tournament. If the son is the strongest player, it is intuitive that the father will maximize his probability of winning the tournament if he chooses to play in the first game and with his wife. Prove either that this strategy is, indeed, optimal or that it is not. It is assumed that any player’s probability of winning an individual game from another player does not change throughout the tournament.

The special case corresponding to \(N = 2\) was set as a problem in the Third U.S.A. Mathematical Olympiad, May 1974.

For another related problem, prove either that the previous strategy is still optimal or it is not, if now the tournament is won by the first player who wins \(N\) consecutive games. This latter problem is a generalization of a variant of a chess problem due to the late Leo Moser (see M. Gardner, *The Unexpected Hanging*, Simon and Schuster, New York, 1969, pp.171–172).
COMBINATORICS

Counting problems: paths

Problem 75-1, by R. W. Allen

An optical fiber carries power in two modes represented by 0 and 1. The path of one photon is represented by an N-bit binary number. The sequence 0 1 or 1 0 is counted as one transition. Thus the path 1 0 0 0 1 1 1 contains two transitions and three zeros. Determine the number of paths $S(N, T, M)$ that contain T transitions and M zeros. Prove whether or not the following formula is valid for all N:

$$S(N, T, M) = 2H(N, T)\binom{M - 1}{U} \binom{N - M - 1}{U}$$

where

$$H(2N, T) = \binom{N - 1}{U}$$

$$H(2N + 1, T) = \binom{2N}{2U}$$

and

$$U = \left\lfloor \frac{T - 1}{2} \right\rfloor \quad V = \left\lfloor \frac{T}{2} \right\rfloor$$

SIAM Rev., 18(1976) 300. Editorial note by M.S.K. Kleitman notes that the solution to the analogous problem for any number of symbols where the number of transitions from each symbol to each other one is given, can be obtained by similar reasoning to the combinatorial solution along with the so-called B.E.S.T. theorem that relates the number of Eulerian circuits in a graph to a minor of the determinant of a version of its adjacency matrix.

A number of solvers noted that the problem is a known one in the theory of runs and more general results exist. In particular, Bailar, Carlitz, Mallows and Marimont, respectively, refer to:

Biometrika, 36(1949) 305–316; and

ALGEBRA

Finite sums: exponentials

SIAM Rev., 17(1975) 68.

Problem 75-3, A power series expansion, by U. G. HAUSSMANN (University of British Columbia)

Last year, a former engineering student of ours wrote to the mathematics department concerning a problem encountered in the electrical design for the appurtinent structures of the Mica Dam on the Columbia River in British Columbia. These structures include a spillway, low level outlets, intermediate level outlets, auxiliary service buildings and a power intake structure.

The engineers obtained a function

\[f(u) = \frac{\exp(u + nu) + \exp(-nu)}{1 + \exp u} \]

where

\[\cosh u = 1 + \frac{x}{2} \]

and where \(x \) is a ratio of resistances. Moreover, they suspected that if \(y = f[u(x)] \), then

\[y(x) = \sum_{k=0}^{n} \left(\frac{n+k}{2k} \right) x^k \]

Show that this is valid.

Editorial comment by MSK. Lossers gives the explicit sum

\[\sum_{k=0}^{n} \left(\frac{n+k}{2k} \right) x^k = \frac{2(2 + x - t)^n}{4 + x + t} + \frac{2(2 + x + t)^n}{4 + x - t} \]

where \(t^2 = x^2 + 4x \). Byrd notes that the latter sum occurs in his paper, Expansion of analytic functions in polynomials associated with the Fibonacci numbers, Fibonacci Quart., 1(1963) 17, and that for \(x = 1 \), the sum reduces to the odd [ranking] Fibonacci numbers \(F_{2n+1} \). Carlitz shows more generally that if

\[f(\lambda, u) = \frac{[e^{(\lambda+1)u} - e^{-\lambda u}]}{[e^u + 1]} \]

where \(\lambda \) is an arbitrary complex number and \(2 \cosh u = 2 + t^2 \), then

\[f(\lambda, u) = \sum_{k=0}^{\infty} \left(\frac{\lambda + k}{2k} \right) t^{2k} \]
in some region about $t = 0$.

The other solutions used induction, generating functions, differential equations and the known expansions of

$$\frac{\cos(2n + 1)\theta}{\cos \theta} \quad \text{or} \quad \frac{\sin n\theta}{\sin \theta}$$

NUMBER THEORY

Series: binomial coefficients

Problem 75-4, *A combinatorial identity*, by P. Barrucand (Université Paris IV, France)

Let

$$A(n) = \sum_{i+j+k=n} \frac{n!^2}{i!^2j!^2k!^2}$$

where i, j, k are integers ≥ 0, and let

$$B(n) = \sum_{m=0}^{n} \left(\begin{array}{c} n \\ m \end{array} \right)^3$$

so that $A(n)$ is the sum of the squares of the trinomial coefficients of rank n and $B(n)$ is the sum of the cubes of the binomial coefficients of rank n ($A(n) = 1, 3, 15, 93, 639, \ldots$; $B(n) = 1, 2, 10, 56, 346, \ldots$).

Prove that

$$A(n) = \sum_{m=0}^{n} \left(\begin{array}{c} n \\ m \end{array} \right) B(m)$$

Editorial note by MSK. Equivalently, one has to prove that

$$\sum_{m=0}^{n} \sum_{r=0}^{m} \left(\begin{array}{c} n \\ m \end{array} \right) \left(\begin{array}{c} m \\ r \end{array} \right)^3 = \sum_{m=0}^{n} \left(\begin{array}{c} 2m \\ m \end{array} \right) \left(\begin{array}{c} n \\ m \end{array} \right)^2$$

For other properties, e.g., recurrences, integral representations, etc., the proposer refers to his papers in *Comptes Rendus Acad. Sci. Paris*, **258**(1964) 5318–5320 and **260**(1965) 5439–5441 [not 5541]. He also notes that his solution is a tedious indirect one.

By equating the constant term in the binomial expansion on both sides of the identity

$$\{1 + (1 + x)(1 + y/x)(1 + 1/y)\}^n = \left\{1 + \frac{1 + x}{y}\right\}^n \left\{1 + y \left(1 + \frac{1}{x}\right)\right\}^n$$
or an equivalent identity, the desired result was obtained by D. R. Breach (University of Canterbury, Christchurch, New Zealand), D. McCarthy (University of Waterloo), D. Monk (University of Edinburgh, Scotland) and P. E. O’Neil (University of Massachusetts, Boston).

With a little more work, one can obtain a more general identity. Expanding the above identity yields

\[
\sum_{r=0}^{n} \sum_{i=0}^{r} \sum_{j=0}^{k} \sum_{k=0}^{r} \binom{n}{r} \binom{r}{i} \binom{r}{j} \binom{r}{k} x^{i-j} y^{j-k} = \sum_{r=0}^{n} \sum_{s=0}^{n} \binom{n}{r} \binom{n}{s} y^{s-r} \sum_{i=0}^{r} \sum_{j=0}^{s} \binom{r}{i} \binom{s}{j} x^{i-j}
\]

Equating the coefficients of \(x^u y^v\) on both sides gives

\[
\sum_{r=0}^{n} \sum_{k=0}^{r} \binom{n}{r} \binom{r}{k} \binom{n}{r} \binom{r}{v+k} \binom{r}{v+u+k} = \\
\sum_{r=0}^{n} \binom{n}{r} \binom{n}{r+v} \sum_{j=0}^{r+v} \binom{r}{u+j} \binom{r}{j} = \sum_{r=0}^{n} \binom{n}{r} \binom{n}{r+v} \binom{2r+v}{r-u}
\]

Equivalent but more complicated versions of the latter identity were obtained by L. Carlitz (Duke University) and D. J. Kleitman and Class 18.325 (Massachusetts Institute of Technology). Also solved, using hypergeometric functions, by G. E. Andrews (Pennsylvania State University), M. E. H. Ismail (University of Wisconsin), O. G. Ruehr (Michigan Technological University); using probability by C. L. Mallows (Bell Laboratories, Murray Hill); and, using differential equations, the proposer in a second solution establishes the equivalent identity

\[
\sum \frac{x^n A(n)}{n!} = e^x \sum \frac{x^n B(n)}{n!}
\]
ALGEBRA

Inequalities: finite sums

Problem 75-5, A nonnegative form, by M. M. GUPTA (Papua New Guinea University of Technology, Lae, Papua New Guinea).

Suppose p and q are positive integers, $p > q$, and Z_1, \ldots, Z_p are arbitrary real numbers. Define

$$
\alpha = p^{-2}q^{-2}(p - q)^{-1}
$$

$$
\beta_p = (Z_2 - 2Z_1)^2 + \sum_{i=2}^{p-1} (Z_{i-1} - 2Z_i + Z_{i+1})^2
$$

and

$$
I_{p,q} = -2q^3 \alpha Z_1 Z_p + 2p^3 \alpha Z_1 Z_q - 2\alpha Z_1^2 + (\beta_p
$$

Show that $I_{p,q} \geq 0$.

This problem arose in deriving discretization error estimates for the first biharmonic boundary value problem in a rectangular region.

Editorial note by MSK. The proposer states that the result is easy to verify if $q = 1$ and that it also holds for $q = 2, 3$ and 4.
ANALYSIS

hypergeometric functions

Problem 75-17, A series of hypergeometric functions, by H. M. SRIVASTAVA (University of Victoria, B.C., Canada).

Let

\[
F \left[\begin{array}{c}
\scriptstyle a \colon b, b', \ldots ; c, c' \ldots ; \\
\scriptstyle d, d', \ldots ; e, e' \ldots ; \\
\scriptstyle x, y, z
\end{array} \right] =
\sum_{l,m,n=0}^{\infty} \frac{(a)_{l+m+n}(b)_{l+m}(b')_{l+m} \cdots (c)_{l+n}(c')_{l+n} \cdots x^l y^m z^n}{(d)_{l+m}(d')_{l+m} \cdots (e)_{l+n}(e')_{l+n} \cdots l! \ m! \ n!}
\]

and

\[
\phi(x, y, z) = \sum_{n=0}^{\infty} \frac{\lambda n \prod_{j=1}^{p} (a_j)_n \prod_{j=1}^{p'} (a_j)_n}{n! \prod_{j=1}^{q} (b_j)_n \prod_{j=1}^{q'} (b_j)_n} \left[\frac{xyz}{(1-z)^2} \right]^n \cdot G
\]

where

\[
G = \begin{cases}
\sum_{r+1}^{p+1} F_q \left[\lambda + n, a_1 + n, \ldots, a_p + n; \frac{xz}{b_1 + n, \ldots, b_q + n; \ z - 1} \right] \\
\sum_{r+1}^{q+1} F_s \left[\lambda + n, a_1 + n, \ldots, a_r + n; \frac{yz}{\beta_1 + n, \ldots, \beta_s + n; \ z - 1} \right]
\end{cases}
\]

Prove or disprove that

\[
\phi(x, y, z) = F \left[\begin{array}{c}
\scriptstyle \lambda \colon a_1, \ldots, a_p; a_1, \ldots, a_r; \\
\scriptstyle b_1, \ldots, b_q; \beta_1, \ldots, \beta_s; \\
\scriptstyle x, y, z
\end{array} \right] \cdot G
\]

Editorial note by MSK. Carlitz obtained the desired result as a special case of the following more general identity:

Let \(a(m), \alpha(m), b(m), \beta(m) \) denote arbitrary sequences of (complex) numbers. Put

\[
\phi(x, y, z) = \sum_{n=0}^{\infty} \frac{\lambda n a(n) \alpha(n) \beta(n)}{n! b(n)} \left(\frac{xyz}{(1-z)^2} \right)^n \cdot G_n
\]

where

\[
G_n = \sum_{i=0}^{\infty} \frac{(\lambda + n) a(n + i) \alpha(n)}{i! b(n + i) / b(n)} \left(\frac{xz}{z - 1} \right)^i \sum_{j=0}^{\infty} \frac{(\lambda + n) \alpha(n + j) / \alpha(n)}{j! \beta(n + j) / \beta(n)} \left(\frac{yz}{z - 1} \right)^j
\]

Also put

\[
F(x, y, z) = \sum_{k,m,n=0}^{\infty} \frac{(\lambda)_{k+m+n} a(k + m) \alpha(k + n)}{k! m! n! b(k + m) \beta(k + n)} \left(\frac{xyz}{1-z} \right)^k \left(\frac{xz}{z - 1} \right)^m \left(\frac{yz}{z - 1} \right)^n
\]

57
Then, by taking
\[a(n) = \prod_{i=1}^{p} (a_i)_n \quad \alpha(n) = \prod_{j=1}^{p} (\alpha_j)_n \]
\[b(n) = \prod_{i=1}^{q} (b_i)_n \quad \beta(n) = \prod_{j=1}^{q} (\beta_j)_n \]
it is easily verified that
\[\phi(x, y, z) = F(x, y, z) \]
reduces to the stated identity.

ANALYSIS

Integrals: evaluations

SIAM Rev., **17**(1975) 566.

Evaluate the 4-fold integral
\[F = \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \int_{0}^{1} \left\{ (x_1 - x_2)^2 + (y_1 - y_2)^2 \right\}^{1/2} \, dx_1 \, dx_2 \, dy_1 \, dy_2 \]
which gives the average distance between points in two adjacent unit squares.

Editorial note by MSK. The proposer notes that the problem was suggested by C. R. Johnson and that the result should be of interest to workers in transportation modeling and similar fields..

Problem 75-15, An eigenvalue problem, by E. Wasserstrom (Israel Institute of Technology, Haifa, Israel).

Let
\[D = \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix} \quad T = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \]
where \(d_1, d_2 \) and \(d_3 \) are positive and \(d_3 \leq d_1 \). Show that if \(d_3 < d_1/3 \), then there are two other positive diagonal matrices \(D_1 \) and \(D_2 \) such that \(D, D_1 \) and \(D_2 \) are distinct but \(DT, D_1T \) and \(D_2T \) have the same eigenvalues. Show also that if \(d_3 > d_1/3 \) and \(D_1 \) is a positive diagonal matrix distinct from \(D \), then \(DT \) and \(D_1T \) must have different eigenvalues.
Illustration. For the three matrices $D = \text{diag}(5.5596, 1.4147, 1.5257)$, $D_1 = \text{diag}(5.1030, 2.4288, 0.9682)$ and $D_2 = \text{diag}(2.9782, 4.6565, 0.8653)$, correct to the given figures, the eigenvalues of DT, D_1T and D_2T are the same, i.e., $\lambda_1 = 1$, $\lambda_2 = 4$, $\lambda_3 = 12$. On the other hand, with $D = \text{diag}(3.4530, 1.4584, 1.5887)$, the eigenvalues of DT are $\lambda_1 = 1$, $\lambda_2 = 4$, $\lambda_3 = 8$, and there is no other positive diagonal matrix D_1 such that the eigenvalues of D_1T are the same.

Remark. This problem arises from the discretization of the inverse eigenvalue problem $\frac{d^2y}{dx^2} = \lambda \rho(x)y$, $y(0) = y(1) = 0$. For a given spectrum, λ, one is then required to find the density function $\rho(x)$. (See B. M. Levitan & M. G. Gasymov, Determination of a differential equation by means of two spectra, Uspehi Mat. Nauk., 19(1964) 3–63.)

Editorial note by MSK. The proposer’s solution is essentially a numerical one. It would be desirable to give an analytic solution.

[Such a solution, by O. P. Lossers, follows.]
ANALYSIS

Bessel functions

Problem 75-20. Limit of an integral, by M. L. Glasser (University of Waterloo, Ontario, Canada).

Show that
\[
\lim_{n \to \infty} n \int_0^\infty I_n(x)J_n(x)K_n(x) \, dx = 5^{-1/2}
\]
where, as usual, \(I_n, J_n, K_n\) are Bessel functions.

Editorial note by MSK. Also solved by D. E. Amos (Sandia Laboratories) and A. G. Gibbs (Battelle Memorial Institute) who both showed that
\[
\lim_{n \to \infty} \int_0^\infty I_n(x)J_n(ax)K_n(bx) \, dx = \frac{1}{2}(1 + a^2)^{-1/2}
\]

Procedures for obtaining the asymptotic behavior of this integral and more general ones appeared in

Die Autoren beschäftigen sich mit zwei Methoden zur Beurteilung des asymptotischen Verhaltens der uneigentlichen Integrale

\[
U = \int_0^\infty J_\nu(ax)I_\nu(bx)K_\nu(bx)x^{\rho-1} \, dx
\]

und

\[
V = \int_0^\infty J_\nu(ax)Y_\nu(ax)I_\nu(bx)K_\nu(bx)x^{\sigma-1} \, dx
\]

für \(\nu \to \infty\). \(J_\nu, Y_\nu, I_\nu, K_\nu\) sind wie üblich Bessel-Funktionene reeller Ordnung \(\nu \geq 0\); \(\rho\) und \(\sigma\) (reell oder komplex) und \(a > 0, b > 0\) sind Konstanten. Bei der ersten Variante—sie hat Bezug zu Untersuchungen von J. E. Kilpatrick, S. Katsura und Y. Inoue, *Math. Comput.*, 21(1967) 407–412; Zbl 154 415—werden \(U\) bzw. \(V\) in Zusammenhang gebracht mit Integraldarstellungen vom Barnesschen Typ für die Meijersche G-Funktion. Diese Transformation wurde gemacht, um die bekannte Asymptotik der hier vorkommenden Gammafunktionen ausnutzen zu können. Die zweite Methode stützt sich auf asymptotische Entwicklungen der Zylinderfunktionen für grosse Werte \(\nu\) nach Termen von elementaren oder Airy-Funktionen. [Reviewed by F. Gotze]
GEOMETRY

N-dimensional geometry: curves

Problem 75-21, n-dimensional simple harmonic motion, by I. J. Schoenberg (University of Wisconsin).

In \mathbb{R}^n we consider the curve

$$\Gamma : x_i = \cos(\lambda_i t + a_i) \quad i = 1, \ldots, n \quad -\infty < t < \infty$$

which represents an n-dimensional simple harmonic motion entirely contained within the cube $U : -1 \leq x_i \leq 1, \ i = 1, \ldots, n$. We want Γ to be truly n-dimensional and will therefore assume without loss of generality that $\lambda_i > 0$ for all i. We consider the open sphere

$$S : \sum_{i=1}^{n} x_i^2 < r^2$$

and want the motion Γ to take place entirely outside of S, hence contained in the closed set $U - S$. What is the largest sphere S such that there exist motions Γ entirely contained in $U - S$? Show that the largest such sphere S_0 has the radius $r_0 = \sqrt{n/2}$ and that the only motions Γ within $U - S_0$ lie entirely on the boundary $\sum x_i^2 = r_0^2$ of S_0.

Comment by MSK. If, as usual, we consider the $2n$-dimensional motion where the velocities are the other n coordinates, then the [given] arguments show that the minimum of

$$g(t) = \sum_{i=1}^{n} \left[\cos^2(\lambda_i t + a_i) + \lambda_i^2 \sin^2(\lambda_i t + a_i) \right] \leq \frac{1}{2} \left(n - \sum_{i=1}^{n} \lambda_i^2 \right) < r_0^2$$

Thus the $2n$-dimensional problem has the same solution in the sense that all spheres with radii $< r_0$ have a Γ outside them, but the sphere with radius r_0 does not. The motions also need not be truly n-dimensional unless the λ_i are independent over the rationals.
NUMBER THEORY

Series: unit fractions

Problem 76-5*, An arithmetic conjecture, by D. J. Newman (Yeshiva University)

To determine positive integers \(a_1, a_2, \ldots, a_n\) such that

\[
S_n = \sum_{i=1}^{n} \frac{1}{a_i} < 1
\]

and \(S_n\) is a maximum, it is conjectured that at each choice one picks the smallest integer still satisfying the inequality constraint. Is this conjecture true?

...for example, for \(n = 4\) one would choose

\[
\begin{align*}
1 & \quad 1 \\
2 & \quad 3 \\
7 & \quad 43
\end{align*}
\]

Editorial note by MSK. P. Erdős notes that this problem was raised by Kellog in 1921 and solved by Curtiss (On Kellog’s Diophantine equation, Amer. Math. Monthly, 29(1922) 380–387). Curtiss shows that if \(\{u_n\}\) is defined by \(u_1 = 1, u_{k+1} = u_k(uk + 1)\) (giving rise to the sequence 1, 2, 6, 42, 1806, ...) and if \(1/F_n = 1 - S_n\), then the maximum finite value of \(F_{n-1}\), for all positive values of \(a_1, a_2, \ldots, a_{n-1}\) is \(u_n\) and also there is but one set of the \(a_i\) which give this maximum value, namely \(a_k = u_{k+1}, k = 1, 2, \ldots, n-1\).

It would be of interest to solve the following extension of the problem: we wish the stated conjecture to still be valid if the \(a_i\) are further restricted to be members of a given infinite sequence \(\{b_n\}\) with \(\sum 1/b_k = \infty\). Characterize all such sequences \(\{b_k\}\). In particular, is the conjecture valid for \(b_k = 2k\); for \(b_k = 2k + 1, k = 1, 2, 3, \ldots\)?
ANALYSIS

Differential equations: order n

Problem 76-6, An n-th Order Linear Differential Equation, by M. S. Klamkin (University of Waterloo).

Solve the differential equation

\[[x^{2n}(D - a/x)^n - k^n]y = 0. \]

Editorial note by MSK. Most of the solutions reduced the equation simply to \([x^{2n}D^n - k^n]u = 0\) and then referred to Kamke's Differentialgleichungen. Ortner also solved the dual equation \([x^n(D - a/x)^{2n} - k^n]y = 0\) in a similar fashion. More generally, it is just as easy to solve the pair of equations

\[[x^{2n}(D + \phi'(x))^n - k^n]y = 0 \quad [x^n(D + \phi'(x))^{2n} - k^n]y = 0 \]

for by the exponential shift theorem, they reduce to

\[[x^{2n}D^n - k^n]ye^\phi = 0 \quad [x^nD^{2n} - k^n]ye^\phi = 0 \]

The latter pair can be solved in terms of solutions of first order equations by using the known dual operational identities

\[x^{2n}D^n \equiv [x^2D + (1 - n)x]^n \quad x^nD^{2n} \equiv [xD^2 + (1 - n)D]^n \]
LINEAR ALGEBRA

Matrices: Hermitian matrices

Problem 76-8, A matrix inequality, by W. Anderson and G. Trapp (West Virginia University).

Let A and B be Hermitian positive definite (HD) matrices. Write $A \geq B$ if $A - B$ is HD. Show that

$$A^{-1} + B^{-1} \geq 4(A + B)^{-1}$$

Editorial note by MSK. The theorem quoted by Moore follows from that of Lieb by setting $k = 2, C_1 = \lambda A, C_2 = (1 - \lambda)B, D_1 = \lambda I$ and $D_2 = (1 - \lambda)I$. Several solvers noted that for the statement of the problem to be correct, the relation $A \geq B$ should be defined to mean that $A - B$ is Hermitian positive semi-definite (HSD).

[[Classroom Notes in Applied Mathematics.]]

[[References include Problem 61-4 above; the papers: M. S. Klamkin & D. J. Newman, Flying in a wind field, I, II, *Amer. Math. Monthly*, **76**(1969) 16–23, 1013–1019; *MR 38* #5496, **40** #3951; and the following:]]

[[missing from our Research Collection, but presumably by Murray — Later: No! it’s by Melvin F. Gardner, U of Toronto, so we don’t need to bother? — R.]]
COMBINATORICS

Permutations

Problem 76-17, *A Reverse Card Shuffle*, by David Berman and M. S. Klamkin (University of Waterloo).

The following problem, originating somewhere in England, was brought to our attention by G. Cross.

A deck of \(n\) cards is numbered 1 to \(n\) in random order. Perform the following operations on the deck. Whatever the number on the top card is, count down that many in the deck and turn the whole block over on top of the remaining cards. Then, whatever the number of the (new) top card, count down that many cards in the deck and turn this whole block over on top of the remaining cards. Repeat the process. Show that the number 1 will eventually reach the top.

Consider the following set of related and more difficult problems:

I. Determine the number \(N(k)\) of initial card permutations, so that the 1 first appears on top after \(k\) steps of the process. In particular, show that \(N(0) = N(1) = N(2) = (n - 1)!\) and that

\[
N(3) = \begin{cases}
(n - 1)! - \frac{1}{2}(n - 1)(n - 3)(n - 4)! & \text{if } n \text{ odd} \\
(n - 1)! - \frac{1}{2}(n - 2)^2(n - 4)! & \text{if } n \text{ even}
\end{cases}
\]

(The method of the authors is apparently too unwieldy to determine \(N(k)\) for \(k > 3\). ["\(k > 2\) was printed – R.]

2. Estimate the maximum number of steps it takes to get the 1 to the top.

3. For what \(n\) is there a unique permutation giving the maximum number of steps?

4. It is conjectured that the last step of a maximum step permutation leaves the cards in order (i.e., 1, 2, \ldots, \(n\)).

Computer calculations give the following partial results:
The first four steps of the maximum step permutation for \(n = 9 \) are:

<table>
<thead>
<tr>
<th>Step</th>
<th>Permutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>615 97 28 34</td>
</tr>
<tr>
<td>1</td>
<td>279 51 68 34</td>
</tr>
<tr>
<td>2</td>
<td>729 51 68 34</td>
</tr>
<tr>
<td>3</td>
<td>861 59 27 34</td>
</tr>
</tbody>
</table>

SIAM Rev., 19(1977) 740–741.

Editorial note. D. E. Knuth (Stanford University) notes that the card shuffle game here was shown to him in 1973 by J. H. Conway (Cambridge University) who proposed it and named it “topswaps”. In the next year Knuth included part 2 on a take-home examination in the following form (also included is his solution):

Problem 3. Let \(\pi = \pi[1]\pi[2] \cdots \pi[n] \) be a permutation of \(\{1, 2, \ldots, n\} \) and consider the following algorithm:

```plaintext
begin integer array A[1 : n]; integer k
(A[1],...,A[n]) ← (π[1],...,πn);
loop: print (A[1],...,A[n]);
      k ← A[1];
      if k = 1 then go to finish;
      (A[1],...,A[n]) ← (A[k],...,A1);
      go to loop;
finish: end
```

66
For example, when $n = 9$ and $\pi = 314562687$, the algorithm will print

\begin{align*}
3 & 1 4 5 9 2 6 8 7 \\
4 & 1 3 5 9 2 6 8 7 \\
5 & 3 1 4 9 2 6 8 7 \\
9 & 4 1 3 5 2 6 8 7 \\
7 & 8 6 2 5 3 1 4 9 \\
1 & 3 5 2 6 8 7 4 9
\end{align*}

and then it will stop.

Let $m = m(\pi)$ be the total number of permutations printed by the above algorithm. Prove that m never exceeds the Fibonacci number F_{n+1}. (In particular, the algorithm always halts.)

Extra credit problem. Let $M_n = \max\{m(\pi) \mid \pi \text{ a permutation of } \{1, \ldots, n\}\}$. Find the best upper and lower bounds on M_n that you can.

Problem 3 solution. If array element $A[1]$ takes on k distinct values during the (possibly infinite) execution of the algorithm, we will show that $m \leq F_{k+1}$ (hence m is finite).

If $k \geq 2$, let the distinct values assumed by $A[1]$ be $d_1 < d_2 < \cdots < d_k$. Suppose that $A[1] = d_k$ occurs first on the rth permutation, and let $t = \pi[d_k]$. Then the $(r+1)$st permutation will have $A[1] = t$ and $A[d_k] = d_k$. All subsequent permutations will also have $A[d_k] = d_k$ (they leave $A[j]$ untouched for $j \geq d_k$), hence at most $k-1$ values are assumed by $A[1]$ after the rth permutation has been passed. By induction, $m - r \leq F_k$, so m is finite and $d_1 = 1$.

Interchanging d_k with 1 in π produces a permutation π' such that $m(\pi') = r$, and for which the values d_k and t never appear in position $A[1]$ unless $t = 1$. If $t = 1$ we have $r \leq F_k$, since $A[1]$ assumes at most $k-1$ values when processing π', hence $m = r + 1 \leq F_{k+1}$. If $t > 1$ we have $r \leq F_{k-1}$ since $A[1]$ assumes at most $k-2$ values when processing π' (note that $t = d_j$ for $j < k$) hence $m \leq F_k + r \leq F_{k+1}$.

Three hours of further concentration on this problem lead to the hypothesis that it is difficult either to prove or to disprove the conjecture $M_n = O(n)$; the upper bound F_{n+1} is exact only for $n \leq 5$.

[The upper bound applies more generally to any algorithm that sets $(A[1], \ldots, A[k]) \leftarrow (A[k], A[p_2], \ldots, A[p_{k-1}], A[1])$ when $p_2 \ldots p_{k-1}$ is an arbitrary permutation of $\{2, \ldots, k-1\}$.

Computer calculations show that $M_6 = 11$, $M_7 = 17$, $M_8 = 23$, $M_9 = 31$, so $M_{n+1} - M_n$ may possibly increase without limit. This search is speeded up slightly by restricting consideration to permutations without fixed points.

67
The long-winded permutations on 7, 8, 9 elements are 3146752, 4762153; 61578324; 615972834.

When \(n \geq 3 \) and \(1 \leq k \leq 3 \), exactly \((n-1)!\) permutations \(\pi \) satisfy \(m(\pi) = k \). It is conjectured that exactly \((n-1)!\) permutations \(\pi \) will satisfy “\(A[1] = n \) at some stage.”

[[The sequence 0, 1, 2, 4, 7, 10, 16, 22, 30 is A000375 in OEIS and continues 38, 51, 65, 80, 101, 113, 139 — RKG]]

B. J. Hollingsworth (Pennzoil Company) notes that the conjecture in part 4 (see Oct. 1977, p. 739) is false, as may be seen by the counterexample 416523 for \(n = 6 \). After ten steps, one ends up with 143256 which is not in increasing order. The four remaining “long-winded” permutations for \(n = 6 \), namely 365142, 456213, 564132 and 415263, do end up as 123456.
ANALYSIS

Integrals: gamma function

Problem 77-1*, Percentiles for the gamma distribution, by R. A. Waller and M. S. Waterman (Los Alamos Scientific Laboratory).

If \(0 < \xi_1 < \xi_2 < 1\) and \(1 < b\) are fixed, consider solutions \((\lambda, \phi)\) of the system

\[
f(\lambda, \phi) = \int_0^\lambda \frac{e^{-y}y^{\phi-1}}{\Gamma(\phi)} dy = \xi_1
\]

\[
g(\lambda, \phi) = \int_0^{b\lambda} \frac{e^{-y}y^{\phi-1}}{\Gamma(\phi)} dy = \xi_2
\]

where \(0 < \lambda\) and \(0 < \phi\). Does this system always have a solution? If a solution exists, is it unique? This problem arises in a procedure for determining gamma priors in Bayesian reliability analysis. In this context, some pairs, \((\xi_1, \xi_2)\), of interest are \((0.01, 0.50)\), \((0.01, 0.95)\), \((0.05, 0.50)\), \((0.05, 0.95)\), \((0.50, 0.95)\) and \((0.50, 0.99)\).

Editorial note by MSK. Only an existence proof for this problem was given in the Jan. 1978 issue. The following comment by I. W. Saunders (CSIRO Division of Mathematics and Statistics, Canberra, Australia) establishes uniqueness:

Write \(\zeta(\phi; \xi)\) for the \(\xi\)-quartile of the gamma distribution with parameter \(\phi\), so that

\[
\int_0^\zeta e^{-y}y^{\phi-1} dy/\Gamma(\phi) = \xi
\]

Then we want to show that, when \(1 > \xi_2 > \xi_1 > 0\) and \(b > 1\), the equation

\[
\eta(\phi; \xi_2)/\zeta(\phi; \xi_1) = b
\]

has a unique solution \(\phi\).

Saunders & Moran 1 show that \(r(\phi) = \eta(\phi; \xi_2)/\zeta(\phi; \xi_1)\) is decreasing with \(\phi\). Since \(\zeta^0e^{-\zeta} < \zeta\Gamma(\phi + 1) < \zeta^\phi\) it is easily shown that \(r(\phi) \to \infty\) as \(\phi \to 0\). Also, using the central limit theorem, noting that the gamma distribution is the convolution of unit exponential distributions, \(\zeta(n; \xi) = n + O(\sqrt{n})\), so that \(r(n) \to 1\) as \(n \to \infty\) for \(n\) an integer. Hence, since \(r(\phi)\) is decreasing, \(r(\phi) \to 1\) as \(\phi \to \infty\).

Thus the equation has a unique solution \(\phi(b)\) for any \(b \in (1, \infty)\).

REFERENCE

ANALYSIS

Integrals: evaluations

Problem 77-3, A definite integral of N. Bohr, by P. J. Schweitzer (IBM Research Center).

N. Bohr [1] investigated the integral

\[K = \int_0^{\infty} F(x)(F'(x) - \ln x) \, dx \]

where

\[F(x) = \int_{-\infty}^{\infty} \frac{\cos xy \, dy}{(1 + y^2)^{3/2}} \]

is related to a modified Bessel function [2] and he numerically obtained the rough approximate result \(K \approx -0.540 \). Find an exact expression for \(K \).

REFERENCES

Editorial note by MSK. Bohr’s comments on the evaluation of \(K \) are contained in a letter which he wrote to his brother, Harald Bohr. Bohr first derives a series expansion for \(F \) based on the fact that \(F \) satisfies the differential equation \(F'' - (1/x)F' - F = 0 \). He also derives an asymptotic expansion for \(F \). The, evidently, Bohr employs two series representations in appropriate intervals and uses numerical integration techniques to evaluate \(K \). After what he describes as “some days of numerical drudgery” he obtains \(K \approx -0.540 \). The exact source of error in Bohr’s result is, perhaps, a subject for historical speculation. Amos notes the interesting numerical fact that \((4/\pi)G'(1) \approx -0.54073 \), which fosters speculation to the effect that the numerical value quoted by Bohr refers to only part of the integral defining \(K \). In any case, it is worth noting that Bohr’s basic approach is viable enough. With the aid of a computer, it is a relatively easy matter to implement Bohr’s program and so obtain \(K \approx -1.15063 \).
ANALYSIS

Integrals: evaluations

Problem 77-8, A Definite Integral, by M. L. Glasser (University of Waterloo).

Prove that

\[\int_0^\infty \log \frac{|J_0(x)|}{x^2} \, dx = -\frac{\pi}{2} \]

Editorial note. A class of such integrals has been treated by B. Berndt and the author by complex integration.

Under appropriate conditions on a rational function \(f(x) \), the authors use the calculus of residues to evaluate the principal value (PV) of \(\int_{-\infty}^{\infty} \{J_{\nu+1}(x)/J_{\nu}(x)\} f(x) \, dx \), where \(J_{\nu}(x) \) is the Bessel function of the first kind of order \(\nu \). An interesting special case is \(\text{PV} \int_{0}^{\infty} \{J_{\nu+1}(x)/xJ_{\nu}(x)\} \, dx = \pi/2 \). In the latter, if \(\nu = -\frac{1}{2} \), the integrand is \((\tan x)/x\).

Also, \(\text{PV} \int_{0}^{\infty} \{J_{\nu+1}(x)/x(x^2 + a^2)J_{\nu}(x)\} \, dx = \pi I_{\nu+1}(a)/2a^2 I_{\nu}(a) \).

comment by MSK
GEOMETRY

Triangle inequalities: circumradius

Problem 77-9, A Triangle Inequality, by I. J. Schoenberg (University of Wisconsin).

Let \(P_i = (x_i, y_i), \) \(i = 1, 2, 3, \) \(x_1 < x_2 < x_3, \) be points in the Cartesian \((x, y)\)-plane and let \(R \) denote the radius of the circumcircle \(\Gamma \) of the triangle \(P_1P_2P_3 \) (\(R = \infty \) if the triangle is degenerate). Show that

\[
\frac{1}{R} < 2 \left| \frac{y_1}{(x_1 - x_2)(x_1 - x_3)} + \frac{y_2}{(x_2 - x_3)(x_2 - x_1)} + \frac{y_3}{(x_3 - x_1)(x_3 - x_2)} \right|
\]

unless both sides vanish, and that 2 is the best constant.

Editorial note by MSK. The proposer notes that the problem had arisen in determining conditions that would ensure that an \(F(x) \in C[0,1] \) is a linear function. He then lets \(F(x_1, x_2, x_3) \) be the 2nd order divided difference of \(F(x) \) where \(0 \leq x_1 < x_2 < x_3 \leq 1. \) If \(F(x_1, x_2, x_3) \to 0 \) whenever \(x_1, x_2, x_3 \) converge to a common limit \(l \) in \([0,1]\), for all \(l \), then the inequality shows that the plane arc \(y = F(x) \) has Menger curvature zero at all of its points. It then follows by a theorem of Menger that the arc is straight. Also, the proposer in his proof establishes the equivalent interesting result:

If \(P_1, P_2, P_3 \) are three distinct points on a parabola, then their circumcircle is larger than the circle of curvature at its vertex.
GEOMETRY

Triangle inequalities: sides

Problem 77-10, A Two Point Triangle Inequality, by M. S. Klamkin (University of Alberta).

Let P and P' denote two arbitrary points and let $A_1A_2A_3$ denote an arbitrary triangle of sides a_1, a_2, a_3. If $R_i = PA_i$ and $R'_i = P'A_i$, prove that

$$a_1R_1R'_1 + a_2R_2R'_2 + a_3R_3R'_3 \geq a_1a_2a_3$$

(1)

and determine the conditions for equality. It is to be noted that when P' coincides with P, we obtain a known polar moment of inertia inequality.

Solution by the proposer.

We start with the known identity for five arbitrary complex numbers

$$\frac{z - z_1}{z_1 - z_2} \cdot \frac{z' - z_1}{z_1 - z_3} + \frac{z - z_2}{z_2 - z_3} \cdot \frac{z' - z_2}{z_2 - z_1} + \frac{z - z_3}{z_3 - z_1} \cdot \frac{z' - z_3}{z_3 - z_2} = 1$$

(2)

It now follows by the triangle inequality that

$$|z - z_1||z' - z_1||z_2 - z_3| + |z - z_2||z' - z_2||z_3 - z_1| + |z - z_3||z' - z_3||z_1 - z_2|$$

$$\geq |z_1 - z_2||z_2 - z_3||z_3 - z_1|$$

(3)

with equality if and only if each of the three terms on the left hand side of (2) are real. Let z_1, z_2, z_3, z, z' be the complex numbers corresponding to the points A_1, A_2, A_3, P, P' respectively, then (3) is equivalent to (1). The equality condition requires that

$$\angle A_2A_1P = \angle P'A_1A_3, \quad \angle A_1A_2P = \angle P'A_2A_3, \quad \angle A_2A_3P = \angle P'A_3A_1$$

[[This is as printed, but I'm suspicious about it. If we use it, would some hero check if the following version is the correct one:

$$\angle A_2A_1P = \angle P'A_1A_3, \quad \angle A_3A_2P = \angle P'A_2A_1, \quad \angle A_1A_3P = \angle P'A_3A_2$$

Thus the two points P and P' must be isogonal conjugates with respect to the given triangle. If P is the center of the inscribed circle of the triangle, then P' coincides with P. If P is the center of the circumcircle, then P' is the orthocenter.

It is a known result (1) that if P and P' are foci of an ellipse inscribed in the triangle $A_1A_2A_3$, then we have the equality condition of inequality (1). The proof given was

73
geometric. Fujiwara [2] using identity (2) easily establishes the equality condition of inequality (1) that \(P \) and \(P' \) must be isogonal conjugates. The ellipse result of [1] also follows easily from (2) by using the known general angle property of an ellipse that two tangents to an ellipse from a given point make equal angles with the focal radii to the given point.

Many other triangle inequalities can be obtained in a similar fashion. These are given in a paper *Triangle inequalities from the triangle inequality*, submitted for publication.

[[The paper mentioned in the last para. is more precisely:

M. S. Klamkin, Triangle inequalities from the triangle inequality, *Elem. Math.*, 34(1979) 49–55; *MR 80m:51013*

The author obtains about 30 inequalities for the parts of a triangle by applying the basic inequality \(|u| + |v| \geq |u + v|\) to complex number identities arising by considering the triangle in the complex plane, with an arbitrary point as origin. As observed, some of these are new, others have appeared elsewhere [see O. Bottema, R. Ž. Dordević, R. R. Janić, D. S. Mitrinović and P. M. Vasić, Geometric inequalities, Wolters-Noordhoff, Groningen, 1969; *MR 41 #7537*], and elsewhere.

Reviewed by H. T. Croft]]

SIAM Rev., 21(1979) 257

comment by MSK..
ALGEBRA

Inequalities: degree 3 [and 4]

Problem 77-12*, Conjectured inequalities, by Peter Flor (University of Cologne, West Germany).

Establish or disprove the following inequalities where all the variables are positive:

\[a^3 + b^3 + c^3 + 3abc \geq a^2(b + c) + b^2(c + a) + c^2(a + b) \]

\[39a^3 + 15a(b^2 + c^2) + 20ad^2 + 5bc(b + c + d) \geq 10a^2(b + c) + 43a^2d + 39abc + ad(b + c) \]

\[5(a^4 + b^4 + c^4 + d^4) + 6(a^2c^2 + b^2d^2) + 12(a^2 + c^2)bd + 12(b^2 + d^2)ac \geq \]

\[2(a^3 + b^3 + c^3 + d^3)(a + b + c + d) + 4(a + c)(b + d)(ac + bd) + 2(a^2 + c^2)(b^2 + d^2) + 8abcd \]

Note that, obviously, the first two do not hold for all real values of the variables. The situation for the third is the same: consider \(a = b = 1, c = d = -1 \). Further note that on equating the variables, equality is obtained in all cases.

All three are particular cases of a general inequality which I published as a conjecture ten years ago and on which no progress has been reported so far (see Bull. Amer. Math. Soc., 72(1966), Research Problem 1, p. 30). Their proof might indicate a method for attacking this old conjecture.

Editorial note. The proposer does have a proof of the first inequality.

Here is the BAMS Research Problem:

Peter Flor: Matrix theory

For any square matrix \(A \), let \(\text{per}(A) \) denote the permanent of \(A \) and \(s(A) \) the sum of the elements of \(A \).

Prove or disprove the following statement: “If \(M \) is any \(n \times n \) matrix of real nonnegative numbers, and if \(k \) is any integer, \(1 \leq k \leq n \), then

\[\sum (\text{per}(B) - \text{per}(C))(s(B) - s(C)) \geq 0 \]

where \(B \) and \(C \) range independently over the \(k \times k \) submatrices of \(M \).”

For the case of \(M \) being doubly-stochastic the statement reduces to a conjecture of Holens (see [1]) which in turn would imply the affirmative solution of van der Waerden’s famous problem on permanents (see e.g. [2]).

References

Editorial note by MSK. The first inequality is a special case \((n = 1)\) of an inequality of Schur, i.e.,

\[
a^n(a - b)(a - c) + b^n(b - c)(b - a) + c^n(c - a)(c - b) \geq 0
\]

COMBINATORICS

Graph theory: trees

Problem 77-15, *A Conjectured Minimum Valuation Tree*, by I. Cahit (Turkish Telecommunications, Nicosia, Cyprus).

[[Also published as E 2671* in *Amer. Math. Monthly*, 84(1977) 651, with a solution, similar to Fan Chung’s below, by G. W. Peck (MIT) at 85(1978) 827, and a reference to *SIAM Rev*. It is closely related to the notorious Kotzig-Ringel tree-labelling problem—R.K.G.]]

Let \(T\) denote a tree on \(n\) vertices. Each vertex of the tree is labelled with distinct integers from the set 1, 2, \ldots, \(n\). The weight of an edge of \(T\) is defined as the absolute value of the difference between the vertex numbers at its endpoints. If \(S\) denotes the sum of all the edge weights of \(T\) with respect to a given labelling, it is conjectured that for a \(k\)-level complete binary tree, the minimum sum is given by

\[
S_{\text{min}}^{(k)} = \min_{\text{all labellings}} \sum_{(i,j) \in T} |i - j| = (k - 1)2^{(k-1)} \quad (k > 1)
\]

Examples of minimum valuation trees for \(k = 2, 3, 4\) are given by

\[
\begin{array}{cccccccc}
4 & 4 & 12 & 8 & 8 & 12 & 16 & 20 & 24
\end{array}
\]

\[
\begin{array}{cccccccc}
2 & 2 & 6 & 2 & 6 & 10 & 14 & 16 & 20
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 3 & 1 & 3 & 5 & 7 & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15
\end{array}
\]

\[
S_{\text{min}}^{(2)} = 2 \quad S_{\text{min}}^{(3)} = 8 \quad S_{\text{min}}^{(4)} = 24
\]

Editorial note by Murray. A. Meir suggested the related problem of determining \(\min \sum (i - j)^2\). More generally, one can consider \(\max \sum |i - j|^m\).
Solution by F. R. K. Chung (Bell Laboratories). The conjecture is not true for $k > 4$. The following labelling for the 5-level complete binary tree shows that $S_{\text{min}}^{(5)} \leq 60 < 4 \cdot 2^4$

\[
\begin{array}{ccccccccccc}
12 & & & & & & & & & & \\
4 & 1 & & & & & & & & & \\
\end{array}
\]

We let $S_k = S^{(k)}_{\text{min}}$. It can be shown that

\[
S_k = 2^k(\frac{k}{3} + \frac{5}{18}) + (-1)^k(\frac{2}{9}) - 2
\]

Proof. The optimal labelling L_k for the k-level binary tree T_k satisfies the following properties. The proof can be found in [1] or [2] or can be easily verified.

Property 1. The vertex labelled by 1 or $n = 2^k - 1$ in L_k is a leaf (a leaf is a vertex of valence 1).

Property 2. Let P denote the path connecting the two vertices labelled by 1 and n in L_k. Let P have vertices v_0, \ldots, v_t. Then the labelling of the vertices of P is monotone, i.e.,

\[
L(v_i) < L(v_{i+1}) \text{ for } i = 0, \ldots, t - 1
\]

or

\[
L(v_i) > L(v_{i+1}) \text{ for } i = 0, \ldots, t - 1
\]

Property 3. In T_k we remove all edges of P. The resulting graph is a union of vertex disjoint subtrees. Let \tilde{T}_i denote the subtree which contains the vertex v_i, $i = 1, \ldots, t - 1$. Then for a fixed i, the set of labellings of vertices in \tilde{T}_i consists of consecutive integers. Moreover, the labelling on each \tilde{T}_i is optimal.

Property 4. Let \tilde{v} be the only vertex of T_k with valence 2. Then P passes through \tilde{v}.

Property 5. Let T'_k denote the tree which contains T_k as a subtree and T'_k has one more vertex than T_k, which is a leaf adjacent to \tilde{v}. Then $S(T'_k) = S_k + 2$.

From properties 1 to 5, the following recurrence relation holds:

\[
S_k = 2^{k-1} + 4 + S_{k-1} + 2S_{k-2} \text{ for } k \geq 4
\]
and $S_2 = 2, S_3 = 8$.

It can easily be verified by induction that

$$S_k = 2^k(k/3 + 5/18) + (-1)^k(2/9) - 2$$

If we consider k-level complete p-nary trees T^p_k, some asymptotic estimates for S^p_k, the minimum sum of all edge weights of T^p_k over all labellings, have been obtained in [1] and [2]. We will briefly discuss the case $p = 3$.

Let $T_p(k, i)$ denote a k-level tree which has the root connected to i copies of a $(k - 1)$-level p-nary tree. For example the graph

is $T_3(3, 2)$. Let $S_p(k, i)$ denote the minimum value of the sum of all edge weights of $T_p(k, i)$ over all labellings of $T_p(k, i)$.

It can be easily verified that

$$S_3(k, 2) = 3S_3(k - 1, 2) + 2 \cdot 3^{k-2} \text{ for } k \geq 3$$

and $S_3(2, 2) = 2$. Therefore

$$S_3(k, 2) = 2(k - 1)3^{k-2} \text{ for } k \geq 2$$

In general it can be shown that for p odd,

$$S_p(k, 2) = k(p + 1)p^{k-2}/2 + (-2p^k + 3p^{k-1} + p^{k-2} + p - 3)/(2(p - 1))$$

and

$$S_p(k, p - 1) = (k - 1)(p^2 - 1)p^{k-2}/4$$

The recurrence relation for S^3_k is as follows: Let $f(k)$ be the integer l satisfying

$$(l - 1)3^{l-2} + l + 1 \leq k < l 3^{l-1} + l \quad k \geq 3$$

Then we have

$$S^3_k = 3^{k-2}(2k - 1/2) - 1/2 + k - f(k) + S^3_{k-1} \text{ for } k \geq 3$$

and $S^3_2 = 4$.

78
This complicated recurrence relation reveals the possible difficulty in getting an explicit expression for S^p_k for general p.

REFERENCES

Also solved by W. F. Smyth (Winnipeg, Manitoba) who sent a copy of a long paper, *A labelling algorithm for minimum edge weight sums of complete binary trees*, which had been submitted to Comm. ACM, whose interests were felt to be more directly related to the subject matter.

[[RKG couldn’t trace this paper. A MathSciNet search on “labelling algorithm” yielded 7 hits and on “labeling algorithm” 13. None had Smyth as an author. Maybe it was rejected?]]

An abstract of the paper is as follows:

Given a K-level complete binary tree $T_K = (V_K, E_K)$ on $2^K - 1$ vertices and a set $W_K = \{N+1, N+2, \ldots, N+2^K - 1\}$ of integers, it is desired to label the vertices V_K from the set W_K without replacement, in such a way that the sum $S_K = \sum |n(u) - n(v)|$ taken over all edges $(u, v) \in E_K$ is a minimum, where $n(u)$ denotes the label assigned to vertex u. The labelled tree is called a valuation tree and, corresponding to a minimum labelling, a minimum valuation tree. An algorithm for this purpose is specified, with execution time $O(2^K - 1)$. An expression is derived for S^{min}_K and it is shown that in fact the algorithm achieves this minimum. Connections to the minimum bandwidth and minimum profile problems are outlined. Some open problems are stated.
ANALYSIS

Differential equations: systems of equations

Problem 77-17, A system of second order differential equations, by L. Carlitz (Duke University)

Solve the following system of differential equations:

\[F''(x) = F(x)^3 + F(x)G(x)^2 \]
\[G''(x) = 2G(x)F(x)^2 \]

where \(F(0) = G'(0) = 1, F'(0) = G(0) = 0 \)

Editorial note by MSK. Margolis, in her solution, first noted that it was easy to find a solution \(F(x) = \sec x \), \(G(x) = \tan x \) and then establish uniqueness. The proposer obtained the system of equations by considering generating functions associated with up-down and down-up permutations of \(\{1, 2, \ldots, n\} \).
STATISTICS

Covariance

Problem 77-18, An infinite summation, by A. M. LIEBETRAU (Johns Hopkins University).

Show that
\[\sum_{j=1}^{\infty} \alpha_j^{-6} \left[\frac{\sin \alpha_j - \sinh \alpha_j}{\cos \alpha_j + \cosh \alpha_j} \right]^2 = \frac{1}{80} \]

where the \(\alpha_j \) are the positive solutions to the equation

\[(\cos \alpha)(\cosh \alpha) + 1 = 0\]

This identity follows from a problem in statistics, that of finding the distribution of a certain functional of a Gaussian process \(\eta(t) \) with covariance kernel

\[E[\eta(t), \eta(u)] = K(t, u) = \begin{cases} t \frac{23}{3}(3t^2u - t^3) & 0 \leq t \leq u \leq 1 \\ t \frac{23}{3}(3u^2t - u^3) & 0 \leq u \leq t \leq 1 \end{cases} \]

Solution by the proposer.

In order to obtain the distribution of a certain random functional of a Poisson process [2], it became necessary to solve the following eigenvalue problem: Express the positive symmetric function

\[K(t, u) = \begin{cases} 2(3t^2u - t^3) & 0 \leq t \leq u \leq 1 \\ \frac{2}{3}(3u^2t - u^3) & 0 \leq u \leq t \leq 1 \end{cases} \]

in the form

\[\sum_{j=1}^{\infty} \lambda_j^{-1} f_j(t)f_j(u) \]

where \(\lambda_j \) is an eigenvalue and \(f_j(t) \) is the corresponding normalized eigenfunction of the system

\[f(t) = \lambda \int_0^1 K(t, u)f(u) \, du \quad \int_0^1 f_j(t)f_k(t) = \delta_{jk} \]

In (3) \(\delta_{jk} \) is the Kronecker delta.
Substitution of (1) into the first equation of (3) yields

\[f(t) = \frac{2}{3} \lambda \left\{ \int_0^t (3u^2t - u^3)f(u) \, du + \int_t^1 (3t^2u - t^3)f(u) \, du \right\} \]

(4)

Successive differentiation of (4) with respect to \(t \) yields

\[f^{(4)}(t) = 4\lambda f(t) = \alpha^4 f(t) \]

(5)

which is easily seen to have the solution

\[f(t) = c_1 e^{-\alpha t} + c_2 e^{\alpha t} + c_3 \cos(\alpha t) + c_4 \sin(\alpha t) \]

(6)

for suitable constants \(c_1, c_2, c_3, c_4 \).

Boundary conditions for determining the \(c_j \) are obtained from considering \(f(0), f'(0), f''(0) \) and \(f'''(0) \). Substitution of the appropriate derivatives of (6) into (4) produces the following system of equations:

\[\begin{align*}
 c_1 + c_2 + c_3 &= 0 \\
 c_1 - c_2 - c_4 &= 0 \\
 (\alpha + 1)e^{-\alpha}c_1 + (1 - \alpha)e^{\alpha}c_2 - (\alpha \sin \alpha + \cos \alpha)c_3 + (\alpha \cos \alpha - \sin \alpha)c_4 &= 0 \\
 e^{-\alpha}c_1 - e^{\alpha}c_2 - (\sin \alpha)c_3 + (\cos \alpha)c_4 &= 0
\end{align*} \]

(7)

Elimination of \(c_1 \) and \(c_2 \) from (7) yields, after some manipulation:

\[(\cosh \alpha + \cos \alpha)c_3 + (\sinh \alpha + \sin \alpha)c_4 = 0 = (\sinh \alpha - \sin \alpha)c_3 + (\cosh \alpha + \cos \alpha)c_4 \]

(8)

The equations (8) have nontrivial solution if and only if

\[(\cosh \alpha)(\cos \alpha) + 1 = 0 \]

(9)

Being a covariance function, (1) is positive definite, so it is only necessary to consider positive solutions to (9): let \(\alpha_j \) denote the \(j \)th smallest, so that \(\lambda_j = \frac{1}{4}\alpha_j^4, j = 1, 2, \ldots \). From (7) and (9) it follows that

\[\begin{align*}
 c_3 &= \frac{\cos \alpha_j + \cosh \alpha_j}{\sin \alpha_j - \sinh \alpha_j}c_4 := \kappa_j c_4 \\
 c_2 &= -\frac{1}{2}(c_3 + c_4) = -\frac{1}{2}(\kappa_j + 1)c_4 \\
 c_1 &= \frac{1}{2}(c_4 - c_3) = -\frac{1}{2}(\kappa_j - 1)c_4
\end{align*} \]

Finally, \(c_4 \) is chosen so that \(\int_0^1 f_j^2(t) \, dt = 1 \). A lengthy but elementary calculation yields

\[c_4 = \kappa^{-1} = \frac{\sin \alpha_j - \sinh \alpha_j}{\cos \alpha_j + \cos \alpha_j} \]

(10)
hence
\[f_j(t) = -\frac{1}{2}(1 - \kappa_j^{-1})e^{-\alpha_j t} - \frac{1}{2}(1 + \kappa_j^{-1})e^{\alpha_j t} + \cos(\alpha_j t) + \kappa_j^{-1}\sin(\alpha_j t) \]

Now, by Mercer’s theorem on positive definite kernels, it follows (see Churchill [1] or Riesz & Nagy [3], for example) that the series (2) converges absolutely and uniformly to \(K(t,u) \) in the unit square. Thus
\[
\int_0^1 \int_0^1 K(t,u) \, dt \, du = \frac{4}{3} \int_0^1 \int_0^u (3t^2u - t^3) \, dt \, du = \frac{1}{5}
\]
\[
= \int_0^1 \int_0^1 \sum_{j=1}^{\infty} \lambda_j^{-1} f_j(t) f_j(u) \, dt \, du = \sum_{j=1}^{\infty} \lambda_j^{-1} \int_0^1 f_j(t) f_j(u) \, dt \, du
\]
\[
= \sum_{j=1}^{\infty} \lambda_j^{-1} \left[\int_0^1 f_j(t) \, dt \right]^2 = \sum_{j=1}^{\infty} \lambda_j^{-1} \left(2 \lambda_j^{-1/2} \kappa_j^{-2} \right)
\]
\[(11) \]
\[
= 2 \sum_{j=1}^{\infty} \left(\frac{1}{2} \alpha_j^4 \right)^{-3/2} \kappa_j^{-2} = 16 \sum_{j=1}^{\infty} \alpha_j^{-6} \kappa_j^{-2}
\]

We conclude from (11) that
\[
\sum_{j=1}^{\infty} \alpha_j^{-6} \kappa_j^{-2} = \sum_{j=1}^{\infty} \alpha_j^{-6} \left[\frac{\sin \alpha_j - \sinh \alpha_j}{\cos \alpha_j + \cosh \alpha_j} \right]^2 = \frac{1}{80}
\]
where \(\{\alpha_j\}_{j=1}^{\infty} \) are the positive solutions to (9) and \(\kappa_j^{-1} \) is given by (10). Moreover, since (9) is an even function of \(\alpha \),
\[
\sum_{j=-\infty}^{\infty} \alpha_j^{-6} \kappa_j^{-2} = \sum_{j=-\infty}^{\infty} \alpha_j^{-6} \left[\frac{\sin \alpha_j - \sinh \alpha_j}{\cos \alpha_j + \cosh \alpha_j} \right]^2 = \frac{1}{40}
\]
where \(\alpha_{-j} = -\alpha_j \).

REFERENCES
Editorial note by MSK. The proof can be simplified by noting from (4) that \(f(0) = f'(0) = 0 = f''(1) = f'''(1) \). This leads to a simpler set of equations for (7) and (8). M. L. Glasser (Clarkson College of Technology) sketches a proof by contour integrals for the related identities:

\[
\sum_{j=1}^{\infty} \alpha_j^{-3} \left\{ \frac{\sin \alpha_j - \sinh \alpha_j}{\cos \alpha_j + \cosh \alpha_j} \right\} = 0
\]

\[
\sum_{j=1}^{\infty} (\alpha_j^4 - \lambda^4)^{-1} = \left\{ \frac{\sin \lambda \cosh \lambda - \sinh \lambda \cos \lambda}{1 + \cos \lambda \cosh \lambda} \right\} / 4\lambda^3 \quad |\lambda| < |\alpha_1|
\]

He also indicates that the original equation can be derived in this way, but since the poles involved are second order, the calculations get messy.
TRIGONOMETRY

Inequalities: cos

_Problem 77-19*, Two inequalities, by P. BARRUCAND (Université P. et M. Curie, Paris, France).

Let

\[
F_1(\theta) = \sum_{n=1}^{\infty} \frac{\cos^n \theta \cos n\theta - \cos^{2n} \theta}{n(1 - 2 \cos^n \theta \cos n\theta + \cos^{2n} \theta)}
\]

\[
F_2(\theta) = \sum_{n=1}^{\infty} \frac{\cos^n \theta \cos n\theta - \cos^{2n} \theta}{n(1 - 2 \cos^n \theta \cos n\theta + \cos^{2n} \theta)}
\]

It is conjectured that \(F_1(\theta)\) and \(F_2(\theta)\) are negative for \(0 < \theta < \pi/2\). The conjecture was found by a computer computation.

SIAM Rev., **21**(1979) 140.

Editorial note by MSK. W. Al Salam has shown that the conjectures are equivalent to showing that

\[
\prod_{k=1}^{\infty} |1 - x^k e^{ik\theta}| < 1
\]

and

\[
\prod_{k=1}^{\infty} \left| \frac{1 + x^k e^{ik\theta}}{1 - x^k e^{ik\theta}} \right| < 1
\]

where \(x = \cos \theta\) and \(0 < x < 1\).

solution by MSK.
ANALYSIS

Hermite interpolation

[[This item not necessarily connected with MSK]]

Problem 78-2, Two recurrence relations for Hermite basis polynomials, by J. C. Cavendish and W. W. Meyer (General Motors Research Laboratories).

For p a positive integer, let $\Phi_k(x)$ denote a $(2p + 1)$-degree basis polynomial for $(2p + 1)$-Hermite interpolation on $0 \leq x \leq 1$. That is, for $n, k = 0, 1, \ldots, p$

\[
\frac{d^n \Phi_k}{dx^n} \bigg|_{x=0} = \begin{cases}
0 & \text{if } n \neq k \\
1 & \text{if } n = k
\end{cases}
\]

\[
\frac{d^n \Phi_k}{dx^n} \bigg|_{x=1} = 0
\]

Establish the following two recurrence relations for any $t \in [0, 1]$:

\[
t \Phi_{k-1}(t) - k \Phi_k(t) = \frac{(2p - k + 1)!}{p!(k - 1)!(p - k + 1)!} t^{p+1} (1 - t)^{p+1} \quad (0 < k \leq p)
\]

\[
\Phi_{k-1}(t) - \Phi'_k(t) = \frac{(2p - k + 1)!}{p!(p - k + 1)!} t^p (1 - t)^p (p + 1 - kt) \quad (0 < k \leq p)
\]

SIAM Rev., 21(1979) 144.

[[This item included by error. The comment was by Otto G. Ruehr, not MSK.]]
ALGEBRA

Determinants

[[This item not necessarily connected with Murray. The editorial comment is by Cecil C. Rousseau, not Murray.]]

Problem 78-3*, A conjecture on determinants, by H. L. Langhaar and R. E. Miller (University of Illinois).

A special case of a more general conjecture on determinants that has been corroborated numerically by operations with random determinants generated by a digital computer is expressed by the equation Ω = ∆_{n+1} in which ∆ = |a_1 b_2 \cdots q_{n-1} r_n| is any n th order determinant and Ω is a determinant of order (n(n + 1))/2 constructed from the elements of ∆ as follows: The first row of Ω consists of all terms that occur in the expansion of (a_1 + a_2 + \cdots + a_n)^2. A similar construction applies for rows 2, 3, \ldots, n. Row n + 1 consists of expressions that occur in the expansion of

(a_1 + a_2 + \cdots + a_n)(b_1 + b_2 + \cdots + b_n)

A similar construction applies for the remaining rows. The letters in the columns in Ω are ordered in the same way as the subscripts in the rows. Prove or disprove the conjecture Ω = ∆_{n+1}

Ω =
\[
\begin{array}{cccccccc}
 a_1^2 & a_2^2 & \cdots & a_n^2 & 2a_1a_2 & 2a_1a_3 & \cdots & 2a_{n-1}a_n \\
 b_1^2 & b_2^2 & \cdots & b_n^2 & 2b_1b_2 & 2b_1b_3 & \cdots & 2b_{n-1}b_n \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_1b_1 & a_2b_2 & \cdots & a_nb_n & a_1b_1 + a_2b_1 & a_1b_3 + a_3b_1 & \cdots & a_{n-1}b_n + a_nb_{n-1} \\
 a_1c_1 & a_2c_2 & \cdots & a_nc_n & a_1c_1 + a_2c_1 & a_1c_3 + a_3c_1 & \cdots & a_{n-1}c_n + a_nc_{n-1} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 q_1r_1 & q_2r_2 & \cdots & q_nr_n & q_1r_2 + q_2r_1 & q_1r_3 + q_3r_1 & \cdots & q_{n-1}r_n + q_nr_{n-1}
\end{array}
\]

Editorial note. The general conjecture referred to by the proposers is, in fact, the result which is proved by [David] Cantor. Jordan and Taussky point out that the theorem in question was proved by Schläfi in 1851 [2]. Other solvers noted that the theorem is a well-known result in multilinear algebra (see, e.g., [1, Chap.2])

REFERENCES

A function $S(m, n)$ is defined over the nonnegative integers by

(A) $S(0, 0) = 1$

(B) $S(0, n) = S(m, 0) = 0$ for $m, n \geq 1$

(C) $S(m + 1, n) = mS(m, n) + (m + n)S(m, n - 1)$

Show that

$$\sum_{n=1}^{m} S(m, n) = m^m$$

Comment by A. Meir (University of Alberta).

By essentially the same inductive argument [as that of the proposer/solver] one can show that the more general recursion relation

$$S(m + 1, n) = (m + z)S(m, n) + (m + n)S(m, n - 1)$$

has a solution satisfying

$$\sum_{n=1}^{m} S(m, n) = (m + z)^m$$

Editorial note by MSK. Ruehr notes that his method can be applied to Meir’s generalization. The differential recurrence equation becomes

$$F_{m+1} = [(m + z) + x(m + 1)]F_m + x^2 F'_m$$

whose solution is

$$F_m = \frac{1}{x^{m+1}} e^{(m+z)/x} \left[x^3 e^{-1/x} \frac{d}{dx} \right]^m x e^{-z/x}$$

The final step then requires the identity

$$\sum_{n=1}^{\infty} \frac{(n + z)^n \lambda^n e}{n!} = \frac{e^{\lambda z}}{1 - \lambda}$$

which he also establishes.
It would be of interest to determine all pairs of polynomials $P(m, n)$, $Q(m, n)$ (in particular, linear ones) such that if

$$S(m + 1, n) = P(m, n)S(m, n) + Q(m, n)S(m, n - 1)$$

and subject to conditions (A) and (B), then also

$$\sum_{n=1}^{m} S(m, n) = m^m$$

PROBABILITY

Geometry: point spacing

Problem 78-8, Average distance in a unit cube, by Timo Leipala (University of Turku, Turku, Finland).

Determine (a) the probability density, (b) the mean, and (c) the variance for the Euclidean distance between two points which are independently and uniformly distributed in a unit cube.

The numerical value of the mean is given in [1] and it is conjectured in [3] that an explicit closed form expression for it does not exist. The probability distribution for the distance in the interval [0,1] is given in [2].

REFERENCES

[1] R. S. Anderssen, R. P. Brent, D. J. Daley & P. A. P. Moran, Concerning $\int_0^1 \cdots \int_0^1 (x_1^2 + \cdots + x_k^2)^{1/2} dx_1 \cdots dx_k$ and a Taylor series method, *SIAM J. Appl. Math.*, 30(1976) 22–30.

SIAM Rev., 21(1979) 263.

We define an edge \(k \)-coloring of a tournament (i.e., a directed graph with a unique edge between every pair of vertices) to be that of coloring the edges in \(k \) colors such that every directed cycle of length \(n \) contains at least \(\min(k, n) \) edges of distinct colors.

It can be easily seen that every tournament has a 2-coloring. Specifically, if the vertices are numbered 1, \ldots, \(m \) (\(m \geq 2 \)), then color every “ascending” edge black and every “descending” edge white.

We shall show that for each \(k \geq 4 \) there are tournaments which do not have \(k \)-colorings. Given \(k \geq 4 \), let \(m = k + 1 \) and consider a directed graph whose vertices are 1, \ldots, \(m \), \(m + 1 \), \ldots, 2\(m \) and whose edges are \((i, m + i)\) (\(i = 1, \ldots, m \)) and \((m + j, i)\) (\(i = 1, \ldots, m, j = 1, \ldots, m, i \neq j \)). Every pair of edges \((i, m + i), (j, m + j)\) (\(1 \leq i < j \leq m \)) lies on some cycle of length 4, namely \((i, m + i), (m + i, j), (j, m + j), (m + j, i)\). Thus in every \(k \)-coloring the edges \((1, m + 1), (2, m + 2), \ldots, (m, 2m)\) must have distinct colors. This implies that there is no \(k \)-coloring for such graphs.

The remaining open question is: Does every tournament have a three-coloring? I conjecture that it does.

it Editorial note by MSK. G. K. KRISTIANSEN (Roskilde, Denmark) gives a counterexample, disproving the conjecture. It is the tournament \(T \) with vertices 1, 2, \ldots, 9 that contains the directed edge \((i, j)\) if and only if \(j - i = 1, 2, 4, 6 \) (mod 9). J. MOON (University of Alberta) simplifies Kristiansen’s proof from one involving four cases to one of two cases. Although it is straightforward it still is a tedious exercise to show that \(T \) has no 3-coloring. L. L. KEENER (University of Waterloo) described a construction for a larger counterexample.
GEOMETRY

N-dimensional geometry: inequalities

Problem 78-20, *A Volume Inequality for a Pair of Associated Simplexes*, by M. S. KLAMKIN (University of Alberta).

The lines joining the vertices \(\{V_i\} \ i = 0, 1, \ldots, n \) of a simplex \(S \) to its centroid \(G \) meet the circumsphere of \(S \) again in points \(\{V'_i\}, i = 0, 1, \ldots, n \). Prove that the volume of simplex \(S' \) with vertices \(V'_i \) is \(\geq \) the volume of \(S \).

Solution by the proposer.

Let \(V_i \ (V'_i) \) denote the volume of the simplex whose vertices are \(G \) and those of the face \(F_i \ (F'_i) \) of \(S \ (S') \) opposite \(A_i \ (A'_i) \). It follows that

\[
\frac{V'_i}{V_i} = \frac{GA_i}{GA'_i} \prod_{j \neq i} \frac{GA'_j}{GA_j}
\]

where in the product here and subsequently (also sums), the index runs from 0 to \(n \). By the power of a point theorem for spheres,

\[
GA_i \cdot GA'_i = R^2 - OG^2 = k
\]

where \(R, O \) are the circumradius and circumcenter, respectively, of \(S \). Also, \(V_i = V/(n+1) \) where \(V = \) volume of \(S \). Then,

\[
\frac{V'_i}{V} = \frac{k^n GA_i^2}{\prod GA'_j}
\]

and

\[
V' = \sum V'_i = \frac{k^n V}{n+1} \prod GA'_j
\]

We now want to show that

\[
\frac{k^n}{n+1} \sum GA_j^2 \geq \prod GA_j^2
\]

By the arithmetic-geometric mean inequality, it suffices to establish the stronger inequality

\[
\frac{k^n}{n+1} \sum GA_j^2 \geq \left(\frac{\sum GA_j^2}{n+1} \right)^{n+1}
\]
Actually the latter is an equality since it is known that

\[k = \sum GA_i^2/(n + 1) \]

and which follows from (where \(A_i = \overrightarrow{OA_i} \))

\[
\sum_i \sum_j A_i A_j^2 = \sum_i \sum_j (A_i - A_j) \cdot (A_i - A_j)
\]

\[
= 2(n + 1)^2 R^2 - 2 \sum_i A_i \cdot \sum_j A_j
\]

\[
= 2(n + 1)^2 (R^2 - OG^2)
\]

\[
= \sum_i \sum_j \{(A_i - G) - (A_j - G)\}^2
\]

\[
= 2(n + 1) \sum GA_i^2
\]

\(V' = V \) if and only if \(GA_i = \) constant or equivalently \(O \) and \(G \) coincide. For \(n = 2 \) this simplifies the triangle is equilateral. This special case is known and is ascribed to Janič [1]. For \(n = 3 \) the tetrahedron must be isosceles (opposite faces are congruent).

Also solved by L. Gerber (St. John’s University) who additionally poses the problem of determining the limit of the volume (for \(n = 3 \)) if the process is repeated indefinitely.

REFERENCE

PROBABILITY

Density functions

SIAM Rev., 21 (1979) 256.

Problem 79-6*, *A functional equation* by L. B. KLEBANOV (Civil Engineering Institute, Leningrad, USSR)

Let \(f(x) \), \(g(x) \) be two probability densities on \(\mathbb{R}^1 \) with \(g(x) > 0 \). Suppose that the condition

\[
\int_{-\infty}^{\infty} (u - c) \prod_{j=1}^{n} f(x_j - u)g(u) \, du = 0
\]

holds for all \(x_1, x_2, \ldots, x_n \) such that \(\sum_{j=1}^{n} x_j = 0 \) where \(n \geq 3 \) and \(c \) is some constant. Prove that

\[
F(9X) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{(x - \alpha)^2}{2\sigma^2}\}
\]

Editorial note by MSK. This problem is related to a known theorem characterizing the normal distribution, i.e., if

\[
\int_{-\infty}^{\infty} u \prod_{j=1}^{n} f(x_j - u)g(u) \, du + \int_{-\infty}^{\infty} \prod_{j=1}^{n} f(x_j - u)g(u) \, du = c_1 + c_2 \sum_{j=1}^{n} x_j
\]

for all values of \(x_j \), then the density \(f \) must be a normal density (A. M. Kagan, Y. V. Linnik & C. R. Rao, *Characterization Problems in Mathematical Sciences*, Wiley-Interscience, New York, 1973, p. 480, Thm. B.2.1.) The proposer notes that he can establish the result of his problem under further assumptions of regularity conditions. However, the assertion of the problem as is may not be correct. Nevertheless, even a proof of this would be of interest.
ANALYSIS

Functions: differentiable functions

SIAM Rev., 21(1979) 257.

Problem 79-10*, *Credibility functions*, by Y. P. SABHARWAL and J. KUMAR (Delhi University, India).

Determine the general form of a function $F(x)$ satisfying the following conditions for $x \geq 0$:

(a) $0 \leq F(x) \leq 1$
(b) $\frac{d}{dx} F(x) > 0$
(c) $\frac{d}{dx} \{ F(x)/x \} < 0$

These conditions arise in the construction of credibility formulas in casualty insurance work [1], [2].

REFERENCES

Editorial note by MSK. The proposers note that $F(x) = x/(x + k)$ is a particular solution. However, it isn’t difficult to extend this to $F(x) = G(x)/(G(x) + k)$ where $G(x)$ is a nonnegative increasing concave function of x, e.g., $G(x) = x^\alpha (0 < \alpha \leq 1)$, $\ln(1 + x)$, etc.
GEOMETRY

Triangle inequalities: medians and sides

Problem 79-19, A Triangle Inequality, by M. S. Klamkin (University of Alberta).

If \(a_1, a_2, a_3\) and \(m_1, m_2, m_3\) denote the sides and corresponding medians of a triangle, respectively, prove that

\[(a_1^2 + a_2^2 + a_3^2)(a_1m_1 + a_2m_2 + a_3m_3) \geq 4m_1m_2m_3(a_1 + a_2 + a_3) \quad (1)\]

Solution by the proposer.

To prove (1) as well as to give a dual inequality, we will use the known duality theorem that

\[F(a_1, a_2, a_3, m_1, m_2, m_3) \geq 0 \iff F \left(\frac{3a_1}{4}, \frac{3a_2}{4}, \frac{3a_3}{4} \right) \geq 0 \quad (2)\]

This follows immediately from the fact that the three medians \(m_1, m_2, m_3\) of any triangle are themselves sides of a triangle with respective medians \(3a_1/4, 3a_2/4, 3a_3/4\). For a more general duality result, see [1].

We will now prove successively that

\[\sum a_1^2 \geq \sum a_1 \sum a_1m_1 \geq 4m_1m_2m_3 \sum a_1 \quad (3)\]

where the summations are to be understood as cyclic sums over the indices 1,2,3. The right-hand inequality of (3) follows immediately from the known inequality

\[a_1m_1 + a_2m_2 + a_3m_3 \geq 4m_1m_2m_3 \quad (4)\]

which was obtained by Bager [2] by first establishing its dual, i.e.,

\[4\{a_1m_1^2 + a_2m_2^2 + a_3m_3^2\} \geq 9a_1a_2a_3 \quad (5)\]

However, if we make the substitutions

\[4m_1^2 = 2a_2^2 + 2a_3^2 - a_1^2, \text{ etc.}\]

we obtain

\[2 \sum a_1 \sum a_1^2 \geq 3\{3a_1a_2a_3 + \sum a_1^3\} \quad (5')\]

which was obtained by Colins in 1870 [3, p.13].
To establish the left-hand inequality of (3), we expand out and collect terms to give

$$\sum a_1a_2(a_1 - a_2)(m_2 - m_1) \geq 0 \quad (6)$$

The latter inequality is valid, since if $a_1 \geq a_2 \geq a_3$ then $m_1 \leq m_2 \leq m_3$. There is equality in (1) if and only if the triangle is equilateral. However, if we allow degenerate triangles, there is another case of equality:

$$(a_1, a_2, a_3) = (2, 2, 0), \quad (m_1, m_2, m_3) = (1, 1, 2)$$

The given inequality (1) has the following nice geometric interpretation. Let the medians of triangle $A_1A_2A_3$ be extended to meet the circumcircle again in points A'_1, A'_2, A'_3. Then

$$\text{Perimeter}(A'_1, A'_2, A'_3) \geq \text{Perimeter}(A_1A_2A_3) \quad (7)$$

For a related result concerning the repetition of the above operation, see [4]. Another related result due to Janič [3, p.90] is that

$$\text{Area}(A'_1A'_2A'_3) \geq \text{Area}(A_1A_2A_3)$$

The latter result was extended to simplexes by the author (SIAM Rev., 21(1969) 569–590).

From (2), the dual of (1) is

$$4(m_1^2 + m_2^2 + m_3^2)(a_1m_1 + a_2m_2 + a_3m_3) \geq 9a_1a_2a_3(m_1 + m_2 + m_3) \quad (8)$$

There is equality if $a_1 = a_2 = a_3$ or $2a_1 = 2a_2 = a_3$.

The author has also shown [3, p.90] that if the angle bisectors of a triangle $A_1A_2A_3$ are extended to meet the circumcircle again in points A'_1, A'_2, A'_3, then

$$\text{Area}(A'_1A'_2A'_3) \geq \text{Area}(A_1A_2A_3)$$

We now also establish that

$$\text{Perimeter}(A'_1A'_2A'_3) \geq \text{Perimeter}(A_1A_2A_3) \quad (9)$$

In what follows O, I, R, r will denote the circumcenter, incenter, circumradius and inradius, respectively, of $A_1A_2A_3$. Let $R_i = A_iI, R'_i = A'_iI$; then from the power of a point property of circles,

$$R_iR'_i = R^2 - OI^2 = 2Rr \quad (i = 1, 2, 3)$$

Then, by way of the law of cosines,

$$a'_i = \left\{ \frac{2Rr}{R_1R_2R_3} \right\} a_iR_i$$
(for more extensive properties of this transformation and related ones, see [5]). Inequality (9) is now equivalent to

\[
\frac{2Rr}{R_1R_2R_3}\{a_1R_1 + a_2R_2 + a_3R_3\} \geq a_1 + a_2 + a_3 \quad (9')
\]

From the known relations

\[r = R_i \sin A_i / 2 \quad a_i = 2R \sin A_i \quad r = 4R \prod \sin A_i / 2 \]

we can transform (9') into the trigonometric form

\[
\cos A_i / 2 + \cos A_2 / 2 + \cos A_3 / 2 \geq \sin A_1 + \sin A_2 + \sin A_3
\]

or, equivalently,

\[
\sum \cos A_i / 2 \geq \prod \cos A_i / 2 \quad (9'')
\]

Using the Arithmetic-Geometric Mean inequality, it suffices to prove that

\[
(\sqrt{3}/2)^3 \geq \prod \cos A_i / 2 \quad (10)
\]

Although (1)) is a known inequality [3, p.26], another proof follows immediately from the concavity of log cos x/2.

Finally, it would be of interest to extend (7) and (9) to simplexes for which we consider total edge length as the perimeter.

REFERENCES

[[as this fades into obscurity, I give the whole reference:

In a previous paper, Oppenheim generates dual triangle inequalities for a triangle $A_1A_2A_3$ by reciprocation, inversion and isogonal conjugates with respect to an interior point P. Letting $R_i = PA_i$, $a_i =$ side opposite A_i, $h_i =$ altitude from A_i, $r_i =$ distance from P to a_i, $k = r_1r_2r_3$, $K = R_1R_2R_3$, $w_i =$ angle bisector from P to a_i, $R'_i = PA'_i$,}}
etc., Oppenheim only considers the transformations of R_i, r_i into R'_i, r'_i. Here, we extend the scope of the duality by showing that if $F(a_i, h_i, R_i, r_i, w_i, R, r, \Delta) \geq 0$ is a valid triangle inequality, then so is $F(a'_i, h'_i, R'_i, r'_i, w'_i, R', r', \Delta') \geq 0$ where (1) under reciprocation $a'_i = a_i r_i R_i / 2R$, $R'_i = k/r_i$, $r'_i = k/R_i$, $\Delta' = k\Delta / 2R$, $R' = K/4R$, $h'_i = kh_i/r_i R_i$, $r' = 2k\Delta / \sum a_i r_i R_i$; (2) under inversion $a'_i = a_i R_i$, $R'_i = K/R_i$, $r'_i = r_i R_i$, $w'_i = w_i R_i$, $R' = K R \Delta / \Delta'$, $h'_i = h_i \Delta' / \Delta R_i$, $\Delta' = k\Delta / 2R$, $r' = 2k\Delta / \sum a_i r_i R_i$; (3) under isogonal conjugates $R'_i = 2\Delta r_i R_i / k \sum a_i / r_i$, $r'_i = 2\Delta / r_i \sum a_i / r_i$. Applying the latter transformations singly and in sequence to known inequalities, we generate numerous dual inequalities, many of them apparently are new. Additionally by specializing the point P to be the circumcenter, incenter, orthocenter, centroid, symmedian point or one of the Brocard points, we obtain easily other numerous inequalities. Again some of these are well known and others are apparently new. In particular, the conjecture of Stolarsky that $\sum a_i / R_i \geq a_1 a_2 a_3 / R_1 R_2 R_3$ is transformed into $\sum a_i R_i^2 \geq a_1 a_2 a_3$ by inversion and is then easily proved. (Received November 1, 1971.)

Problem 80-5, *A Dice Problem*, by M. S. KLAMKIN and A. LIU (University of Alberta).

Given n identical polyhedral dice whose faces are numbered identically with arbitrary integers:

(a) Prove or disprove that if the dice are tossed at random, the probability that the sum of the bottom n face numbers is divisible by n is at least $1/2^{n-1}$.

(b) Determine the maximum probability for the previous sum being equal to $k \pmod{n}$ for $k = 1, 2, \ldots, n - 1$.

In (a) the special case for $n = 3$ was set by the first author as a problem in the 1979 U.S.A. Mathematical Olympiad.

[[was a solution ever published ?]]
Problem 80-10, Determinant of a Partitioned Matrix, by M. S. Klamkin, A. Sharma and P. W. Smith (University of Alberta).

Let D_i ($i = 1, 2, \ldots, n$) denote $k \times k$ matrices, a_{rs} denote the r,sth term of an $n \times n$ matrix A, and M denote the partitioned $kn \times kn$ matrix whose r,sth term ($r,s = 1, 2, \ldots, n$) is the matrix $a_{rs}D_s$. Prove that

$$|M| = |A|^n \prod |D_i|$$

where $|M|$ denotes the determinant of M, etc.

Solution by E. Deutsch (Polytechnic Institute of New York).

Let I_k denote the $k \times k$ identity matrix, let B be the partitioned $kn \times kn$ matrix whose r,sth term $a_{rs}I_k$ and let D be the partitioned $kn \times kn$ matrix whose diagonal terms are D_1, \ldots, D_n and whose offdiagonal terms are equal to the $k \times k$ zero matrix. Then it can be easily seen that $M = BD$ and $B = A \otimes I_k$, where \otimes denotes the Kronecker product. Now

$$|M| = |B| |D| = |A|^k |I_k|^n |D| = |A|^k \prod |D_i|.$$

Also solved by [17 others] and the proposers.
Problem 80-15, An Identity for Complex Numbers, by M. S. Klamkin and A. Meir (University of Alberta).

Given that z_1, z_2, z_3 are complex numbers such that $|z_1| = |z_2| = |z_3| = 1$ and

$$0 \leq \arg z_1 \leq \arg z_2 \leq \arg z_3 \leq \pi$$

prove that

$$(-z_3 z_1 + z_1 z_2 + z_2 z_3) \{ |z_3^2 - z_1^2| + |z_1^2 - z_2^2| + |z_2^2 - z_3^2| \} = z_2^2 |z_3^2 - z_1^2| + z_3^2 |z_1^2 - z_2^2| + z_1^2 |z_2^2 - z_3^2|$$

Solution by O. G. Ruehr (Michigan Technological University).

The identity can be rewritten in the form

$$I = (z_1 - z_2)(z_2 - z_3)|z_3^2 - z_1^2| + (z_2 - z_3)(z_1 + z_3)|z_1^2 - z_2^2| + (z_1 + z_3)(z_2 - z_1)|z_2^2 - z_3^2| = 0$$

Lemma. If $|z| = |w| = 1$ and $0 \leq \arg z \leq \arg w \leq \pi$, then

$$izw|z^2 - w^2| = w^2 - z^2$$

Then, using the lemma, we have

$$I = \frac{(z_3 + z_1)(z_1 - z_2)(z_2 - z_3)}{iz_1 z_2 z_3} \{ z_2(z_3 - z_1) - z_3(z_1 + z_2) + z_1(z_2 + z_3) \} = 0.$$

Also solved by [4 others] and the proposers using the same lemma as Ruehr.
Problem 82-15, Flight in an Irrotational Wind Field, II, by M. S. Klamkin (University of Alberta).

It is a known result (see Problem 61-4, SIAM Rev., 4(1962) 155) that if an aircraft traverses a closed curve at a constant air speed with respect to the wind, the time taken is always less when there is no wind, than when there is any bounded irrotational wind field.

(i) Show more generally that if the wind field is \(kW \) (\(W \) bounded and irrotational and \(k \) is a constant), then the time of traverse is a monotonic increasing function of \(k \) (\(k \geq 0 \)).

(ii) Let the aircraft be subject to the bounded irrotational wind field \(W_i \), \(i = 1, 2 \), and let \(T_i \) denote the time of flight over the same closed path. If \(|W_1| \leq |W_2| \) at every point of the traverse, does it follow that \(T_1 \leq T_2 \) ?

Solution by the proposer.

(i) Let the arc length \(s \) denote the position of the plane on its path and let \(w(s), \theta(s) \) denote, respectively, the speed and the direction of the wind with respect to the tangent line to the path at position \(s \). It is assumed that the wind field is continuous and that \(1 > kw \) where the plane’s speed is taken as 1. By resolving \(kW \) into components along and normal to the tangent line of the plane’s path, the aircraft’s ground speed is

\[
\sqrt{1 - k^2 w^2 \sin^2 \theta} + kw \cos \theta
\]

and then the time of flight id given by

\[
T(k) = \oint ds \frac{\sqrt{1 - k^2 w^2 \sin^2 \theta} + kw \cos \theta}{\sqrt{1 - k^2 w^2 \sin^2 \theta} + kw \cos \theta}
\]

From Problem 61-4, it is known that \(T(k) \geq T(0) \) with equality if and only if \(kW=0 \). We now show that \(T(k) \) is a strictly convex function of \(k \) which implies the desired result. Differentiating \(T(k) \) we get

\[
\frac{dT}{dk} = - \oint \left\{ w \cos \theta - \frac{kw^2 \sin^2 \theta}{\sqrt{1 - k^2 w^2 \sin^2 \theta}} \right\} \left\{ \sqrt{1 - k^2 w^2 \sin^2 \theta} + kw \cos \theta \right\}^{-2} ds
\]

Then \(T'(0) = - \oint w \cos \theta \, ds = 0 \) since \(W \) is irrotational. On differentiating again \(T'' > 0 \) since the integrand consists of positive terms. Thus \(T(k) \) is strictly convex (for \(W \neq 0 \)).

(ii) The answer here is negative. Just consider two constant wind fields, both having the same wind speeds. Since the times of the traverses will in general be different, we cannot have both \(T_1 \leq T_2 \) and \(T_2 \leq T_1 \).
A problem related to part (i) is that the aircraft flies the same closed path twice with the second time in the reverse direction. All the other conditions of the problem are the same as before except that the wind field need not be irrotational. Then the total time of flight is an increasing function of \(k \) \((kW \neq 0)\). In this case if the aircraft only flew one loop, the time of flight could be less than the time of flight without wind (just consider a whirlwind). Here the total time of flight is

\[
T(k) = \oint \frac{ds}{\sqrt{1 - k^2 w^2 \sin^2 \theta + kw \cos \theta}} + \oint \frac{ds}{\sqrt{1 - k^2 w^2 \sin^2 \theta - kw \cos \theta}}
\]

By the A.M.-G.M. inequality, the sum of the integrands is \(\geq 2(1 - k^2 w^2)^{-1/2} \geq 2 \) which shows that \(T(k) \geq T(0) \) with equality if and only if \(kW = 0 \). Then as before \(T'' > 0 \).
Given that A_1 is an interior point of the regular tetrahedron $ABCD$ and that A_2 is an interior point of tetrahedron A_1BCD, it is conjectured that

$$\text{I.Q.}(A_1BCD) > \text{I.Q.}(A_2BCD)$$

where the isoperimetric quotient of a tetrahedron T is defined by

$$\text{I.Q.}(T) = \frac{\text{Vol}(t)}{[\text{Area}(T)]^{3/2}}$$

Also, one could replace $\text{Area}^{3/2}$ by total edge length cubed.

Prove or disprove the conjecture and also consider the analogous problems in E^n for a simplex for which there are many different isoperimetric quotients.

Editorial note. The 2-dimensional version of the problem was set by the proposer in the 1982 U.S.A. Mathematical Olympiad.

Solution by the proposer.

Consider a tetrahedron $T(PA_1A_2A_3)$ with base $A_1A_2A_3$ an equilateral triangle of side 2 as in Fig. 1.

![Diagram of a tetrahedron]

P

A_2

B_1 B_0 A_1

A_3

103
Let \(PB_0 = h \) be the altitude of \(T \) from \(P \), \(PB_1 = h_1 \) the altitude of face \(PA_2A_3 \) from \(P \), \(x_1 = B_1B_0 \) (which is then \(\perp \) to \(A_2A_3 \)) and similarly for the other two faces having \(P \) as a vertex. The dihedral angle between the faces \(PA_2A_3 \) and \(A_2A_3A_1 \) is then \(\angle PB_1B_0 = \alpha_1 \), etc. Then

\[
h = x_i \tan \alpha_i \quad (i = 1, 2, 3) \quad x_1 + x_2 + x_3 = \sqrt{3}
\]

Hence \(h = \sqrt{3}/\sum \cot \alpha_i \) and

\[
\text{Vol} = V(T) = 1/\sum \cot \alpha_i \\
\text{Area} = A(T) = \sqrt{3} + h_1 + h_2 + h_3
\]

or

\[
A(T) = \sqrt{3} + h \sum \csc \alpha_i
\]

Then, after some simplification.

\[
\text{I.Q.}^2 = \frac{V^2}{A^3} = \frac{1}{3\sqrt{3}} \frac{\sum \cot \alpha_i}{(\sum \cot \alpha_i/2)^3} = \frac{F}{\sqrt{3}}
\]

The desired result will now follow by showing that \(F \) is an increasing function in each dihedral angle \(\alpha_i \) for the range

\[
\frac{1}{3} < \cos \alpha_i < 1 \quad \text{or} \quad \sqrt{\frac{2}{3}} < \cos \frac{\alpha_i}{2} < 1
\]

(Note that the dihedral angles must be \(> 0 \) and less than those for a regular tetrahedron.)

It suffices to show \(\partial F/\partial \alpha_i > 0 \). For convenience, we replace the \(\alpha_i \) by \(\alpha, \beta, \gamma \). Then \(\partial F/\partial \alpha > 0 \) is equivalent, after simplification, to

\[
6 \left(\cos^2 \frac{\alpha}{2} \right) (\cot \alpha + \cot \beta + \cot \gamma) > \left(\cot \frac{\alpha}{2} + \cot \frac{\beta}{2} + \cot \frac{\gamma}{2} \right)
\]

Since \(6 \cos^2(\alpha/2) > 4 \), it suffices to show that

\[
4(\cot \alpha + \cot \beta + \cot \gamma) > \cot \frac{\alpha}{2} + \cot \frac{\beta}{2} + \cot \frac{\gamma}{2}
\]

or that \(4 \cot \alpha > \cot(\alpha/2) \). The latter is equivalent to

\[
2 \left(\tan \frac{\alpha}{2} \right) \left(1 - 2 \tan^2 \frac{\alpha}{2} \right) > 0
\]

which follows since \(\tan^2(\alpha/2) < \frac{1}{2} \).
Solution by Noam Elkies (Harvard University).

We extend the previous solution [26(1984)275–276] for tetrahedra to simplexes. Let S be a regular n-dimensional simplex of unit edge length and vertices $AB_1B_2\ldots B_n$. Let S' be the simplex $A'B_1B_2\ldots B_n$ where A' is an interior point of S. We will show that

\[[\text{I.Q.}(S')]^{n-1} = \frac{[\text{Vol.}(S')]^{n-1}}{[\text{Area}(S')]^n} \]

is an increasing function of each of the base angles of S'. By a base angle of S' we mean the angle between the $(n-1)$-dimensional face B_0 opposite A' and any other $(n-1)$-dimensional face. By the vol. and area of S' we mean its n-dimensional content and the sum of the $(n-1)$-dimensional contents of all its faces, respectively (see D. M. Y. Somerville, An Introduction to the Geometry of N Dimensions, Dover, New York, 1958).

Let h_0 be the altitude of a unit $(n-1)$-dimensional regular simplex and V_0 be the $(n-2)$-dimensional content of a unit $(n-2)$-dimensional regular simplex. Then the content of each $(n-1)$-dimensional face of $S = h_0V_0/(n-1)$. Also let θ_0 be the angle between any two $(n-1)$-dimensional faces of S. Since $-\cos \theta_0$ is the inner product of any two of the unit vectors V_0, V_1, \ldots, V_n normal to the faces of S, we have as well known that $\sum V_i = 0$ and

\[\cos \theta_0 = -V_0 \cdot V_1 = \frac{-1}{n(n+1)} \sum_{i \neq j} V_i \cdot V_j = \frac{1}{n(n+1)} \left\{ \sum |V_i|^2 - \sum |V_i|^2 \right\} = \frac{1}{n} \]

Let B'_i be the face of S' opposite B_i, θ'_i be the angle between B'_i and B_0, and H' be the altitude of S' from A'. Since A' is an interior point of S, $0 < \theta'_i < \theta_0$.

If P' is the projection of A' on B_0, the distance from P' to the $(n-2)$-dimensional face of B_0 opposite B_i is $H'\cot \theta'_i$. Since B_0 is regular, $H' = h_0/\sum \cot \theta'_i$. Also, the $(n-1)$-dimensional content of B'_i is $H'V_0(\csc \theta'_i)/(n-1)$. Thus,

\[
\text{Area}(S') = \text{Area}B_0 + \sum \text{Area}B_i = \left(\frac{V_0}{n-1} \right) (h + H' \sum \csc \theta'_i)
\]
\[
= \frac{V_0h_0}{n-1} \frac{\sum \cot(\theta'_i/2)}{\sum \cot \theta'_i}
\]
\[
\text{Vol}(S') = V_0h_0H'/(n(n-1))
\]

Consequently,

\[[\text{I.Q.}(S')]^{n-1} = \left(\frac{n-1}{n^{n-1}V_0} \right)^n \left\{ \sum \cot \theta'_i \right\} \left\{ \sum \cot(\theta'_i/2) \right\}^{-n} \]
We now show that $F(\theta_1, \theta_2, \ldots, \theta_n) \equiv \{\cot \theta_i\}\{\sum \cot(\theta_i/2)\}^{-n}$ is an increasing function in each of the variables θ_i for $0 < \theta_i < \cos^{-1}(1/n)$.

By symmetry, it suffices to show that $\partial F/\partial \theta_1 > 0$. Here,

$$\left\{\sum \cot(\theta_i/2)\right\}^{n+1} \frac{\partial F}{\partial \theta_1} = \frac{n}{2} \csc^2(\theta_1/2) \left\{\sum \cot \theta_i\right\} - \csc^2 \theta_1 \left\{\sum \cot(\theta_i/2)\right\}$$

Clearly $\{\sum \cot(\theta_i/2)\}^{n+1} > 0$, and furthermore

$$\frac{n}{2} \csc^2(\theta_1/2) - (n + 1) \csc^2 \theta_1 = \csc^2 \theta_1 \left\{2n \cos^2(\theta_i/2) - n - 1\right\} = \frac{n \cos \theta_i - 1}{\sin^2 \theta_1} > 0$$

Since also

$$(n + 1) \sum \cot \theta_i - \sum \cot(\theta_i/2) = \sum \frac{n \cos \theta_i - 1}{\sin \theta_i} > 0$$

it follows that $\partial F/\partial \theta_1 > 0$.

Editorial note. There is a corresponding result for simplexes S'' which contain S. Let A'' be a point exterior to S such that the simplex $S'' : A''B_1B_2\ldots B_n$ covers S. It then follows from the previous analysis that I.Q.(S'') is a decreasing function of each of the base angles θ'_i. Note that here $\theta'_i > \cos^{-1}(1/n)$. [M.S.K.]
Problem 84-13, A Minimum Value, by M. S. Klamkin (University of Alberta).

Determine the minimum value of

\[I = \frac{(y - z)^2 + (z - x)^2 + (x - y)^2}{(x + y + z)^2} \cdot \frac{(v - w)^2 + (w - u)^2 + (u - v)^2}{(u + v + w)^2} \]

subject to \(ux + vy + wz = 0\) and all the variables are real.

Solution by Mark Kantrovitz (Secondary school student, Maimonides School, Brookline, MA).

By Cauchy’s inequality,

\[\sum (y - z)^2 \cdot \sum (v - w)^2 \geq \left(\sum (y - z)(v - w) \right)^2 = \left(\sum x \cdot \sum u \right)^2 \]

where the sums are cyclic over \(x, y, z\) and \(u, v, w\). Thus \(I \geq 1\) with equality if and only if

\[(y - z, z - x, x - y) = k(v - w, w - u, u - v). \]

Solution by T. M. Hagstrom (University of Wisconsin) and W. B. Jordan (Scotia, NY).

Let \(P = xi + yj + zk, Q = ui + vj + wk, \) and \(R = i + j + k. \) Then

\[I = \frac{(P \times R)^2}{(P \cdot R)^2} \cdot \frac{(Q \times R)^2}{(Q \cdot R)^2} \quad \text{and} \quad |bFP \cdot Q = 0 \]

If \(a\) is the angle between \(P\) and \(R,\) and \(b\) is the angle between \(Q\) and \(R,\) then \(I = \tan^2 a \tan^2 b.\) In terms of a spherical triangle whose sides are \(a, b, c\) with \(c = \pi/2, \)

\[I = \sec^2 C. \] Clearly the minimum value is 1, occurring for \(C = \pi. \)

B. D. Dore (University of Reading, Reading, UK) shows that the minimum value 1 follows immediately from (1) by replacing \((P \cdot R)^2(J \cdot R)^2\) by its equivalent \(((P \times R) \cdot (Q \times R))^2.\)

Editorial note. In the second solution, we can just as well use three vectors in \(\mathbb{R}^n,\)

i.e., \(P = (x_1, x_2, \ldots, x_n), Q = (u_1, u_2, \ldots, u_n), R = (1, 1, \ldots, 1). \) Also, \((P \times R)^2\) is to be replaced by its equivalent \([P^2R^2 - (P \cdot R)^2], \) etc. J. A. Wilson (Iowa State University) obtained this extension analytically. [M.S.K.]

Also solved by [18 others] and the proposer.
Let
\[S(x, y, z, m, n, r) \equiv \frac{x^{m+1}}{m!} \sum_{j=0}^{n} \sum_{k=0}^{r} \frac{y^j z^k (j + k + m)!}{j! k!} \]
Show that if \(x + y + z = 1 \), then
\[S(x, y, z, m, n, r) + S(y, z, x, n, r, m) + S(z, x, y, r, m, n) = 1. \]

\[S(x, y, z, m, n, r) \equiv \frac{x^{m+1}}{m!} \sum_{j=0}^{n} \sum_{k=0}^{r} \frac{y^j z^k (j + k + m)!}{j! k!} \]

Show that if \(x + y + z = 1 \), then
\[S(x, y, z, m, n, r) + S(y, z, x, n, r, m) + S(z, x, y, r, m, n) = 1. \]
The assertion is proved by repeated use of the following elementary identities:

\[
\sum_{p=0}^{\infty} u^p \sum_{m=0}^{p} \frac{x^m}{m!} (m + k)! = \frac{1}{(1 - u)(1 - xu)^{k+1}}
\]

\[
\frac{1}{1 - u} \sum_{q=0}^{\infty} v^q \sum_{s=0}^{q} \frac{y^s(s + k)!}{s!(1 - xu)^{s+k+1}} = \frac{k!}{(1 - u)(1 - v)(1 - xu - yv)^{k+1}}
\]

Finally to show that (**) is an elementary algebraic identity, let

\[
P_N = \prod_{i=1}^{N} (1 - u), \quad L_N = \sum_{i=1}^{N} x_i, \quad R_N = \sum_{i=1}^{N} u_i x_i
\]

Then, if \(L_N = 1\), we have

\[
\frac{1}{P_N} = \frac{L_N - 1 + 1 - R_n}{P_N(1 - R_N)} = \sum_{i=1}^{N} x_i (1 - u_i)
\]

\[
= \sum_{i=1}^{N} x_i \left\{ \frac{1}{\prod_{j=1, j \neq i}^{N} (1 - u_j)} \right\} \left\{ \frac{1}{1 - \sum_{s=1}^{N} u_s x_s} \right\}
\]

which is (**)..

A simpler derivation of (*) can be easily obtained by extending the probabilistic argument in the featured solution to \(n\) urns.
Problem 85-15∗, Extension of Routh’s Theorem to Spherical Triangles, by A. Sharma and M. S. Klamkin (University of Alberta).

Routh [1] discovered that if the sides BC, CA, AB of a plane triangle ABC are divided at points L, M, N in the respective ratios $\lambda : 1$, $\mu : 1$, $\nu : 1$, the cevians AL, BM, CN intersect to form a triangle whose area is

$$\frac{(\lambda\mu\nu - 1)^2}{(\lambda\mu + \lambda + 1)(\mu\nu + \mu + 1)(\nu\lambda + \nu + 1)}$$

yields that of ABC. Determine the analogous area ratio formula for a spherical triangle (convex). Also, since it is unlikely that the area ratio here is independent of the sides of the triangle, determine the extreme values of this ratio. Even a solution of the special case $BC = CA = AB$, $\lambda = \mu = \nu = 2$ would be of interest.

REFERENCE

Partial solution by W. B. Jordan (Scotia, New York).

Since there is apparently no simple formula in the general case for the area of the inner triangle, we consider only the equilateral case.

Let the triangle have angles $2A$ and sides $2a$, split by the cevians into $a - w$ and $a + w$. Let the cevians intersect each other at an angle K and meet the sides at an angle C.
splitting $2A$ into B and $2A - B$. Let \(m \) be the median. Then,

\[
2 \sin A \cos a = 1, \quad 2 \cos A \sin a = \sin m,
\]
\[
\cos K = -\cos B \cos C + \sin B \sin C \cos(a - w),
\]
\[
\cos 2A = -\cos B \cos C + \sin B \sin C \cos d.
\]

Also,

\[
\cos K - \cos 2A = \sin B \sin C (\cos(a - w) - \cos d),
\]
\[
\cos d = \cos m \cos w,
\]
\[
\cos(a - w) - \cos d = \tan a \sin(a + w),
\]

and

\[
\frac{\sin B}{\sin(a - w)} = \frac{\sin C}{\sin 2a} = \frac{\sin 2A}{\sin d}
\]

so that

\[
\sin B \sin C = \frac{(a - w) \sin 2a \sin^2 2A/ \sin^2 d}{1 - \cos^2 m \cos^2 w}
\]
\[
\cos K - \cos 2A = \frac{(a - w) \sin 2a \sin^2 2A \tan a \sin(a + w)}{1 - \cos^2 m \cos^2 w}
\]
\[
= \frac{1}{2} \sin^2 m (\sec^2 a \cos^2 w - 1)
\]
\[
= \frac{1}{2} \sin^2 m \left(\frac{\sec^2 a \cos^2 w - 1}{1 - \cos^2 m \cos^2 w} \right)
\]

The area of the original triangle is $6A - \pi$; of the inner triangle $3K - \pi$. Their ratio is expressible by means of an arcsine.

[[The following solution appeared much later.]]

Solution by Zuo Quan-Ru (Yangzhou Teacher’s College, Jiangsu, China).

Theorem. Take the sphere to have unit radius and let the spherical triangle $A_1A_2A_3$ have sides $\alpha_1, \alpha_2, \alpha_3$ (in radians). The arclengths A_2A_3, A_3A_1, A_1A_2 are divided by the points B_1, B_2, B_3 in the ratios $\lambda_1 : 1, \lambda_2 : 1, \lambda_3 : 1$ respectively. Suppose A_1B_1 intersects A_2B_2 at C_3, A_2B_2 intersects A_3B_3 at C_1 and A_3B_3 intersects A_1B_1 at C_2. If the areas of spherical triangles $A_1A_2A_3$ and $C_1C_2C_3$ are δ and $\delta’$ respectively, then

\[
\frac{\sin(\delta’/2)}{\sin(\delta/2)} = \frac{(x_{12}x_{23}x_{31} - x_{13}x_{32}x_{21})^2 \sqrt{(1 + \cos \alpha_1)(1 + \cos \alpha_2)(1 + \cos \alpha_3)}}{\sqrt{(|c_2||c_3| + c_2 \cdot c_3)(|c_3||c_1| + c_3 \cdot c_1)(|c_1||c_2| + c_1 \cdot c_2)}}
\]

where

\[
x_{i,i+1} = \frac{\sin \left(\frac{\alpha_{i-1}}{1 + \lambda_i} \right)}{\sin \alpha_i}, \quad x_{i,i-1} = \frac{\sin \left(\frac{\lambda_i \alpha_i}{1 + \lambda_i} \right)}{\sin \alpha_i}, \quad x_{i±3,j±3} = x_{i,j}
\]
and
\[\mathbf{c}_i = x_{i+1}x_{i+2}\mathbf{a}_i + x_{i+1}x_{i+2}x_{i+1+2}\mathbf{a}_{i+1} \]
in which \(\mathbf{a}_i \) are unit vectors and \(\mathbf{a}_i \cdot \mathbf{a}_j = \cos \alpha_k \) with \(i, j, k \) taken cyclically.

Proof. Let \(\overrightarrow{OA_i} = \mathbf{a}_i, \overrightarrow{OB_i} = \mathbf{b}_i \), \((i = 1, 2, 3) \), where \(O \) is the center of the sphere so \(|\mathbf{a}_i| = |\mathbf{b}_i| = 1 \). Since \(A_1A_2A_3 \) is a nontrivial spherical triangle, \(\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\} \) is a linearly independent set. Thus we can assume \(\det(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3) > 0 \). Then
\[
\mathbf{b}_i = x_{i1}\mathbf{a}_1 + x_{i2}\mathbf{a}_2 + x_{i3}\mathbf{a}_3
\]
where \(x_{11} = x_{22} + x_{33} = 0 \)

\[
\begin{align*}
x_{12} &= \frac{\sin(\frac{\alpha_1}{1+\lambda_2})}{\sin \alpha_1} \\
x_{23} &= \frac{\sin(\frac{\alpha_2}{1+\lambda_3})}{\sin \alpha_2} \\
x_{31} &= \frac{\sin(\frac{\alpha_3}{1+\lambda_1})}{\sin \alpha_3}
\end{align*}
\]

\[x_{12} = \frac{\sin(\frac{\alpha_1}{1+\lambda_2})}{\sin \alpha_1}, \quad x_{13} = \frac{\sin(\frac{\alpha_1}{1+\lambda_2})}{\sin \alpha_1}, \quad x_{21} = \frac{\sin(\frac{\alpha_2}{1+\lambda_3})}{\sin \alpha_2}, \quad x_{32} = \frac{\sin(\frac{\alpha_3}{1+\lambda_1})}{\sin \alpha_3}
\]

This is because \(\mathbf{a}_i \cdot \mathbf{b}_j = \cos \overrightarrow{A_iB_j} \).

The plane \(OA_2B_2 \) and the plane \(OA_3B_3 \) intersect on the straight line \(OC_1 \), whose direction is

\[
(\mathbf{a}_2 \times \mathbf{b}_2) \times (\mathbf{a}_3 \times \mathbf{b}_3) = (\mathbf{a}_2, \mathbf{b}_2, \mathbf{b}_3)\mathbf{a}_3 - (\mathbf{a}_2, \mathbf{b}_2, \mathbf{a}_3)\mathbf{b}_3
\]

\[
= (x_{23}x_{23}a_3 + x_{21}b_3)(a_1, \mathbf{a}_2, \mathbf{a}_3)
\]

\[
= (x_{21}x_{31}a_1 + x_{21}x_{32}a_2 + x_{23}x_{31}a_3)(a_1, \mathbf{a}_2, \mathbf{a}_3)
\]

and we obtain

\[
\begin{align*}
\mathbf{c}_1 &= x_{21}x_{31}a_1 + x_{21}x_{32}a_2 + x_{23}x_{31}a_3 \\
\mathbf{c}_2 &= x_{31}x_{12}a_1 + x_{32}x_{12}a_2 + x_{32}x_{13}a_3 \\
\mathbf{c}_3 &= x_{13}x_{21}a_1 + x_{12}x_{23}a_2 + x_{13}x_{23}a_3
\end{align*}
\]

co-directional with \(\overrightarrow{OC_1}, \overrightarrow{OC_2}, \overrightarrow{OC_3} \), respectively. Then we have \(\cos \overrightarrow{C_iC_j} = \mathbf{c}_i \cdot \mathbf{c}_j/|\mathbf{c}_i||\mathbf{c}_j| \). From the area formula for a spherical triangle, we have

\[
\sin^2(\delta/2) = \frac{1}{2(1 + \cos \alpha_1)(1 + \cos \alpha_2)(1 + \cos \alpha_3)} \begin{vmatrix} 1 & \cos \alpha_3 & \cos \alpha_2 \\ \cos \alpha_3 & 1 & \cos \alpha_1 \\ \cos \alpha_2 & \cos \alpha_1 & 1 \end{vmatrix}
\]

112
and

\[
\sin^2(\delta'/2) = \frac{1}{2(1 + \cos \bar{C}C_3)(1 + \cos \bar{C_2C_1})(1 + \cos \bar{C_1C_2})} = \frac{1}{2\left|c_2\right|\left|c_3\right|\left|c_2 \cdot c_3\right|\left(|c_3||c_1|c_3 \cdot c_1||(c_1||c_2|c_1 \cdot c_2\right) = \frac{(a_1, a_2, a_3)^2}{2\left|c_2\right|\left|c_3\right|\left|c_2 \cdot c_3\right|\left(|c_3||c_1|c_3 \cdot c_1||(c_1||c_2|c_1 \cdot c_2\right)
\]

\[
= \frac{(x_{12}x_{23}x_{31} - x_{13}x_{21}x_{32})^4}{2\left|c_2\right|\left|c_3\right|\left|c_2 \cdot c_3\right|\left(|c_3||c_1|c_3 \cdot c_1||(c_1||c_2|c_1 \cdot c_2\right)}\}
\]

\[
\begin{vmatrix}
1 & \cos \bar{C_1C_2} & \cos \bar{C_1C_3} \\
\cos \bar{C_2C_1} & 1 & \cos \bar{C_2C_3} \\
\cos \bar{C_1C_3} & \cos \bar{C_2C_3} & 1
\end{vmatrix}
\]

So we have proved (1).
Problem 85-26, Inequality for a Simplex, by M. S. KLAMKIN (University of Alberta).

If O, I, R denote the circumcenter, incenter, circumradius and inradius, respectively, of an n-dimensional simplex, prove that

$$ R^2 \geq n^2 r^2 + OI^2 $$

and with equality if and only if the simplex is regular.

Solution by the proposer.

First we derive a more general inequality. Let F_i denote the content of the $(n-1)$-dimensional face opposite vertex A_i of a given simplex, $i = 0, 1, \ldots, n$. If P is an arbitrary point, then by Cauchy’s inequality,

$$ \sum F_i \sum F_i PA_i^2 \geq \left(\sum F_i PA_i \right)^2 $$

and with equality if $PA_0 = PA_1 = \cdots = PA_n$, i.e., if P coincides with O. Letting P, A_i, I denote the vectors from O to P, A_i, I respectively, we get

$$ \sum F_i \sum F_i PA_i^2 = \sum F_i (P - A_i) \cdot (P - A_i) = \sum F_i (R^2 + P^2 - 2P \cdot A_i) $$

$$ = F \left(R^2 + P^2 - 2P \cdot \frac{\sum F_i A_i}{\sum F_i} \right) $$

$$ = F \left(R^2 + OI^2 - 2P \cdot I \right) $$

(here $F = \sum F_i$ and $I = \sum F_i A_i / F$). Then, since $2P \cdot I = P^2 + I^2 - (P - I)^2$

$$ \sum F_i \sum F_i PA_i^2 = F^2 \left(R^2 + OI^2 - 2P \cdot I \right) $$

Consequently,

$$ \sum F_i PA_i \leq F \left\{ R^2 + OI^2 - 2P \cdot I \right\}^{1/2} $$

and with equality if and only if P coincides with O. Now if h_i and r_i denote the distances from A_i and P, respectively, to the face F_i, $PA_i \geq h_i - r_i$. Thus,

$$ \sum F_i PA_i \geq \sum F_i (h_i - r_i) = \sum F_i h_i - \sum F_i r_i = (n + 1)nV - nV = n^2 V $$

where V is the volume of the simplex. Coupling (2) and (3) and using $nV = rF$, we obtain

$$ R^2 \geq n^2 r^2 + OI^2 - PI^2 $$

114
Finally, letting P coincide with I, we obtain the desired inequality

$$R^2 \geq n^2 r^2 + OI^2 \quad (5)$$

For equality, $PA_i = h_i - r_i$ for all i, or equivalently, the simplex is orthocentric with the orthocentre coinciding with the circumcenter. This requires the simplex to be regular since

$$A_i^2 = R^2 \quad \text{and} \quad A_i \cdot (A_j - A_k) = 0 \Rightarrow (A_i - A_j)^2 = (A_i - A_k)^2$$

for all i, j, k with $i \neq j, k$.

In a recent paper [1] on optimization in multistage rocket design, Peressini reduced his problem to minimizing the function

\[
\ln \left\{ \frac{M_0 + P}{P} \right\} = \sum_{i=1}^{n} \{ \ln N_i + \ln(1 - S_i) - \ln(1 - S_i N_i) \}
\]

subject to the constraint condition

\[
\sum_{i=1}^{n} c_i \ln N_i = v_f \text{ (constant)}
\]

Here the \(S_i\) and the \(c_i\) are given structural factors and engine exhaust speeds, respectively. He then obtains the necessary optimization equations using Lagrange multipliers. These equations are then solved explicitly for the special case when \(S_i = S, c_i = c\) for all \(i\).

For the latter special case, show how to determine the minimum in a simpler fashion without using calculus.

REFERENCE

Solution by the proposer.

More generally, the \(S_i\) need not be the same. Thus we wish to maximize \(P \equiv \prod (1 - x_i)\), where \(x_i = S_i N_i\) and where the product and sums here and subsequently are all from \(i = 1\) to \(n\). Since \(\sum \ln N_i = v_f / c = \text{constant}\), the \(S_i\) are specified, tacitly \(0 < x_i < 1\), and our constraint condition is \(\prod x_i = \text{constant}\).

Using the concavity of \(\ln(1 - x)\) for \(0 < x < 1\) and the A.M.-G.M. inequality, we have that

\[
\sum \ln(1 - x_i) \leq n \ln(1 - \sum x_i / n) \leq n \ln(1 - \prod x_i^{1/n})
\]

Thus the maximum is taken on for \(x_i = S_i N - i = \text{constant}\) or \(N_i = \lambda / S_i\), where \(\lambda^n = e^{v_f/c} \prod S_i\). Finally,

\[
\text{Min}(M_0 + P)/P = e^{v_f/c} (1 - \lambda)^{-n} \prod (1 - S_i).
\]
Problem 88-5, Characterizations of Parabolic Motion, by M. S. KLAMKIN (University of Alberta).

By a parabolic motion we mean the motion which ensues when a particle is projected in a uniform gravitational field and is not subject to any other frictional forces. Equivalently, the equations of motion are of the form \(x = at \), \(y = bt + ct^2 \) and the trajectory is a parabola.

Let \(RP \) and \(RQ \) be two tangents to the trajectory and let \(RT \) be a vertical segment as in Fig. 1.

The following properties of the motion are known:

\[
PR = V_P t \quad \text{and} \quad RT = gt^2/2 \quad [1]
\]

where \(V_P \) is the speed of the particle at \(P \) and \(t \) is the time for the particle to go from \(P \) to \(T \).

\[
PR/RQ = V_P/V_Q \quad [2]
\]

and it takes the particle the same time to go from \(P \) to \(T \) as from \(T \) to \(Q \).

Show that either properties [1] or [2] characterize parabolic motion, i.e., if either [1] or [2] holds for all points on a smooth trajectory, the motion must be parabolic.

Solution by FRANK MATHIS (Baylor University).

Let \(x = x(t) \) and \(y = y(t) \) be a smooth trajectory, i.e., \(x \) and \(y \) are continuously differentiable functions of \(t \). We may assume without loss of generality that there is
an interval I containing zero with $x'(t) > 0$ for t in I. Select P, R and T as in Fig. 1 with coordinates $(x(t_P), y(t_P))$, $(x(t_T), y_R)$ and $(x(t_T), y(t_T))$, respectively, so that t_P and t_T are in I. Then

$$V_P = \sqrt{x'(t_P)^2 + y'(t_P)^2}$$

and the tangent line PR may be parameterized by

$$x = x(t_P) + x'(t_P)s, \quad y = y(t_P) + y'(t_P)s$$

for $0 \leq s \leq (x(t_T) - x(t_P))/x'(t_P)$. It follows that

$$y_R = y(t_P) + \frac{y'(t_P)}{x'(t_P)}[x(t_T) - x(t_P)]$$

(2)

$$PR = \frac{x(t_T) - x(t_P)}{x'(t_P)} \sqrt{x'(t_P)^2 + y'(t_P)^2}$$

(3)

First we will assume that property [1] holds. By simple translations we may take $t_P = x(t_P) = y(t_P) = 0$. Set $t = t_T$ so that t is the time for the particle to go from P to T. Then since $PR = tV_P$, we have from (1) and (3) that

$$x(t) = x'(0) t$$

(4)

Thus x is linear for any t in I. But then x' is constant on I and so by the continuity of x', we may take I to be all of \mathbb{R}.

Now since $QR = \frac{1}{2}gt^2$, $y_R - y(t) = \frac{1}{2}gt^2$, and using (2) and (4), we find that

$$y(t) = y'(0)t - \frac{1}{2}gt^2$$

Therefore, property [1] implies parabolic motion.

Next we assume property [2]. Let Q be as in Fig. 1 with coordinates $(x(t_Q), y(t_Q))$ and t_Q in I. Then as above we have

$$V_Q = \sqrt{x'(t_Q)^2 + y'(t_Q)^2}$$

$$RQ = \frac{x(t_Q) - x(t_T)}{x'(t_Q)} \sqrt{x'(t_Q)^2 + y'(t_Q)^2}$$

(5)

$$y_R = y(t_Q) + \frac{y'(t_Q)}{x'(t_Q)}[x(t_Q) - x(t_T)]$$

Because the particle takes the same time to go from P to T as from T to Q, we may set $t_T = t$, $t_P = t - s$ and $t_Q = t + s$. Since $PR/RQ = V_P/V_Q$, we then have

$$x'(t + s)[x(t) - x(t - s)] - x'(t - s)[x(t + s) - x(t)] = 0$$

(6)
This condition holds for all \(t \) and \(s \) with \(t \pm s \) in \(I \). In particular, if we let \(t = s \),

\[
x'(2t) = x'(0) \left[\frac{x(2t) - x(t)}{x(t) - x(0)} \right]
\]

and it follows that \(x \) is at least twice differentiable for \(t \) in \(I, t \neq 0 \).

Returning to (6), we may now differentiate both sides with respect to \(s \) and then divide by \(s \) to obtain

\[
x''(t + s) \left[\frac{x(t) - x(t - s)}{s} \right] + x''(t - s) \left[\frac{x(t + s) - x(t)}{s} \right] = 0
\]

Then letting \(s \to 0 \) and using the continuity of \(x'' \), we see that

\[
2x''(t)x'(t) = 0
\]

But \(x'(t) > 0 \) for \(t \) in \(I \). So \(x'' \) must be identically zero for \(t \) in \(I, t \neq 0 \). Hence, using the continuity of \(x' \) as before, we conclude that \(x \) is linear for all \(t \).

Finally, to show that \(y \) is quadratic in \(t \), let us again set \(t_P = x(t_P) = y(t_P) = 0 \) and let \(t = t_Q \) so that \(t_T = t/2, x(t_T) = x'(0)t/2 \) and \(x(t_Q) = x'(0)t \). Then from (2) and (5) we have

\[
y'(0) \frac{t}{2} = y_R = y(t) - y'(t) \frac{t}{2}
\]

That is, \(y \) satisfies the differential equation

\[
y' = \frac{2}{t} y - y'(0)
\]

which has the solution

\[
y = y'(0)t + ct^2
\]

where \(c \) is an arbitrary constant. Thus we conclude that property [2] also implies a motion that is parabolic.

Also solved by Seshadri Sivakumar and the proposer.

The following is a known result and is given as a problem in [1]:

“Current enters an infinite plane conducting sheet at some point \(P \) and leaves at infinity. A circular hole, which does not include \(P \), is cut anywhere in the sheet. Show that the potential difference between any two points on the edge of the hole is twice what it was between the same two points before the hole was cut.”

(i) Show that the above result can be extended to a general two-dimensional flow of an inviscid incompressible fluid.

(ii)* Prove or disprove that only a circular hole has this property.

(iii) Show that in three dimensions, the analogous result for a sphere does not hold if the undisturbed flow is due to a source, but it does hold if the potential of the undisturbed flow is a spherical harmonic of degree \(n \).

REFERENCE

Solution of (i) and (iii) by the proposer.

(i) Let \(f(z) \) denote the complex potential of the two-dimensional irrotational flow of an inviscid incompressible fluid in the \((x, y)\) plane and let all the singularities of \(f(z) \) be a distance greater than \(a \) from the origin.

If a circular cylinder \(|z| = a\) is introduced into the flow, then by the Circle Theorem of Milne-Thompson [1], the complex potential of the disturbed flow becomes \(f(z) + \bar{f}(a^2/z) \). Letting \(f(z) = f(x + iy) = u(x, y) + iv(x, y) \), we get

\[
\bar{f}(a^2/z) = \bar{f}(a^2(x + iy)/(x^2 + y^2)) = u(a^2x/(x^2 + y^2), a^2y/(x^2 + y^2)) - iv(a^2x/(x^2 + y^2), a^2y/(x^2 + y^2))
\]

Since the velocity potential is the real part of the complex potential and since for points \((x, y)\) on the circle \(|z| = a\), \(a^2x/(x^2 + y^2) = x \) and \(a^2y/(x^2 + y^2) = y \), we get the desired result.

(iii) Let \(\phi_0(x, y, z) \) be the velocity potential of the irrotational flow of the incompressible inviscid fluid. The flow may contain singularities, but it is assumed that they all lie outside the sphere \(S: r^2 = x^2 + y^2 + z^2 = a^2 \). Then, by the Sphere Theorem of Weiss [2], if the sphere \(S \) is introduced into the flow, the flow is disturbed and its new velocity potential becomes

\[
\phi_0(x, y, z) + \phi_1(x, y, z)
\]
where
\[
\phi_1(x, y, z) = \frac{1}{r} \phi_0(a^2x/r^2, a^2y/r^2, a^2z/r^2) \]
\[- \left(\frac{2}{ar} \right) \int_0^a \lambda \phi_0(\lambda^2x/r^2, \lambda^2y/r^2, \lambda^2z/r^2) d\lambda \]

For a source \(m \) at the point \(f = (f, 0, 0), \ f > a, \ \phi_0 = m/|r - f|. \) This does not give the analogous result that the potential difference across any two points of the sphere is increased by a constant factor for the disturbed flow.

If the potential of the undisturbed flow is a spherical harmonic of degree \(n, \ \phi_0 = H_n(x, y, z). \) It then follows that
\[
\phi_1 = \frac{n}{(n + 1)} \{a^{2n+1}/r^{2n+1}\} H_n(x, y, z)
\]

Thus, in the disturbed flow, the potential difference across any two points on the sphere is increased by the factor \(1 + n/(n + 1). \)

REFERENCES

Solution of (ii)* by CARL C. GROSJEAN (State University of Ghent, Belgium).

This problem may be examined with the technique of conformal mapping. First, a typical example.

Let the infinite conducting plane, where a circular hole with radius \(R \) and center at \(O' \) has been cut out, be referred to an orthogonal frame \(O'x'y'. \) A second conducting plane contains an orthogonal frame \(Oxy. \) Let
\[
z' = (z^2 + c^2)^{1/2}, \quad z' = x' + y'i, \quad z = x + yi
\]
with some positive real constant \(c \) as the conformal mapping relating \((x, y) \) and \((x', y') \) to one another. We wish the circular edge \(x'^2 + y'^2 = R^2 \) to be mapped on the oval of Cassini:
\[
(x^2 + y^2)^2 + 2c^2(x^2 - y^2) + c^4 = 4c^4
\]
which constitutes the boundary between the convex and nonconvex curves comprised in the bundle
\[
(x^2 + y^2)^2 + 2c^2(x^2 - y^2) + c^4 = \lambda^4
\]
where \(\lambda \) can take on any positive value greater than \(c. \) (The limit case \(\lambda = c \) yields the lemniscate of Bernoulli.) This happens for \(4c^4 = R^4. \) Hence (1) becomes
\[
z' = (z^2 + \frac{1}{2} R^2)^{1/2}
\]

121
and \(x'\) and \(y'\) show corresponding results.

When the point \((x', y')\) runs over a circle with radius \(\rho \geq R\) and center at \(O'\) in the \((x', y')\)-plane, the point \((x, y)\) describes a convex oval of Cassini with its focal points on the \(y\)-axis at \(\pm R/\sqrt{2}\).

If, in the \((x', y')\)-plane, a point source of current is located at \(P'((a^2 + \frac{1}{2}R^2)^{1/2}, 0)\), with \(a > R/\sqrt{2}\), the disturbed potential is

\[
\Phi(x', y') = -\frac{C}{2} \ln \left[a^2 + \frac{1}{2}R^2 - 2 \left(a^2 + \frac{1}{2}R^2 \right)^{1/2} x' + x^2 + y^2 \right] \\
\quad - \frac{C}{2} \ln \left[1 - \frac{2R^2(a^2 + \frac{1}{2}R^2)^{1/2}(x' - 2)}{(a^2 + \frac{1}{2}R^2)(x'^2 + y^2)}\right], \quad x^2 + y^2 \geq R^2
\]

while if \(P'\) is mapped into \(P(x = a, y = 0)\), the potential becomes

\[
\Psi(x, y) = -\ln \left\{ a^2 + \frac{1}{2}R^2 - 2 \left(a^2 + \frac{1}{2}R^2 \right)^{1/2} u(x, y) \right\} \\
\quad + \left[(x^2 + y^2)^2 + R^2(x^2 - y^2) + \frac{1}{4}R^4 \right]^{1/2} \right\} \\
\quad - \frac{C}{2} \ln \left\{ 1 - \frac{2R^2(a^2 + \frac{1}{2}R^2)^{1/2}u(x, y) - R^4}{(a^2 + \frac{1}{2}R^2)(x^2 + y^2)^2 + R^2(x^2 - y^2) + \frac{1}{4}R^4)^{1/2} \right\}
\]

where \((x^2 + y^2)^2 + R^2(x^2 - y^2) - \frac{3}{4}R^4 \geq 0\) and \(u(x, y) = \text{Re}(z^2 + \frac{1}{2}R^2)^{1/2}\). This potential is singular at \(x = a, y = 0\). At all other points of the plane, exterior to the oval edge, \(\Psi\) is a solution of the (homogeneous) Laplace equation, and at any point on the edge, the current component along the normal is equal to zero. At two arbitrarily chosen points \((x_1, y_1)\) and \((x_2, y_2)\) on the oval edge, the ratio of the disturbed potential difference

\[
\Psi(x_1, y_1) - \Psi(x_2, y_2) = C \left\{ \ln \left[1 - \frac{\sqrt{2} \text{sgn} x (\frac{x^2}{a^2} + \frac{x^2 + y^2}{a^2})}{(a^2 + \frac{1}{2}R^2)^{1/2}} (\frac{3}{2}R^2 + x^2 - y^2)^{1/2} + \frac{R^2}{a^2 + \frac{1}{2}R^2} \right] \right\}_{x_1}^{x_2}
\]

and the undisturbed potential difference

\[
V(x_1, y_1) - V(x_2, y_2) = C \left[\ln \left(1 - 2 \frac{x}{a} + \frac{x^2 + y^2}{a^2} \right) \right]_{x_1}^{x_2}
\]

could be equal to 2 if and only if the expression

\[
1 - (\sqrt{2} \text{sgn} x/(a^2 + \frac{1}{2}R^2)^{1/2})(\frac{3}{2}R^2 + x^2 - y^2)^{1/2} + (R^2/a^2 + \frac{1}{2}R^2) \left/ \left(1 - 2(x/a) + (x^2 + y^2)/a^2\right)\right.
\]

were constant for all points \((x, y)\) on the oval, which it is not. Thus the property that holds for a circular hole does not hold for a hole bounded by an oval of Cassini.
The generalization may be formulated as follows. Let

\[z' = f(z), \quad z' = x' + y'i, \quad z = x + yi \]

be a conformal mapping with the following properties:

(a) The mapping is bijective at least between the part of the complex \(z' \)-plane characterized by \(|z'| \geq R \) and the part of the complex \(z \)-plane outside a closed curve \(C_R \) whose map in the \(z' \)-plane is the circle \(|z'| = R\).

(b) When \(z' \) runs over a circle with radius \(\rho \geq R (> 0) \) and center at \(O' \), the point \(z \) describes a closed trajectory \(C_\rho \) in the \(z \)-plane whereby \(C_{\rho_1} \) lies entirely inside \(C_{\rho_2} \) when \(\rho_2 > \rho_1 \).

For (b) to hold, \(f(z) \) should at least be continuous.

Let (3) then be rewritten as

\[x' = \text{Re} f(x + yi) \equiv u(x, y), \quad y' = \text{Im} f(x + yi) \equiv v(x, y) \]

In this notation, the equation of \(C_\rho \) reads

\[u^2(x, y) + v^2(x, y) = \rho^2, \quad \rho \geq R \]

Assume the Cartesian \((x, y)\)-plane to be an infinite conducting sheet and let electric current enter at the point \(P(a, b) \) outside \(C_R \). The difference of the (unperturbed) potentials existing at any two points \((x_1, y_1)\) and \((x_2, y_2)\) located on \(C_R \) is

\[V(x_1, y_1) - V(x_2, y_2) = \frac{C}{2} \left\{ \ln[(a - x_2)^2 + (b - y_2)^2] - \ln[(a - x_1)^2 + (b - y_1)^2] \right\} \]

with \(C \) some positive proportionality factor when \(V(x, y) \) is assumed to decrease with increasing distance between \((x, y)\) and \((a, b)\).

Now, let a hole with edge \(C_R \) be cut in the \((x, y)\)-plane. Since \(C_R \) is transformed into the circle \(|z'| = R\) by (3), the disturbed potential \(\Psi(x, y) \) can be directly deduced from the potential in the conducting \((x', y')\)-plane resulting from the current that enters the plane sheet at \(P'(a', b') \),

\[a' = u(a, b), \quad b' = v(a, b) \]

and is disturbed by the circular hole with edge \(|z'| = R\). In this way, we find, on the basis of the same principle as in the example, that the property of doubling the potential difference at any two points of \(C_R \) by cutting a hole bounded by that curve holds if and only if

\[\frac{u^2(a, b) + v^2(a, b) - 2u(a, b)u(x, y) - 2v(a, b)v(x, y) + R^2}{a^2 + b^2 - 2ax - 2by + x^2 + y^2} = \]

(4)
is a constant when the point \((x, y)\) runs over the edge \(C_R\). A type of conformal mapping for which this ratio is indeed a constant, so that the mentioned property exists, is the linear transformation

\[
z' = (A + Bi)z + K + Li, \quad A + Bi \neq 0 \quad (5)
\]

We easily verify that the ratio (4) is equal to \(A^2 + B^2\) when \((x, y)\) runs over \(C_R\), whose map in the \((x', y')\)-plane, deduced from (5), is \(|z'| = R\). This is not astonishing because \(C_R\) is itself a circle.

For any (nondegenerate) circle

\[
C_R : x^2 + y^2 + 2mx + 2ny + m^2 + n^2 = p^2, \quad p > 0 \quad (6)
\]

which we choose in the \((x, y)\)-plane and which corresponds to \(|z'| = R\) in the \((x', y')\)-plane, infinitely many conformal mappings of the form (5) may be used.

We can show that (4) is a constant solely for all possible circular holes in the \((x, y)\)-plane for which \(P\) is lying outside, as follows. The numerator in (4) represents the square of the distance between \(P'\) and some point \(Q'\) on \(|z'| = R\). Similarly, the denominator represents the square of the distance between \(P\) and the corresponding point \(Q\) on \(C_R\). Taking into account that conformal mapping conserves the angle between any two directions, we see that (4) can only be a constant if the figure comprising \(C_R, Q, P\) and the straight line \(PQ\) in the \((x, y)\)-plane differs only from that consisting of \(|z'| = R, Q', P'\) and the straight line \(P'Q'\) in the \((x', y')\)-plane by a scale factor. Therefore \(C_R\) is a circle, and the scale factor between \(\{C_R, P\}\) and \(\{|z'| = R, P'\}\) is \(p/R\), where \(p\) is the radius of \(C_R\). The conclusion is: only the circular hole in an infinite conducting plane sheet gas the “doubling” property.

The following is a result ascribed to Newton:

“Three equal particles A, B, C move on the arc of a given circle in such a way that their center of gravity remains fixed: prove that, in any position, their velocities are as $\sin 2A : \sin 2B : \sin 2C$.”

We note that we can deduce that the angles are given by

$$\angle 2A = \angle BOC, \quad \angle 2B = \angle COA, \quad \angle 2C = \angle AOB$$

where O is the center of the circle, and that the velocities are signed angular speeds. Show, conversely, that if A, B, C are moving on a circle such that their angular speeds are as $\sin \angle BOC : \sin \angle COA : \sin \angle AOB$, respectively, then the centroid of A, B, C remains fixed.

Given the circle, the centroid, and the position of A at any time, show how to find the corresponding positions of B and C.

Solution by W. Weston Meyer (General Motors Research Laboratories).

The proposition holds true not only for circular orbits but for logarithmic spirals as well. That is to say:

In polar coordinates, let Γ_a be the logarithmic spiral $r = \exp(a\theta)$ and let O be the origin $r = 0$. If A, B, C are moving on Γ_a such that their linear speeds are as $\sin \angle BOC : \sin \angle COA : \sin \angle AOB$, respectively, then the centroid of A, B, C remains fixed.

We will geometrize in the complex plane, taking $z = r \exp(i\theta)$. Spiral Γ_a is the locus of

$$z = e^{(a+i)\theta} \quad (-\infty < \theta < \infty)$$

and the speed of z, as a point moving along Γ_a, is

$$s(z) = \left| \frac{dz}{d\theta} \right| \hat{\theta} = |(a + i)e^{(a+i)\theta}| \hat{\theta} \quad \Rightarrow \quad \hat{z} = \frac{(a + i)}{|a + i|} e^{i\theta} s(z)$$

where the dot accent signifies differentiation with respect to time.
Let \(z_1, z_2, z_3 \) be three points on \(\Gamma_a \) with centroid \(z_c = \frac{1}{3}(z_1 + z_2 + z_3) \). The velocity of \(z_c \) is expressible as

\[
\dot{z}_c = \frac{(a + i)}{3|a + i|} [e^{i\theta_1}s(z_1) + e^{i\theta_2}s(z_2) + e^{i\theta_3}s(z_3)]
\]

Abbreviating \(\omega_j = \exp(i\theta_j) \), assume that

\[
s(z_j) = \sin(\theta_l - \theta_k) = \frac{1}{2i} \left(\frac{\omega_j}{\omega_k} - \frac{\omega_k}{\omega_l} \right) \quad \{ (j, k, l) = (1, 2, 3), (2, 3, 1), (3, 1, 2) \}
\]

Then

\[
\dot{z}_c = \frac{(a + i)}{6i|a + i|} \left[\omega_1 \left(\frac{\omega_3}{\omega_2} - \frac{\omega_2}{\omega_3} \right) + \omega_2 \left(\frac{\omega_1}{\omega_3} - \frac{\omega_3}{\omega_1} \right) + \omega_3 \left(\frac{\omega_2}{\omega_1} - \frac{\omega_1}{\omega_2} \right) \right] \equiv 0
\]

We refer to the unit circle \(\Gamma_0 \) in explaining how to locate \(B \) and \(C \) for a given centroid \(G \) and a given \(A \) such that \(AG \leq \delta = (2 - 2 \cdot OG^2)^{1/2} \):

Produce line \(AG \) half the distance \(AG \) beyond \(G \) to point \(A_1 \) so that \(AG = 2 \cdot GA_1 \). Construct a chord of \(\Gamma_0 \) having \(A_1 \) as its midpoint. This is side \(BC \) of triangle \(ABC \). If \(A_1 \) coincides with \(O \), then \(BC \) can be any diameter of the circle. Otherwise, it is the unique chord through \(A_1 \) perpendicular to \(OA_1 \).

If and only if \(AG = \delta/2 \) will one of the other two points \(B, C \) coincide with \(A \). But no point of \(\Gamma_0 \) lies at a distance less than \(\delta/2 \) or greater than \(\delta \) from \(G \), unless \(OG > \frac{1}{3} \).

Then an arc of \(\Gamma_0 \) is inaccessible to \(A, B, C \) and there are two locations where two of the points, moving in opposite directions, can coincide.

Editorial note: As a supplement to the previous solution we have the following related results by W. WESTON MEYER (General Motors Research Laboratories).

If \(A', B', C' \) move on a circle such that their angular speeds are as \(\cot \frac{1}{2} \angle A' : \cot \frac{1}{2} \angle B' : \cot \frac{1}{2} \angle C' \), respectively, then the incircle of triangle \(A'B'C' \) remains fixed.

We shall not prove this, but the converse, linking it to the result “ascribed to Newton”. Our figure shows a triangle \(A'B'C' \) with circumscribed circle \(\Gamma' \) and inscribed circle \(\Gamma \), the latter contacting \(A'B'C' \) in points \(A, B, C \). Line segments \(AA'', BB'', CC'' \) are the altitudes of \(ABC \), produced so as to be chords of \(\Gamma \). They concur in point \(H \), the orthocenter of \(ABC \). Since arcs \(B''A \) and \(AC'' \) on \(\Gamma \) subtend equal angles at
B and C, respectively (both angles are complementary to $\angle A$), it follows that A is
the midpoint of arc $B''C''$, chord $B''C''$ is parallel to the tangent $B'C'$ and $A''A$ is
the bisector of $\angle A''$. But each vertex of ABC has the same attributes, so triangles
$A''B''C''$ and $A'B'C'$ are homothetic—similar with corresponding sides parallel—and
point H is the incenter of $A''B''C''$.

Let us regard the two circles as fixed in position and size, Γ' centred in O', Γ centred
in O. A classic theorem [1, p.86] says that vertex A' can fall anywhere on Γ'. Hence
it is possible for A', B', C' to move on Γ' so that the incircle of $A'B'C'$ remains Γ.
Homothecy and the fixation of Γ as circumcircle require $A''B''C''$ to move about a fixed
incircle as well. Point H is stationary. So is the centroid G of ABC which, according
to a celebrated theorem of Euler [1, p.101], lies one third of the way from O to H on
the line connecting this circumcenter of ABC to this orthocenter.
We observe (perhaps in company with Newton) that for A, B, C to remain on Γ, while G remains stationary, the velocities of A, B, C must parallel the vectors $B'C'$, $C'A'$, $A'B'$, respectively, and match these vectors in summing to zero. Inevitably, then, the speeds of A, B, C are as the sides of $A'B'C'$:

$$s(A) : s(B) : s(C) :: |B'C'| : |C'A'| : |A'B'| \quad (1)$$

Let $t(X)$ signify the length of a tangent to circle Γ from an arbitrary point X. Since the lengths of the sides of $A'B'C'$ are

$$\frac{s(B'') + s(C'')}{2}, \quad \frac{s(C'') + s(A'')}{2}, \quad \frac{s(A'') + s(B'')}{2}$$

by reason of the arc-bisection property (A the midpoint of $B''C''$ and so forth), we infer from (1) that

$$s(A'') : s(B'') : s(C'') :: t(A') : t(B') : t(C') \quad (2)$$

Here, of course, A'', B'', C'' can be replaced by A', B', C'. Moreover,

$$t(A') \cdot \tan \frac{1}{2} \angle A' = t(B') \cdot \tan \frac{1}{2} \angle B' = t(C') \cdot \tan \frac{1}{2} \angle C' = \text{the radius of } \Gamma.$$

So, in conclusion,

$$s(A') : s(B') : s(C') :: \cot \frac{1}{2} \angle A' : \cot \frac{1}{2} \angle B' : \cot \frac{1}{2} \angle C' \quad (3)$$

The arc-bisection property has another implication for ABC that may have escaped Newton’s attention. Side CA, as bisector of $\angle C''CB''$, is the mid-perpendicular of the segment HB''. In other words, B'' is the mirror image of H in CA. The optical distance from O to H, under reflection in CA, is the distance $|OB''|$. But the envelope of all such reflecting lines CA is an ellipse Ψ with O and H as foci, $|OB''|$ as major axis. Thus, moving with fixed centroid, triangle ABC circumscribes the fixed ellipse Ψ.

REFERENCE

Editor’s note. To liven up the problem section, we invite readers to submit “Quickies” (preferably of an applied nature). Mathematical Quickies were initiated by C. W. Trigg in 1950 when he was editor of the problem section in *Mathematics Magazine*. These are problems that can be solved laboriously, but with proper insight and knowledge can be disposed of quickly. The next problem is a Quickie. In subsequent issues, these problems will not be identified as such except in their solutions appearing at the end of the same problem section.

An Integral Inequality

Problem 90-5, by M. S. Klamkin (University of Alberta).

Prove that

\[
\int_0^\infty \left(\frac{1}{a+\lambda} + \frac{1}{b+\lambda} + \frac{1}{c+\lambda} \right) \frac{d\lambda}{\sqrt{\lambda(a+\lambda)(b+\lambda)(c+\lambda)}} \geq \frac{4}{(abc)^{2/3}}
\]

where \(a, b, c > 0\).

[[then at p.154 of the same issue we find]]

Problem 90-5: Quickie.

Letting \(a, b, c, \rightarrow a^2, b^2, c^2\), the inequality is equivalent to

\[
S \geq 4\pi(abc)^{2/3}
\]

where

\[
S = \pi(abc)^2 \int_0^\infty \left(\frac{1}{a+\lambda} + \frac{1}{b+\lambda} + \frac{1}{c+\lambda} \right) \frac{d\lambda}{\sqrt{\lambda(a+\lambda)(b+\lambda)(c+\lambda)}}
\]

It is known [1] that \(S\) is the area of an ellipsoid of semi-axes \(a, b, c\). The rest follows from the known isoperimetric inequality that, for all three-dimensional bodies, the maximum of \(\text{Volume}^2/\text{Surface}^3\) is achieved for a sphere, whence

\[
\frac{(4\pi abc/3)^2}{S^3} \leq \frac{(4\pi/3)^2}{(4\pi)^3}
\]

REFERENCE

Minimum Value of an Integral

Problem 90-10, by K. S. Murray (Brooklyn, NY).

Determine the minimum value of

\[I = \int_{0}^{1} \sqrt{F'(t)^n + t^m} \, dt \]

where \(F'(t) \geq 0, \ F(0) = a, \ F(1) = b, \ n \) is a constant greater than 1, and \(m \) is a constant greater than or equal to zero.

Solution.

More generally, we will find the minimum of

\[J = \int_{0}^{1} \left\{ F'(t)^n + A'(t)^n \right\}^{1/n} \, dt \]

where additionally \(A(t) \) is given with \(A(0) = c, \ A(1) = d \) and \(A'(t) \geq 0 \).

By Hölder’s inequality,

\[\left\{ F'(t)^n + A'(t)^n \right\}^{1/n} \cdot \left\{ (b - a)^n + (d - c)^n \right\}^{(n-1)/n} \geq \left\{ F'(t)(b - a)^{n-1} + A'(t)(d - c)^{n-1} \right\} \]

Thus,

\[J \geq \int_{0}^{1} \left\{ F'(t)(b - a)^{n-1} + A'(t)(d - c)^{n-1} \right\} \, dt + \left\{ (b - a)^n + (d - c)^n \right\}^{(n-1)/n} \]

or

\[J \geq \left\{ (b - a)^n + (d - c)^n \right\}^{1/n} \]

There is equality if and only if \(F'(t)/(b - a) = A'(t)/(d - c) \).

For the special case \(n = 2 \), the problem is equivalent to finding the minimum length curve \(y = F(t), \ x = A(t) \), with endpoints \((a, c) \) and \((b, d) \).
Cyclic Pursuit with Lead Angle

Problem 90-19, by M. S. Klamkin (University of Alberta).

Four bugs A, B, C, D, starting from the consecutive vertices of a unit square, pursue each other cyclically with the same unit speeds. Bug A always heads directly for B with a constant lead angle of R radians, and the same cyclically for the other bugs. If $\pi/2 \geq R \geq 0$, show that the four bugs will meet simultaneously and determine the length of time for this to occur.

If we denote the positions of the four bugs by z_a, z_b, z_c, z_d, respectively, in the complex plane, the equations of motion are

\[\dot{z}_a = e^{iR} \frac{z_b - z_a}{|z_b - z_a|} \]

etc., where \cdot indicates differentiation with respect to time. We assume the initial positions to be given by

\[z_a = e^{i\pi/4} \quad z_b = iz_a \quad z_c = iz_b \quad z_d = iz_c \]

Since the equations are locally Lipschitz, the motion is unique and we find it by using the symmetry of the configuration, i.e.,

\[z_a = re^{i\theta} \quad z_b = iz_a \quad z_c = iz_b \quad z_d = iz_c \]

We then obtain

\[\dot{r} + ir\dot{\theta} = \frac{(i - 1)(\cos R + i \sin R)}{\sqrt{2}} \]

or

\[\dot{r} = -\sin(R + \pi/4) \quad r\dot{\theta} = \cos(R + \pi/4) \]

Thus

\[r = 1 - t \sin(R + \pi/4) \quad \theta = \pi/4 - \cot(R + \pi/4) \ln(1 - t \sin(R + \pi/4)) \]

It now follows that the four bugs meet simultaneously at the center of the initial square in a time $t = \csc(R + \pi/4)$. It is to be noted that for $R = 0$ or $\pi/2$ we have the classic four bug cyclic pursuit problem. For $R = \pi/4$ the four bugs move on the diagonals of the initial square directly to the center.

The results generalize for n bugs starting out on the n vertices of a regular n-gon.
Point of Minimum Temperature

Problem 91-15*, by M. S. Klamkin (University of Alberta).

A homogeneous convex centrosymmetric body with constant thermal properties is initially at temperature zero and its boundary is maintained at a temperature $T_b > 0$. Prove or disprove that at any time $t > 0$, the point of minimum temperature is the center. Also, prove or disprove that the isothermal surfaces are convex and centrosymmetric. Note that the convexity of the isothermal surfaces will imply that the center is the point of minimum temperature.

Extreme Gravitational Attraction

Problem 92-5*, by M. S. Klamkin (University of Alberta).

It follows by symmetry that the inverse square law attraction of any uniform homogeneous regular polyhedron on a unit test particle at its centroid is zero.

(i) Determine the location of the test particle, within or on a regular polyhedron, in particular the cube, which maximizes the attraction.

(ii) Consider the same problem (and also the minimum attraction) for a uniform homogeneous torus.

(iii) Determine the dimensions of a uniform homogeneous rectangular parallelepiped of unit volume so that its attraction for a unit test particle located at the center of a face is a maximum (minimum).

Solution by Carl C. Grosjean (University of Ghent, Ghent, Belgium).

(i) When a test particle is located inside a regular polyhedron or even any convex body with constant mass density, there is an amount of cancellation between forces exercised on it by the masses comprised in some elementary volumes belonging to non-infinitesimal three-dimensional regions of the body. In the case that the test particle is located at the centroid of a uniform homogeneous regular polyhedron, the cancellation is perfect, as mentioned above; otherwise, it is only partial. For instance, consider in E^3 referred to a rectangular cartesian coordinate system $Oxyz$, the uniform homogeneous cube in $-a \leq x, y, z \leq a$ ($a > 0$) and a test particle P at $(b, 0, 0)$ whereby $0 < b < a$, say. The the net attraction on P stems from the mass in the region $-a \leq x \leq 2b - a, -a \leq y, z \leq a$. In general, since the test particle is exactly or approximately at the centroid of the volume in which cancellation of forces takes place, this cancellation has two consequences:
the net force on the test particle is caused by only a fraction of the mass present;
(2) all elementary parts of that mass fraction are located at some non-infinitesimal
distance, more or less far, from the test particle.

From this qualitative argument, it follows that the force exercised on an internal test
particle is always less than the force on a test particle located at a point of the surface
of the three-dimensional convex body, since in this case cancellation of forces stemming
from non-vanishing amounts of mass cannot occur.

In the case of the above-mentioned cube, the attractive force on a test particle of unit
mass at \(x = a, \ y = z = 0 \), is given by

\[
f_{0,0} = \frac{M}{8a^3} \int_{-a}^{a} \int_{-a}^{a} \int_{-a}^{a} \frac{a-x}{[(a-x)^2 + y^2 + z^2]^{3/2}} \, dx \, dy \, dz
\]

\[
= \frac{M}{8a^2} \int_{-1}^{1} dz' \int_{-1}^{1} dy' \int_{-1}^{1} \frac{1 - x'}{[(1-x')^2 + y'^2 + z'^2]^{3/2}} \, dx'
\]

\[
= \frac{M}{2a^2} \int_{0}^{1} dz' \int_{0}^{1} \left[\frac{1}{(y'^2 + z'^2)^{1/2}} - \frac{1}{(4 + y'^2 + z'^2)^{1/2}} \right] \, dy'
\]

\[
= \frac{M}{a^2} \left[\ln(\sqrt{2} + 1) + \frac{\pi}{2} - \int_{0}^{1/\sqrt{2}} \frac{(5 - 4t^2)^{1/2}}{1 - t^2} \, dt \right]
\]

\[
= \frac{M}{a^2} \left[\frac{\pi}{2} + \ln \left(\frac{(\sqrt{2} + 1)(\sqrt{6} - 1)}{\sqrt{5}} \right) - 2 \arcsin \left(\frac{\sqrt{2}}{5} \right) \right]
\]

\[
= 0.649224 \ldots \frac{M}{a^2}
\]

where \(M \) is the mass of the cube (with edge 2\(a \)). In this formula and those which
follow, the gravitational constant which is merely a proportionality factor, unimportant
within the present context, is left out.
When the unit test particle is located at the vertex \(x = y = z = a \), we get similarly

\[
\begin{align*}
 f_{\alpha,\alpha} &= \frac{M \sqrt{3}}{8a^3} \int_{-a}^{a} \int_{-a}^{a} \frac{a-x}{[(a-x)^2+(a-y)^2+(a-z)^2]^{3/2}} dxdydz \\
 &= \frac{M}{8a^2} \int_{-1}^{1} dx' \int_{-1}^{1} dy' \int_{-1}^{1} \frac{1-x'}{[(1-x')^2+y'^2+z'^2]^{3/2}} dx'
 \quad \int_{-1}^{1} dy' \int_{-1}^{1} \frac{1-x'}{[(1-x')^2+y'^2+z'^2]^{3/2}} dx' \\
 &= \frac{M \sqrt{3}}{8a^2} \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \frac{u}{(u^2+v^2+w^2)^{3/2}} dudvdw \\
 &= \frac{M \sqrt{3}}{2a^2} \left[\ln(\sqrt{2}+1) + \frac{\pi}{4} - \int_{0}^{1/\sqrt{2}} \frac{(2-t^2)^{1/2}}{1-t^2} dt \right] \\
 &= \frac{M \sqrt{3}}{2a^2} \left[\ln(\sqrt{2}+1) + \frac{\pi}{12} - \frac{1}{2} \ln(2+\sqrt{3}) \right] \\
 &= 0.419757 \ldots \frac{M}{a^2} < F_{0,0}
\end{align*}
\]

When the unit test particle is located at \((\alpha, \eta, \zeta)\) \((0 < \eta, \zeta < 1)\), the attractive force is, in absolute value, equal to

\[
 f_{\eta,\zeta} = (f_1^2 + f_2^2 + f_3^2)^{1/2}
\]

in which

\[
\begin{align*}
 f_1 &= \frac{M}{8a^2} \int_{-\zeta}^{\zeta} \left[\frac{1}{(u^2+w^2)^{1/2}} - \frac{1}{(4+v^2+w^2)^{1/2}} \right] du \\
 f_2 &= \frac{M}{8a^2} \int_{-1}^{1} \left[\frac{1}{(u^2+(1-\eta)^2+w^2)^{1/2}} - \frac{1}{(u^2+(1+\eta)^2+w^2)^{1/2}} \right] du \\
 f_3 &= \frac{M}{8a^2} \int_{-\zeta}^{\zeta} \left[\frac{1}{(u^2+v^2+(1-\zeta)^2)^{1/2}} - \frac{1}{(u^2+v^2+(1+\zeta)^2)^{1/2}} \right] du
\end{align*}
\]

Because \((v^2+w^2)^{-1/2} - (4+v^2+w^2)^{-1/2}\) is infinite at \(u = v = w = 0\) and decreases toward zero approximately like \(2/(v^2+w^2)^{3/2}\) in all \((v,w)\)-directions with growing \((v^2+w^2)\), \(f_1\) decreases from 0.649224 \(M/a^2\) to 0.242347 \(M/a^2\). Similarly \(f_2\) and \(f_3\) increase from 0 to 0.242347 \(M/a^2\). As a result, starting from \(\eta = \zeta = 0\), \(f_{\eta,\zeta}\) at first decreases slowly with growing \(\eta^2 + \zeta^2\), but suddenly decreases rather rapidly in a neighborhood of \(\eta = \zeta = 1\). Qualitatively, his behavior can be ascribed to more matter being present in the vicinity of the position \((\eta, \zeta)\) when \(\eta^2 + \zeta^2 \ll 2\), because then \((\eta, \zeta)\) lies in a plane of the face at \(x = a\) relatively far from the edges, and this is not the case when \((\eta, \zeta)\) is located close to a vertex. The same facts and reasoning also hold for the uniform homogeneous regular polyhedrons other than the cube. In the case of a tetrahedron with edge \(2a\), we have in absolute value
– for the gravitational attraction at the center of a face
\[
\left[\sqrt{6} \ln(2 + \sqrt{3}) + \frac{2\pi}{3\sqrt{3}} - \frac{2\sqrt{6}}{3} \ln(\sqrt{3} + \sqrt{2}) \right] \frac{M}{a^2} = 2.56331 \ldots \frac{M}{a^2}
\]

– for the gravitational attraction at a vertex:
\[
6\sqrt{3} \left(\frac{\pi}{3} - \arctan \sqrt{2} \right) \frac{M}{a^2} = 3\sqrt{3} \left(\frac{\pi}{6} - \arctan \frac{\sqrt{2}}{2} \right) \frac{M}{a^2} = 0.95485 \ldots \frac{M}{a^2}
\]

Similarly, in the case of an octahedron with edge 2a, there comes

– at the center of a face: 1.07630 \ldots \frac{M}{a^2},
– at a vertex:
\[
\left\{ \sqrt{2} \ln[3(\sqrt{2} - 1)] + \arctan \frac{M}{a^2} = 0.64705 \ldots \frac{M}{a^2} \right\}
\]

To make the numerical coefficients for the tetrahedron, the cube and the octahedron comparable to that corresponding to a point on the sphere, Dr. H. De Meyer suggested expressing all results in terms of \(\rho V^{1/3} \), where \(\rho \) is the constant mass density. In this way, we find for the attractive force, still in absolute value,

– at a point on the sphere: \((4\pi/3)^{2/3}\rho V^{1/3} = 2.5985\rho V^{1/3}\)
– at the center of a face of the tetrahedron: \(2.4646\rho V^{1/3}\)
– at a vertex of the tetrahedron: \(0.9181\rho V^{1/3}\)
– at the center of a face of the cube: \(2.5969\rho V^{1/3}\)
– at a vertex of the cube: \(1.6790\rho V^{1/3}\)
– at the center of a face of the octahedron: \(2.6077\rho V^{1/3}\)
– at a vertex of the octahedron: \(1.5677\rho V^{1/3}\)

Conclusion. The attraction is maximized at the centre of each face of any uniform homogeneous regular polyhedron.

(ii) The same qualitative argument as expounded in (1), namely, that for masses lying in opposite locations with respect to a test particle there is cancellation between attractive forces to some extent, can be made use of in the case of a torus. This argument and some considerations of symmetry lead to the conclusion that for a torus with equation
\[
(\rho - R)^2 + z^2 = a^2 \quad 0 < a < R
\]
in cylindrical coordinates
- the maximum attraction is exercised on any point of the outer circle
 \(\rho = R + a, \ z = 0 \)
- the minimum attraction is exercised on any point of the inner circle
 \(\rho = R - a, \ z = 0 \)

In absolute value, the maximum attractive force is given by

\[
F_{R+a} = \frac{2M}{\pi^2a^2R} \int_{R-a}^{R+a} \rho \, d\rho \int_{\phi=0}^{\pi} \int_{\rho=(\rho-R^2)/2}^{(\rho-R^2)/2} \frac{(R + a - \rho \cos \phi) \, dz}{[(R + a - \rho \cos \phi)^2 + \rho^2 \sin^2 \phi + z^2]^{3/2}}
\]

which can be reduced to a single integral depending on just one parameter \(\alpha (= a/R) \). Its integrand consists of two parts that involve complete elliptic integrals of the first and third kinds. Also in absolute value, the minimum attractive force is represented by

\[
F_{R-a} = -\frac{2M}{\pi^2a^2R} \int_{R-a}^{R+a} \rho \, d\rho \int_{\phi=0}^{\pi} \int_{\rho=(\rho-R^2)/2}^{(\rho-R^2)/2} \frac{(R - a - \rho \cos \phi) \, dz}{[(R - a - \rho \cos \phi)^2 + \rho^2 \sin^2 \phi + z^2]^{3/2}}
\]

If we write \(F_{R+a} = f(\alpha)M/R^2 \), then the minimum attractive force is

\[
F_{R-a} = -f(-\alpha)\frac{M}{R^2} = |f(-\alpha)|\frac{M}{R^2}
\]

In the integral for \(F_{R+a} \) the two parts represent positive expressions that add up; in the case of \(F_{R-a} \) they form a subtraction by virtue of the coefficient in front of the second part being negative \((-\alpha \text{ instead of } \alpha)\). This reflects compensation of forces stemming from the parts of the torus on either side of the tangent plane at the point \((R - a, 0, 0)\).

(iii) Let the space occupied by the parallelepiped with constant mass density \(\rho \) be described by

\(-a \leq x \leq a, \ -b \leq y \leq b, \ -c \leq z \leq c \)

whereby \(8abc = 1 \). In absolute value, the attractive force acting on a unit test particle at the point \(x = a, \ y = z = 0 \) is given by

\[
F(a, b, c) = \rho \int_{-c}^{c} dz \int_{-b}^{b} dy \int_{-a}^{a} \frac{(a-x) \, dx}{[(a-x)^2 + y^2 + z^2]^{3/2}}
\]

\[
= 4\rho \int_{0}^{c} dz \int_{0}^{b} \left[\frac{1}{(y^2 + z^2)^{1/2}} - \frac{1}{(4a^2 + y^2 + z^2)^{1/2}} \right] dy
\]

Extremizing \(F(a, b, c) \) under the constraint \(8abc = 1 \) can be effectuated with the help of the Lagrange multiplier method. This consists of constructing the function \(\Phi(a, b, c, \lambda) = F(a, b, c) + (8abc - 1)\lambda \) and setting its four partial derivatives equal to zero:
\[
\frac{\partial F}{\partial a} + 8bc\lambda = 0, \quad \frac{\partial F}{\partial b} + 8ac\lambda = 0, \\
\frac{\partial F}{\partial c} + 8ab\lambda = 0, \quad 8abc - 1 = 9.
\]

Explicitly, this gives

\[
16\rho a \int_0^c dz \int_0^b \frac{dy}{(4a^2 + y^2 + z^2)^{3/2}} + 8bc\lambda = 0
\]

\[
4\rho \int_0^c \left(\frac{1}{(b^2 + z^2)^{1/2}} - \frac{1}{(4a^2 + b^2 + z^2)^{1/2}} \right) dz + 8ac\lambda = 0
\]

\[
4\rho \int_0^b \left(\frac{1}{(y^2 + c^2)^{1/2}} - \frac{1}{(4a^2 + y^2 + c^2)^{1/2}} \right) dy + 8ab\lambda = 0
\]

or, after taking the constraint into account,

\[
4\rho a \left(\pi - 2 \arcsin \left(\frac{2ac}{(4a^2 + b^2)^{1/2}(b^2 + c^2)^{1/2}} \right) - 2 \arcsin \left(\frac{2ab}{(4a^2 + c^2)^{1/2}(b^2 + c^2)^{1/2}} \right) \right) = -\lambda
\]

\[
4\rho b \left\{ \ln[c + (b^2 + c^2)^{1/2}] - \ln b - \ln[c + (4a^2 + b^2 + c^2)^{1/2}] + \ln(4a^2 + b^2)^{1/2} \right\} = -\lambda
\]

\[
4\rho c \left\{ \ln[b + (b^2 + c^2)^{1/2}] - \ln c - \ln[b + (4a^2 + b^2 + c^2)^{1/2}] + \ln(4a^2 + c^2)^{1/2} \right\} = -\lambda
\]

in which \(a\) should be replaced by \(1/8bc\). The elimination of \(\lambda\) by subtraction leads to two transcendental equations. Setting \(c = \mu b\) so that \(a = 1/8b^2\mu\), further simplification is attained by putting \(1/4b^3\mu = x\) and so the final form of the transcendental system in \(\mu\) and \(x\) reads

\[
\mu \ln \left(\frac{(x^2 + \mu^2)^{1/2}[1 + (\mu^2 + 1)^{1/2}]}{\mu[1 + (x^2 + \mu^2 + 1)^{1/2}]} \right) = \ln \left(\frac{(x^2 + 1)^{1/2}[\mu + (\mu^2 + 1)^{1/2}]}{\mu + (x^2 + \mu^2 + 1)^{1/2}} \right)
\]

\[
= x \left[\frac{\pi}{2} - \arcsin \frac{\mu x}{(\mu^2 + 1)^{1/2}(x^2 + 1)^{1/2}} - \arcsin \frac{x}{(\mu^2 + 1)^{1/2}(x^2 + \mu^2)^{1/2}} \right]
\]

In terms of \(\mu\) and \(x\), the edges of the parallelepiped are expressed by

\[
2a = \left(\frac{x^2}{4\mu} \right)^{1/3} \quad 2b = \left(\frac{2}{\mu x} \right)^{1/3} \quad 2c = \left(\frac{2\mu^2}{x} \right)^{1/3}
\]

If \((x, \mu)\) is a positive solution of the transcendental system, such is also the case with \((x/\mu, 1/\mu)\) and the latter solution yields the same parallelepiped. Hence, in studying
system (1), μ can be restricted to the interval $(0,1]$. Straightforward analysis shows that, for any $x > 0$,

$$
\mu \ln \left(\frac{(x^2 + \mu^2)^{1/2}[1 + (\mu^2 + 1)^{1/2}]}{\mu[1 + (x^2 + \mu^2 + 1)^{1/2}]}\right) > \ln \left(\frac{(x^2 + 1)^{1/2}[\mu + (\mu^2 + 1)^{1/2}]}{\mu + (x^2 + \mu^2 + 1)^{1/2}}\right)
$$

holds when $0 < \mu < 1$, whereas both sides are equal to

$$
\ln \left(\frac{(x^2 + 1)^{1/2}(1 + \sqrt{2})}{1 + (x^2 + 2)^{1/2}}\right)
$$

(3)

when $\mu = 1$. Hence, the first equality in system (1) can only hold for $\mu = 1$, in which case it is an identity. Consequently (1) reduces to one transcendental equation in x:

$$
\ln \left(\frac{(x^2 + 1)^{1/2}(1 + \sqrt{2})}{1 + (x^2 + 2)^{1/2}}\right) = x \left(\frac{\pi}{2} - 2 \arcsin \frac{x}{\sqrt{2(x^2 + 1)^{1/2}}}\right)
$$

$$= x \arcsin \frac{1}{x^2 + 1} \quad (4)
$$

As x increases from 0 onward,

- the left-hand side starts at zero and increases monotonically to $\ln(1 + \sqrt{2})$ with a gradually decreasing slope,
- the right-hand side initially increases much faster than the left-hand side, attains an absolute maximum around $x = 0.9$, and after that decreases continuously towards 0.

Therefore (4) admits only one positive solution which must be calculated numerically. The result with five significant decimals is $x = 1.84935$. In turn, this gives

$$
2a = 0.94913, \quad 2b = 2c = 1.02645 \quad (5)
$$

A verification can be carried out by calculating the attractive force on a unit test particle located at $(a,0,0)$ stemming from a rectangular parallelepiped with constant mass density ρ characterized by $-a \leq x \leq a$, $-b \leq y, z \leq b$. The force has the value

$$
F = \rho \int_{-b}^{b} dz \int_{-b}^{b} dy \int_{-a}^{a} \frac{a - x}{[(a - x)^2 + y^2 + z^2]^{3/2}} \, dx
$$

$$= 4\rho \left[a\pi + 2b \ln \left(\frac{\sqrt{2} + 1}{((4a^2/b^2) + 2)^{1/2} - 1}\right) - 4a \arcsin \frac{a\sqrt{2}/b}{((4a^2/b^2) + 1)^{1/2}}\right]
$$

(6)

Note that this formula generalizes that for a cube worked out in (i). With (5) inserted into it, one finds $F = 2.59928\rho$, to be compared with $F = 2.59690\rho$ holding in the case
of the cube with edge $2a = 1$. The fact that (5) yields the maximum attraction can be confirmed analytically by first replacing $2a$ by $(x/2)^{2/3}$ and $2b$ by $(2/x)^{1/3}$ in (6) according to (2) with $\mu = 1$, and after that by calculating the first and second derivatives with respect to x. By setting the first derivative equal to zero, (4) is retrieved. By inserting $x = 1.84935$ into the second derivative, a negative value is obtained confirming the maximum.

Remark. That $F = 2.59928\rho$ exceeds the value 2.59852ρ for the unit sphere is not an error or a contradiction. Additional calculations prove that, for instance, for an oblate ellipsoid with rotational symmetry and of unit volume, the maximum 2.65578ρ is attained for the ratio of its axes equal to 0.71952.

I thank Dr. H. DeMeyer for considerable computational assistance.
A Set of Maxima Problems

Problem 92-8, by K. S. Murray (Brooklyn, N.Y.).

Determine the maximum values of (a) \(x^2 \), (b) \(y^2 \), (c) \(x^2 + y^2 \), (d) \(x^2 + z^2 \), (e) \(x^2 + y^2 + z^2 \) and (f) \(x^2 + y^2 + z^2 + w^2 \) for all real \(x, y, z, w \) satisfying

\[
x^2 + y^2 + z^2 + w^2 - xy - yz = k^2
\]

(1)

Problem 92-8 (Quickie).

(a) Since (1) can be written as

\[
(2x - 3y)^2/12 + (2z - y)^2/4 + w^2 + 2x^2/3 = k^2,
\]

\[
\max x^2 = 3k^2/2
\]

(b) Since (1) can be rewritten as

\[
(x - y/2)^2 + (z - y/2)^2 + w^2 + y^2/2 = k^2,
\]

\[
\max y^2 = 2k^2
\]

(c) We can write (1) in the form

\[
\frac{(ax - by)^2}{2ab} + (z - y/2)^2 + w^2 + \left(1 - \frac{a}{2b}\right)x^2 + \left(\frac{3}{4} - \frac{b}{2a}\right)y^2 = k^2.
\]

Then, setting \(1 - a/2b = \frac{3}{4} - b/2a \), we find that

\[
1 - a/2b = (7 - \sqrt{17})/8,
\]

so that

\[
\max (x^2 + y^2) = 8k^2/(7 - \sqrt{17})/8 = (7 + \sqrt{17})k^2/4
\]

(d) Since (1) can be rewritten as

\[
(2y - x - z)^2/4 + (x - z)^2/4 + w^2 + (x^2 + z^2)/2 = k^2,
\]

\[
\max (x^2 + z^2) = 2k^2
\]

(e) Since (1) can be rewritten as

\[
\frac{(x - y/sqrt2)^2}{\sqrt2} + \frac{(z - y/sqrt2)^2}{\sqrt2} + w^2 + (x^2 + y^2 + z^2)\left(1 - \frac{1}{\sqrt2}\right) = k^2
\]
\[
\max (x^2 + y^2 + z^2) = \frac{k^2 \sqrt{2}}{\sqrt{2} - 1} = k^2 (2 + \sqrt{2})
\]

(f) Since in (e)
\[
w^2 + (x^2 + y^2 + z^2)(1 - 1/\sqrt{2}) = \frac{w^2}{\sqrt{2}} + (x^2 + y^2 + z^2 + w^2) \left(1 - \frac{1}{\sqrt{2}} \right),
\]
\[
\max (x^2 + y^2 + z^2 + w^2) = k^2 (2 + \sqrt{2})
\]

Comments. Similarly, since \(\max z^2 = \max w^2\) and \(\max w^2 = k^2\), it follows that the figure whose equation is (1) is bounded, and so it must be a four-dimensional ellipsoid.
Ellipsoid of Inertia of a Regular Simplex

Problem 93-3, by K. S. Murray (Brooklyn, N.Y.).

Prove that the ellipsoid of inertia about the centroid of a uniform regular simplex is a sphere.

Our proof is indirect. Assume that the ellipsoid of inertia which is unique is not a sphere. Then, by considering the group of motions which take the simplex into itself, we would generate a number of different ellipsoids of inertia. This gives the necessary contradiction. The same proof applies to any uniform regular polytope.

[[Let me know if you want to use any of
This is Problem 92-6 by J.O.Fellman:
Maximum Value of a Shear Stress
a solution by Russell L. Mallett, and more than 2 pages of Editorial Note by M.S.K.]]

Problem 93-3 (*Quickie*).

Maximum Gravitational Attraction

Problem 93-19*, by K. M. Seymour (Toronto, Ontario).

It is conjectured that if a uniform ellipsoid is divided into two subsets such that the gravitational attractive force between them is a maximum, then the two sets must be congruent hemiellipsoids formed by a plane containing two of the axes of the ellipsoid. Prove or disprove.

Comments by C. C. Grosjean (University of Ghent, Ghent, Belgium).

The problem can be treated in a semi-quantitative manner as follows. In mechanics it occurs that one can characterize a rigid body by its mass and its center of mass, and that these data suffice to calculate certain mechanical qualities, for instance, the force exercised on the body by a homogeneous force field such as the earth’s gravitational field taken locally in a comparatively small volume around a point of th earth’s surface.
When a uniform ellipsoid is subdivided into two adjacent parts, one can acquire a qualitative approximation of the gravitational attractive force between them by calculating:

\[F = \gamma \frac{M_1 M_2}{\bar{R}^2} \]

(1)

where \(\gamma \) is the gravitational constant, \(M_1 \) and \(M_2 \) represent the masses of the two parts and \(\bar{R}^2 \) denotes the square of the distance between their centers of mass. The formula would be rigorous if each part were collapsed into its center of mass. In the case of the ellipsoid, \(M_1 + M_2 = M = (4\pi/3)abc\rho \) where \(a > b > c \) are the three half-axes and the constant \(\rho \) is the mass-density of the uniform ellipsoid.

The more symmetrically the ellipsoid is divided, the smaller \(M_1 \) and \(M_2 \) and the larger \(\bar{R}^2 \) turn out to be. Because of \(M_1 + M_2 = M \), the product \(M_1 M_2 \) is at its maximum when \(M_1 = M_2 = M/2 \), which is for instance the case when the ellipsoid is cut in half by a plane passing through its center.

Now, to examine the behavior of \(\bar{R}^2 \), consider the ellipsoid with equation

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \quad a > b > c \]

in a rectangular cartesian frame of reference and the plane \(x = f \) with \(f \) a constant satisfying \(0 < f < a \). The mass and the center of mass of the part of the ellipsoid lying between \(x = f \) and \(x = a \) are given by, respectively,

\[M_1 = \frac{\rho \pi bc (a-f)^2 (2a+f)}{3a^2} \quad \text{and} \quad y = z = 0, \quad x = \frac{3(a+f)^2}{4(2a+f)} \]

Similarly the mass and the center of mass of the part of the ellipsoid lying between \(x = -a \) and \(x = f \) are described by, respectively,

\[M_2 = \frac{\rho \pi bc (a+f)^2 (2a-f)}{3a^2} \quad \text{and} \quad y = z = 0, \quad x = -\frac{3(a-f)^2}{4(2a-f)} \]

Hence, when the ellipsoid is divided by means of \(x = f \), the gravitational attractive force between the two parts is approximately

\[F = \gamma \frac{\rho^2 \pi b^2 c^2}{9a^4} \frac{(a-f)^2 (a+f)^2 (2a+f) (2a-f)}{\left[\frac{3(a+f)^2}{4} + \frac{3(a-f)^2}{4} \right]^2} \]

\[= \gamma \frac{M^2}{144a^2} \left(1 - \frac{f^2}{a^2} \right)^2 \left(4 - \frac{f^2}{a^2} \right)^3 \]

(2)

Note that \(F \) increases from 0 to a largest value when \(f \) decreases from \(a \) to 0. For \(f = 0 \), the local maximum is described within the present framework based upon (1) by

\[F = \gamma \frac{4M^2}{9a^2} \]

(3)
When the ellipsoid is cut by the plane $y = g$, the force is described by the same formula as (2) except that a is replaced by b and f by g. It is therefore also a function of g which increases from 0 to

$$F = \gamma \frac{4M^2}{9b^2} \quad (4)$$

when g decreases from b to 0. Since $b < a$, the ellipsoid cut in half by the Oxz-plane yields a stronger force between the two halves than by cutting by means of the Oyz-plane. When we let the plane which cuts the ellipsoid move from Oyz to Oxz by rotation around O, the geometric center of the ellipsoid, F varies continuously from (3) to (4).

Finally, the same can be repeated with a plane $z = h$, where h decreases from c to 0. A plane rotating around O from Oxz to Oxy gives rise to a force varying continuously from (4) to

$$F = \gamma \frac{4M^2}{9c^2} \quad (5)$$

since $c < b$. This is approximately the maximum force obtained via the formula (1). The reasons for that maximum are: symmetry entails $M_1 = M_2 = M/2$ and the oblate shapes of the two parts entail the smallest distance between the two centers of mass.

The approximation consisting of making use of the mass centers in (1) cannot be too rough because the gravitational fields emanating from the two hemiellipsoids are approximately homogeneous close to their flat side.

Conclusion. The maximal gravitational attractive force is produced by the two sets being hemiellipsoids separated by the plane Oxy which is the plane containing the largest symmetry axis and the symmetry axis of intermediate length of the ellipsoid (OA of length a and OB of length b). Although the above treatment is based on approximate formulas, the obtained solution is exact because no other symmetric subdivision of the uniform ellipsoid can be imagined for which the quantities of matter contained in the two subsets are on the average closer to one another, so as to give rise to a stronger attractive force.

Remark. A completely exact treatment requires the evaluation of a number of difficult multiple integrals of elliptic type.
A Conjectured Heat Flow Problem

Problem 94-1*, by M. S. KLAMKIN (University of Alberta).

Consider the unsteady heat flow problem

$$\frac{\partial T}{\partial t} = \alpha \left\{ \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right\}$$

for a smooth, convex, homogeneous body that is initially at temperature 0 and whose boundary is maintained at temperature 1 for all $t > 0$. If the point of the body at minimum temperature for all $t > 0$ remains fixed, it is conjectured that the body must be centrosymmetric about this point. Prove or disprove.

Solution by R. GULLIVER & N. B. WILLMS (University of Minnesota).

In this note, we disprove Klamkin’s conjecture. We begin by examining the analytic solution for the two-dimensional equilateral triangle. We show that the “cold spot” for this body remains stationary, although the body is not centrosymmetric. The symmetry properties of the equilateral triangle motivate us to construct a large class of non-centrosymmetric, strictly convex bodies with analytic boundaries for which the point of minimum temperature remains fixed in space for all time $t > 0$. In fact we shall prove that if a body in \mathbb{R}^n, $n > 1$, has n or more independent reflection symmetries, and is quasi-convex in the directions orthogonal to the hyperplanes of reflective symmetry, then the point of minimum temperature will be the intersection of the reflection hyperplanes, and will remain fixed for all time. Of course, if these directions are mutually orthogonal, the body will be centrosymmetric about their intersection point. Thus one way to weaken Klamkin’s conjecture would be to propose that lack of movement over time of the “cold spot” implies that the body has at least n hyperplanes of reflective symmetry. We feel, however, that this is still too strong.

We begin by rephrasing the problem. Let the function $u : \Omega \times (0, \infty) \to \mathbb{R}$ be defined by $u = u(x, t) = 1 - T(x, t/\alpha)$. Then the problem

$$\begin{align*}
\frac{\partial u}{\partial t} &= \Delta u \quad (x, t) \in \Omega \times (0, \infty) \\
u(x, 0) &= 1 \quad x \in \Omega \\
u(x, t) &= 0 \quad x \in \partial \Omega, \ t > 0
\end{align*}$$

i.e., the problem corresponding to the conjecture, has a solution $u \in C^2[\Omega \times (0, \infty)]$ given by

$$u(x, t) = \sum_{i=1}^{\infty} a_i e^{-\lambda_i t} u_i(x)$$
where \((\lambda_i, u_i)\) are the eigenvalue-eigenvector pairs for the Dirichlet Laplacian in \(\Omega\). It is well known that the eigenvalues are positive and have no accumulation point. Without loss of generality, we shall take the eigenfunctions to be orthonormal, and shall label the eigenvalues in order of increasing magnitude with respect to multiplicity, i.e.,

\[
0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots
\]

The coefficients in (4) must be chosen to satisfy the initial condition (2). Thus,

\[
a_i = \int_{\Omega} u_i(x) \, dx \quad i = 1, 2, \ldots
\]

As a consequence of the strong maximum principle for parabolic equations, the solution \(u\) is positive in \(\Omega\) for all time \(0 < t < \infty\). Clearly, as \(t \to \infty\) all heat is removed from the body and the solution becomes constant: \(u \equiv 0\). Moreover, for large time the solution becomes increasingly dominated by the scaled shape of the first eigenfunction, \(u_1\), corresponding to the simple eigenvalue \(\lambda_1\). Since the body was assumed to be convex, we can conclude that \(u_1\) is log-concave, and therefore must have convex level sets and, in particular, a unique critical point in \(\Omega\), a positive maximum. Thus, if the “hot point” (the point of \(\Omega\) for which \(u\) is maximized at a given time \(t > 0\)) moves spatially over time, it must come to rest, as \(t \to \infty\), at the unique point where \(u_1\) attains its maximum in \(\Omega\). We label this point \(P_H\).

Klamkin’s conjecture now becomes: if the problem (1)–(3) is overdetermined by the requirement that the body’s “hot spot” remains stationary for all positive times, that is,

\[
\{P_H\} = \{\xi \in \Omega \mid u(\xi, t) = \max_{x \in \Omega} u(x, t), \ t > 0\}
\]

then the only domains for which there exist solutions to the overdetermined problem are centrosymmetric about \(P_H\). For completeness, we include the definition.

A body is centrosymmetric about a point \(P\) if for every point \(A\) on the boundary, there exists another point \(A'\) on the boundary such that \(P\) is the midpoint of the line segment \(AA'\).

The equilateral triangle does not possess centrosymmetry. Nevertheless, it has enough symmetry for us to intuitively expect that the hot spot should remain at the triangle’s center for all time. We now verify this expectation.

Let \(\Omega \subset \mathbb{R}^2\) be the equilateral triangle \(\{(x, y) \mid 0 < y < \sqrt{3} \min(x, 1-x)\}\). Pinsky [1] has compiled a complete list of the eigenvalues/vectors for this domain, from which we can construct the solution to (1)–(3) via (4). Let \(R\) be the rotation operator

\[
R(x, y) \to \left(1 - \frac{x}{2} - \frac{y\sqrt{3}}{2}, \frac{x\sqrt{3}}{2} - \frac{y}{2}\right)
\]
An eigenvalue u_i is said to be symmetric if $u_i \circ R = u_i$. An eigenfunction is said to be complex if $u_i \circ R = e^{\pm 2\pi i/3}u_i$. Let $D = \{(x, y) \mid 0 < y < \min(x, 1-x)/\sqrt{3}\}$. If u_i is a complex eigenfunction, then $u_i \circ R = \sigma u_i$ where $1 + \sigma + \sigma^2 = 0$, so by (6),

$$a_i = (1 + \sigma + \sigma^2) \int \int_D u_i(x, y) \, dxdy = 0$$

Hence complex eigenfunctions make no contribution to our solution. By [1, Corollaries 1 and 2, p.820], we find that the solution is

$$u(x, y, t) = \left(\frac{2\pi}{2}\right)^{1/4} \sum_{k=1}^{\infty} e^{-16\pi^2 k^2 t/3} \frac{\{\sin(2\pi kd_1) + \sin(2\pi kd_2) + \sin(2\pi kd_3)\}}{k}$$

where d_1, d_2, d_3 are the normalized altitudes of the point $(x, y) \in \Omega$, i.e.,

$$d_1 = \frac{y}{\sqrt{3}}, \quad d_2 = x - \frac{y}{\sqrt{3}}, \quad d_3 = 1 - x - \frac{y}{\sqrt{3}}$$

Clearly, the triangle’s center, $d_1 = d_2 = d_3 = 1/3$, i.e., the point $x = 1/2, y = \sqrt{3}/6$, is a critical point for each of the symmetric eigenfunctions, and hence of u for all $t > 0$. We will be able to conclude that the “hot spot” remains stationary when we show that the triangle’s center is the only critical point interior to Ω for any positive time. To do this, let $a = 4\pi/\sqrt{3}$ and define

$$\psi(x, t) = \sum_{k=1}^{\infty} e^{-a^2 k^2 t} \cos(2\pi kx)$$

Then a necessary and sufficient condition for $(x, y) \in \Omega$ to be a critical point of u given by (8) is that

$$\psi(d_1, t) = \psi(d_2, t) = \psi(d_3, t)$$

We shall show, however, that for any fixed positive time, ψ decreases on $[0,1/2]$. Thus, since ψ is symmetric about $x = 1/2$, fulfilling the requirement (11) can only be accomplished for $d_1 = d_2 = d_3 = 1/3$, i.e., the triangle’s center.

To prove that ψ decreases on $[0,1/2]$, we use some facts concerning theta functions [3, pp.469–472]. The theta function

$$\vartheta_3(z, q) = 1 + 2 \sum_{n=1}^{\infty} q^{n^2} \cos(2nz)$$

has the product expansion

$$\vartheta_3(z, q) = G \prod_{n=1}^{\infty} (1 + 2q^{2n-1} \cos(2z) + q^{4n-2}), \quad G = \prod_{n=1}^{\infty} (1 - q^{2n})$$
Thus,
\[
\frac{1}{\vartheta_3} \frac{\partial^2 \vartheta_3}{\partial z^2} = -4 \sin(2z) \sum_{n=1}^{\infty} \frac{q^{2n-1}}{1 + 2q^{2n-1} \cos(2z) + q^{4n-2}}
\]
from which it is clear that \(\frac{\partial \vartheta_3}{\partial z} < 0\) for \(0 < z < \pi/2\). Since \(2\varphi(x,t) + 1 = \vartheta_3(\pi x, e^{-at})\), we see that for any fixed \(t > 0\),
\[
\frac{\partial \varphi}{\partial x} < 0, \quad 0 < x < 1/2
\]
We have shown that the equilateral triangle in \(\mathbb{R}^2\) has a unique hot spot (the center) for all positive time. We next consider general domains with the same property.

Theorem. Let \(\omega \subset \mathbb{R}^n\) be a convex domain with \(C^2\) boundary, possessing \(n\) independent \((n-1)\)-dimensional hyperplanes, \(\Pi_1, \Pi_2, \ldots, \Pi_n\), of reflective symmetry. The solution \(u : \Omega \times (0, \infty) \rightarrow \mathbb{R}\) of the problem (1)–(3) assumes its maximum for each fixed positive time only at the point of intersection of the hyperplanes, that is, the point \(\Pi_1 \cap \Pi_2 \cap \cdots \cap \Pi_n\).

Our proof is based on the following result.

Lemma. Suppose that the domain \(\Omega \subset \mathbb{R}^n\) possesses \(C^2\) boundary is symmetric about the hyperplane \(\{x_n = 0\}\) and quasi-convex in the \(x_n\)-direction. Then for all \(t > 0\) the solution \(u(\cdot, t)\) of (1)–(3) satisfies
\[
\frac{\partial u}{\partial x_n} < 0 \quad \text{for} \quad x_n > 0 \quad \text{and} \quad \frac{\partial u}{\partial x_n} > 0 \quad \text{for} \quad x_n < 0.
\]

Proof. Because of the uniqueness of solutions to the well-posed problem (1)–(3), it follows that \(u(x_1, \ldots, x_{n-1}, -x_n, t) = u(x_1, \ldots, x_{n-1}, x_n, t)\); as a consequence, \(\frac{\partial u}{\partial x_n} = 0\) on \(\Omega \cap \{x_n = 0\}\). By the parabolic boundary point lemma [2, Thm. 6, p.174], \(u(\cdot, t)\) has a negative outward normal derivative, \(\frac{\partial u}{\partial n}\), for each \(t > 0\), and therefore \(\frac{\partial u}{\partial x_n} \leq 0\) on \(\partial \Omega \cup \{x_n = 0\}\) (strictly negative on those portions of the boundary for which the normal vector has a nonzero component in the \(x_n\) direction; zero on any portions orthogonal to the \(\{x_n = 0\}\) hyperplane and, in particular, on the intersection set \(\partial \Omega \cap \{x_n = 0\}\)).

Thus \(\frac{\partial u}{\partial x_n}\) is a solution of the heat equation (1) with initial values \(\frac{\partial u}{\partial x_n}(x, 0) = 0\), and nonpositive boundary values on \(\Omega_+ \times [0, \infty)\), where \(\Omega_+\) is the subdomain \(\Omega \cap \{x_n > 0\}\). By the strong maximum principle [1, Thm. 5, p.173], \(\frac{\partial u}{\partial x_n}(x, 0) \leq 0\) on the whole domain \(\Omega_+ \times (0, \infty)\), and if \(\frac{\partial u}{\partial x_n}(x_0, t_0) = 0\) for some \(x_0\) in \(\Omega_+\) and \(t_0 > 0\), then \(\frac{\partial u}{\partial x_n} \equiv 0\) on \(\Omega_+ \times [0, \infty)\). The boundary condition (3) would then imply \(u \equiv 0\) on \(\Omega \times (0, \infty)\), and the lemma follows from the assumed symmetry. \(\blacksquare\)
The proof of the theorem now follows by applying the lemma successively to each of the n hyperplanes of symmetry, noting in each case that critical points of the solution $u(\cdot, t)$ can only occur on the intersection of Ω with the hyperplane. Since the solution $u(\cdot, t)$ is positive and smooth on Ω and vanishes on the boundary, a maximum must therefore exist at the intersection point of the planes of symmetry for each positive time.

Remarks. 1. The convexity of Ω may be weakened without changing the conclusion. It is enough to assume that Ω is quasi-convex in directions orthogonal to each of the planes, $\Pi_1, \Pi_2, \ldots, \Pi_n$, that is, that Ω intersects any line orthogonal to one of the symmetry hyperplanes in an interval.

2. Centrosymmetry of Ω would follow from n orthogonal planes of symmetry which are not centrosymmetric. For example, any domain Ω whose symmetry group coincides with the symmetry group of the regular n-simplex (which is generated by the reflections in $n(n+1)/2$ independent, nonorthogonal hyperplanes in \mathbb{R}^n) has a stationary hot spot by the theorem, provided that Ω is quasi-convex in directions orthogonal to n of these planes.

3. The two-dimensional domain $\Omega = \{(r, \theta) \mid r \leq 11 + \cos(3\theta)\}$ is strictly convex, noncentrosymmetric, and has a real analytic boundary. By the theorem, this domain possesses a unique, stationary hot spot for all positive time, in contradiction to Klamkin’s conjecture.

4. In three dimensions, a prismatic bar with cross section as above has four planes of symmetry, no three of which are mutually orthogonal. Rounding off the end in a symmetric and (strictly) convex manner would therefore provide another type of counterexample to the conjecture.

5. The proof of the theorem above follows immediately from the convexity of the level sets of the solution $u(\cdot, t)$ for each fixed time $t > 0$ (see B. Kawohl’s solution below). However, the stronger conclusion contained in Remark 1 does not follow by this technique.

REFERENCES

Editorial note. In the following solution, proposed by B. Kawohl, the problem has been reformulated as (1)–(3) exactly as done by Gulliver & Willms.

The idea that Ω should be centrosymmetric is supported by the following physical reasoning. Heat flows away from the hot spot in all directions towards ∂Ω. If the rate of heat flow in one direction is less than the rate of heat flow in the opposite direction, then the hot spot is intuitively expected to drift away and move around as time goes on. So we might expect the flux $-\Delta u$, the spatial gradient of u, to be the same in opposite directions. Therefore, if the hot spot is stationary, it is not unreasonable to suspect that u is symmetrically decreasing on each line through the hot spot.

A counterexample to centrosymmetry is provided for $n = 2$ by an equilateral triangle, and for $n = 3$ by a regular tetrahedron. If there is objection to the fact that these examples have nonsmooth boundaries, one can mollify the corners and edges.

The fact that u has a stationary hot spot for bodies with at least n reflection symmetries follows easily from [3] as in [4]. Since the counterexamples are still symmetric, one might modify Klamkin’s conjecture by removing the adjective “centro”.

Is the fact that u develops only one spatial maximum for convex domains surprising? For nonconvex domains like barbells it is wrong, but for convex domains it has been long known that $v(x, t) = \log u(x, t)$ is concave in x [2, 6]. Thus the level sets $\{x \in D \mid u(x, t) \geq c\}$ of u are convex in space for every $t > 0$ and $c \geq 0$.

A problem related to the above conjecture was posed by L. Zalcman [7] and solved by G. Alessandrini [1]. Suppose that u solves (1)–(3) and that the level surfaces are invariant with respect to the time variable t, in other words, for any $z \in \Omega$ and $t_1 > 0$ we have $\{x \in \Omega \mid u(x, t_1) = u(z, t_1)\} = \{x \in \Omega \mid u(x, t_2) = u(z, t_2)\}$. Suppose furthermore that $\partial \Omega$ is of class C^2. Then Ω is a ball.

Another problem on hot spots which is still unsolved deals with Neumann rather than Dirichlet conditions. I learned it from J. Rauch in 1979. Consider the heat equation as in (1)–(3), but under the no-flux condition

$$\frac{\partial u}{\partial n}(x, t) = 0 \quad \text{on} \quad \partial \Omega \times \mathbb{R}^+$$

and with nonconstant initial data

$$u(x, 0) = u_0(x) \quad \text{in} \quad \Omega$$

As $t \to \infty$ the solution u tends to its average, but (generically with respect to initial data) the hot spot moves to the boundary. More on this can be found in [5].
REFERENCES

Comment by the proposer. The paper by Alessandrini referred to above solves Problem 64-5* in the affirmative and in the more general case for n-dimensions.
A Possible Characterization of Uniformly Accelerated Motion

Problem 94-10*, by M. S. KlAMKIN (University of Alberta).

It is a known result that if a particle is projected upwards in a uniform gravitational field with no resistance, then the product of the two times it takes to pass through any point of its path is independent of the initial velocity of the projection. Prove or disprove that this result cannot hold if additionally the particle was subject to a resistance as some function of the velocity.

Solution by W. B. JORDAN (Scotia, NY).

We use subscripts 0, 1, m, 2 to denote the start, the specified point on the upward leg, the peak, and the specified point on the downward leg. Let $f(v)$ be the acceleration due to resistance. On the upward leg (v positive upward) $dv/dt = -g - f$ so

$$t = \int_{v_0}^{v_0} \frac{dv}{g + f}$$

and $dy = v dt = v(dt/dv)dv = -v dv/(g + f)$ so

$$y = \int_{v_0}^{v_0} \frac{v dv}{g + f}$$

Thus

$$y_m = \int_{0}^{v_0} \frac{v dv}{g + f} = \text{max height} \quad \text{and} \quad t_m = \int_{0}^{v_0} \frac{dv}{g + f}$$

Now $y = y_1$ when $v = v_1$, so

$$t_1 = \int_{v_0}^{v_1} \frac{dv}{g + f} \quad \text{and} \quad y_1 = \int_{v_0}^{v_0} \frac{v dv}{g + f} \quad \text{(gives } v_1)$$

On the downward leg (v positive downward) $dv/dt = g - f$

$$t = t_m + \int_{0}^{v} \frac{dv}{g - f} \quad \text{and} \quad y = y_m - \int_{t_m}^{t} v dt = y_m - \int_{0}^{v} \frac{v dv}{g - f}$$

Now $y = y_2$ when $v = v_2$, so

$$t_2 = \int_{0}^{v_0} \frac{dv}{g + f} + \int_{0}^{v_2} \frac{dv}{g - f} \quad \text{and} \quad y_2 = y_m - \int_{0}^{v_2} \frac{v dv}{g - f} \quad \text{(gives } v_2)$$
Let $P = t_1 t_2$, the product to be examined. We have

\[
\begin{align*}
\frac{dP}{dv_0} &= t_1 \frac{dt_2}{dv_0} + t_2 \frac{dt_1}{dv_0} \\
\frac{dt_1}{dv_0} &= \frac{1}{g + f_0} - \frac{1}{g + f_1} \frac{dv_1}{dv_0} \\
0 &= \frac{dy_1}{dv_0} = \frac{v_0}{g + f_0} - \frac{v_1}{g + f_1} \frac{dv_1}{dv_0} \quad (\text{gives } dv_1/dv_0) \\
\frac{dt_2}{dv_0} &= \frac{1}{g + f_0} + \frac{1}{g - f_2} \frac{dv_2}{dv_0} \\
0 &= \frac{dy_2}{dv_0} = \frac{v_0}{g + f_0} - \frac{v_2}{g - f_2} \frac{dv_2}{dv_0} \quad (\text{gives } dv_2/dv_0)
\end{align*}
\]

so

\[
(g + f_0) \frac{dP}{dv_0} = \left(1 + \frac{v_0}{v_2}\right) \int_{v_1}^{v_0} \frac{dv}{g + f} + \left(1 - \frac{v_0}{v_1}\right) \left[\int_{0}^{v_0} \frac{dv}{g + f} + \int_{0}^{v_2} \frac{dv}{g - f}\right]
\]

If $f(v) < g$ the integrands can be expanded in powers of f. The leading term in the expansion is

\[
(g + f_0) \frac{dP}{dv_0} = \frac{(v_0 + v_2)(v_0 - v_1)}{g} \left(\frac{1}{v_2} - \frac{1}{v_1}\right)
\]

If there is zero resistance, then $f = 0$, $v_1 = v_2$, $dP/dv_0 = 0$ and the proposer’s “known result” is verified. But for nonzero resistance $v_0 > v_1 > v_2$, so $dP/dv_0 > 0$ and the product of the two times is no longer independent of v_0.
Non-Symmetric Cyclic Pursuit on a Sphere

Problem 95-3*, by M. S. Klamkin (University of Alberta).

Three bugs A, B, C, starting from the vertices of an arbitrary spherical triangle, pursue each other cyclically at the same constant speeds, i.e., A always heads directly towards B, while B heads towards C, and C heads towards A, along minor great circular arcs. Prove or disprove that there is simultaneous capture. For the plane case, it is known that there is simultaneous capture, and upper and lower bound are given for the time to capture [1].

REFERENCE

[[Is it clear (true?) that the paths of the bugs are great circle arcs?? — Later: Is this question answered in the following solution? RKG]]

Solving by H. E. De Meyer and C. C. Grosjean (University of Ghent, Belgium).

From the six differential equations describing in spherical coordinates the instantaneous motion of the three bugs on the sphere, one easily obtains by elementary trigonometric calculations another set of six first-order differential equations expressing the rate of change of the arcs a, b, c and the angles A, B, C of the spherical triangle with the bugs as vertices. On the unit sphere and with the assumption that the bugs move at unit velocity, whereby A heads towards B, B heads towards C, and C heads towards A, the latter set of equations is

$$
\begin{align*}
\dot{a} &= -1 - \cos C \\
\dot{A} &= \frac{\sin A \cos b}{\sin b} - \frac{\sin B}{\sin c} \\
\dot{b} &= -1 - \cos A \\
\dot{B} &= \frac{\sin B \cos c}{\sin c} - \frac{\sin C}{\sin a} \\
\dot{c} &= -1 - \cos B \\
\dot{C} &= \frac{\sin C \cos a}{\sin a} - \frac{\sin A}{\sin b}
\end{align*}
$$

The initial configuration of the bugs on the sphere is an arbitrary nondegenerate spherical triangle, i.e., $0 < A, B, C < \pi$ and $0 < a, b, c < \pi$. It is remarkable that (1) are exactly the same as those for the cyclic pursuit in the plane (a, b, c being then the sides of the triangle), whereas (2) reduce to the corresponding equations in the plane by leaving out the cosine-factors and by replacing the sines of the arcs by the corresponding sides of the triangle.
Due to this great similarity between the cyclic pursuit on the sphere and in the plane, the proof of the mutual capture of the bugs on the sphere can be largely inspired by the proof for the mutual capture in the plane given by Klamkin and Newman (see [1] in the problem). We first notice that on account of (1) the three arcs are decreasing monotonically. Also, for all finite \(t \), the three angles lie in \([0, \pi]\). Indeed, if any angle became 0 or \(\pi \), then the bugs would be in three different positions on the same great circle of the sphere. By the uniqueness for the system of differential equations (1)–(2), these positions on a great circle could only be attained if the bugs were always moving on that great circle, which contradicts the initial conditions.

Next we show that at least one of the arcs becomes zero in finite time. Indeed, let us assume that none of the arcs become zero in finite time. Since the arcs are monotonically decreasing they converge to a nonnegative value, i.e.,

\[
\lim_{t \to \infty} a = a_\infty \geq 0 \quad \lim_{t \to \infty} b = b_\infty \geq 0 \quad \lim_{t \to \infty} c = c_\infty \geq 0
\]

From (1) it follows that

\[
\lim_{t \to \infty} A = \lim_{t \to \infty} B = \lim_{t \to \infty} C = \pi
\]

which yields a contradiction since initially \(A + B + C < 3\pi \) for any nondegenerate spherical triangle, and the sum of the angles is decreasing monotonically, as can be verified by taking the sum of (2).

Let \(t_0 \) be the finite time at which an arc, say \(c \), becomes zero first, i.e.,

\[
c(t_0) = 0 \tag{3}
\]

We will prove that the assumption

\[
a(t_0) > 0 \quad \text{and} \quad b(t_0) > 0 \tag{4}
\]

leads to a contradiction, yielding mutual capture at \(t_0 \) as the only valid alternative.

From (3) and (4) and on account of the monotonicity of \(c \), it follows that for \(t \) sufficiently close to \(t_0 \), \(\frac{\sin A}{\sin b} - \frac{\sin b}{\sin c} < 0 \), and hence, by the application of the law of sines, that

\[
\frac{\sin A}{\sin b} - \frac{\sin B}{\sin c} < 0 \tag{5}
\]

Since \(\frac{\sin A}{\sin b} > 0 \) for all \(t < t_0 \), an even stronger inequality than (5) is obtained by multiplying the first term by \(\cos b \). Hence, for \(t \) sufficiently close to \(t_0 \), we have

\[
\frac{\sin A \cos b}{\sin b} - \frac{\sin B}{\sin c} < 0 \tag{6}
\]

It now follows from (2) that there exists a time \(t' < t_0 \) such that, from \(t' \) onwards, \(A \) is monotonically decreasing. Hence,

\[
\lim_{t \to t_0} A \quad \text{exists and is} \quad < \pi \tag{7}
\]
We next prove that \(\lim_{t \to t_0} B = 0 \). If \(a(t_0) < \pi/2 \), then for \(t \) sufficiently close to \(t_0 \) we have \(\sin A > \sin a(t_0) \) and from (2) it follows that

\[
\dot{B} - \frac{\sin B \cos c}{\sin c} = -\frac{\sin C}{\sin a} > -\frac{1}{\sin a(t_0)} \tag{8}
\]

Thus, \(\dot{B} > -1/\sin a(t_0) \), so that \(B + t/\sin a(t_0) \) is increasing. Since it is bounded by \(\pi + t_0/\sin a(t_0) \), the limit \(\lim_{t \to t_0} B \) exists and is finite. Integrating (8) from time zero to time \(t_0 \) we then obtain that the integral

\[
\int_0^{t_0} \frac{\sin B \cos c}{\sin c} \, dt \tag{9}
\]

converges. Similarly, if \(\pi/s \leq a(t_0) < \pi \), then for all \(t < t_0 \) we have \(\sin a > \sin a(0) \) and it can be shown again that the integral (9) converges.

If we regard the monotone decreasing \(c \) as the new independent variable, we may use (1) to change the integral (9) to

\[
\int_0^{c(0)} \frac{\sin B \cos c}{\sin c} \frac{dc}{1 + \cos B} = \int_0^{c(0)} \frac{\tan B}{2 \tan c} \, dc
\]

Since \(\lim_{t \to t_0} B \) is finite, the integrability of \((\tan B/2)/(\tan c) \) around \(c = 0 \) requires that \(\lim_{t \to t_0} B = 0 \).

Finally, we recall from (3)–(4) that eventually \(c \) is the smallest arc. Hence \(C \) is eventually the smallest angle, and consequently \(\lim_{t \to t_0} C = 0 \). Therefore, under the assumptions (3)–(4) we have obtained

\[
\lim_{t \to t_0} (A + B + C) < \pi
\]

which gives a contradiction since for any nondegenerate spherical triangle \(A + B + C > \pi \), and in the limit the sum of the angles cannot be smaller than \(\pi \). Consequently there must be mutual capture of the bugs at time \(t_0 \) if their initial configuration is a nondegenerate spherical triangle. Since \(-3 < \cos A + \cos B + \cos C < 3/2 \) for any nondegenerate spherical triangle, we have from (1), \(-9/2 < \dot{a} + \dot{b} + \dot{c} < 0 \), and a lower bound of the time of capture \(t_0 \) follows:

\[
t_0 > \frac{2}{9} a(0) + b(0) + c(0).
\]
A Characterization of Uniformly Accelerated Motion

Problem 94-10, by M. S. Klamkin (University of Alberta). above. R.]

A Characterization of Uniformly Accelerated Motion

Problem 95-15, by M. S. Klamkin (University of Alberta).

It is a known result that if a particle moves along a straight line with constant acceleration, the space-average of the velocity over the distance of any segment is

\[
\frac{2(v_1^2 + v_1 v_2 + v_2^2)}{3(v_1 + v_2)} \tag{1}
\]

where \(v_1\) and \(v_2\) are the velocities at the beginning and at the end of the segment. Prove that this property characterizes uniformly accelerated motion, i.e., if a particle moves along a straight line such that the space average of its velocity over any segment is given by (1), then the motion is one of constant acceleration.

Solution by W. B. Jordan (Scotia, New York).

Let \(x = 0\) at \(v = v_1\), and let \(v_2 = uv_1\). Then

\[
\frac{2v_1(u^2 + u + 1)}{3(u + 1)} = \bar{v} = \frac{1}{x} \int_0^x uv_1 \, dx
\]

so

\[
3 = \frac{2}{u} \frac{dx}{dx} = \frac{d}{dx} \left(\frac{x(u^2 + u + 1)}{u + 1} \right)
\]

which reduces to

\[
\frac{dx}{x} = \frac{2u \, du}{u^2 - 1}
\]

so \(x = C(u^2 - 1)\) (\(C\) a constant). Then

\[
a = a(x) = \frac{dv_2}{dt} = \frac{dv_2}{dx} \frac{dx}{dt} = v_2 \frac{dv_2}{dx} = v_1^2 \frac{du}{dx} = \frac{v_1^2}{2C} = \text{constant.}
\]

Solution by Michael Renardy (Virginia Tech).

The condition can be written in the form

\[
3(v(t_1) + v(t_2)) \int_{t_1}^{t_2} v^2 \, dt = 2(v(t_1)^2 + v(t_1)v(t_2) + v(t_2)^2) \int_{t_1}^{t_2} v \, dt
\]
Now differentiate three times with respect to t_2 and set $t_2 = t_1$. The outcome of this calculation is

$$v^2 v'' = 0.$$

Hence $v'' = 0$, i.e., the motion has constant acceleration.

Also solved by [5 others] and the proposer.

[[For completeness I mention that there’s a comment by Murray on pp.142–143 of *SIAM Rev., 40* (1998) on a problem

Existence and Uniqueness for a Variational Problem

Problem 97-4 by Yongi Wang

A solution by Erik Verriest runs over pages 132–142.]]

[[From *40* (1998) the *SIAM Rev.* discontinued its Problems and Solutions section, and only Solutions (to past problems) appeared.]]
Murray Klamkin, Miscellaneous

Richard K. Guy

June 22, 2006

This file updated 2006-05-23.

I note the appearance of

Inside the cover of the April, 2006 issue [of *Math. Mag.*] there appears:

Murray Seymour Klamkin was born in the United States. He received his undergraduate degree in chemistry, served four years in the U.S. Army during WW2, and later earned an M.S. in physics. In his career he worked both in industry and in universities, and for several years was Chair of the Mathematics Department at the University of Alberta in Edmonton. He is well-known to readers of *Mathematics Magazine* (and many other journals) through his activities in Olympiads and in the problems sections. More details about the life and achievements of Klamkin can be found in the eulogies published in *Focus* (November 2004, page 32) and in the *Notes of the Canadian Mathematical Society* (November 2004, pages 19–20).

Grünbaum and Klamkin first met in 1967, at a CUPM conference in Santa Barbara. They remained in contact over the years, but the present paper is their first joint publication.
Murray Klamkin, 1921–2004

By Steven R. Dunbar

Murray Klamkin, prolific mathematical problem poser and solver, professor of mathematics, and member of the MAA since 1948, passed away on August 6, 2004 at the age of 83. Murray Klamkin received a B.Ch.E. from the Cooper School of Engineering in 1942, then spent 4 years in the U.S. Army. After receiving an M.S. in Physics at the Polytechnic Institute of Brooklyn in 1947, he spent 1947–48 studying mathematics at Carnegie-Mellon. From there, he returned as an instructor to the Polytechnic Institute, then held positions successively at AVCO Research, SUNY-Buffalo, the University of Minnesota, Ford Motor Company, the University of Waterloo, and the University of Alberta, where he was chair of the Department of Mathematics from 1976 to 1981. Murray Klamkin is best known for editing the Problems columns of many journals: SIAM Review, the Pi Mu Epsilon Journal, School Science and Mathematics Journal, Crux Mathematicorum, the American Mathematical Monthly, Mathematics Magazine, and most recently, Math Horizons. Klamkin is one of the three greatest contributors to the SIAM Review Problems and Solutions Section. Murray also served the MAA as a visiting lecturer, a committee member, and on the Board of Governors.

Not surprisingly, he was also on the Putnam Competition Committee, and was instrumental in starting the USA Mathematical Olympiad. The standards he set as the Chair of the USAMO Committee from 1972–85 and the coach of the USA Team at the International Mathematical Olympiads from 1975–1984 were significant to the continued success of the program. Under his leadership, the USA team delightfully surprised the mathematics community by doing well despite having to compete against countries that had been participating in the IMO since its beginning in 1959. In Steve Olson’s recent book Count Down, Klamkin is quoted as saying “A lot of people were deadset against it, they thought a US team would be crushed” In the 2001 IMO in Washington DC, he returned as an Honorary Member of the Problem Selections Committee and a guest lecturer at the summer training program for the USA team.

Mathematicians and students of mathematics will long appreciate his creation of brilliant problems and lucid solutions and the standards that he set. “The best problems,” he said, “are elegant in statement, elegant in result, and elegant in solution. Such problems are not easy to come by.” Murray found them consistently and shared them generously throughout his long and fruitful career.
OBITUARY

Murray Seymour Klamkin (1921–2004)

by Andy Liu, University of Alberta

Let me first make it clear that this is not a eulogy. By my definition, a eulogy is an attempt to make the life of the departed sound much better than it was. In the present case, it is not only unnecessary, it is actually impossible. Murray Seymour Klamkin had a most productive and fulfilling life, divided between industry and academia.

Of the early part of his life I know little except that he was born in 1921 in Brooklyn, New York, where his father owned a bakery. This apparently induced in him his lifelong fondness for bread. I read in his curriculum vitae that his undergraduate degree in Chemical Engineering was obtained in 1942 from the Cooper Union’s School of Engineering. During the war he was attached to a chemical warfare unit stationed in Maryland, as his younger sister Mrs. Judith Horn informed me.

In 1947, Murray obtained a Master of Science degree from the Polytechnic Institute of New York, and taught there until 1957 when he joined AVCO’s Research and Advanced Development Division.

In 1962, Murray returned briefly to academia as a professor at SUNY, Buffalo, and then became a visiting professor at the University of Minnesota. In 1965, he felt again the lure of industry and joined Ford Motor Company as the Principal Research Scientist, staying there until 1976.

During all this time, Murray had been extremely active in the field of mathematics problem solving. His main contribution was serving as editor of the problem section of SIAM Review. He had a close working relation with the Mathematical Association of America, partly arising from his involvement with the William Lowell Putnam Mathematics Competition.

In 1972, the MAA started the USA Mathematical Olympiad, paving the way for the country’s entry into the International Mathematical Olympiad in 1974, hosted by what was still East Germany.

Murray was unable to obtain from Ford release time to coach the team. Disappointed, he began to look elsewhere for an alternative career. This was what brought him to Canada, at first as a Professor of Applied Mathematics at the University of Waterloo.
However, it was not until the offer came from the University of Alberta that he made up his mind to leave Ford. I did not know if Murray had been to Banff before, but he must have visited this tourist spot during the negotiation period, fell in love with the place and closed the deal.

As Chair, Murray brought with him a management style from the private sector. Apparently not everyone was happy with that, but he did light some fires under several pairs of pants, and rekindled the research programs of the wearers.

Murray had always been interested in Euclidean Geometry. He often told me about his high school years when he and a friend would challenge each other to perform various Euclidean constructions. Although the Chair had no teaching duties at the time, Murray took on a geometry class himself.

At the same time, Murray began editing the Olympiad Corner in Crux Mathematicorum, a magazine then published privately by Professor Leo Sauvé of Ottawa. It is now an official journal of the Canadian Mathematical Society. Murray also introduced the Freshmen and Undergraduate Mathematics Competitions in the Department.

Geometry, mathematics competitions and Crux Mathematicorum were what brought me to Murray’s attention. At the time, I was a post-doctoral fellow seeking employment, having just graduated from his Department. Thus I was ready to do anything, and it happened that my interests coincided with those of Murray. I was holding office hours for his geometry class, helping to run the Department’s competitions and assisting him in his editorial duty.

I remember being called into his office one day. He had just received a problem proposal for Crux Mathematicorum. ‘Here is a nice problem,’ he said, “but the proposer’s solution is crappy. Come up with a nice solution, and I need it by Friday afternoon!”

As much as I liked problem-solving, I was not sure that I could produce results by an industrial schedule. Nevertheless, I found that I did respond to challenges, and although I was not able to satisfy him every time, I managed to do much better than if I was left on my own, especially after I had got over the initial culture shock.

The late seventies were hard times for academics, with few openings in post-secondary institutions. I was short-listed for every position offered by the Department, but always came just short. Eventually, I went elsewhere for a year as sabbatical replacement. Murray came over to interview me for a new position, pushed my appointment through the Hiring Committee and brought me back in 1980.
Murray had been the Deputy Leader for the USA National Team in the IMO since 1975. In 1981, USA became the host of the event, held outside Europe for the first time. Sam Greitzer, the usual leader, became the chief organizer. Murray took over as the leader, and secured my appointment as his Deputy Leader.

I stayed in that position for four years, and in 1982 made my first trip to Europe because the IMO was in Budapest. This was followed by IMO 1983 in Paris, and IMO 1984 Prague. I was overawed by the international assembly, but found that they in turn were overawed by Murray’s presence. He was arguably the most well-known mathematics problem-solver in the whole world.

We both retired from the IMO after 1984, even though I would later return to it. His term as Chair also expired in 1981. Thus our relationship became collegial and personal. He and his wife Irene had no children, but they were very fond of company. I found myself a guest at their place at regular intervals, and they visited my humble abode a few times.

It was during this period that I saw a different side of Murray. Before, I found him very businesslike, his immense talent shining through his incisive insight and clinical efficiency.

Now I found him a warm person with many diverse interests, including classical music, ballroom dancing, adventure novels, kung-fu movies and sports, in particular basketball.

Although Murray had been highly successful in everything he attempted, he will probably be remembered the most for his involvement in mathematics problem-solving and competitions. He had authored or edited four problem books, and left his mark in every major journal which had a problem section. He had received an Honorary Doctorate from the University of Waterloo and was a Fellow of the Royal Society of Belgium. He had won numerous prizes, and had some named after him.

Murray had enjoyed remarkably good health during his long life. It began to deteriorate in September 2000 when he underwent a bypass operation. After his release from the hospital, he continued to exert himself, walking up to his office on the sixth floor, and skating in the West Edmonton Mall.

His heart valve gave in November, fortunately while he was already in hospital for physiotherapy. He was in coma for some time. One day, when I visited him, he was bleeding profusely from his aorta. The doctor indicated to me that he did not expect Murray to last through the day.
Somehow, the inner strength of Murray came through, and on my next visit, he was fully conscious. He told me to make arrangements for his eightieth birthday party, stating simply that he would be out of the hospital by that time. It was a good thing that I took his words seriously, for he was out of the hospital by that time, ready to celebrate.

One of the last mathematical commitments that he made was to edit the problem section in the MAA’s new journal *Math Horizons*. During this difficult time, he asked me to serve with him as joint-editor. Later, he passed the column onto me, but his finger-prints were still all over the pages.

Now I have to try to fill his shoes without the benefit of his wisdom. His passing marks the end of an era in mathematics competition and problem-solving. He will be deeply missed.
I now (2006-Feb-01) have Don Albers’s copy of Rabinowitz (& Bowron) 1975–1979, from which I’ll add relevant items. This is the (lost count!) of a number of files listing problems, solutions and other writings of Murray Klamkin.

The easiest way to edit is to cross things out, so I make no apology for the proliferation below. Just lift out what you want.

Problems which are in other files (e.g., Monthly, SIAM Rev., . . .) are just referenced, not typed out.

First I’ll go through Stanley Rabinowitz’s *Index to Mathematical Problems 1980–1984* [[Stanley almost certainly has other files, because he was going to cover other periods as well. Would it be a good idea to approach him about what he might be willing to make available?]]

I’ll note all the Murray entries, but will copy them out only if they are NOT one of AMM *Amer. Math. Monthly*
(TY)CMJ *Coll. Math. J.*

CRUX *Crux Mathematicorum* [[we should get rid of ‘Mayhem’ from the title, which devalues the magazine.]]

MM *Mathematics Magazine*

SIAM *SIAM Review*
[[This is a useful step forward towards classification, if that is the way we are to go. If I live long enough, and the enthusiasm doesn’t dwindle, and I get no advice to the contrary, I may go over the earlier files (AMM, MM, SIAM, CMJ) and endeavor to classify according to SR’s scheme. — R.]]

A first pass having been made, I’ll endeavor to run through again putting in the vol & page numbers of the periodicals, which are:

MI *The Mathematical Intelligencer*

MSJ *The Mathematics Student Journal*

SSM *School Science and Mathematics*

CMB *Canadian Mathematical Bulletin*
Throughout the centuries, from the time of the Sumerian and Babylonian civilizations (roughly 2500 B.C.), one can find no end of mathematical problems and questions — since problems and questions beget more problems and questions in an unending cycle. These problems and questions are the lifeblood of mathematics. Smaller problems lead to larger problems, which in turn lead to substantial mathematical research. For example, consider the mathematics produced during attempts to prove Fermat’s last theorem — which in itself is not an important result, even if true. The following metaphor, attributed to Allen Shields, is particularly apropos: “A mathematical problem is a ‘jackpot’ which gains in value as more of us throw our quarters into it.”

Mathematical problems challenge and interest even those who are outside the profession. Just consider the large number of problems sections found in various journals, magazines and newspapers throughout the world. Although there is much mathematical information sequestered in the immense problem literature, unfortunately there is no easy way to access this material. It is rarely reviewed and existing indexes are not particularly useful.

In this regard, I am highly critical of the cavalier treatment with which some journals treat their problem sections. For example, consider journals such as The American Mathematical Monthly, Mathematics Magazine and The College Mathematics Journal. All of these publications contain valuable and interesting problem sections. The yearly problem indexes published by the first two journals only contain a listing of problem numbers and their corresponding proposers and solvers and their page numbers. The College Mathematics Journal does not include any yearly index at all. This is a sorry state of affairs for any journal!

I would like to see (and so, I am sure, would others) at least a return to the indexing system used in the first 19 volumes of The American Mathematical Monthly. Here the indexes also included problem titles and were arranged by various fields, such as Diophantine analysis, algebra, geometry, calculus, mechanics, averages and probability, and miscellaneous. With modern computers and word processing programs, this should be relatively easy to do.
In order to remedy this very sad state of problem indexing, the author, who is an ardent problemist, has taken on the very arduous task of producing a rather complete index system for problems published in a large number of different journals from 1980 through 1984. He also plans to publish similar works for the years 1975 through 19789, 1985 through 1989, etc.

Since it is not easy to classify a problem, the author has sorted each problem by topic (e.g., Geometry/triangles; Analysis/series) and in almost all cases includes the complete statement of each problem. This explicit representation of the sorted problems together with the many other listings included, enables one to locate problems and their solutions (if available) in a relatively easy fashion.

This is a must book for problemists as well as problem editors. I only wish it had been available a long time ago.

Murray S. Klamkin
Professor Emeritus
University of Alberta
ALGEBRA

Complex numbers

MM 1093 by M. S. Klamkin

CRUX 830 by M. S. Klamkin

If $|kw + z| + |w - z| = |kw - z| + |w + z|$ wher w, z are complex numbers and k is real,
prove that either $|kw + z| = |kw - z|$ or $|kw + z| = |w + z|

MM Q666 by M. S. Klamkin

SIAM 80-15 by M. S. Klamkin and A. Meir

Factorization

MSJ 504 27(1979) No.1 p.5 by Murray S. Klamkin
Factor: $x^5 + y^5 + (z - x - y)^5 - z^5$

Functional equations: polynomials

PME 411 Pi Mu Epsilon J., 6(1977) 421 by R. S. Luthar
Find all polynomials $P(x)$ such that

$$P(x^2 + 1) - [P(x)]^2 - 2xP(x) = 0$$

and $P(0) = 1$.

Pi Mu Epsilon J., 6(1978) 558. Solution by MSK.
Identities

MI 83-7 5(1983) No.2 p.27 by M. S. Klamkin

If \(a + b + c = 0\) and \(x + y + z = 0\), prove that

\[
4(ax + by + cz)^3 - 3(ax + by + cz)(a^2 + b^2 + c^2)(x^2 + y^2 + z^2)
- 2(b - c)(c - a)(a - b)(y - z)(z - x)(x - y) - 54abcxyz = 0
\]

Inequalities: degree 2

CRUX 323 4(1978) 65 by Jack Garfunkel and M. S. Klamkin

If \(xyz = (1 - x)(1 - y)(1 - z)\) where \(0 \leq x, y, z \leq 1\), show that

\[
x(1 - z) + y(1 - x) + z(1 - y) \geq 3/4
\]

[Crux, 4(1978) 255 has an MSK solution & comment]

Inequalities: exponentials

E 2483. \textit{Proposed by M. S. Klamkin, Ford Motor Company}

See MONTHLY file

MM Q658 by M. S. Klamkin
CMB P261 by R. Schramm

[same problem submitted by 2 different people to two different places??]

\textit{Math. Mag., 52}(1979) 114, 118.

\textbf{Q 658. Submitted by M. S. Klamkin, University of Alberta}

If \(a, b > 0\), prove that \(a^b + b^a > 1\).
Show that \[
\left\{ \frac{x^x}{(1 + x)^{1+x}} \right\}^x > (1 - x) + \left\{ \frac{x}{1 + x} \right\}^{1+x} > \frac{1}{(1 + x)^{1+x}}
\]
for \(1 > x > 0\).

Inequalities: finite products

AMM 6294

CMB P270

Prove that
\[
2^n P \left\{ \frac{x_1^n + x_2^n + \cdots + x_n^n}{n} \right\}^{n-1} \geq \prod_{i=1}^{n} \{x_i^n + P\}
\]
where \(P = x_1 x_2 \cdots x_n\), \(x_i \geq 0\), and there is equality if and only if \(x_i\) is constant.

Inequalities: finite sums

Let \(S = x_1 + x_2 + \cdots + x_n\) where \(x_i > 0\), \(T_0 = 1/S\) and
\[
T_r = \sum_{\text{sym}} S - x_1 - x_2 - \cdots - x_{r-1} \quad 1 \leq r \leq n - 1
\]
Prove that \((n - r)^2 T_r / \binom{n-1}{r}\) is monotonically increasing in \(r\) from 0 to \(n - 1\).

MM Q664 *Math. Mag.*, 52(1979) 317, 323. by M. S. Klamkin

Inequalities: fractions

If $a, b, c \geq 0$, prove that
\[
\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq \frac{a^8 + b^8 + c^8}{a^3 b^3 c^3}
\]

[MSK solution at 5(1979) 302]

Inequalities: radicals

CRUX 805 by M. S. Klamkin

MM Q688 by M. S. Klamkin

Maxima and minima

CRUX 487 5(1979) 266 by Dan Sokolowski

If a, b, c and d are positive real numbers such that $c^2 + d^2 = (a^2 + b^2)^3$, prove that
\[
\frac{a^3}{c} + \frac{b^3}{d} \geq 1
\]
with equality if and only if $ad = bc$.

[MSK solution at *Crux* 6(1980) 259]

SIAM 84-13 by M. S. Klamkin

SSM 4009 84(1984) p.534 by M. S. Klamkin

Determine the maximum value of
\[
|4(z_1^8 + z_2^8 + z_3^8 + z_4^8) - (z_1^4 + z_2^4 + z_3^4 + z_4^4)^2|
\]
where z_1, z_2, z_3 and z_4 are complex numbers such that $z_1 + z_2 + z_3 + z_4 = z_1^2 + z_2^2 + z_3^2 + z_4^2 = 0$.

13
E 2573. Proposed by Murray S. Klamkin, University of Waterloo

Means

1000. Proposed by Murray S. Klamkin, University of Waterloo

Polynomials: integer coefficients

CRUX 254 Crux Math., 3(1977) 155 by M. S. Klamkin
(a) If $P(x)$ denotes a polynomial with integer coefficients such that

$$P(1000) = 1000, \quad P(2000) = 2000, \quad P(3000) = 4000$$

prove that the zeros of $P(x)$ cannot be integers.

(b) Prove that there is no such polynomial if

$$P(1000) = 1000, \quad P(2000) = 2000, \quad P(3000) = 1000$$

Radicals: approximations

CRUX 207 by Ross Honsberger

Prove that $\frac{2r+\sqrt{5}}{r+2}$ is always a better approximation to $\sqrt{5}$ than r.

Comment & solution by Murray at Crux Math., 3(1977) 144
Rate problems: cars

OSSMB 75-3 by Murray Klamkin & Rodney Cooper

Al leaves at noon and drives at constant speed back and forth from town A to town B. Bob also leaves at noon, driving at 40 mph back and forth from town B to town A on the same highway as Al. Al arrives at town B twenty minutes after first passing Bob, whereas Bob arrives at town A 45 minutes after first passing Al. At what time do Al and Bob pass each other for the nth time?

Also at *Ontario Secondary School Math. Bull.*, 12(1976/1) 16 ??

Solutions of equations: degree 2

CRUX 489 5(1979) 266 by V. N. Murty

Find all real numbers x, y and z such that

$$(1 - x)^2 + (x - y)^2 + (y - z)^2 + z^2 = \frac{1}{4}$$

[MSK solution at *Crux* 6(1980) 263]

Solution of equations: determinants

CRUX 398 4(1978) 284 by Murray S. Klamkin

Find the roots of the $n \times n$ determinantal equation

$$\left| \frac{1}{x \delta_{rs} + k_r} \right| = 0$$

where δ_{rs} is the Kronecker delta.
Solution of equations: radicals

CRUX 287 Crux Math., 3(1977) 251 by M. S. Klamkin

Determine a real value of x satisfying

$$\sqrt{2ab} + 2ax + 2bx - a^2 - b^2 - x^2 = \sqrt{ax - a^2} + \sqrt{bx - b^2}$$

if $x > a$ and $b > 0$.

[RKG thinks that this should be $x > a, b > 0$]

Sum of powers

CMB 332 26(1983) p.250 by M. S. Klamkin

For each positive integer n, let $S_n = x^n + y^n + z^n$. Prove that

$$(x + y + z)S_{p+1} \geq 2(yz + zx + xy)S_p - 3xyzS_{p-1}$$

where p is a positive integer and x, y, z are real numbers.

Systems of equations: sums of powers

AMM 6312 by M. S. Klamkin

Theory of equations

MM 1172 by M. S. Klamkin

TYCMJ 208 by M. S. Klamkin

ANALYSIS

Differential equations

CMB 331 26(1983) p.126 by M. S. Klamkin

Solve the differential equation

\[x^4y'' - (x^3 + 2axy)y' + 4ay^2 = 0 \]

CMB 340 26(1983) p.251 by M. S. Klamkin

Determine the general solution of the differential equation

\[\{D^nx^{n+1/2} D^{n+1} - 2^{-2n-1}\} y = 0 \]

[[The x-exponent looks ambiguous to me. — R.]]

Functions: continuous functions

It is well know that if \(a, c \geq 0, b^2 \leq 4ac \) then

\[ax^2 + bxy + c^2 \geq 0 \quad (1) \]

and

\[ax^4 + bxy^2 + c^4 \geq 0 \quad (2) \]

for all real \(x \) and \(y \). Assume (that) \(a, b \) and \(c \) are continuous functions of \(x \) and \(y \).

(a) Given that \(b > 0, a, c \geq 0 \) and that (2) is valid for all real \(x \) and \(y \), is it necessary that \(b^2 - 4ac \geq 0 \)?

(b) Given that \(a, c \geq 0 \) and that (1) is valid for all real \(x \) and \(y \) is it necessary that \(b^2 - 4ac \geq 0 \)?
Functions: dependent functions

CRUX 299 *Crux Math.*, 3(1977) 298 by M. S. Klamkin

If

\[
F_1 = (-r^2 + s^2 - 2t^2)(x^2 - y^2 - 2xy) - 2rs(x^2 - y^2 + 2xy) + 4rt(x^2 + y^2)
\]

\[
F_2 = 2rs(x^2 - y^2 + 2xy) + (r^2 + s^2 - 2t^2)(x^2 - y^2 - 2xy) + 4st(x^2 + y^2)
\]

\[
F_3 = -2rt(x^2 - y^2 - 2xy) - 2st(x^2 - y^2 + 2xy) + (r^2 + s^2 + 2t^2)(x^2 + y^2)
\]

show that \(F_1, F_2 \) and \(F_3 \) are functionally dependent and find their functional relationship. Also, reduce the five-parameter representation of \(F_1, F_2 \) and \(F_3 \) to one of two parameters.

Functions: differentiable functions

MI 84-12 6(1984) No.3 pp.28,37 by K. S. Murray

It has been stated in several texts that if the first approximation \(x_0 \) is sufficiently close to a root of \(F(x) \) then the successive approximants in the Newton-Raphson iteration scheme \(x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \) will converge to that root. Prove or disprove that result if \(F(x) \) is a function with a continuously turning tangent.

Integral inequalities

MM Q622 – See Math Mag file.

Integrals: evaluation

CRUX 88 1(1975) 85 by F. G. B. Maskell

Evaluate the indefinite integral

\[
I = \int \frac{dx}{\sqrt{1 + x^3}}
\]

[MSK comment at 5(1979) 48]
Integrals: improper integrals

AMM 6440 by M. S. Klamkin, J. McGregor & A. Meir

CRUX 273 Crux Math., 3(1977) 226 by M. S. Klamkin
Prove that
\[
\lim_{n \to \infty} \int_c^\infty \frac{(x + a)^{n-1}}{(x + b)^{n+1}} \, dx = \int_c^\infty \frac{(x + a)^{-1}}{x + b} \, dx \quad (a, b, c > 0)
\]
without interchanging the limit with the integral.

Maxima and minima: radicals

CRUX 358 4(1978) 161 by Murray S. Klamkin
Determine the maximum of \(x^2y\), subject to the constraints
\[
x + y + \sqrt{2x^2 + 2xy + 3y^2} = k \text{ (constant)} \quad x, y \geq 0
\]
[MSK solution at 5(1979) 84]

CRUX 347 4(1978) 134 by M. S. Klamkin
Determine the maximum value of
\[
\sqrt[3]{4 - 3x + \sqrt{16 - 24x + 9x^2 - x^3}} + \sqrt[3]{4 - 3x - \sqrt{16 - 24x + 9x^2 - x^3}}
\]
in the interval \(-1 \leq x \leq 1\).

Maxima and minima: unit circle

MM Q662 — See Math Mag file.

Power series

MM 1100 by M. S. Klamkin & M. V. Subbarao
APPLIED MATHEMATICS

Airplanes

SIAM 82-15

Physics: projectiles

AMM E2535

COMBINATORICS

Card shuffling

A deck of cards numbered 1 to N is shuffled. If the top card is numbered k, then remove the k-th card (counted from the top) and place it on the top of the pile. This process is repeated with the new top card and so on. Does the card numbered 1 always come to the top? When it does, determine the maximum number of moves this can take.

Counting problems: jukeboxes

CRUX 280 by L. F. Meyers

A jukebox has N buttons.

(a) If the set of N buttons is subdivided into disjoint subsets, and a customer is required to press exactly one button from each subset in order to make a selection, what is the distribution of buttons which gives the maximum possible number of different selections?

(b) What choice of n will allow the greatest number of selections if a customer, in making a selection, may press any n distinct buttons out of the N? How many selections are possible then?

[MSK comment at Crux 4(1978) 112]
GAME THEORY

Selection games: arrays

OSSMB 75-2

A penny is placed at each vertex of a regular \(n \)-gon. The pennies are removed alternately by two players, each move consisting of the withdrawal of a single penny or of two pennies that occupy adjacent vertices. The player to take the last penny wins the game. Determine a winning strategy for the second player.

GEOMETRY

Billiards

NAvW 475 by I. J. Schoenberg

Let E be an ellipse and n be an integer greater than or equal to 3. We think of E as the rim of a billiard table, the objective being to determine all closed billiard ball paths Π_n that are closed convex n-gons. This requires that, at each vertex of Π_n, the angle of incidence with E be equal to the angle of reflection. Prove the following:

(a) there is a 1-parameter family F_n of n-gons Π_n inscribed in E with the reflection property, the initial vertex of Π_n being chosen arbitrarily on E.
(b) All these Π_n are circumscribed to a fixed ellipse E_n confocal to E.
(c) All n-gons of the family F_n have the same (maximal) perimeter.

[MSK comment at Nieuw Archief voor Wiskunde 26(1978) 248]

NAvW 476 by I. J. Schoenberg

Let E be an ellipse that we think of as the rim of a billiard table, the objective being to determine all convex quadrilaterals $Q = A_1A_2A_3A_4$ that are closed billiard ball paths. Equivalently, Q should have equal incidence and reflection angles at each vertex.

[MSK comment at Nieuw Archief voor Wiskunde 26(1978) 248]

Conics

CRUX 520 by M. S. Klamkin

Constructions: lines

CRUX 488* 5(1979) 266 by Kesiraju Satyanarayana

Given a point P within a given angle, construct a line through P such that the segment intercepted by the sides of the angle has minimum length.

[MSK solution at Crux 6(1980) 260]
Equilateral triangles: interior point

Given a point \(P \) interior to equilateral triangle \(ABC \) such that \(PA, PB, PC \) have lengths 3, 4, 5 respectively, find the area of \(\triangle ABC \).

Inequalities: polygons

CRUX 506 by M. S. Klamkin

MM Q686 by M. S. Klamkin

Math. Mag., 56(1983) 240, 244.

Inequalities: quadrilaterals

CRUX 106 Crux Math., 2(1976) 6 by Viktors Linis

Prove that, for any quadrilateral with sides \(a, b, c, d \)

\[a^2 + b^2 + c^2 \geq \frac{1}{3}d^2 \]

[MSK solution at 2(1976) 78]

Lattice points: collinear points

CRUX 408* 5(1979) 16 by Michael W. Ecker

A zigzag is an infinite connected path in a Cartesian plane fromed by starting at the origin and moving successively one unit right or up. Prove or disprove that for every zigzag and for every positive integer \(k \), there exist (at least) \(k \) collinear lattice points on the zigzag.

[MSK solution at 5(1979) 295. No previous solution?]
Maxima and minima: rectangles

CRUX 427 5(1979) 77 by G. P. Henderson

A corridor of width \(a\) intersects a corridor of width \(b\) to form an “L”. A rectangular plate is to be taken along one corridor, around the corner and along the other corridor with the plate being kept in a horizontal plane. Among all the plates for which this is possible, find those of maximum area.

[MSK comment at 6(1980) 49]

Maxima and minima: semicircles

OSSMB 76-4

A semicircle is drawn outwardly on chord \(AB\) of the unit circle with centre \(O\). Prove that the point \(P\) on this semicircle that sticks out of the given circle the farthest is on the radius \(OD\) that is perpendicular to \(AB\).

The farther \(AB\) is moved from the centre \(O\), the smaller it gets, accordingly yielding a smaller semicircle. Determine the chord \(AB\) that makes \(OC\) a maximum.

N-dimensional geometry

MI 84-9 6(1984) No.2 p.39 by Murray S. Klamkin

Determine the maximum volume of an \(n\)-dimensional simplex if at most \(r\) edges and greater in length than 1 (for \(r = 1, 2, \ldots, n-1\)).

N-dimensional geometry: inequalities

CMB P244 18(1975) 616 by P. Erdős & Murray Klamkin

Let \(P\) be any point within or on a given \(n\)-dimensional simplex \(A_1, A_2, \ldots, A_{n+1}\). The point \(P\) is “reflected” across each face of the simplex along rays parallel to the respective medians to each face producing an associated simplex \(A'_1, A'_2, \ldots, A'_{n+1}\) (\(PA'_i\) is parallel to the median from \(A_i\) and is bisected by the face opposite \(A_i\)). Show that

\[n^n \text{Volume}(A'_1, A'_2, \ldots, A'_{n+1}) \leq 2^n \text{Volume}(A_1, A_2, \ldots, A_{n+1}) \]

with equality if and only if \(P\) is the centroid of the given simplex.
N-dimensional geometry: simplices

AMM E2548 Amer. Math. Monthly, 82(1975) 756. by Murray S. Klamkin

CRUX 224 Crux Math., 3(1977) 65 by M.S. Klamkin

Let \(P \) be an interior point of an \(n \)-dimensional simplex with vertices \(A_1, A_2, \ldots, A_{n+1} \). Let \(P_i \) \((1 = 1, 2, \ldots, n + 1)\) denote points on \(A_iP \) such that \(A_iP_i/A_iP = 1/n_i \). Finally, let \(V_i \) be the volume of the simplex cut off from the given simplex by a hyperplane through \(P_i \) parallel to the face of the given simplex opposite \(A_i \). Determine the minimum value of \(\sum V_i \) and the location of the corresponding point \(P \).

Murray solution at Crux Math., 3(1977) 203

Pentagons

CRUX 232 submitted by Viktors Linis

Given are five points \(A, B, C, D \) and \(E \) in the plane, together with the segments joining all pairs of distinct points. The areas of the five triangles \(BCD, EAB, ABC, CDE \) and \(DEA \) being known, find the area of the pentagon \(ABCDE \).

Murray comment at Crux Math., 3(1977) 240

Polygons

AMATYC D-4 4(1983) No.2 p.63 by Murray S. Klamkin

SSM 4018 84(1984) p.626 by M. S. Klamkin

What is the largest number of reflex angles that can occur in a simple \(n \)-gon?

[[Evidently same problem published in two places. — R.]]

Polygons: convex polygons

AMM E2514 by G. A.Tsintsifas

Area of a Convex Polygon

E 2514. Proposed by G. A. Tsintsifas, Thessaloniki, Greece
Quadrilaterals: circumscribed quadrilateral

CRUX 189 by Kenneth S. Williams

If a quadrilateral circumscribes an ellipse, prove that the line through the midpoints of its diagonals passes through the centre of the ellipse.

Evidently a Murray comment at *Crux Math.*, 3(1977) 75

CRUX 199 by H. G. Dworschak

If a quadrilateral is circumscribed about a circle, prove that its diagonals and the two chords joining the points of contact of opposite sides are all concurrent.

Evidently a Murray solution at *Crux Math.*, 3(1977) 112

Squares: 2 squares

CRUX 464 5(1979) 200 by J. Chris Fisher and E. L. Koh

(a) If the two squares $ABCD$ and $AB'C'D'$ have the vertex A in common and are taken with the same orientation, then the centres of the squares together with the midpoints of BD' and $B'D$ are the vertices of a square.

(b) What is the analogous theorem for regular n-gons?

[MSK solution at *Crux* 6(1980) 186]

Triangle inequalities: angle bisectors and medians

PME 421 *Pi Mu Epsilon J.*, 6(1978) 483 by Murray S. Klamkin

If $F(x, y, z)$ is a symmetric, increasing function of x, y, z, prove that for any triangle in which w_a, w_b, w_c are the interna angle bisectors and m_a, m_b, m_c the medians, we have

$$F(w_a, w_b, w_c) \leq F(m_a, m_b, m_c)$$

with equality if and only if the triangle is equilateral.

Pi Mu Epsilon J., 679 631, Solution by MSK
Triangle inequalities: angles

AMM E2958

CMJ 265

CRUX 908

CRUX 958

PME 394 _Pi Mu Epsilon J._, **6**(1977) 366
_Prove that, if \(A_1, A_2, A_3 \) are the angles of a triangle, then_

\[
s \sum_{i=1}^{3} \sin^2 A_i - 2 \sum_{i=1}^{3} \cos^3 A_i \leq 6
\]

Pi Mu Epsilon J., **6**(1978) 493. Solution by MSK.

Triangle inequalities: interior point

PME 410 _Pi Mu Epsilon J._, **6**(1977) 420
Prove that, if \(x, y, z \) are the distances of an interior point of a triangle \(ABC \) to the sides \(BC, CA, AB \), show that

\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \frac{2}{r}\]

\text{where } r \text{ is the inradius of the triangle.}

Pi Mu Epsilon J., **6**(1978) 557. [does vol # 6 spread over 1977 and 1978?] Solution by MSK.
Triangle inequalities: medians and sides

MM Q638
See Math Mag file

Triangle inequalities: radii

MM 1043
See Math Mag file

Triangle inequalities: sides

SIAM 77-10
See SIAM Rev file.

Triangles: angle bisectors

MSJ 540 28(1980) No.1 p.2
by Murray S. Klamkin & A. Meir

Triangles: cevians

CRUX 485 5(1979) 265
by M. S. Klamkin

Given three concurrent cevians of a triangle ABC intersecting at a point P, we construct three new points $A’, B’, C’$ such that $AA’ = k AP$, $BB’ = k BP$, $CC’ = k CP$, where $k > 0$, $k \neq 1$ and the segments are directed. Show that $A, B, C, A’, B’, C’$ lie on a conic if and only if $k = 2$.

CRUX 548
by M. S. Klamkin

Triangles: exradii

PME 540 7(1983) p.543
by M. S. Klamkin

If the radii r_1, r_2, r_3 of the three escribed circles of a given triangle $A_1A_2A_3$ satisfy the equation

$$\left(\frac{r_1}{r_2} - 1\right) \left(\frac{r_1}{r_3} - 1\right) = 2$$

determine which of the angles A_1, A_2, A_3 is the largest.
Triangles: medians

AMM E2505 by Jack Garfunkel

Extended Medians of a Triangle

Triangles: inscribed triangles

CRUX 210 *Crux Math.*, 3(1977) 10 by Murray S. Klamkin

Let P, Q and R denote points on the sides BC, CA and AB respectively, of a given triangle ABC. Determine all triangles ABC such that if

$$\frac{BP}{BC} = \frac{CQ}{CA} = \frac{AR}{AB} = k \quad (k \neq 0, \frac{1}{2}, 1)$$

then PQR (in some order) is similar to ABC.

Solution by Murray at *Crux Math.*, 3(1977) 163

Triangles: medians

CRUX 383 4(1978) 250 by Daniel Sokolowsky

Let m_a, m_b and m_c be respectively the medians AD, BE and CF of a triangle ABC with centroid G. Prove that

(a) if $m_a : m_b : m_c = a : b : c$, then $\triangle ABC$ is equilateral;

(b) if $m_b/m_c = c/b$, then either (i) $b = c$ or (ii) quadrilateral $AEGY$ is cyclic;

(c) if both (i) and (ii) hold in (b), then $\triangle ABC$ is equilateral.

[MSK solution at 5(1979) 174]
LINEAR ALGEBRA

Determinants
SIAM 80-10 by M. S. Klamkin, A. Sharma & P. W. Smith

Matrices
CMJ 278 by M. S. Klamkin
NUMBER THEORY

Approximations

CRUX 202 by Daniel Rokhsar

Prove that any real number can be approximated within any $\epsilon > 0$ as the difference of the square roots of two natural numbers.

Evidently a Murray solution at *Crux Math.*, 3(1977) 137

Arithmetic progressions

TYCMJ 248 by M. S. Klamkin

Digit problems: arithmetic progressions

(a) Find four positive decimal integers in arithmetic progression, each having the property that if any digit is changed to any other digit, the resulting number is always composite.

(b)* Can the four integers be consecutive?

[MSK solution at 5(1979) 147]

Digit problems: base systems

Prove that

$$\frac{x_1x_2x_3\ldots x_n - \sum_{k=1}^{n} x_k}{\sum_{k=0}^{n-2} (x_1 + x_2 + x_3 + \cdots + x_{n-k-1})R^k} = R - 1$$

where $x_1x_2x_3\ldots x_n$ is an n-digit numeral, base R, $n \geq 2$.

Digit problems: squares

MI 84-1 6(1984) No.1 p.32 by K. S. Murray

For which \(k \) are there arbitrarily large squares containing exactly \(k \) even digits (base 10)?

Digit problems: sum of digits

MM Q679 by M. S. Klamkin & M. R. Spiegel

Diophantine equations: radicals

CRUX 969 by M. S. Klamkin

Divisibility: factorials

MM 1089 by M. S. Klamkin

Fractional parts

CRUX 269 by Kenneth M. Wilke

Let \((\sqrt{10}) \) denote the fractional part of \(\sqrt{10} \). Prove that for any positive integer \(n \) there exists a positive integer \(I_n \) such that

\[
(\sqrt{10})^n = \sqrt{I_n + 1} - \sqrt{I_n}
\]

[There’s reputedly an MSK comment at Crux 4(1978) 81]

Normal numbers

CMB R6 25(1982) p.126 by Murray Klamkin

Is the number, whose decimal expansion

\[
0.248163264128256\ldots
\]

is obtained by juxtaposing the powers of 2, normal?
Powers

MSJ 565 28(1981) No.6 p.2 by Murray Klamkin

Can one find triplets \((a, b, c)\) of real numbers such that none of the three numbers is the cube of an integer but

\[a^{n/3} + b^{n/3} + c^{n/3} \]

is integral for every positive integer \(n\)?

Primes: generators

Prove that, for all integers \(x\), \(x^2 + x + 41\) is never divisible by any natural number between 1 and 41.

Pythagorean triples: odd and even

CRUX 460 5(1979) 167 by Clayton W. Dodge

Can two consecutive integers ever be the sides of a Pythagorean triangle? Show how to find all such Pythagorean triangles.

[MSK solution at Crux 8(1980) 160]

Series: inequalities

CRUX 459 5(1979) 167 by V. N. Murty

If \(n\) is a positive integer, prove that

\[\sum_{i=1}^{\infty} \frac{1}{k^{2n}} \leq \frac{\pi^2}{8} \cdot \frac{1}{1 - 2^{-2n}} \]

[MSK solution at Crux 6(1980) 158]
If a, b, c and d are integers, with $u = \sqrt{a^2 + b^2}$, $v = \sqrt{(a - c)^2 + (b - d)^2}$ and $w = \sqrt{c^2 + d^2}$, then prove that
\[
\sqrt{(u + v + w)(v + w - u)(w + u - v)(u + v - w)}
\]
is an even integer.

PME 427 *Pi Mu Epsilon J.*, 7(1979) 63. Solution by MSK
PROBABILITY

Dice problems

SIAM 80-5 by M. S. Klamkin & A. Liu

Inequalities

MSJ 545 28(1980) No.2 p.2 by Murray S. Klamkin

Given that each random triplet of integers \((x, y, z)\) with \(1 \leq x, y, z \leq n\) is equally likely, determine the probability that

\[
\frac{x - y}{x + y} + \frac{y - z}{y + z} + \frac{z - x}{z + x} > 0
\]

CRUX 484 5(1979) 265 by Gali Salvatore

Let \(A\) and \(B\) be two independent events in a sample space, and let \(X_A, X_B\) be their characteristic functions. If \(F = X_A + X_B\), show that at least one of the three numbers

\[
a = P(F = 2), \quad b = P(F = 1), \quad c = P(F = 0)
\]

is not less than 4/9.

[MSK solution at Crux 6(1980) 253]
[MSK comment at Crux 6(1980) 285]

Selection problems: sums

MATYC 122 The MATYC Journal 12(1978) 253 by Gene Zirkel

A sequence of real numbers \(x_1, x_2, x_3, \ldots x_n\) are picked at random from the interval \([0,1]\). This random selection is continued until their sum exceeds one and is then stopped. It is known that the expected number of reals chosen is given by \(E(n) = e\).

What is the expected value of \(n\) if we instead continue until the sum exceeds two?

[MSK solution at The MATYC Journal 13(1979) 217]
Let P denote the product of n random numbers selected from the interval $(0,1)$. Is the expected value of P greater or less than the expected value of the nth power of a single number randomly selected from the interval $(0,1)$?

Pi Mu Epsilon J., 7(1979) 65. Solution by MSK
In the false bottom of a chest which had belonged to the notorious pirate Captain Kidd was found a piece of parchment with instructions for finding a treasure buried on a certain island. The essence of the directions was as follows.

“Start from the gallows and walk to the white rock, counting your paces. At the rock turn left through a right angle and walk the same number of paces. Mark the spot with your knife. Return to the gallows. Count your paces to the black rock, turn right through a right angle and walk the same distance. The treasure is midway between you and the knife.”

However, when the searchers got to the island they found the rocks but no trace of the gallows remained. After some thinking they managed to find the treasure anyway. How?

[RKG posed this problem, set in Bermuda, using a stone marked for Ferdinand & Isabella and some other landmark, and a tree that no longer existed, more than 50 years ago. MSK solution at 5(1979) 243]

Polyominoes: maxima and minima

On a $2n$ by $2n$ board we place $n \times 1$ polyominoes (each covering exactly n unit squares of the board) until no more $n \times 1$ polyominoes can be accommodated. What is the maximum number of squares that can be left vacant?

[This problem is a generalization of the next one. Solution by MSK at Crux 6(1980) 51]

On a 6×6 board we place 3×1 trominoes until no more trominoes can be accommodated. What is the maximum number of squares that can be left vacant?

[MSK comment at Crux 4(1978) 115]
SOLID GEOMETRY

Analytic geometry

Volume and Surface Area of a Solid

Let f_1 and f_2 be non-negative periodic functions of period 2π and let $h > 0$. Let $P_1(\theta)$ and $P_2(\theta)$ be the points whose cylindrical coordinates are $(f_1(\theta), \theta, 0)$ and $(f_2(\theta), \theta, 0)$ respectively. Find integrals for the volume and surface area of the solid bounded by the planes $z = 0$, $z = h$ and the lines $P_1(\theta)P_2(\theta)$.

Solution by M. S. Klamkin, University of Waterloo, Ontario, Canada.

Paper folding

CRUX 375 4(1978) 225

A convex n-gon P of cardboard is such that if lines are drawn parallel to all the sides at distances x from them so as to form within P another polygon P', then P' is similar to P. Now let the corresponding consecutive vertices of P and P' be A_1, A_2, \ldots, A_n and A'_1, A'_2, \ldots, A'_n respectively. From A'_2, perpendiculars A'_2B_1, A'_2B_2 are drawn to A_1A_2, A_2A_3 respectively, and the quadrilateral $A'_2B_1A_2B_2$ is cut away. Then quadrilaterals formed in a similar way are cut away from all the other corners. The remainder is folded along $A'_1A'_2$, $A'_2A'_3$, \ldots, $A'_nA'_1$ so as to form an open polygonal box of base $A'_1A'_2\cdots A'_n$ and of height x. Determine the maximum volume of the box and the corresponding value of x.

[Crux, 5(1979) 142 has MSK’s solution]
Polyhedra: combinatorial geometry

Show that in every simple polyhedron there always exist two pairs of faces that have the same number of edges.

Regular tetrahedra

SIAM 83-5 by M. S. Klamkin

Spherical geometry

MM Q685 by M. S. Klamkin

AMM E2981 by Murray S. Klamkin

Tetrahedra

AMM E2962 by M. S. Klamkin

Tetrahedra: faces

CRUX 478 5(1979) 229 by Murray S. Klamkin

Prove that if the circumcircles of the four faces of a tetrahedron are mutually congruent, then the circumcenter O of the tetrahedron and its incenter I coincide.

[MSK comments at 11(1985) 189 and at 13(1987) 151]
It is known that if any one of the following three conditions holds for a given tetrahedron then the four faces of the tetrahedron are mutually congruent (i.e., the tetrahedron is isosceles):

1. The perimeters of the four faces are mutually equal.
2. The areas of the four faces are mutually equal.
3. The circumcircles of the four faces are mutually congruent.

Does the condition that the incircles of the four faces be mutually congruent also imply that the tetrahedron be isosceles?
TRIGONOMETRY

Approximations

TYCMJ 261

Identities

CMJ 282

Inequalities

MM 1137

Infinite series

CRUX 235
Prove Gauss’s Theorema elegantissimum: If

\[f(x) = 1 + \frac{1}{2} \cdot \frac{1}{2} x^2 + \frac{1}{2} \cdot \frac{1}{4} x^4 + \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{4} x^4 + \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{4} \cdot \frac{5}{6} x^6 + \cdots \]

show that

\[\sin \phi f(\sin \phi) f'(\cos \phi) + \cos \phi f(\cos \phi) f'(\sin \phi) = \frac{2}{\pi \sin \phi \cos \phi} \]

Murray solution at Crux Math., 3(1977) 258

Maxima and minima

MM 1107
Solution of equations

SSM 4017 84(1984) p.626 by M. S. Klamkin
AMATYC D-3 4(1983) No.2 p.63 by Murray S. Klamkin

Determine all values of $x \in [0, 2\pi)$ such that

$$81 \sin^{10} x + \cos^{10} x = \frac{81}{256}$$

[[another duplicate? — R.]]

Triangles

CRUX 493 5(1979) 291 by R. C. Lyness

(a) Let A, B and C be the angles of a triangle. Prove that there are positive x, y and z, each less than 1/2, simultaneously satisfying

$$y^2 \cot \frac{B}{2} + 2yz + z^2 \cot \frac{C}{2} = \sin A$$
$$z^2 \cot \frac{C}{2} + 2zx + x^2 \cot \frac{A}{2} = \sin B$$
$$x^2 \cot \frac{A}{2} + 2xy + y^2 \cot \frac{B}{2} = \sin C$$

(b) In fact, 1/2 may be replaced by a smaller $k > 0.4$. What is the least value of k?

[MSK comment at Crux 7(1981) 51]
There follow a few items which need completion:

Comment by Murray Klamkin

PME 313 *Pi Mu Epsilon J.*, 6(1975) 109. Solution by MSK.
Suggestions concerning Murray Klamkin volume

Richard K. Guy

June 22, 2006

This file is being [has been, 2006-05-31] continuously amended. To save having several editions, I’ll just try to remember to keep the date here current:

Wed 2006-05-31

In fact, I’ll freeze the following. Skip through to next ——

I earlier (2005-02-04) wrote the following, which needs editing into the main part of this document:

the book should commemorate the whole of Murray’s contribution to the problem scene.

As an indication, Rabinowitz’s 1980–84 Index pp.352–353 lists about 200 problems from AMATYC, AMM, CMB, CMJ, Crux, MI, MM, MSJ, PME, SIAM, TYCMJ.

There may be more than a thousand problems in all. These should be sifted, with just the best of each type appearing, but we could also do quite a bit of ‘See also’ and ‘Compare’, so that the keen student can access almost all of Murray’s work.

I think that they could be fairly easily classified into sections, since Murray concentrated on a comparatively small number of themes – though I shall no doubt be pleasantly surprised by the diversity when it comes to the actual event. Quickies would be in a separate section, but might be numerous enough to require subdivision. Perhaps we should also have a section for problems by other setters where Murray’s solution was selected for publication by the editors.
... and on 2005-03-03:

I’m quite vague about the probable format of the volume – perhaps everyone else is too?
Classify chronologically? by source? by topic? by problem type? by none of the above
how complete are the solutions to be? All at the end, or with the problems?
What sort of indexes? references?

............

This file [[SIAM Review]] has only been very lightly proof-read. It contains some classic stuff, stimulated by Murray.
Iso Schoenberg on splines.
Shanks & Atkin on 3x+1 relatives.
Knuth on Conway’s ‘Topswaps’

...

I can produce similar (though not so long, I hope!) files for the Monthly, Math Mag, Coll Math J, etc.
[[These have been produced. The Monthly file is longer, and others are comparable in length.]]

Perhaps Andy is better qualified and prepared than I to do Math Horizons? E.g., he knows most of Murray’s many aliases, and he may have most of it in \LaTeX already.

and, in a message to Jon Borwein, 2005-03-28:

Of course, the \LaTeX files are best to work from from the editing and production point of view but are not so legible. Will Beverly Ruedi have any part in the process? She is excellent at her job and I’ve already worked with her on three books.
I will also send you a list of suggestions, queries, comments, etc. that I’m compiling. Better to discuss these with just one person at first.
I must enquire of the Strens collection to see if there’s any correspondence twixt Charles Trigg & Murray.

[[I set Polly Steele on investigating this on 2005-06-01]]
The original file starts here. Entries have been added to it on an ongoing basis.

1. Collect all references at end in a separate bibliography, to save space and gain consistency. Note: I have occasionally, but not at all consistently, changed the format of references to that of MR, and sometimes added the MR number. This will save space, and avoid ‘et al’ and other abbreviations.

2. Classify all problems by subject and/or keywords and exhibit in an index. This would enable us to publish all of Murray’s problems, even if some were merely a reference to a journal. [2005-06-28: this can perhaps be done using Stanley Rabinowitz’s classification.]

3. Agree on an orthography and typography which will be consistent throughout the volume. Trouble is one will have to alter some of the original statements. This could be explained in the Preface.

4. Perhaps include a glossary of Cauchy-Schwarz inequality, Brun-Minkowski inequality, Bernoulli’s inequality, Hölder’s inequality, Schwarz-Buniakowski inequality, Minkowski’s inequality, Jensen’s inequality, power mean inequality, rearrangement inequality, Ptolemy’s inequality, Muirhead’s inequality, the majorization inequality, Heron’s inequality, Lagrange’s identity, Chebyshev’s inequality, formula of Faà di Bruno, Pedoe’s inequality, etc., etc.

Choices (my preference first — though in one or two I’m fairly ambivalent — consistency is more important than any one person’s particular fad). Note that these choices ought to be made, since I’ve almost always copied verbatim. We can say in the Preface that there has been occasional minor editing from the original in order to attain consistency.

[[items in 2nd & 3rd cols (and the 1st) are taken from the actual text in journals.]]
<table>
<thead>
<tr>
<th>Original</th>
<th>Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>well-known</td>
<td>well known</td>
</tr>
<tr>
<td>nonnegative</td>
<td>non-negative</td>
</tr>
<tr>
<td>nonintegers</td>
<td>non-integers</td>
</tr>
<tr>
<td>nonzero</td>
<td>non-zero</td>
</tr>
<tr>
<td>nonacute(?)</td>
<td>non-acute</td>
</tr>
<tr>
<td>nonobtuse(?)</td>
<td>non-obtuse</td>
</tr>
<tr>
<td>midpoint</td>
<td>mid-point</td>
</tr>
<tr>
<td>endpoint</td>
<td>end-point</td>
</tr>
<tr>
<td>insoluble</td>
<td>insolvable</td>
</tr>
<tr>
<td>centre</td>
<td>center</td>
</tr>
<tr>
<td>centred</td>
<td>centered</td>
</tr>
<tr>
<td>analog</td>
<td>analogue</td>
</tr>
<tr>
<td>integer(adj.)</td>
<td>integral</td>
</tr>
<tr>
<td>moduli(pl.)</td>
<td>modules (pl. of ‘modulus’!)</td>
</tr>
<tr>
<td>proved(pp.)</td>
<td>proven(=tested)</td>
</tr>
<tr>
<td>formulas</td>
<td>formulae</td>
</tr>
<tr>
<td>the a_i</td>
<td>the a_i’s</td>
</tr>
<tr>
<td>?? (reword?)</td>
<td>gotten</td>
</tr>
<tr>
<td>zeroes</td>
<td>zeros</td>
</tr>
<tr>
<td>A, B and C</td>
<td>A, B, and C</td>
</tr>
</tbody>
</table>
Pappus’s
Leibniz’s
Descartes’s rule
Chebyshev
L’Hôpital’s rule
right side
minor semi-axis
vertical semi-angle
arccos
ln x
(ln x)^k
ln ln ln x
one-parameter
angle-bisector
cross-section
vector triple product
cannot
North, etc.
Hölder’s inequality
Cauchy-Schwarz inequality
Fermat’s principle
arithmetic-geometric
counterexamples
integer-valued
(log x)^2
p.73
if and only if
partitioned
semiperimeter ?
294001 (> 3 digits)
Smith & Jones
bc + ca + ab
edges
faces
cancelled
bracketed
simplexes
m ⊥ n
onto
Editors’ note.

Pappus’ Pappu’s [sic]
Leibniz Leibniz
Descartes’ rule Leibniz’s
Chebychev Chebyshev, etc.
l’Hospital’s Rule L’Hôpital’s rule
r.h.s., etc. right-hand side
semi-minor axis minor semi-axis
semi-vertical angle vertical semi-angle
cos^{-1}
 log x
ln^k x
ln_3 x
ln^3 x
one parameter one-parameter
angle bisector angle-bisector
cross section cross-section
triple vector product vector triple product
can’t cannot
north, etc. North, etc.
Hölder’s Inequality Hölder’s inequality
Cauchy-Schwarz Inequality Cauchy-Schwarz inequality
Fermat’s Principle Fermat’s principle
AM-GM arithmetic-geometric
counter-examples counterexamples
integer valued integer-valued
log^2 x
Page 73 p. 73
iff if and only if
divided partitioned
semi-perimeter semiperimeter?
294,001 294001
S. and J. (joint work) Smith & Jones
ab + bc + ca ab + ca + bc
sides (of polyhedron) sides (of n-gon)
canceled cancelled
bracketed bracketed
simplices simplexes
(m, n) = 1 m ⊥ n
on to onto
Editor’s Note: (etc.)
Editors’ note.
Typographical points;

1. I apologize for the inept placing of formula labels. There are two problems: (a) I prefer them on the right, whereas the places I’m copying from are variable. (b) I don’t know how to reset the counter to (1) each time I start a new item.

2. We should standardize or omit names and addresses of individuals, although it’s interesting to see the changes down the years.

3. Sometimes there’s a Remark and sometimes there’s a REMARK.

5. I haven’t punctuated displayed formulas. The idea of punctuation is to advise the reader where to pause, and displaying does just that. She shouldn’t have to puzzle over the difference between

\[\sum_{\nu'} x_{\nu'} \quad \text{and} \quad \sum_{\nu} x_{\nu}, \]

should she?