ON SUMS OF THREE SQUARES

S.K.K. CHOI, A.V. KUMCHEV, AND R. OSBURN

ABSTRACT. Let \(r_3(n) \) be the number of representations of a positive integer \(n \) as a sum of three squares of integers. We give two distinct proofs of a conjecture of Wagon concerning the asymptotic value of the mean square of \(r_3(n) \).

1. Introduction

Problems concerning sums of three squares have a rich history. It is a classical result of Gauss that

\[n = x_1^2 + x_2^2 + x_3^2 \]

has a solution in integers if and only if \(n \) is not of the form \(4^a(8k + 7) \) with \(a, k \in \mathbb{Z} \). Let \(r_3(n) \) be the number of representations of \(n \) as a sum of three squares (counting signs and order). It was conjectured by Hardy and proved by Bateman [1] that

\[r_3(n) = 4\pi n^{1/2} \Xi_3(n), \]

where the singular series \(\Xi_3(n) \) is given by (16) with \(Q = \infty \).

While in principle this exact formula can be used to answer almost any question concerning \(r_3(n) \), the ensuing calculations can be tricky because of the slow convergence of the singular series \(\Xi_3(n) \). Thus, one often sidesteps (1) and attacks problems involving \(r_3(n) \) directly. For example, concerning the mean value of \(r_3(n) \), one can adapt the method of solution of the circle problem to obtain the following

\[\sum_{n \leq x} r_3(n) \sim \frac{4}{3} \pi x^{3/2}. \]

Moreover, such a direct approach enables us to bound the error term in this asymptotic formula. An application of a result of Landau [9, pp. 200–218] yields

\[\sum_{n \leq x} r_3(n) = \frac{4}{3} \pi x^{3/2} + O(x^{3/4+\epsilon}) \]

for all \(\epsilon > 0 \), and subsequent improvements on the error term have been obtained by Vinogradov [19], Chamizo and Iwaniec [3], and Heath-Brown [6].

In this note we consider the mean square of \(r_3(n) \). Crandall and Wagon [4] (see also [2]) conjectured the following asymptotic formula.

\[\sum_{n \leq x} r_3(n) \sim \frac{4}{3} \pi x^{3/2} + O(x^{3/4+\epsilon}) \]

for all \(\epsilon > 0 \), and subsequent improvements on the error term have been obtained by Vinogradov [19], Chamizo and Iwaniec [3], and Heath-Brown [6].

In this note we consider the mean square of \(r_3(n) \). Crandall and Wagon [4] (see also [2]) conjectured the following asymptotic formula.

Date: January 31, 2005.

Research of Stephen Choi was supported by NSERC of Canada.
Theorem. Let \(r_3(n) \) be the number of representations of a positive integer \(n \) as a sum of three squares of integers. Then

\[
\sum_{n \leq x} r_3(n)^2 \sim \frac{8\pi^4}{21\zeta(3)} x^2.
\]

Apparently, at the time they proposed this conjecture Crandall and Wagon were unaware of the earlier work of Müller [11, 12]. He obtained a more general result which, in a special case, gives

\[
\sum_{n \leq x} r_3(n)^2 = Bx^2 + O(x^{14/9}),
\]

where \(B \) is a constant. However, since in Müller’s work \(B \) arises as a specialization of a more general (and more complicated) quantity, it is not immediately clear that \(B = \frac{8}{21}\pi^4 / \zeta(3) \). The purpose of this paper is to give two distinct proofs of this fact: one that evaluates \(B \) in the form given by Müller and a direct proof using the Hardy–Littlewood circle method.

2. A direct proof: the circle method

Our first proof exploits the observation that the left side of (2) counts solutions of the equation

\[
m_1^2 + m_2^2 + m_3^2 = m_4^2 + m_5^2 + m_6^2
\]

in integers \(m_1, \ldots, m_6 \) with \(|m_j| \leq x \). This is exactly the kind of problem that the circle method was designed for.

Set \(N = \sqrt{x} \) and define

\[
f(\alpha) = \sum_{m \leq N} e(\alpha m^2),
\]

where \(e(z) = e^{2\pi iz} \). Then for an integer \(n \leq x \), the number \(r^*(n) \) of representations of \(n \) as a sum of three squares of positive integers is

\[
r^*(n) = \int_0^1 f(\alpha)^3 e(-an) d\alpha.
\]

Since \(r_3(n) = 8r^*(n) + O(r_2(n)) \), where \(r_2(n) \) is the number of representations of \(n \) as a sum of two squares, we have

\[
\sum_{n \leq x} r_3(n)^2 = 64 \sum_{n \leq x} r^*(n)^2 + O(x^{3/2+\epsilon}). \tag{3}
\]

Therefore, it suffices to evaluate the mean square of \(r^*(n) \). Let

\[
P = N/4 \quad \text{and} \quad Q = N^{1/2}.
\]

We introduce the sets

\[
\mathcal{M}(q, a) = \{ \alpha \in [PN^{-2}, 1 + PN^{-2}] : |q\alpha - a| \leq PN^{-2} \}
\]

and

\[
\mathcal{M} = \bigcup_{q \leq Q} \bigcup_{1 \leq a \leq q \gcd(a, q) = 1} \mathcal{M}(q, a),
\]

and

\[
m = [PN^{-2}, 1 + PN^{-2}] \setminus \mathcal{M}.
\]
We have

\[r^*(n) = \left(\int_\mathbb{R} + \int_\mathbb{M} \right) f(\alpha)^3 e(-\alpha n) \, d\alpha \]

\[= r^*(n, \mathbb{R}) + r^*(n, \mathbb{M}), \quad \text{say.} \]

By (4) and Cauchy’s inequality,

\[\sum_{n \leq x} r^*(n)^2 = \sum_{n \leq x} r^*(n, \mathbb{R})^2 + O\left((\Sigma_1 \Sigma_2)^{1/2} + \Sigma_2 \right), \]

where

\[\Sigma_1 = \sum_{n \leq x} |r^*(n, \mathbb{R})|^2, \quad \Sigma_2 = \sum_{n \leq x} |r^*(n, \mathbb{M})|^2. \]

By Bessel’s inequality,

\[|\Sigma_2| = \sum_{n \leq x} \left| \int_\mathbb{R} f(\alpha)^3 e(-\alpha n) \, d\alpha \right|^2 \leq \int_\mathbb{R} |f(\alpha)|^6 \, d\alpha. \]

By Dirichlet’s theorem of diophantine approximation, we can write any real \(\alpha \) as \(\alpha = a/q + \beta \), where

\[1 \leq q \leq N^2 P^{-1}, \quad (a, q) = 1, \quad |\beta| \leq P/(qN^2). \]

When \(\alpha \in \mathbb{M} \), we have \(q \geq Q \), and hence Weyl’s inequality (see Vaughan [18, Lemma 2.4]) yields

\[|f(\alpha)| \ll N^{1+\epsilon} \left(q^{-1} + N^{-1} + qN^{-2} \right)^{1/2} \ll N^{1+\epsilon} Q^{1/2}. \]

Furthermore, we have

\[\int_0^1 |f(\alpha)|^4 \, d\alpha \ll N^{2+\epsilon}, \]

because the integral on the right equals the number of solutions of

\[m_1^2 + m_2^2 = m_3^2 + m_4^2 \]

in integers \(m_1, \ldots, m_4 \leq N \). For each choice of \(m_1 \) and \(m_2 \), this equation has \(\ll N^\epsilon \) solutions. Combining (6)–(8) and replacing \(\epsilon \) by \(\epsilon/3 \), we obtain

\[\Sigma_2 \ll N^{4+\epsilon} Q^{-1}. \]

Furthermore, another appeal to Bessel’s inequality and appeals to (8) and to the trivial estimate \(|f(\alpha)| \leq N \) yield

\[\Sigma_1 \leq \int_{\mathbb{R}} |f(\alpha)|^6 \, d\alpha \leq \int_0^1 |f(\alpha)|^6 \, d\alpha \ll N^{1+\epsilon}. \]

We now define a function \(f^* \) on \(\mathbb{M} \) by setting

\[f^*(\alpha) = q^{-1} S(q, a)v(\alpha - a/q) \quad \text{for } \alpha \in \mathbb{M}(q, a) \subseteq \mathbb{M}; \]

here

\[S(q, a) = \sum_{1 \leq h \leq q} e(ah^2 / q), \quad v(\beta) = \frac{1}{2} \sum_{m \leq x} m^{-1/2} e(\beta m). \]
Our next goal is to approximate the mean square of \(r^*(n, \mathfrak{M}) \) by the mean square of the integral

\[
R'(n) = \int_{\mathfrak{M}} f^*(\alpha)^3 e(-an) d\alpha.
\]

Similarly to (5),

\[
\sum_{n \leq x} r^*(n, \mathfrak{M})^2 = \sum_{n \leq x} R'(n)^2 + O(\Sigma_3 + (\Sigma_1 \Sigma_3)^{1/2}), \tag{11}
\]

where

\[
\Sigma_3 = \sum_{n \leq x} \left| \int_{\mathfrak{M}} [f(\alpha)^3 - f^*(\alpha)^3] e(-an) d\alpha \right|^2 \leq \int_{\mathfrak{M}} |f(\alpha)^3 - f^*(\alpha)^3|^2 d\alpha, \tag{12}
\]

after yet another appeal to Bessel’s inequality. By [18, Theorem 4.1], when \(\alpha \in \mathfrak{M}(q,a) \),

\[
f(\alpha) = f^*(\alpha) + O(q^{1+\epsilon}).
\]

Thus,

\[
\int_{\mathfrak{M}(q,a)} |f(\alpha)^3 - f^*(\alpha)^3|^2 d\alpha \ll q^{1+2\epsilon} \int_{\mathfrak{M}(q,a)} (|f(\alpha)|^4 + q^{2+4\epsilon}) d\alpha,
\]

whence

\[
\int_{\mathfrak{M}} |f(\alpha)^3 - f^*(\alpha)^3|^2 d\alpha \ll Q^{1+2\epsilon} \int_0^1 |f(\alpha)|^4 d\alpha + P Q^{4+6\epsilon} N^{-2}.
\]

Bounding the last integral using (8) and substituting the ensuing estimate into (12), we obtain

\[
\Sigma_3 \ll Q N^{2+2\epsilon} + P Q^4 N^{-2+3\epsilon} \ll Q N^{2+2\epsilon}. \tag{13}
\]

Combining (5), (9)–(11), and (13), we deduce that

\[
\sum_{n \leq x} r^*(n)^2 = \sum_{n \leq x} R'(n)^2 + O(N^{4+\epsilon} Q^{-1/2} + N^{3+\epsilon} Q^{1/2}). \tag{14}
\]

We now proceed to evaluate the main term in (14). We have

\[
\int_{\mathfrak{M}(q,a)} f^*(\alpha)^3 e(-an) d\alpha = q^{-3} S(q,a)^3 e(-an/q) \int_{\mathfrak{M}(q,0)} v(\beta)^3 e(-\beta n) d\beta,
\]

so

\[
R'(n) = \sum_{q \leq Q} A(q,n) I(q,n),
\]

where

\[
A(q,n) = \sum_{\substack{1 \leq a \leq q \\mod q \\gcd(a,q) = 1}} q^{-3} S(q,a)^3 e(-an/q), \quad I(q,n) = \int_{\mathfrak{M}(q,0)} v(\beta)^3 e(-\beta n) d\beta.
\]

Hence,

\[
\sum_{n \leq x} R'(n)^2 = \sum_{n \leq x} I(n)^2 \Xi_3(n, Q)^2 + O((\Sigma_4 \Sigma_5)^{1/2} + \Sigma_5), \tag{15}
\]
We then use (17) and (18) to replace I and (21). Together with (14) and (20), this leads to the asymptotic formula

$$\Sigma = \sum_{n \leq x} I(n)^2 \left(\sum_{q \leq Q} |A(q, n)| \right)^2, \quad \Sigma_3 = \sum_{n \leq x} \left(\sum_{q \leq Q} |A(q, n)(I(n) - I(q, n))| \right)^2.$$

By [18, Theorem 2.3] and [18, Theorem 4.2],

$$I(n) = \Gamma(3/2) \sqrt{n} + O(1) = \frac{\pi}{4} \sqrt{n} + O(1), \quad A(q, n) \ll q^{-1/2}.$$

Furthermore, since $A(q, n)$ is multiplicative in q, [18, Lemma 4.7] yields

$$\sum_{q \leq Q} |A(q, n)| \leq \prod_{p \leq Q} \left(1 + |A(p, n)| + |A(p^2, n)| + \cdots \right) \ll \prod_{p \leq Q} \left(1 + c_1(p, n)p^{-3/2} + 3c_1p^{-1} \right) \ll (nQ)^{\epsilon},$$

where $c_1 > 0$ is an absolute constant. In particular, we have

$$\Sigma_4 \ll N^{4+\epsilon}.$$

We now turn to the estimation of Σ_5. By Cauchy’s inequality and the second bound in (17),

$$\Sigma_5 \ll (\log Q) \sum_{n \leq x} \sum_{q \leq Q} |I(n) - I(n, q)|^2.$$

Another application of Bessel’s inequality gives

$$\sum_{n \leq x} |I(n) - I(n, q)|^2 \leq \int_{p/q^{N^2}}^{1/2} |\nu(\beta)|^6 d\beta.$$

Using [18, Lemma 2.8] to estimate the last integral, we deduce that

$$\Sigma_5 \ll \log Q \sum_{q \leq Q} \left(q^2 N^{4p^{-2}} + 1 \right) \ll N^2 Q^{3+\epsilon}.$$

Substituting this inequality and (19) into (15), we conclude that

$$\sum_{n \leq x} R^*(n)^2 = \sum_{n \leq x} I(n)^2 \Xi_3(n, Q)^2 + O(N^{3+\epsilon} Q^{3/2}).$$

We then use (17) and (18) to replace $I(n)$ on the right side of (20) by $\frac{\pi}{4} \sqrt{n}$. We get

$$\sum_{n \leq x} I(n)^2 \Xi_3(n, Q)^2 = \frac{\pi^2}{16} \sum_{n \leq x} n \Xi_3(n, Q)^2 + O(N^{3+\epsilon}).$$

Together with (14) and (20), this leads to the asymptotic formula

$$\sum_{n \leq x} R^*(n)^2 = \frac{\pi^2}{16} \sum_{n \leq x} n \Xi_3(n, Q)^2 + O(N^{4+\epsilon} Q^{-1/2} + N^{3+\epsilon} Q^{3/2}).$$
Finally, we evaluate the sum on the right side of (21). On observing that \(S_3(n, Q) \) is in fact a real number, we have

\[
\sum_{n \leq t} S_3(n, Q)^2 = \sum_{q_1, q_2 \leq Q} \sum_{1 \leq a_1 \leq q_1} \sum_{1 \leq a_2 \leq q_2} (q_1 q_2)^{-3} S(q_1, a_1)^3 S(q_2, -a_2)^3 \sum_{n \leq t} e\left((a_1/q_1 - a_2/q_2)n\right).
\]

As the sum over \(n \) equals \(t + O(1) \) when \(a_1 = a_2 \) and \(q_1 = q_2 \) and \(O(q_1 q_2) \) otherwise, we get

\[
\sum_{n \leq t} \mathcal{E}_3(n, Q)^2 = t \sum_{q \leq Q} \sum_{1 \leq a \leq q} q^{-6}|S(q, a)|^6 + O(\Sigma_6),
\]

where

\[
\Sigma_6 = \sum_{q \leq Q} \sum_{1 \leq a \leq q} q^{-6}|S(q, a)|^6 \ll Q^{3/2}.
\]

We find that

\[
\sum_{n \leq t} \mathcal{E}_3(n, Q)^2 = B_1 t + O(t Q^{-1} + Q^3),
\]

with

\[
B_1 = \sum_{q=1}^{\infty} \sum_{1 \leq a \leq q} q^{-6}|S(q, a)|^6.
\]

Thus, by partial summation,

\[
\sum_{n \leq x} n \mathcal{E}_3(n, Q)^2 = (B_1/2)x^2 + O(x^2 Q^{-1} + x Q^3).
\]

Combining this asymptotic formula with (21), we deduce that

\[
\sum_{n \leq x} r^2(n)^2 = \frac{\pi^2}{32} B_1 x^2 + O(x^{15/8 + \epsilon}).
\]

Recalling (3), we see that (2) will follow if we show that

\[
B_1 = \frac{8 \zeta(2)}{7 \zeta(3)}.
\]

This, however, follows easily from the well-known formula (see [7, §7.5])

\[
|S(q, a)| = \begin{cases} \sqrt{q} & \text{if } q \equiv 1 \pmod{2}, \\ \sqrt{2q} & \text{if } q \equiv 0 \pmod{4}, \\ 0 & \text{if } q \equiv 2 \pmod{4}. \end{cases}
\]

Indeed, (22) yields

\[
B_1 = \frac{4}{3} \sum_{q \text{ odd}} q^{-3} \phi(q) = \frac{8 \zeta(2)}{7 \zeta(3)},
\]

where the last step uses the Euler product of \(\zeta(s) \). This completes the proof of our theorem.
3. Second Proof of Theorem

Rankin [13] and Selberg [17] independently introduced an important method which allows one to study the analytic behavior of the Dirichlet series

$$\sum_{n=1}^{\infty} \frac{a(n)}{n^s}$$

where $a(n)$ are Fourier coefficients of a holomorphic cusp form for some congruence subgroup of $\Gamma = SL_2(\mathbb{Z})$. Originally the method was for holomorphic cusp forms. Zagier [20] extended the method to cover forms that are not cuspidal and may not decay rapidly at infinity. Müller [11, 12] considered the case where $a(n)$ is the Fourier coefficient of non-holomorphic cusp or non-cusp form of real weight with respect to a Fuchsian group of the first kind. It is this last approach we wish to discuss. Note that if we apply a Tauberian theorem to the above Dirichlet series, we then gain information on the asymptotic behavior of the partial sum

$$\sum_{n \leq x} a(n).$$

We now discuss Müller’s elegant work. For details regarding discontinuous groups and automorphic forms, see [8, 10, 11, 14, 15, 16]. Let $\mathbb{H} = \{z \in \mathbb{C} : \Im(z) > 0\}$ denote the upper half plane and $G = SL(2, \mathbb{R})$ the special linear group of all 2×2 matrices with determinant 1. G acts on \mathbb{H} by

$$z \mapsto gz = \frac{az + b}{cz + d}$$

for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$. We write $y = y(z) = \Im(z)$. Thus we have

$$y(gz) = \frac{y}{|cz + d|^2}.$$

Let $dx\,dy$ denote the Lebesgue measure in the plane. Then the measure

$$d\mu = \frac{dx\,dy}{y^2}$$

is invariant under the action of G on \mathbb{H}. A discrete subgroup Γ of G is called a Fuchsian group of the first kind if its fundamental domain $\Gamma \backslash \mathbb{H}$ has finite volume. Let Γ be a Fuchsian group of the first kind containing $\pm I$ where I is the identity matrix. Let $\mathcal{F}(\Gamma, \chi, k, \lambda)$ denote the space of (non-holomorphic) automorphic forms of real weight k, eigenvalue $\lambda = \frac{1}{4} - \rho^2$, $\Re(\rho) \geq 0$, and multiplier system χ. For $k \in \mathbb{R}$, $g \in SL(2, \mathbb{R})$ and $f : \mathbb{H} \to \mathbb{C}$, we define the stroke operator $|k$ by

$$(f|k g)(z) := \left(\frac{cz + d}{|cz + d|}\right)^{-k} f(gz)$$

where $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$. The transformation law for $f \in \mathcal{F}(\Gamma, \chi, k, \lambda)$ is then

$$(f|k g)(z) = \chi(g)f(z)$$

for all $g \in \Gamma$. Automorphic forms $f \in \mathcal{F}(\Gamma, \chi, k, \lambda)$ have a Fourier expansion at every cusp κ of Γ, namely

$$A_{\kappa,0}(y) + \sum_{n \neq 0} a_{\kappa,n} W_{(\text{sgn } n)} \frac{x}{2} e^{(4\pi|n| + \mu_\kappa y)e((n + \mu_\kappa)x)}$$

where μ_κ is the cusp parameter and $a_{\kappa,n}$ are the Fourier coefficients of f at κ. The functions $W_{a,\varphi}$ are Whittaker functions (see [11, §3]), $A_{\kappa,0}(y) = 0$ if $\mu_\kappa \neq 0$ and
An automorphic form \(f \) is called a cusp form if \(a_{\kappa,0} = b_{\kappa,0} = 0 \) for all cusps \(\kappa \) of \(\Gamma \). Now consider the Dirichlet series

\[
S_{\kappa}(f, s) = \sum_{n \geq 0} \frac{|a_{\kappa,n}|^2}{(n + \mu_{\kappa})^s}.
\]

This series is absolutely convergent for \(\Re(s) > 2\Re(\rho) \) and has been shown \([12]\) to have meromorphic continuation in the entire complex plane. In what follows, we will only be interested in the case \(f \) is not a cusp form. If \(f \) is not a cusp form and \(\Re(\rho) > 0 \), then \(S_{\kappa}(f, s) \) has a simple pole at \(s = 2\Re(\rho) \) with residue

\[
\beta_{\kappa}(f) = \res_{s=2\Re(\rho)} S_{\kappa}(f, s) = (4\pi)^{2\Re(\rho)}b^+(k/2, \rho) \sum_{\kappa \in K} \varphi_{\kappa,k}(1 + 2\Re(\rho))|a_{\kappa,0}|^2,
\]

where \(K \) denotes a complete set of \(\Gamma \)-inequivalent cusps, \(\varphi_{\kappa,k}(1 + 2\Re(\rho)) > 0 \) and \(b^+(\frac{k}{2}, \rho) > 0 \) if \(\rho + \frac{1}{2} \pm \frac{\kappa}{2} \) is a non-negative integer. For the definition of the functions \(\varphi_{\kappa,k} \) and \(b^+ \), see Lemma 3.6 and (69) in \([12]\). This result \((23)\) and a Tauberian argument then provide the asymptotic behaviour of the summatory function

\[
\sum_{n \leq x} |a_{\kappa,n}|^2 n + \mu_{\kappa}.
\]

Precisely, we have (see \([11, \text{Theorem 2.1}]\) or \([12, \text{Theorem 5.2}]\) that

\[
\sum_{n \leq x} |a_{\kappa,n}|^2 n + \mu_{\kappa} = \sum_{s \in R} \res_{s=2\Re(\rho)} S_{\kappa}(f, s) \frac{x^{s+r}}{r+s} + O(x^{s+2\Re(\rho)-\gamma}(\log x)^s),
\]

where \(2\Re(\rho) + r \geq 0 \), \(R = \{-2\Re(\rho), \pm 2i\Im(\rho), 0, -r\} \), \(\gamma = (2+8\Re(\rho))(5+16\Re(\rho))^{-1} \), and \(g = \max(0, b-1) \); \(b \) denotes the order of the pole of \(S_{\kappa}(f, s)(r + s)^{-1}x^{r+s} \) at \(s = 2\Re(\rho) \) \((0 \leq b \leq 5)\).

We now consider an application of \((24)\). Let \(Q \in \mathbb{Z}^{m \times m} \) be a non-singular symmetric matrix with even diagonal entries and \(q(x) = \frac{1}{4}Q|x| = \frac{1}{4}x^T Qx \), \(x \in \mathbb{Z}^m \), the associated quadratic form in \(m \geq 3 \) variables. Here we assume that \(q(x) \) is positive definite. Let \(r(Q, n) \) denote the number of representations of \(n \) by the quadratic form \(Q \). Now consider the theta function

\[
\theta_Q(z) = \sum_{x \in \mathbb{Z}^m} e^{2\pi i Q(x)}. \tag{24}
\]

By \([11, \text{Lemma 6.1}]\), the Dirichlet series associated with the automorphic form \(\theta_Q \) is

\[
(4\pi)^{-m/4} \zeta_Q \left(\frac{m}{4} + s \right)
\]

where

\[
\zeta_Q(s) = \sum_{n=1}^{\infty} r(Q, n) \frac{1}{n^s} = \sum_{x \in \mathbb{Z}^m \setminus \{0\}} q(x)^{-s}
\]

for \(\Re(s) > m/2 \). Using \((24)\), Müller proved the following (see \([11, \text{Theorem 6.1}]\))
Thus for \(s \neq \frac{1}{2} \), \(B \) is a computable constant. Specifically, we have by (23) (with \(k = 3/2 \) and \(\rho = 1/4 \))

\[
B = \frac{4\pi^2}{3 - 1} b^+(3/4, 1/4) \sum_{\tau \in K} \varphi_{\omega, \tau}(3/2) |a_{\tau,0}|^2,
\]

where \(K \) denotes a complete set of \(\Gamma_0(4) \)-inequivalent cusps and \(a_{\tau,0} \) is the 0-th Fourier coefficient of \(\theta_{\tau}(z) \) at a rational cusp \(\tau \). Choose \(K = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \} \). Then by p. 145 and (67) in [11], we have

\[
|a_{\tau,0}|^2 = W_{\tau}^2 |G(S_\tau)|^2
\]

where \(\tau = u/w, (u, w) = 1, w \geq 1, W_\tau \) is width of the cusp \(\tau \), and

\[
|G(S_\tau)|^2 = 2^{-3} w^{-3} \sum_{x=1}^w \exp \left(\frac{\mu x^2}{w^2} \right)^6.
\]

As \(W_{1/4} = W_{1/2} = 1, W_1 = 4 \), we have \(|a_{1,0}|^2 = 1, |a_{1/2,0}|^2 = 0, \) and \(|a_{1/4,0}|^2 = 1 \). An explicit description of the functions \(\varphi_{\omega, \tau}(s) \) in the case \(\Gamma_0(4) \) is given by (see (1.17) and p. 247 in [5])

\[
\varphi_{\omega, 1/4}(s) = 2^{1-s} \Gamma(s-1/2) \zeta(2s-1) \Gamma(s) \zeta(2s),
\]

\[
\varphi_{\omega, 1/2}(s) = \varphi_{\omega, 1}(s) = 2^{-2s} (1 - 2^{-2s})^{-1} (1 - 2^{1-2s}) \pi^{1/2} \Gamma(s-1/2) \zeta(2s-1) \Gamma(s) \zeta(2s).
\]

Thus for \(s = 3/2 \), we have

\[
\varphi_{\omega, 1/4}(3/2) = 2^{-5} (1 - 2^{-3})^{-1} \pi^2 \frac{\zeta(2)}{\Gamma(3/2) \zeta(3)},
\]

\[
\varphi_{\omega, 1/2}(3/2) = \varphi_{\omega, 1}(3/2) = 2^{-3} (1 - 2^{-3})^{-1} (1 - 2^{-2}) \pi^2 \frac{\zeta(2)}{\Gamma(3/2) \zeta(3)}.
\]

Now, from p. 65 in [12], we have

\[
b^+(3/4, 1/4) = G^*_{1/4, 1/4}(3/2).
\]

By Lemma 3.3 and (16) in [12],
and so \(b^*(3/4, 1/4) = \Gamma(2)^{-1} \). In total,

\[
B = \frac{(4\pi)^2}{(3-1)\Gamma(2)} \left(2^{-3}(1 - 2^{-3})^{-1}(1 - 2^{-2})\pi^{1/2} \frac{\zeta(2)}{\Gamma(3/2)\zeta(3)} + 2^{-5}(1 - 2^{-3})^{-1}\pi^{1/2} \frac{\zeta(2)}{\Gamma(3/2)\zeta(3)} \right) = \frac{8\pi^4}{21\zeta(3)}.
\]

Thus

\[
\sum_{n \leq x} r_3(n)^2 \sim \frac{8\pi^4}{21\zeta(3)} x^2.
\]

Remark. Müller’s Theorem can also be used to obtain the mean square value of sums of \(N > 3 \) squares. Precisely, if \(r_N(n) \) is the number of representations of \(n \) by \(N > 3 \) squares, then a calculation similar to the second proof of our theorem yields (compare with Theorem 3.3 in [2])

\[
\sum_{n \leq x} r_N(n)^2 = W_Nx^{N-1} + O\left(x^{(N-1)\frac{2N-3}{2N}}\right)
\]

where

\[
W_N = \frac{1}{(N-1)(1 - 2^{-N}) \Gamma(N/2)^2} \frac{\pi^N}{\zeta(N-1) \zeta(N)}.
\]

Acknowledgments

The authors would like to thank Wolfgang Müller for his comments regarding the second proof of the theorem. The third author would like to thank the Max-Planck-Institut für Mathematik for their hospitality and support during the preparation of this paper.

References

DEPARTMENT OF MATHEMATICS, SIMON FRASER UNIVERSITY, BURNABY, BRITISH COLUMBIA, CANADA V5A 1S6

E-mail address: kkchoi@cecm.sfu.ca

DEPARTMENT OF MATHEMATICS, 1 UNIVERSITY STATION C1200, THE UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TX 78712, U.S.A.

E-mail address: kumchev@math.utexas.edu

MAX-PLANCK INSTITUT FÜR MATHEMATIK, VIVATSGASSE 7, 53111 BONN, GERMANY

E-mail address: osburn@mpim-bonn.mpg.de