Fixed point results for multimaps in CAT(0) spaces

Naseer Shahzad

Department of Mathematics, King Abdul Aziz University, P.O.B. 80203, Jeddah 21589, Saudi Arabia

A R T I C L E I N F O

Article history:
Received 1 August 2008
Received in revised form 4 November 2008
Accepted 4 November 2008

M S C:
47H09
54H25

Keywords:
Upper semicontinuous
Almost lower semicontinuous
Nonexpansive mapping
CAT(0) spaces
\(\mathbb{R} \)-tree
Fixed point

A B S T R A C T

Common fixed point results for families of single-valued nonexpansive or quasi-nonexpansive mappings and multivalued upper semicontinuous, almost lower semicontinuous or nonexpansive mappings are proved either in CAT(0) spaces or \(\mathbb{R} \)-trees. It is also shown that the fixed point set of quasi-nonexpansive self-mapping of a nonempty closed convex subset of a CAT(0) space is always nonempty closed and convex.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The study of metric spaces without linear structure has played a vital role in various branches of pure and applied sciences. One of such space is a CAT(0) space. A useful example of it is an \(\mathbb{R} \)-tree (see, e.g., [7,21]), whose study found applications in mathematics, biology/medicine and computer science (see, e.g., [3,12,19]). Fixed point results in CAT(0) spaces have been proved by a number of authors, see, e.g., [1,2,6,9,11–18,20].

In 2005, Dhompongsa, Kaewkhao, and Panyanak [6] proved the following fixed point result for commuting mappings.

Theorem DKP. Let \(X \) be a nonempty closed bounded convex subset of a complete CAT(0) space \(M \), \(f \) a nonexpansive self-mapping of \(X \) and \(T : X \to 2^X \) is nonexpansive, where for any \(x \in X \), \(Tx \) is nonempty compact convex. Assume that for some \(p \in \text{Fix}(f) \)

\[
\alpha p \oplus (1 - \alpha)Tx \text{ is convex for all } x \in X \text{ and } \alpha \in [0, 1].
\]

If \(f \) and \(T \) commute, then there exists an element \(z \in X \) such that \(z = f(z) \in T(z). \)

Recently, Shahzad and Markin [20] extended and improved Theorem DKP. On the other hand, Espinola and Kirk [9] established that a commutative family of nonexpansive self-mappings of a geodesically bounded closed convex subset of a complete \(\mathbb{R} \)-tree has a nonempty common fixed point set.
In this paper, we prove some fixed point results either in CAT(0) spaces or \mathbb{R}-trees for families of single-valued nonexpansive or quasi-nonexpansive mappings and multivalued upper semicontinuous, almost lower semicontinuous or nonexpansive mappings which are weakly commuting. We also establish a result which implies that the fixed point set of quasi-nonexpansive self-mapping of a nonempty closed convex subset of a CAT(0) space is always nonempty closed and convex.

2. Preliminaries

For any pair of points x, y in a metric space (M, d), a geodesic path joining these points is a map c from a closed interval $[0, r] \subseteq \mathbb{R}$ to M such that $c(0) = x$, $c(r) = y$ and $d(c(s), c(t)) = |s - t|$ for all $s, t \in [0, r]$. The mapping c is an isometry and $d(x, y) = r$. The image of c is called a geodesic segment joining x and y which when unique is denoted by $[x, y]$. For any $x, y \in M$, denote the point $z \in [x, y]$ such that $d(x, z) = \alpha d(x, y)$, where $0 \leq \alpha \leq 1$. The space (M, d) is called a geodesic space if any two points of M are joined by a geodesic, and M is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each $x, y \in M$. A subset X of M is called convex if X includes every geodesic segment joining any two of its points.

A geodesic triangle $\Delta(x_1, x_2, x_3)$ in a geodesic metric space (M, d) consists of three points in M (the vertices of Δ) and a geodesic segment between each pair of points (the edges of Δ). A comparison triangle for $\Delta(x_1, x_2, x_3)$ in (M, d) is a triangle $\Delta' \Delta(x_1, x_2, x_3) := \Delta(\overline{x_1}, \overline{x_2}, \overline{x_3})$ in the Euclidean plane \mathbb{R}^2 such that $d_{\mathbb{R}^2}(\overline{x_i}, \overline{x_j}) = d(x_i, x_j)$ for $i, j \in \{1, 2, 3\}$.

A geodesic metric space M is called a CAT(0) space if all geodesic triangles of appropriate size satisfy the following comparison axiom [4]:

Let Δ be a geodesic triangle in M and let Δ in \mathbb{R}^2 be its comparison triangle. Then Δ is said to satisfy the CAT(0) inequality if for all $x, y \in \Delta$ and all comparison points $\overline{x}, \overline{y}$ in Δ, $d(x, y) \leq d_{\mathbb{R}^2}(\overline{x}, \overline{y})$.

A subset X of (M, d) is said to be gated [8] if for any point $x \notin X$ there exists a unique $z \in X$ such that for any $y \in X$,

$$d(x, y) = d(x, z) + d(z, y).$$

The point z is called the gate of x in X.

It is known that gated sets in a complete geodesic space are always closed and convex, and gated subsets of a complete geodesic space (M, d) are proximinal nonexpansive retracts of M. It is also known the family of gated sets in a complete geodesic space (M, d) has the Helly property, that is, if X_1, \ldots, X_n is a collection of gated sets in M with pairwise nonempty intersection, then $\bigcap_{i=1}^n X_i \neq \emptyset$.

There are many equivalent definitions of \mathbb{R}-tree. Here we include the following definition.

An \mathbb{R}-tree is a metric space M such that:

(i) there is a unique geodesic segment $[x, y]$ joining each pair of points $x, y \in M$;

(ii) if $[y, x] \cap [x, z] = \{x\}$, then $[y, x] \cup [x, z] = [y, z]$.

It follows from (i) and (ii) that

(iii) if $u, v, w \in M$, then $[u, v] \cap [u, w] = [u, z]$ for some $z \in M$.

Examples of \mathbb{R}-trees can be found in [12].

The following properties of \mathbb{R}-tree are useful [4,9,12].

(i) An \mathbb{R}-tree is a CAT(0) space.

(ii) The metric d in an \mathbb{R}-tree is convex, that is, it satisfies the inequality

$$d(ax \oplus (1 - \alpha)y, au \oplus (1 - \alpha)v) \leq \alpha d(x, u) + (1 - \alpha)d(y, v)$$

for any points $x, y, u, v \in M$.

(iii) A metric space is a complete \mathbb{R}-tree if and only if it is hyperconvex and has unique geodesic segments.

For any subset X in a metric space M, we define $d(x, X) = \inf_{y \in X} d(x, y)$. The mappings $f : X \to X$ and $T : X \to 2^X$ are said to commute if $f(T(x)) \subseteq T(f(x))$ for all $x \in X$. f and T are said to commute weakly [10] if $f(\partial_X T(x)) \subseteq T(f(x))$ for all $x \in X$, where $\partial_X Y$ denotes the relative boundary of $Y \subseteq X$ with respect to X. Let \mathcal{F} be a family of self-mappings of X. Then \mathcal{F} and T are said to commute weakly (resp. commute) if each $f \in \mathcal{F}$ and T commute weakly (resp. commute). We denote by $Fix(\mathcal{F})$ the sets of common fixed points of \mathcal{F} in X. A mapping $f : X \to M$ is called a contraction if for any $x, y \in X$, $d(f(x), f(y)) \leq kd(x, y)$ for some $k \in (0, 1)$. f is said to be nonexpansive with respect to Y (a nonempty subset of X) if for any $x \in X, y \in Y$, $d(f(x), f(y)) \leq d(x, y)$. If $Y = X$, f is called nonexpansive and if $Y = Fix(f)$, f is called quasi-nonexpansive.

Denote the nonempty subsets of a metric space M by 2^M. In a metric space M, a mapping $T : X \to 2^M$ with closed bounded values is called nonexpansive if $H(T(x), T(y)) \leq d(x, y)$ for any pair $x, y \in X$, where H denotes the Hausdorff
metric derived from the metric d. The mapping T is said to be upper semicontinuous if for any $\varepsilon > 0$ and any sequence $\{x_n\}$ such that $\lim_{n \to \infty} x_n = x$, there exists a $\delta > 0$ such that

$$d(x_0, x) < \delta \quad \text{implies} \quad T(x_0) \subset N_\varepsilon(T(x)),$$

where $N_\varepsilon(T(x)) = \{ y \in M : d(y, T(x)) \leq \varepsilon \}$. T is called almost lower semicontinuous if given $\varepsilon > 0$, for each $x \in X$ there is a neighborhood $U(x)$ of x such that $\bigcap_{y \in U(x)} N_\varepsilon(T(y)) \neq \emptyset$. Any mapping that is lower semicontinuous or quasi-lower semicontinuous is almost lower semicontinuous (see, e.g., [17]).

3. Main results

The following result is immediate.

Theorem 3.1. Let X be a nonempty closed convex subset of a complete $\text{CAT}(0)$ space, f a mapping of X into M such that $A = \{ x \in X : d(f(x), x) = d(f(x), X) \}$ is nonempty and f is nonexpansive with respect to A. Then A is a closed set on which f is continuous. In addition, suppose that f is isometric on A. If for $u, v \in A$, $x \in [u, v]$, then $f(x) \in [f(u), f(v)]$.

If $f(X) \subset X$, then $\text{Fix}(f) = A$ and so we have the following result of Chaoha and Phon-on [5] as a corollary.

Corollary 3.2. Let X be a closed convex subset of a complete $\text{CAT}(0)$ space, f a quasi-nonexpansive self-mapping of X. Then $A = \text{Fix}(f)$ is a nonempty closed convex set on which f is continuous.

The following result extends and improves Theorem DKP. It basically shows that the assumption that the mapping f is nonexpansive in Theorem DKP of [6] can be replaced by the assumption that f is only quasi-nonexpansive.

Theorem 3.3. Let X be a nonempty closed bounded convex subset of a complete $\text{CAT}(0)$ space M, f a quasi-nonexpansive self-mapping of X, and $T : X \to 2^X$ a nonexpansive mapping, where for any $x \in X$, Tx is nonempty compact convex. If f and T commute weakly, then there exists an element $z \in X$ such that $z = f(z) \in T(z)$.

Proof. By Corollary 3.2, $\text{Fix}(f)$ is nonempty closed convex. Let $x \in \text{Fix}(f)$. Then $f(\partial_X T(x)) \subset T(f(x)) = T(x)$. Let $u \in \partial_X T(x)$ be a unique closest point to x. Since f is nonexpansive with respect to $\text{Fix}(f)$, we have $d(f(u), x) \leq d(u, x)$ and so $f(u) = u$ by uniqueness of the closest point u. Thus

$$T(x) \cap \text{Fix}(f) \neq \emptyset.$$

Let $F(x) = T(x) \cap \text{Fix}(f)$. Then F is a mapping of $\text{Fix}(f)$ into $2^{\text{Fix}(f)}$. Notice that for any $x, y \in \text{Fix}(f)$,

$$H(F(x), F(y)) = \max \left\{ \sup_{u \in F(x)} d(u, F(y)), \sup_{v \in F(y)} d(v, F(x)) \right\} \leq \max \left\{ \sup_{u \in F(x)} d(u, T(y)), \sup_{v \in F(y)} d(v, T(x)) \right\} \leq d(T(x), T(y)) \leq d(x, y).$$

Now Corollary 3.5 of Dhompongsaa, Kaewkhao and Panyanak [6] guarantees the existence of $z \in \text{Fix}(f)$ such that $z \in F(z)$. As a result, we have $f(z) = z \in T(z)$. \square

Corollary 3.4. Let X be a nonempty closed bounded convex subset of a complete $\text{CAT}(0)$ space M, f a nonexpansive self-mapping of X and $T : X \to 2^X$ a nonexpansive mapping, where for any $x \in X$, Tx is nonempty compact convex. If f and T commute weakly, then there exists an element $z \in X$ such that $z = f(z) \in T(z)$.

Proof. By Theorem 12 of Kirk [14], $\text{Fix}(f)$ is nonempty closed bounded convex. So the result follows from Theorem 3.3. \square

Theorem 3.5. Let X be a nonempty closed bounded convex subset of a complete $\text{CAT}(0)$ space M and f a nonexpansive self-mapping of X. Then for any closed convex subset Y of X such that $f(\partial_Y X) \subset Y$, we have $P_{\text{Fix}(f)}(Y) \subset Y$.

Proof. Fix $u \in Y$, and define the mapping $f_t : Y \to X$ by taking $f_t(x)$ to be the point of $[u, f(x)]$ at distance $t d(u, f(x))$ from u. Then by convexity of the metric

$$d(f_t(x), f_t(y)) \leq td(x, y)$$

for any $x, y \in Y$. Since f_t is a nonexpansive mapping for each t, $f_t(Y)$ is a nonempty closed convex subset of Y. Moreover, $f_t(Y)$ is also nonempty closed convex for each t. Thus $f_t(Y)$ is nonempty closed convex for each t.

Now Corollary 3.5 of Dhompongsaa, Kaewkhao and Panyanak [6] guarantees the existence of $z \in f_t(Y)$ such that $z \in f_t(z)$. As a result, we have $f_t(z) = z \in T(z)$. \square
for all \(x, y \in Y \). This shows that \(f_1 : Y \to X \) is a contraction. Let \(P_Y \) be the proximinal nonexpansive retraction of \(X \) into \(Y \). Then \(P_Y f_1 \) is a contraction self-mapping of \(Y \). By the Banach Contraction Principle, there exists a unique fixed point \(y_1 \in Y \) of \(P_Y f_1 \). Thus

\[
 d(f_1 y_1, y_1) = \inf \{d(f_1 y_1, z) : z \in Y \}.
\]

Since \(f(\partial_X Y) \subset Y \), we have \(f_1(\partial_X Y) \subset Y \) and so we have \(f_1(y_1) = y_1 \in [u, f(y_1)] \). Note that \(A = \text{Fix}(f) \) is nonempty closed bounded convex by Theorem 12 of Kirk [14]. Now Theorem 26 of Kirk [15] guarantees that \(\lim_{t \to 1^-} y_t \) converges to the unique fixed point of \(f \) which is nearest \(u \). As a result, \(\lim_{t \to 1^-} y_t = P_{\mathcal{A}}(u) \in Y \). Since \(M \) is a CAT(0) space, \(P_{\mathcal{A}} \) is nonexpansive and \(P_{\mathcal{A}}(Y) \subset Y \). □

Remark 3.6. Let \(X \) be a nonempty closed bounded convex subset of a complete CAT(0) space \(M \), \(f : X \to M \) a nonexpansive mapping. Then there exists an element \(z \in X \) such that

\[
 d(f(z), z) = d(f(z), X).
\]

To see this, let \(P_X \) be the proximinal nonexpansive retraction of \(M \) into \(X \). Then \(P_X f \) is a nonexpansive self-mapping of \(X \) and so has a fixed point \(z \). Hence

\[
 d(f(z), z) = d(f(z), X).
\]

The following result also follows from Theorem 3.3 but the proof given here is constructive one.

Theorem 3.7. Let \(X \) be a nonempty closed bounded convex subset of a complete CAT(0) space \(M \), \(f : X \to M \) a nonexpansive mapping, and \(T : X \to \mathcal{P}(X) \) a nonexpansive mapping, where for any \(x \in X \), \(Tx \) is nonempty compact convex. If for each \(x \in X \), \(P_X f(\partial_X T(x)) \subset T(P_X f(x)) \), where \(P_X \) is the proximinal nonexpansive retraction of \(M \) into \(X \), then there exists an element \(z \in X \) with \(z \in T(z) \) such that

\[
 d(f(z), z) = d(f(z), X).
\]

Proof. Clearly

\[
 A = \{x \in X : d(f(x), x) = d(f(x), X)\}
\]

is nonempty by Remark 3.6 and \(A = \text{Fix}(P_X f) \). Define \(F : X \to 2^X \) by \(F(x) = T(P_A(x)) \). Then \(F \) is nonexpansive and has a fixed point \(v \in X \) by Corollary 3.5 of Dhompansua, Kaewkhao and Panyanak [6]. Notice that

\[
 P_X f(\partial_X F(v)) = P_X f(\partial_X T(P_A(v))) \subset T(P_X f(P_A v)) = T(P_A(v)) = F(v).
\]

Also \(A = \text{Fix}(P_X f) \). Now Theorem 3.5 guarantees that \(P_A F(v) \subset F(v) \). In particular, \(P_A v \in F(v) \). Let \(z = P_A v \). Then \(P_X f(z) = z \in T(z) \) and

\[
 d(f(z), z) = d(f(z), X). \quad \Box
\]

Theorem 3.8. Let \(X \) be a nonempty geodesically bounded closed convex subset of a complete \(\mathbb{R} \)-tree \(M \), \(\mathcal{F} \) a family of self-mappings of \(X \) for which \(\text{Fix}(\mathcal{F}) \) is nonempty and each \(f \in \mathcal{F} \) is nonexpansive with respect to \(\text{Fix}(\mathcal{F}) \), and \(T : X \to 2^X \) upper semicontinuous, where for any \(x \in X \), \(Tx \) is nonempty closed and convex. If \(\mathcal{F} \) and \(T \) commute weakly, then there exists an element \(z \in X \) such that \(z = f(z) \in T(z) \) for all \(f \in \mathcal{F} \).

Proof. By Corollary 3.2, \(\text{Fix}(\mathcal{F}) \) is nonempty closed convex. Let \(x \in \text{Fix}(\mathcal{F}) \). Then for any \(f \in \mathcal{F} \), \(f(\partial_X T(x)) \subset T(f(x)) \). Let \(u = \partial_X T(x) \) be a unique closest point to \(x \). Since \(f \) is nonexpansive with respect to \(\text{Fix}(\mathcal{F}) \), we have \(d(f(u), x) \leq d(u, x) \) and so \(f(u) = u \). Thus \(u \) is a common fixed point of \(\mathcal{F} \), which implies

\[
 T(x) \cap \text{Fix}(\mathcal{F}) \neq \emptyset.
\]

Let \(F(x) = T(x) \cap \text{Fix}(\mathcal{F}) \). Then \(F \) is an upper semicontinuous mapping of \(\text{Fix}(\mathcal{F}) \) into \(2^{\text{Fix}(\mathcal{F})} \). Now Theorem 2.1 of Kirk and Panyanak [11] guarantees the existence of \(z \in \text{Fix}(\mathcal{F}) \) such that \(z \in F(z) \). As a result, we have \(f(z) = z \in T(z) \) for all \(f \in \mathcal{F} \). □

Corollary 3.9. Let \(X \) be a nonempty geodesically bounded closed convex subset of a complete \(\mathbb{R} \)-tree \(M \), \(\mathcal{F} \) a commuting family of nonexpansive self-mappings of \(X \), and \(T : X \to 2^X \) upper semicontinuous, where for any \(x \in X \), \(Tx \) is nonempty closed and convex. If \(\mathcal{F} \) and \(T \) commute weakly, then there exists an element \(z \in X \) such that \(z = f(z) \in T(z) \) for all \(f \in \mathcal{F} \).

Proof. By Theorem 4.3 of Espinola and Kirk [9], \(\text{Fix}(\mathcal{F}) \) is nonempty. So the result follows from Theorem 3.8. □
Theorem 3.10. Let X be a nonempty geodesically bounded closed convex subset of a complete \mathbb{R}-tree M, \mathcal{F} a family of self-mappings of X for which $\text{Fix}(\mathcal{F})$ is nonempty and each $f \in \mathcal{F}$ is nonexpansive with respect to $\text{Fix}(\mathcal{F})$, and $T : X \to 2^X$ almost lower semicontinuous, where for any $x \in X$, Tx is nonempty closed bounded and convex. If \mathcal{F} and T commute weakly, then there exists an element $z \in X$ such that $z = f(z) \in T(z)$ for all $f \in \mathcal{F}$.

Proof. By Corollary 3.2, $\text{Fix}(\mathcal{F})$ is nonempty closed convex. Let $x \in \text{Fix}(\mathcal{F})$. Then for any $f \in \mathcal{F}$, $f(\partial_x T(x)) \subset T(f(x)) = T(x)$. Let $u \in \partial_x T(x)$ be a unique closest point to x. Since f is nonexpansive with respect to $\text{Fix}(\mathcal{F})$, we have $d(f(u), x) \leq d(u, x)$ and so $f(u) = u$. Thus u is a common fixed point of \mathcal{F}, which implies $T(x) \cap \text{Fix}(\mathcal{F}) \neq \emptyset$.

Let $F = T(x) \cap \text{Fix}(\mathcal{F})$. We claim that F is an almost lower semicontinuous mapping of $\text{Fix}(\mathcal{F})$ into $2^{\text{Fix}(\mathcal{F})}$. Since $T : \text{Fix}(\mathcal{F}) \to 2^X$ is almost lower semicontinuous, for any $x \in \text{Fix}(\mathcal{F})$ and $\epsilon > 0$ there exist a neighborhood $U(x)$ of x and a point $w \in x$ such that $T(y) \cap B(w, \epsilon) \neq \emptyset$ for $y \in U(x)$. Since $w \in N_\epsilon(T(y))$ and $N_\epsilon(T(y)) \cap \text{Fix}(\mathcal{F}) \neq \emptyset$, it follows from Lemma 4.1 of Markin [17] that $P_{\text{Fix}(\mathcal{F})}(w) \in N_\epsilon(T(y)) \cap \text{Fix}(\mathcal{F})$ for $y \in U(x)$. Thus, $B(P_{\text{Fix}(\mathcal{F})}(w), \epsilon) \cap T(y) \cap \text{Fix}(\mathcal{F}) \neq \emptyset$ for $y \in U(x)$. This proves our claim. Now Theorem 4.4 of Markin [17] guarantees the existence of $z \in \text{Fix}(\mathcal{F})$ such that $z = f(z) \in T(z)$ for all $f \in \mathcal{F}$. □

Corollary 3.11. Let X be a nonempty geodesically bounded closed convex subset of a complete \mathbb{R}-tree M, \mathcal{F} a commuting family of nonexpansive self-mappings of X, and $T : X \to 2^X$ almost lower semicontinuous, where for any $x \in X$, Tx is nonempty closed bounded and convex. If \mathcal{F} and T commute weakly, then there exists an element $z \in X$ such that $z = f(z) \in T(z)$ for all $f \in \mathcal{F}$.

Proof. By Theorem 4.3 of Espinola and Kirk [9], $\text{Fix}(\mathcal{F})$ is nonempty closed convex and geodesically bounded. So the result follows from Theorem 3.10. □

References