Prox-regular sets and epigraphs in uniformly convex Banach spaces: various regularities and other properties

Frédéric Bernard
Université Montpellier II, Département de Mathématiques,
CC 051, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
e-mail: bernard@math.univ-montp2.fr

Lionel Thibault
Université Montpellier II, Département de Mathématiques,
CC 051, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
e-mail: thibault@math.univ-montp2.fr

Nadia Zlateva
Section of Operations Research, Department of Mathematics,
Sofia University, 5 James Bourchier blvd., 1164 Sofia, Bulgaria
e-mail: zlateva@fmi.uni-sofia.bg
Abstract

We continue the study of prox-regular sets that we began in a previous work in the setting of uniformly convex Banach space endowed with a norm both uniformly smooth and uniformly convex (like $L^p, W^{m,p}$ spaces). We prove normal and tangential regularity properties for these sets, and in particular the equality between Mordukhovich and proximal normal cones. We also compare in this setting the proximal normal cone with different Hölderian normal cones depending on the power types s, q of moduli of smoothness and convexity of the norm. In the case of sets that are epigraphs of functions, we show that J-primal lower regular functions have prox-regular epigraphs and we compare these functions with Poliquin’s primal lower nice functions depending on the power types s, q of the moduli. The preservation of prox-regularity of the intersection of finitely many sets and of the inverse image is obtained under a calmness assumption. A conical derivative formula for the metric projection mapping of prox-regular set is also established. Among other results of the paper it is proved that the Attouch-Wets convergence preserves the uniform r-prox-regularity property and that the metric projection mapping is in some sense continuous with respect to this convergence for such sets.

Key words: Distance function, metric projection mapping, uniformly convex Banach space, variational analysis, proximal normal, prox-regular set, epigraph.

2000 AMS Subject Classification: Primary 49J52, 58C06, 58C20; Secondary 90C30.

1 Introduction

Prox-regular sets appear under different names in the literature, depending on the point of view chosen by the authors who considered them often independently. The first one was Federer in [25], where he introduced these sets in \mathbb{R}^n as the “sets with positive reach”, in order to extend the Steiner polynomial formula to a much larger class of subsets of \mathbb{R}^n than those of convex sets or compact C^2 manifolds. Later, motivated by different purposes other authors focused their analysis on distinct properties of sets and considered the classes of p-convex sets ([14]), sets with 2-order tangential property ([40]), proximally smooth sets ([17]), prox-regular sets ([38]), and so on. All these concepts are actually known to be the same and to be equivalent in \mathbb{R}^n to the notion of positively reached sets. The class of prox-regular sets is much larger than that of convex sets, but it shares with the latter many good properties with regard to the applications in optimization, control theory, etc... and has also rich geometric implications, see, in addition to the works quoted above, [16, 41, 32, 23, 33]. Such sets are also involved in differential inclusions in mechanics (see, e.g., [18, 23, 41]), in resource allocation mechanisms in economics (see, e.g., [41]), in crowd motion problems ([33]), in the theoretical study of viability for differential inclusions subject to constraints (see, e.g., [41]), etc. Concerning related concepts for functions, we refer to [4, 5, 6, 7, 20, 32, 36, 37, 39, 43] and the references therein.

In this paper we base ourselves on a previous work of ours [8] where we extended in some sense the study made in [38] of prox-regular sets C in Hilbert spaces. We essentially generalized in [8] the results of [38] in the more general context of uniformly convex Banach
spaces, and we provided therein a long list of characterizations including, in particular, one as the Fréchet differentiability of the square distance function $d_2^C(\cdot)$ around the considered point and another one as the J-hypomonotonicity of the proximal normal cone. In the context of Hilbert space the coincidence for a prox-regular set C at x between the Mordukhovich normal cone and the proximal normal one follows directly from the fact (due to the Hilbert structure) that in such a case there exists some non negative number γ and some neighborhood U of x such that for any proximal normal x^* of C at a point $x \in U \cap C$ with $\|x^*\| \leq 1$ one has
\[\langle x^*, y - x \rangle \leq \gamma \|y - x\|^2 \quad \text{for all } y \in U \cap C. \]
The case of uniformly convex Banach space is not so obvious. Our aim in this paper is on the one hand to show that this important property of equality between the Mordukhovich normal cone and the proximal normal one still holds for prox-regular sets of uniformly convex Banach spaces and on the other hand to take advantage of this property to provide in the same context several new results including in particular the conical derivative of the metric projection mapping to C and the preservation of prox-regularity under the Attouch-Wets convergence.

In the second section, we give the notation and introduce the main notions needed in the paper. In Section 3 we show the normal and tangential regularity properties of prox-regular sets of a uniformly convex Banach space X and deduce a proximal normal formula for these sets. In Section 4 we prove that the epigraphs of the J-primal lower regular functions considered in [8] are prox-regular, and compare these functions with Poliquin’s primal lower nice functions. In Section 5, we draw a comparison between the prox-regularity concept considered in this paper and taken from [38, 8] and another one from [37] and adapted in [5] to the general Banach context. We also compare the prox-regularity notions when the norm varies in certain families. Section 6 concerns some relationships between different normal cones (of closed sets) related to the moduli of power type of the norm of X. Section 7 deals with the preservation of prox-regularity under the intersection and the inverse image. Under a calmness qualification condition, it is shown that the intersection of finitely many prox-regular sets and the inverse image of a prox-regular set by a $C^{1,1}$-mapping inherit the prox-regularity property. In Section 8 we take advantage of the result of tangential regularity of Section 3 to establish a conical derivative formula for the metric projection mapping of prox-regular set. Finally Section 9 studies the behavior of the metric projection mapping for a family $(C_t)_t$ of uniformly r-prox-regular closed sets of X which converges in the sense of Attouch-Wets to a closed set C. It is proved that C inherits the uniform r-prox-regularity property and that, for any x_0 with $d(x_0, C) < r$, one has $P_{C_t}(x_0) \rightarrow_t P_C(x_0)$, for the metric projection mapping P_C onto the closed set C.

2 Notation and preliminaries

Recall that a (real) Banach space $(X, \| \cdot \|)$ is rotund or strictly convex provided for any $x, y \in X$ with $\|x\| = \|y\| = 1$ and $x \neq y$ one has $\frac{1}{2}\|x + y\| < 1$. This is when this inequality is uniform in some sense (see below) that the space is said to be uniformly convex. It is known that the strict convexity is equivalent to require that, for any non zero $x, y \in X$ with
$x \neq y$, the equality $\|x + y\| = \|x\| + \|y\|$ entails $y = \mu x$ for some $\mu > 0$ (see, e.g., [21, 24]).

The space $(X, \|\cdot\|)$ is uniformly convex when its modulus of convexity

$$\delta_{\|\cdot\|}(\varepsilon) := \inf\left\{1 - \frac{\|x + y\|}{2} : \|x\| = \|y\| = 1, \|x - y\| \geq \varepsilon\right\}$$

satisfies $\delta_{\|\cdot\|}(\varepsilon) > 0$ for all $\varepsilon \in [0, 2]$. In such a case the function $\delta_{\|\cdot\|}(\cdot)$ is increasing on $[0, 2]$. The modulus is of power type q if for some real number $k > 0$ one has $\delta_{\|\cdot\|}(\varepsilon) \geq k\varepsilon^q$ for all $\varepsilon \in [0, 2]$. By Dvoretzky’s theorem for such a power type q one always has $q \geq 2$.

The space $(X, \|\cdot\|)$ is uniformly smooth if its modulus of smoothness,

$$\rho_{\|\cdot\|}(\tau) := \sup\left\{\frac{1}{2}\|x + \tau y\| + \frac{1}{2}\|x - \tau y\| - 1 : \|x\| = \|y\| = 1\right\} \text{ for } \tau \geq 0,$$

satisfies $\lim_{\tau \to 0} \rho_{\|\cdot\|}(\tau)/\tau = 0$. The modulus of smoothness is of power type s with $s > 1$ if, for some $c > 0$, one has $\rho_{\|\cdot\|}(\tau) \leq c\tau^s$ for all $\tau \geq 0$. Dvoretzky’s theorem also implies $s \leq 2$, hence $1 < s \leq 2$.

It is possible to renorm any uniformly convex space with an equivalent norm which is both uniformly convex and uniformly smooth. This will always be the context of the paper. Throughout,

- X is assumed to be a uniformly convex real Banach space endowed with a norm $\|\cdot\|$ which is both uniformly convex and uniformly smooth.

In some statements of the paper, the moduli of uniform convexity and uniform smoothness of the norm $\|\cdot\|$ will be required to be of power type q and of power type s respectively; it will be explicitly emphasized in such each statement. One knows that such a new renorm of the uniformly convex space always exists. The properties of uniformly convex Banach spaces can be found in detail in [22, 2, 21]. Let us recall some facts.

It is well-known (see, e.g., [22]) that all Hilbert spaces H and the Banach spaces L^p, W^p_0 $(1 < p < \infty)$ all are (for their usual norms) uniformly convex and uniformly smooth with moduli of convexity and smoothness of power type.

For any real number $\sigma > 1$, consider the mapping $J_\sigma : X \to X^*$ defined by

$$J_\sigma(x) = \{x^* \in X^* : \langle x^*, x \rangle = \|x^*\|\|x\|, \|x^*\| = \|x\|^{\sigma - 1}\}.$$

For $\sigma = 2$, J_2 will be simply denoted by J and it is generally called the normalized duality mapping associated with the norm $\|\cdot\|$. As X is reflexive we have that J is surjective. The mapping J_σ is the subdifferential of the convex function $\frac{1}{\sigma}\|\cdot\|^\sigma$, i.e., $J_\sigma = \partial\left(\frac{1}{\sigma}\|\cdot\|^\sigma\right)$. With the additional uniform convex property of X and by the choice of the norm that we made, for any $\sigma > 1$, J_σ is single-valued, bijective and norm-to-norm continuous. The inverse mapping J^{-1} (of J) will be denoted by J^*, it is the normalized duality mapping for the dual norm on X^*. Observe also (by the definitions of J_σ and $J := J_2$) that for $\mathbb{R}_+ := [0, +\infty[$

$$J_\sigma(x) \in \mathbb{R}_+, J(x) \quad \text{and} \quad J_\sigma(tx) = t^{\sigma - 1}J_\sigma(x) \quad \text{for all } x \in X \text{ and } t \geq 0. \quad (2.1)$$
We recall (see [21]) that the mapping J is uniformly continuous over each bounded subset of X (in fact, this property characterizes the uniform smoothness of the norm). Moreover, from [44, (2.16) p. 201 with $p=2$], there is a constant $K' > 0$ such that for all nonzero pairs $(x, y) \in X \times X$

$$\langle J(x) - J(y), x - y \rangle \geq K'(\max\{\|x\|, \|y\|\})^2 \delta \|x - y\| \left(\frac{\|x - y\|}{2 \max\{\|x\|, \|y\|\}}\right)$$

(2.2)

and by (3.1)' of [44, p. 208] one also has some constant $L' > 0$ such that for all pairs $(x, y) \in X \times X$ with $x \neq y$

$$\|J(x) - J(y)\| \leq L' (\max\{\|x\|, \|y\|\})^2 \rho \|x - y\| \left(\frac{\|x - y\|}{\max\{\|x\|, \|y\|\}}\right).$$

(2.3)

When the modulus of uniform convexity of the norm $\|\cdot\|$ is of power type q, from Xu and Roach [44, (2.17)' p. 202] again, there exists some constant $K > 0$ such that for every $(x, y) \in X \times X$, $\|x + y\|^q \geq \|x\|^q + q \langle J_q(x), y \rangle + K \|y\|^q$. Similarly, whenever the modulus of smoothness of the norm $\|\cdot\|$ is of power type s, there exists, according to [44, Remark 5 p. 208], some constant $L > 0$ such that, for all $x, y \in X$,

$$\|x + y\|^s \leq \|x\|^s + s \langle J_s(x), y \rangle + L \|y\|^s.$$

(2.5)

Observe that (2.4) and (2.5) respectively entail that for all $x, y \in X$,

$$\langle J_q(x) - J_q(y), x - y \rangle \geq \frac{2K}{q} \|x - y\|^q$$

(2.6)

and

$$\langle J_s(x) - J_s(y), x - y \rangle \leq \frac{2L}{s} \|x - y\|^s.$$

(2.7)

Inequalities in the line of (2.6) and (2.7) also hold with the normalized duality mapping J in place of J_q or J_s when they are restricted to bounded subsets of X. Indeed, if the norm $\|\cdot\|$ has modulus of convexity (resp. smoothness) of power type q (resp. s), then for any $r > 0$ according to (2.2) (resp. (2.3)) there exist some positive constant K_r (resp. L_r) such that

$$\langle J(x) - J(y), x - y \rangle \geq K_r\|x - y\|^q \text{ whenever } \|x\| \leq r \text{ and } \|y\| \leq r,$$

(2.8)

(resp.)

$$\|J(x) - J(y)\| \leq L_r\|x - y\|^{s-1} \text{ whenever } \|x\| \leq r \text{ and } \|y\| \leq r.$$

(2.9)

The space $X \times \mathbb{R}$ will be endowed with the norm $\|\cdot\|$ given by $\|(x, r)\| = \sqrt{\|x\|^2 + r^2}$. So, for the normalized duality mapping $J_{X \times \mathbb{R}} : X \times \mathbb{R} \to X^* \times \mathbb{R}$ associated with the norm $\|\cdot\|$, one has the equality

$$J_{X \times \mathbb{R}}(x, r) = (J(x), r).$$

(2.10)

When there is no risk of confusion, $J_{X \times \mathbb{R}}$ will be simply denoted by J.

5
We will denote by \mathbb{B} (resp. \mathbb{B}^*) the closed unit ball of X (resp. X^*), and by $B(x, \alpha)$ (resp. $B[x, \alpha]$) the open (resp. closed) ball centered at x with radius α.

For a closed set $C \subset X$, a nonzero vector $p \in X$ is said to be a \textit{primal proximal normal vector} to C at $x \in C$ (see [11]) if there are $u \notin C$ and $r > 0$ such that $p = r^{-1}(u - x)$ and $\|u - x\| = d_C(u)$. (Here $d_C(u)$ denotes the distance from u to the set C; sometimes it will be convenient to put $d(u, C)$ instead of $d_C(u)$). It is known according to Lau theorem [30] that in any reflexive Banach space endowed with a Kadec norm, the set of those points which have a nearest point to any fixed closed subset is a dense set. Hence, with the appropriate norm of the uniformly convex space X we are working in, this property holds. Equivalently, a nonzero $p \in X$ is a primal proximal normal vector to C at $x \in C$ if there exists $r > 0$ such that $x \in P_C(x + rp)$, where P_C denotes the metric projection on C. We also take by convention the origin of X as a primal normal vector to C at x. The cone of all primal proximal normal vectors to C at x will be denoted by $PN_C(x)$ and called the \textit{primal proximal normal cone} of C at x. The concept is local in the sense that (see [8, p. 530])

\[
\begin{align*}
\{ & \text{for any } u \notin C \text{ and any closed ball } V := B[x, \beta] \text{ centred at } x \in C \\
& \text{and such that } \|u - x\| = d_{CV}(u), \text{ one has } u - x \in PN_C(x). \}
\end{align*}
\]

A continuous linear functional $p^* \in X^*$ is said to be a \textit{proximal normal functional} to C at $x \in C$ if $J^*(p^*) \in PN_C(x)$. This means for $p^* \neq 0$ (see [11]) that there are $u \notin C$, $r > 0$ such that $p^* = r^{-1}J(u - x)$ and $\|u - x\| = d_C(u)$. Or, equivalently, a nonzero $p^* \in X^*$ is a proximal normal functional to C at $x \in C$ if there exists $r > 0$ such that $x \in P_C(x + rJ^*(p^*))$. The cone of all proximal normal functionals to C at x will be denoted by $N^p_C(x)$ or $N^p(C; x)$. One easily verifies that if $p \in PN_C(x)$, then $J(p) \in N^p_C(x)$, and that if $p^* \in N^p_C(x)$, then $J^*(p^*) \in PN_C(x)$ (keep in mind that $J^* = J^{-1}$ is the normalized duality mapping for X^* endowed with the dual norm of $\|\cdot\|$). Hence, $PN_C(x)$ and $N^p_C(x)$ completely determine each other.

We will also need in our development the concept of Fréchet normal cone $N^F_C(x)$ or $N^F(C; x)$. A continuous linear functional $x^* \in X^*$ is said to be a \textit{Fréchet normal functional} (see [11, 34, 35]) to C at $x \in C$ if for any $\varepsilon > 0$ there exists a neighbourhood U of x such that the inequality $\langle x^*, x' - x \rangle \leq \varepsilon \|x' - x\|$ holds for all $x' \in C \cap U$.

Since the norm of our space X is Fréchet differentiable away from the origin, it is not difficult to verify that for any closed subset $C \subset X$ and any $x \in C$, any proximal normal functional to C at x is also a Fréchet normal functional to C at x (see [11], Corollary 3.1).

We will also use the β-Hölder normal cone $N^\beta_C(\cdot)$ or $N^\beta(C; \cdot)$ defined at $x \in C$ by $x^* \in N^\beta_C(x)$ when there exists $\varepsilon, \gamma > 0$ such that for any $x^* \in B(x, \varepsilon) \cap C$, $\langle x^*, x' - x \rangle \leq \gamma \|x' - x\|^\beta$.

In the context where the norm $\|\cdot\|$ is associated with an inner product $(\cdot|\cdot)$, that is, $(X, \|\cdot\|)$ is a Hilbert space, then it is straightforward to verify that $x \in P_C(x + rp)$ if and only if

\[(p|y - x) \leq (2r)^{-1}\|y - x\|^2 \quad \text{for all } y \in C. \]

The same description says that for a nonzero vector p there exists some positive r satisfying
the above property if and only if there are positive \(\varepsilon \) and \(\gamma \) such that
\[
\langle Jp, y - x \rangle = (p|y - x|) \leq \gamma \|y - x\|^2 \quad \text{for all } y \in B(x, \varepsilon) \cap C,
\]
that is, for \(\beta = 2 \) one has \(Jp \in N^\beta_C(x) \), and hence \(N^\beta_C(x) = N^\beta_C(x) \). Since \(N^\beta_C(x) \) is of course independent of any equivalent norm to \(\| \cdot \| \), so is the cone \(N^\beta_C(x) \) in the Hilbert setting.

The above notions can be translated in the context of functions. Let \(f : X \to \mathbb{R} \cup \{+\infty\} \) be a lower semicontinuous (lsc) function. By definition, the effective domain of \(f \) is the set \(\text{dom} f := \{ x \in X : f(x) < +\infty \} \) and the epigraph of \(f \) is the set \(\text{epi} f := \{ (x, r) \in X \times \mathbb{R} : f(x) \leq r \} \). Let \(x \in \text{dom} f \). We say that \(p^* \in X^* \) is a proximal subgradient of \(f \) at \(x \) if \((p^*, -1) \) is a proximal normal functional to the epigraph of \(f \) at \((x, f(x)) \). The proximal subdifferential of \(f \) at \(x \), denoted by \(\partial_p f(x) \), consists of all such functionals. Thus, we have \(p^* \in \partial_p f(x) \), if and only if, \((p^*, -1) \in N^\beta_{\text{epi}}(x, f(x)) \). The functional \(x^* \in X^* \) is said to be a Fréchet subgradient of \(f \) at \(x \) if \((x^*, -1) \) is a Fréchet normal functional to the epigraph of \(f \) at \((x, f(x)) \). The Fréchet subdifferential of \(f \) at \(x \), denoted by \(\partial f(x) \), consists of all such functionals. If \(x \notin \text{dom} f \) then all subdifferentials of \(f \) at \(x \) are empty, by convention. It is known that for a lsc function \(f \) on a reflexive Banach space with a Kadec and Fréchet differentiable norm (in particular, on our above space \(X \)), the set \(\text{dom} \partial_p f \) is dense in \(\text{dom} f \) (see [12], Theorem 7.1). Moreover, from what we saw above, \(\partial_p f(x) \subseteq \partial f(x) \) for all \(x \in X \). The Fréchet subgradients are known (see [34]) to have an analytical characterization in the sense that \(x \in \partial f(x) \), if and only if, \(\liminf_{y \to x} \frac{f(y) - f(x) - \langle x^*, y - x \rangle}{\|y - x\|} \geq 0 \). When \(\partial f(x) \neq \emptyset \), one says that \(f \) is Fréchet subdifferentiable at the point \(x \). Similarly, a \(\beta \)-Hölder subgradient of \(f \) at \(x \) is any functional \(x^* \in X^* \) such that \((x^*, -1) \in N^\beta_C(x, f(x)) \). Denoting by \(\partial_{\beta} f(x) \) the set of such subgradients, we have \(x^* \in \partial_{\beta} f(x) \) if there exists \(\gamma, \varepsilon > 0 \) such that for all \(y \in B(x, \varepsilon) \), \(f(y) \geq f(x) + \langle x^*, y - x \rangle - \gamma \|y - x\|^\beta \).

As usual, we will denote by \(\psi_C \) the indicator function of a closed set \(C \subseteq X \), i.e., \(\psi_C(y) = 0 \) if \(y \in C \) and \(\psi_C(y) = +\infty \) otherwise. It is easily checked that \(\partial f \psi_C(x) = N^\beta_C(x) \) for any \(x \in C \). The Fréchet and \(\beta \)-Hölder normal cones of \(C \) are related to the indicator function \(\psi_C \) in a similar way.
the prox-regularity as follows.

Definition 2.1 A closed set $C \subset X$ is called (metrically) prox-regular (with respect to the uniformly convex norm $\| \cdot \|$ or $\| \cdot \|$-prox-regular at $x \in C$ provided there exist $\varepsilon > 0$ and $r > 0$ such that for all $x \in C$ and for all $p^* \in N_C^P(x)$ with $\| x - x^* \| < \varepsilon$ and $\| p^* \| < 1$ the point x is a nearest point of $\{ x' \in C : \| x' - x^* \| < \varepsilon \}$ to $x + rJ^*(p^*)$.

The metrical aspect is due to the fact that the proximal normal cone $N_C^P(\cdot)$ is related to the norm $\| \cdot \|$ and depends on it in general when the latter is not a Hilbert norm. Whenever there is no ambiguity concerning either the norm $\| \cdot \|$ or the involvement of the proximal normal cone $N_C^P(\cdot)$, we will merely say that C is prox-regular at x.

The crucial fact which needs to be emphasized here is that the real number r of the definition (for which the closed ball $B[x + rJ^*(p^*), r\| p^* \|]$ touches the set $C \cap B(x, \varepsilon)$ at the point x, when x is a boundary point of C with $\| x - x^* \| < \varepsilon$) does not depend on either the neighboring point x or the proximal normal functional $p^* \in N_C^P(x)$ with $\| p^* \| < 1$.

We introduced in [8] the following closely related concept, that we called J-hypomonotonicity.

Definition 2.2 A set-valued mapping $T : X \rightrightarrows X^*$ is said to be J-hypomonotone of degree $t \geq 0$ on a subset $U \subset X$ if for any $(x_i, x_i^*) \in \text{gph}T := \{(x, x^*) \in U \times X^* : x^* \in T(x)\}$, $i = 1, 2$, one has

$$
(J[J^*(x_1^*) - t(x_2 - x_1)] - J[J^*(x_2^*) - t(x_1 - x_2)], x_2 - x_1) \leq 0.
$$

It will be convenient, for any $\delta \geq 0$, to denote below by $N_C^{P, \delta}$ the set-valued mapping N_C^P truncated with $\delta \mathbb{B}^*$, i.e.,

$$
N_{C, \delta}^P(x) := N_C^P(x) \cap \delta \mathbb{B}^* \quad \text{for all } x. \quad (2.12)
$$

The following characterizations (and more) were given in [38] in the Hilbert setting and in [8] in the uniformly convex setting.

Theorem 2.3 Assume that the moduli of uniform convexity and uniform smoothness of the norm are of power type. Then a closed set $C \subset X$ is prox-regular at $x \in C$ if and only if one of the properties below is fulfilled:

(i) there exist $\varepsilon > 0$ and $r > 0$ such that for all $x \in C$ and for all $p^* \in N_C^P(x)$ with $\| x - x^* \| < \varepsilon$ and $\| p^* \| < 1$,

$$
0 \geq \langle J[J^*(p^*) - r^{-1}(x' - x)], x' - x \rangle, \quad \forall x' \in C \text{ with } \| x' - x^* \| < \varepsilon;
$$

(ii) for some $\varepsilon, \tau > 0$, the set-valued mapping $N_{C, \varepsilon}^P : X \rightrightarrows X^*$ is J-hypomonotone of degree τ on $B(x, \varepsilon)$;

(iii) P_C is single-valued and norm-to-norm continuous on some neighborhood U of x;

(iv) d_C^2 is of class C^1 on some neighborhood U of x;

(v) d_C is Fréchet differentiable on $U \setminus C$ for some neighborhood U of x.
Anticipating Definition 2.7 below, we see that (i) means that the indicator function \(\psi_C \) of \(C \) is \(J \)-primal lower regular at \(\bar{\tau} \). Another characterization can be given in terms of the mapping \(J_\sigma \) in place of the normalized duality mapping \(J \).

Proposition 2.4 Let any real number \(\sigma > 1 \). The condition (i) of Theorem 2.3 is equivalent to any one of the following:

(i) there exist \(\varepsilon > 0 \) and \(r > 0 \) such that for all \(x \in C \) and all \(p^* \in N_C^p(x) \) with \(\|x - \bar{\tau}\| < \varepsilon \) and \(\|p^*\| \leq 1 \)

\[
0 \geq \langle J_\sigma[J_\sigma^{-1}(p^*) - r^{-1}(x' - x)], x' - x \rangle \quad \forall x' \in C \text{ with } \|x' - \bar{\tau}\| < \varepsilon;
\]

(ii) there exist \(\varepsilon > 0 \) and \(r > 0 \) such that for all \(x \in C, t \geq 0 \), and \(p^* \in N_C^p(x) \) with \(\|x - \bar{\tau}\| < \varepsilon \) and \(\|p^*\| \leq r^{\sigma-1}t^{\sigma-1} \)

\[
0 \geq \langle J_\sigma[J_\sigma^{-1}(p^*) - t(x' - x)], x' - x \rangle \quad \forall x' \in C \text{ with } \|x' - \bar{\tau}\| < \varepsilon.
\]

Proof: Note first that property (i) of Theorem 2.3 is equivalent to the following one: for any \(x, x' \in C \cap B(\bar{\tau}, \varepsilon) \), any \(t \geq 0 \), \(p^* \in N_C^p(x) \) with \(\|p^*\| \leq rt \),

\[
0 \geq \langle J[J^*(p^*) - t(x' - x)], x' - x \rangle.
\]

(2.13)

Indeed, taking any \(t > 0, x, x' \in C \cap B(\bar{\tau}, \varepsilon) \) and \(p^* \in N_C^p(x) \) with \(\|p^*\| \leq rt \) we have by (i)

\[
0 \geq \langle J[J^*(r^{-1}t^{-1}p^*) - r^{-1}(x' - x)], x' - x \rangle,
\]

which is easily seen to be equivalent to (2.13) according to the positive homogeneity of \(J \) and \(J^* \). Further it is obvious that (2.13) still holds for \(t = 0 \). The implication from (i) of Theorem 2.3 to (2.13) is then established. The converse follows from similar arguments.

With this new formulation, we are able to prove that (i) is equivalent to (i'). Suppose that (i') holds. Observe first that for any non zero \(p^* \in X^* \), one has \(J_\sigma^{-1}(p^*) = J^*(\|p^*\|^{\frac{2-\sigma}{\sigma-1}}p^*) \) and for any non zero \(u \in X \), one has \(J_\sigma(u) = J(\|u\|^{\sigma-2}u) \). Hence, putting \(\sigma' := \frac{2-\sigma}{\sigma-1} \), for any non zero \(p^* \in X^* \) and any \(t \geq 0 \) one has the equivalences

\[
\langle J[J^*(p^*) - t(x' - x)], x' - x \rangle \leq 0 \iff \langle J[p^*] - \sigma'J_\sigma^{-1}(p^*) - t(x' - x)], x' - x \rangle \leq 0 \iff \langle J[J_\sigma^{-1}(p^*) - t\|p^*\|^\sigma'(x' - x)], x' - x \rangle \leq 0 \iff \langle J_\sigma[J_\sigma^{-1}(p^*) - t\|p^*\|^{\sigma'}(x' - x)], x' - x \rangle \leq 0.
\]

(2.14)

Fix now any \(t > 0, x, x' \in C \cap B(\bar{\tau}, \varepsilon) \), and any non zero \(p^* \in N_C^p(x) \) such that \(rt \geq \|p^*\| \).

The latter inequality ensures that \(rt\|p^*\|^\sigma' \geq \|p^*\|^{\frac{2-\sigma}{\sigma-1}}, \) i.e., \(\|p^*\| \leq r^{\sigma-1}t^{\sigma-1} \) for \(t' := t\|p^*\|^\sigma' \), thus (i') with \(t' = t\|p^*\|^\sigma' \) in place of \(t \) yields (2.14). By the above equivalences we obtain the inequality (2.13).

Conversely, suppose that (2.13) is fulfilled. Fix any \(t \geq 0, x, x' \in C \cap B(\bar{\tau}, \varepsilon) \), and any non zero \(p^* \in N_C^p(x) \) such that \(\|p^*\| \leq r^{\sigma-1}t^{\sigma-1} \). One has \(\|p^*\|^{\frac{2-\sigma}{\sigma-1}} \leq rt \) and hence
\[\|p^*\| \leq rt\|p^*\|^{1 - \frac{1}{\sigma - 1}}, \text{ which by (2.13), with } t' := t\|p^*\|^{1 - \frac{1}{\sigma - 1}} = t\|p^*\|^{-\sigma'} \text{ in place of } t \text{ (where as above } \sigma' := \frac{2 - \sigma}{\sigma - 1}), \text{ yields} \]

\[0 \geq \langle J[J^*(p^*) - t'(x' - x)], x' - x \rangle. \]

By (2.14) this is equivalent to

\[0 \geq \langle J[\sigma^{-1}(p^*) - t||p^*||\sigma'(x' - x)], x' - x \rangle, \]

which is exactly

\[0 \geq \langle J[\sigma^{-1}(p^*) - t(x' - x)], x' - x \rangle. \]

The latter being still true for \(p^* = 0 \), we obtain \((i'_\sigma) \).

The equivalence between \((i'_\sigma) \) and \((i_\sigma) \) can be argued like in the first part of the proof.

\[\blacksquare \]

Here also we anticipate Definition 2.7 to call the property \((i'_\sigma) \) as the \(J_\sigma \)-primal lower regularity of \(\psi_C \).

In the line of Definition 2.1, the concept of prox-regularity on a global point of view is defined as follows.

Definition 2.5 A closed subset \(C \) of \(X \) is (metrically) uniformly \(r \)-prox-regular or \(r \)-uniformly prox-regular if whenever \(x \in C \) and \(p^* \in N^p_C(x) \) with \(\|p^*\| < 1 \), then \(x \) is the unique nearest point of \(C \) to \(x + rJ^*(p^*) \).

The next statement uses the open \(r \)-tube \(U_C(r) \) around \(C \) and the open \(r \)-neighborhood \(O_C(r) \) of \(C \) defined by

\[U_C(r) := \{ x \in X : 0 < d_C(x) < r \} \quad \text{and} \quad O_C(r) := \{ x \in X : d_C(x) < r \}. \]

Theorem 2.6 ([8]) Assume the moduli of uniform convexity and uniform smoothness of the norm \(\| \cdot \| \) of \(X \) are of power type. If the closed set \(C \subset X \) is uniformly \(r \)-prox-regular, then all the assertions below hold. Conversely, (a) or (b) entails that \(C \) is uniformly \(r \)-prox-regular, and (e) entails that \(C \) is uniformly \(r/2 \)-prox-regular.

(a) \(d_C^r \) is of class \(C^1 \) on \(O_C(r) \);
(b) \(d_C \) is Fréchet differentiable on \(U_C(r) \);
(c) \(P_C \) is single-valued and norm-to-norm continuous on \(O_C(r) \);
(d) If \(u \in O_C(r) \) and \(x = P_C(u) \), then \(x \in P_C(u') \) for \(u' = x + r\frac{u - x}{\|u - x\|} \);
(e) The truncated normal cone mapping \(N^p_{C,r} \) is \(J \)-hypomonotone of degree \(t \) for any \(t \geq 1 \).

We were led in [8] to introduce the following \(J \)-plr concept for functions, that reduces in the Hilbert setting to the Poliquin’s primal-lower-nice (pln) concept, see [36, 31] and references in [8].
Definition 2.7 A lsc function \(f : X \to \mathbb{R} \cup \{+\infty\} \) is \(J \)-primal lower regular (\(J \)-plr) at \(\bar{x} \in \text{dom} \, f \) if there exist positive constants \(\varepsilon, r \) and \(\Theta \) such that
\[
 f(y) \geq f(x) + \langle J[J^*(p^*) - t(y - x)], y - x \rangle
\]
for all \(x, y \in B(\bar{x}, \varepsilon) \), all \(p^* \in \partial_Pf(x) \), and all \(t \geq \Theta \) such that \(||p^*|| \leq rt \).

It is easily seen that if \(f \) is \(J \)-plr at \(\bar{x} \) with some positive constants \(\varepsilon \) and \(r \) then it is so for any constants \(0 < \varepsilon' \leq \varepsilon \) and \(0 < r' \leq r \). If the lsc function \(f \) is \(J \)-plr at \(\bar{x} \in \text{dom} \, f \) with positive constants \(\varepsilon \) and \(r \), then obviously
\[
 \langle J[J^*(p^*) - t(y - x)] - J[J^*(q^*) - t(x - y)], y - x \rangle \leq 0
\]
for all \(x, y \in B(\bar{x}, \varepsilon) \), for all \(p^* \in \partial_Pf(x) \), \(q^* \in \partial_Pf(y) \), and all \(t \geq \Theta \) such that \(\max\{||p^*||, ||q^*||\} \leq rt \). This is the analog of the hypomonotonicity of certain truncations of \(\partial_Pf \) that characterizes \(\text{pln} \) functions in Hilbert spaces: see [36], [31], [7] and the references therein.

Throughout, we will denote by \(\text{Dom} \, T \) the domain of the set-valued mapping \(T : X \rightrightarrows X^* \), i.e., \(\text{Dom} \, T := \{x \in X : T(x) \neq \emptyset\} \).

3 Normal and tangential regularity properties of prox-regular sets

For a closed set \(C \subset X \), the Mordukhovich limiting (or basic) normal cone \(N^L_C(x) \) is defined (see [34]) as the weak* sequential outer limit
\[
 N^L_C(x) = \text{\textasciitilde} \text{seq} \limsup_{y \to x} N^P_C(y) := \{w^* - \lim x_n^* : x_n^* \in N^P_C(x_n), x_n \in C \to x\}. \tag{3.1}
\]

The following result appears in Ioffe [26, p. 188] with an approximation in \(X^* \) with respect to the weak star topology, but merely under the local uniform convexity of the norm. For completeness we sketch below how Ioffe’s arguments also yield to the following approximation with respect to the strong topology.

Proposition 3.1 Let \(C \) be a closed subset of \(X \) with \(x \in C \) and let \(x^* \in N^L_C(x) \). Then for any \(\varepsilon > 0 \) there exist \(u_\varepsilon \in C \) and \(u_\varepsilon^* \in N^L_C(u_\varepsilon) \) such that
\[
 ||u_\varepsilon - x|| < \varepsilon \quad \text{and} \quad ||u_\varepsilon^* - x^*|| < \varepsilon. \tag{3.2}
\]

In fact the result uses only the Fréchet differentiability outside of zero of the norm || \cdot || and of its dual norm.

Proof: We may suppose that \(||x^*||_* = 1 \). (For the convenience of the reader, all along the proof the dual norm will be denoted as || \cdot ||_*). By definition there exists some function \(\rho \) from \([0, +\infty[\) into \([0, +\infty[\) with \(\lim_{t \to 0} \rho(t) = 0 \) and such that
\[
 \langle x^*, y - x \rangle \leq \rho(||y - x||) ||y - x|| \quad \text{for all} \quad y \in C. \tag{3.3}
\]
Putting $h := J^*x^*$ we have

$$\langle x^*, h \rangle = \|x^*\| \|h\| = 1. \quad (3.4)$$

Further, by (3.3) we see that $x + th \notin C$ for positive t small enough. By Lau theorem for any such t we may choose some $h_t \in X$ such that $\|h_t - h\| < t$ and such that the nearest point of $x + th_t$ in C exists, say $u_t \in C$. Writing u_t in the form $u_t = x + tv_t$ we have

$$t\|v_t - h_t\| = d_C(x + th_t) \leq t\|h_t\| \quad \text{and hence} \quad \|v_t\| \leq 2\|h_t\| \leq 2(1 + t). \quad (3.5)$$

Then taking (3.3) into account we have

$$\langle x^*, tv_t \rangle \leq \rho(t\|v_t\|) \|tv_t\| \leq 2t\rho(t\|v_t\|)(1 + t)$$

which yields

$$\langle x^*, v_t \rangle \leq 2\rho(t\|v_t\|)(1 + t). \quad (3.6)$$

Now observe by the first inequality of (3.5) that

$$\|h - v_t\| \leq \|h - h_t\| + \|h_t - v_t\| \leq \|h - h_t\| + \|h_t\| \leq \|h\| + 2\|h - h_t\| < 1 + 2t$$

and hence for $w_t := (1 + 2t)^{-1}(h - v_t)$ we have $\|w_t\| \leq 1$. Therefore

$$(1 + 2t)^{-1}[1 - 2\rho(t\|v_t\|)(1 + t)] \leq \langle x^*, w_t \rangle \leq 1,$$

the first inequality being due to (3.4) and (3.6) and the second to the inequality $\|w_t\| \leq 1$. Consequently we have

$$\langle x^*, w_t \rangle \to 1 = \langle x^*, h \rangle$$

and then since the dual norm $\|\cdot\|_*$ of X^* is Fréchet differentiable at the point x^* of the unit sphere of X^* and since $\|w_t\| \leq 1$ and $\|h\| = 1$, Šmulian lemma (see, e.g., [24, Lemma 8.4]) says that $\|w_t - h\| \to 0$ as $t \downarrow 0$, which is equivalent to $\|v_t\| \to 0$.

For positive t sufficiently small, the functional $u_t^* := \|x + th_t - u_t\|^{-1}J(x + th_t - u_t)$ is by definition a unit functional in $N_C^P(u_t)$ and $\langle u_t^*, x + th_t - u_t \rangle = \|x + th_t - u_t\|$, which is equivalent, by the equality $u_t = x + tv_t$, to $\langle u_t^*, h_t - v_t \rangle = \|h_t - v_t\|$. Since $\|v_t\| \to 0$ and $h_t \to h$, we derive that $\langle u_t^*, h_t \rangle \to \|h\| = 1$ and hence

$$\langle u_t^*, h \rangle \to 1 = \langle x^*, h \rangle.$$

Remembering that $\|u_t^*\|_* = 1$ and $\|x^*\|_* = 1$ and that the norm $\|\cdot\|$ is Fréchet differentiable at the point h of the unit sphere of X, Šmulian lemma again entails that $\|u_t^* - x^*\|_* \to 0$ as $t \downarrow 0$. The proof is then complete because obviously one also has $\|u_t - x\| \to 0$ as $t \downarrow 0$. ■

Taking the latter proposition and (3.1) into account, we see (as in Ioffe [26]) that the Mordukhovich limiting normal cone above coincides with the (sequential) limiting normal cone obtained as above by replacing $N_C^P(\cdot)$ with $N_C^F(\cdot)$, i.e.,

$$N_C^F(x) = \limsup_{y \to x} \langle x^*, w_{x} \rangle$$

(3.7)
(We must emphasize that one of the important advantages of the expression of $N_C^L(x)$ in the form of (3.7) is that it makes available the Mordukhovich normal cone in the more general context of Asplund space, see [34, 35]).

We will also need in Section 5 below the strong outer limit

$$N_C^{L_s}(x) := \limsup_{y \to x} N_C^P(y) := \{ \lim x_n^* : x_n^* \in N_C^P(x_n), x_n \in C \to x \}$$

for $x \in C$. From Proposition 3.1 we also have $N_C^{L_s}(x) = \limsup_{y \to x} N_C^F(y)$.

The concept of tangential regularity (see [15]) involved below is related to the Bouligand and Clarke tangent cones. A vector v of X is in the Bouligand tangent cone or Contingent $K_C(x)$ to C at $x \in C$ if there exists a sequence of positive numbers $(t_n)_n$ converging to 0 and a sequence $(v_n)_n$ of X converging to v such that $x + t_n v_n \in C$ for all n. The Clarke tangent cone $T_C(x)$ can be also defined in a sequential way. A vector $v \in T_C(x)$ provided that for any sequence $(x_n)_n$ in C converging to x and for any sequence of positive numbers $(t_n)_n$ converging to 0 there exists a sequence $(v_n)_n$ of X converging to v with $x_n + t_n v_n \in C$ for all n. One always has the inclusion $T_C(x) \subset K_C(x)$. When the equality holds, one says that the set C is (Clarke or) tangentially regular at x.

Through the Clarke tangent cone, the Clarke normal cone $N_C^{CI}(x)$ of C at $x \in C$ is defined as the negative polar of the latter, that is,

$$N_C^{CI}(x) = \{ x^* \in X^* : \langle x^*, v \rangle \leq 0, \ \forall v \in T_C(x) \}.$$

In any Asplund space (hence in particular in our context), we have (see [34, 35])

$$N_C^{CI}(x) = \overline{co}^* (w^*-\text{seq} \limsup_{y \to x} N_C^F(y))$$

where \overline{co}^* denotes the weak star closed convex hull.

When the Mordukhovich limiting normal cone of C at x coincides with the Fréchet (resp. proximal) normal cone at x, one says that C is normally regular at x with respect to the Fréchet (resp. the proximal) normal cone. Obviously the normal regularity with respect to the proximal normal cone implies the normal regularity with respect to the Fréchet one (because of the inclusion $N_C^P(x) \subset N_C^F(x)$). We recall (see[13]) that any one of the two above normal regularities entails the (Clarke) tangential regularity. We refer to ([13]) for the development of a detailed comparison between the above concepts of normal and tangential regularities and various others.

The next theorem is one among the results at the heart of the present work.

Theorem 3.2 Assume that the closed set C is prox-regular at $\bar{x} \in C$. Then there exists a neighborhood U of \bar{x} such that for any $x \in U \cap C$,

$$N_C^P(x) = N_C^F(x) = N_C^L(x) = N_C^{CI}(x)$$

and hence, the set C is in particular tangentially regular at x and $N_C^\beta(x) \subset N_C^P(x)$ for $\beta = 2$.

Proof: By assumption, there exist positive real numbers ε, r with $\varepsilon < 1/2$ such that for every $x \in C \cap B(\overline{r}, \varepsilon)$ and every $x^* \in N^F_C(x)$ with $\|x^*\| \leq 1$, we have $\|x + tJ^*(x^*) - x^*\| \geq tJ^*(x^*)$ for any $x^* \in C \cap B(\overline{r}, \varepsilon)$ and $t \in [0, r]$. Fix any $x, x' \in B(\overline{r}, \varepsilon) \cap C$ and $x^* \in N^F_C(x)$ with $\|x^*\| \leq 1$. Then

\[\|x + tJ^*(x^*) - x'\|^2 \geq \|tJ^*(x^*)\|^2 \quad \text{for any } t \in [0, r]. \tag{3.10}\]

On the other hand for any $t \in [0, r]$, according to the Fréchet differentiability of $\| \cdot \|^2$, we have

\[
\begin{align*}
\|x + tJ^*(x^*) - x'\|^2 &= \|tJ^*(x^*)\|^2 + 2\int_0^1 \langle J(tJ^*(x^*) + \theta(x - x')), x - x' \rangle \, d\theta \\
&= \|tJ^*(x^*)\|^2 + 2t\langle x^*, x - x' \rangle + 2\int_0^1 \langle J(tJ^*(x^*) + \theta(x - x')) - J(tJ^*(x^*)), x - x' \rangle \, d\theta.
\end{align*}
\]

Combining this with (3.10) we obtain

\[\langle x^*, x' - x \rangle \leq \frac{1}{t}\|x' - x\| \int_0^1 \|J(tJ^*(x^*) + \theta(x - x')) - J(tJ^*(x^*))\| \, d\theta. \tag{3.11}\]

In the properties of the duality mapping J recalled in Section 2 we saw that J is uniformly continuous over bounded subsets of X. Therefore, denoting by ω_{r+1} the modulus of uniform continuity of J over the bounded set $(r + 1)B$, that is,

\[\omega_{r+1}(\tau) := \sup \{\|J(u) - J(u')\| : u, u' \in (r + 1)B, \|u - u'\| \leq \tau\} \quad \text{for } \tau > 0,
\]

we have $\omega_{r+1}(\tau) \to 0$ as $\tau \to 0$ and (3.11) entails

\[\langle x^*, x' - x \rangle \leq \frac{1}{t}\|x' - x\| \omega_{r+1}(\|x' - x\|). \tag{3.12}\]

Fix now $x \in C \cap B(\overline{r}, \varepsilon)$ and $x^* \in N^F_C(x)$ and fix also any $\eta > 0$. Let $x_n^* \in N^F_C(x_n)$ (see (3.1)) such that $x_n \in C \xrightarrow{n \to \infty} x$ and $x_n^* \xrightarrow{\|\cdot\|} x^*$. Choose a real number $\gamma > 0$ such that $\|x_n^*\| \leq \gamma$ for all integers n and choose a positive $\alpha < \varepsilon - \|x - \overline{r}\|$ such that $\omega_{r+1}(\tau) \leq r\eta \beta$ for all positive $\tau < \alpha$. Take any $x' \in B(x, \alpha) \cap C$. We have $x' \in B(\overline{r}, \varepsilon)$ and, for n large enough, $x_n \in B(\overline{r}, \varepsilon) \cap C$ and $\|x' - x_n\| < \alpha$. By (3.12) for n large enough we then have

\[\langle x_n^*, x' - x_n \rangle \leq \frac{1}{r}\|x_n^*\| \|x' - x_n\| \omega_{r+1}(\|x' - x_n\|) \leq \frac{1}{r}\gamma\|x' - x_n\| \frac{r\eta}{\gamma}
\]

and hence passing to the limit for $n \to \infty$ we then obtain

\[\langle x^*, x' - x \rangle \leq \eta\|x' - x\|.
\]

The latter inequality being true for all $x' \in B(x, \alpha) \cap C$, it means that $x^* \in N^F_C(x)$. So far we have proved that for any $x \in B(\overline{r}, \varepsilon) \cap C$, we have $N^F_C(x) \subset N^F_C(x)$. As the reverse inclusion is also true according to (3.7), we have in fact the equality

\[N^F_C(x) = N^F_C(x) \quad \text{for all } x \in B(\overline{r}, \varepsilon) \cap C. \tag{3.13}\]
Moreover, by (3.9), we know that $N_C^G(\cdot) = \overline{co}(N_C^L(\cdot))$, where \overline{co}^* denotes the weak* closed convex hull in X^*. Since $N_C^F(x)$ is convex and (strongly) closed (see [13]), we deduce from the equality (3.13) that we even have

$$N_C^F(x) = N_C^L(x) = N_C^{CL}(x) \quad \text{for all } x \in B(\overline{x}, \varepsilon) \cap C. \tag{3.14}$$

Let us now prove that the three cones in (3.14) are also equal to the cone of proximal normal functionals to C. In our uniformly convex setting where the norm $\| \cdot \|$ of X is uniformly convex and uniformly smooth, we know according to Proposition 3.1 that for any $x \in B(\overline{x}, \varepsilon) \cap C$, $x^* \in N_C^F(x)$ with $\|x^*\| < 1$, there exists $x_n \rightharpoonup x$ with $x_n \in C$, and $x^*_n \in N_C^F(x_n)$ such that $x^*_n \rightharpoonup^* x^*$. For n large enough we have $x_n \in B(\overline{x}, \varepsilon)$ and $\|x^*_n\| < 1$.

For any such integer n, for any $t \in [0, r]$ and $x' \in B(\overline{x}, \varepsilon) \cap C$, we have by (3.10)

$$\|x_n + tJ^*(x^*_n) - x'\|^2 \geq \|tJ^*(x^*_n)\|^2,$$

which gives, by passing to the limit and by the continuity of J^*,

$$\|x + tJ^*(x^*) - x'\|^2 \geq \|tJ^*(x^*)\|^2,$$

i.e., $x^* \in N_C^P(x)$ thanks to the local character (2.11) of primal proximal normal vector. So for any $x \in B(\overline{x}, \varepsilon) \cap C$ we obtain that $N_C^F(x) \subset N_C^P(x) \subset N_C^{CL}(x)$, which combined with (3.14) gives the equalities

$$N_C^P(x) = N_C^F(x) = N_C^L(x) = N_C^{CL}(x).$$

Finally, on the one hand the equality between $N_C^F(x)$ and $N_C^{CL}(x)$ ensures that C is tangentially regular at x (see [13]), and on the other hand, for $\beta = 2$, since one always has $N_C^D(x) \subset N_C^F(x)$, the inclusion $N_C^D(x) \subset N_C^P(x)$ follows. \hfill \blacksquare

We deduce from Theorem 3.2 a proximal normal formula; \limsup below is like in (3.8) the strong outer limit, i.e., for a multivalued mapping $T : X \rightharpoonup X^*$

$$\limsup_{y^* \in D} T(y) := \{\lim y_n^* : y_n^* \in T(y_n), y_n \in D \rightharpoonup x\}.$$

Proposition 3.3 Assume that the moduli of uniform convexity and of uniform smoothness of the norm $\| \cdot \|$ of X are of power type. If C is prox-regular at $\overline{x} \in X$, then there exists a neighborhood U of \overline{x} such that for any $x \in U \cap C$,

$$N_C^P(x) = N_C^{CL}(x) = \limsup_{y^* \notin C_x} \mathbb{R}_+ D_Fd_C(y)$$

or equivalently,

$$\partial d_C(x) = \partial_{CL}d_C(x) = [0, 1] \limsup_{y^* \notin C_x} D_Fd_C(y),$$

where D_F denotes the Fréchet derivative and ∂_{CL} the Clarke subdifferential.
Proof: Remember that the prox-regularity of C entails the Fréchet differentiability of d_C^2 and the single-valuedness and continuity of P_C on an open neighborhood U of x, see Theorem 2.3. Fix any $x \in U \cap C$.

Let us prove that $N_C^P(x) \subset \limsup_{y \in C \to x} \mathbb{R}^+_d C(y)$. Recall first that a nonzero continuous linear functional x^* is in $N_C^P(x)$ if and only if there exists $u \in U \setminus C$ such that $x \in P_C(u)$ and $x^* = \lambda J(u - x)$ for some $\lambda > 0$. Then for any $y \in U \cap \{tu + (1 - t)x : t \in [0, 1]\}$, one has

$$J(u - x) \in \mathbb{R}^+_d J(y - x) = \mathbb{R}^+_d P_C(y)$$

and thus for n large enough $x^* \in \mathbb{R}^+_d P_C(y_n)$ with $y_n := x + (u - x)/n$, which proves the desired inclusion.

Now for the reverse inclusion, note that for any $y \in U \setminus C$,

$$\mathbb{R}^+_d P_C(y) = \mathbb{R}^+_d J(y - P_C(y)) \subset N_C^P(P_C(y)).$$

Making $y \to x$, we have by continuity of P_C that $P_C(y) \to x$ hence, $x^* \in \limsup_{y \in C \to x} \mathbb{R}^+_d P_C(y)$ entails that $x^* \in \limsup_{x' \to x} N_C^P(x') = N_C^P(x)$, the last equality coming from the normal regularity established in Theorem 3.2. So the reverse inclusion is proved and of course, by normal regularity with respect to the proximal normal cone (see Theorem 3.2) we obtain $N_C^C(x) = N_C^P(x)$.

The equivalent formulation with the subdifferential of d_C comes from the equality $\partial_P d_C(x) = N_C^P(x) \cap B^*$ (see [8, Proposition 1.2]) and from the inclusions

$$N_C^P(x) \cap B^* \subset \partial_C d_C(x) \subset N_C^C(x) \cap B^*$$

(see [15] for the second inclusion), plus the fact that $N_C^P(x) = N_C^C(x)$.

Remark 3.4 The proximal normal formula of the above proposition precises the more general one for any closed set C in a reflexive Banach space with weaker assumptions on the norm in Borwein and Giles [9, Theorem 4].

4 Epigraphs of J-primal lower regular functions

The following proposition and its proof essentially reproduces ideas in [6, Proposition 4.8].

Proposition 4.1 Assume that the moduli of uniform convexity and uniform smoothness of the norm $\| \cdot \|$ of X are of power type. If a lsc function f is J-plr at $x \in \text{dom } f$, then its epigraph $\text{epi } f$ is prox-regular at $(x, f(x))$.

We will need the following lemma, given in [16, Exercice 2.1 (d)] in the Hilbert setting. The proof is essentially the same in our general context (without the power types of the norm), but the proximal normal cone is no more identical to $N_C^\beta(\cdot)$ with $\beta = 2$. 16
Lemma 4.2 For any $x \in \text{dom } f$ and $\alpha > f(x)$, the implication
\[
(x^*, 0) \in N_{\text{epi } f}(x, \alpha) \Rightarrow (x^*, 0) \in N_{\text{epi } f}(x, f(x))
\]
holds true.

Proof: Recall that by convention (see Section 2) the norm in $X \times \mathbb{R}$ is defined as $\|(x, r)\|^2 = \|x\|^2 + \|r\|^2$. Let $(x^*, 0) \in N_{\text{epi } f}(x, \alpha)$. This means that for all positive t close enough to 0,
\[
\inf_{(x', \alpha') \in \text{epi } f} \{\|x + tJ^*(x^*) - x'\|^2 + (\alpha' - \alpha)^2\} = \|tJ^*(x^*)\|^2. \tag{4.1}
\]
Choose any $\delta > 0$ with $\delta < \alpha - f(x)$. Fix any $(x', \alpha') \in \text{epi } f \cap B((x, f(x), \delta)$. We have $\alpha' - f(x) < \delta < \alpha - f(x)$, hence $\alpha' < \alpha$ so $(x', \alpha) \in \text{epi } f$. From (4.1) we obtain
\[
\|x + tJ^*(x^*) - x'\|^2 + (\alpha - \alpha')^2 \geq \|tJ^*(x^*)\|^2, \tag{4.2}
\]
so
\[
\inf_{(x', \alpha') \in \text{epi } f \cap B((x, f(x), \delta)) \{\|x + tJ^*(x^*) - x'\|^2 + (\alpha' - f(x))^2\} \geq \inf_{(x', \alpha') \in \text{epi } f \cap B((x, f(x), \delta)) \{\|x + tJ^*(x^*) - x'\|^2\} \geq \|tJ^*(x^*)\|^2,
\]
the last inequality being due to (4.2). Since the concept of proximal normal is local (see (2.11)), we conclude that $(x^*, 0) \in N_{\text{epi } f}(x, f(x))$. \hfill \Box

Proof of the proposition: By definition of plr function (see Definition 2.7), there exist $\Theta, \varepsilon, r > 0$ such that for any $t \geq \Theta$, any $x \in B(\overline{x}, \varepsilon)$ and $x^* \in \partial F(x)$ with $\|x^*\| \leq rt$,
\[
f(y) \geq f(x) + \langle J[J^*(x^*) - t(y - x)], y - x \rangle \text{ for all } y \in B(\overline{x}, \varepsilon). \tag{4.3}
\]
Take $(x, \alpha) \in \text{epi } f$ and $(x^*, -\lambda) \in N_{\text{epi } f}(x, \alpha)$ where $\|x - \overline{x}\| < \varepsilon$, $|\alpha - f(\overline{x})| < \varepsilon$ and $|(x^*, -\lambda)| \leq 1$. Fix any $(x', \alpha') \in \text{epi } f$ with $x' \in B(\overline{x}, \varepsilon)$.

If $\lambda > 0$, then $\alpha = f(x)$ and $\lambda^{-1}x^* \in \partial F(x)$ with $\|\lambda^{-1}x^*\| \leq 1/\lambda \leq rt$ for every $t \geq \max(\Theta, 1/(\lambda r))$. Hence by (4.3)
\[
\alpha' \geq f(x') \geq f(x) + \langle J[J^*(\lambda^{-1}x^*) - t(x' - x)], x' - x \rangle
\]
which entails
\[
0 \geq \langle J[J^*(x^*) - \lambda t(x' - x)], x' - x \rangle - \lambda(\alpha' - \alpha) - \lambda t(\alpha' - \alpha)^2.
\]
For any $t' \geq \max(\Theta, 1/r)$, since $t' \geq \max(\lambda \Theta, 1/r)$ because $1 \geq \lambda$, the latter inequality with $t = t'/\lambda$, according to (2.10), implies
\[
0 \geq \langle J_{x\in X}[J^*_{x\in X}(x^*, -\lambda) - t'((x', \alpha') - (x, \alpha))], (x', \alpha') - (x, \alpha) \rangle. \tag{4.4}
\]
If $\lambda = 0$, we get by Lemma 4.2 that $(x^*, 0) \in N_{\text{epi } f}(x, f(x))$. Since $N^{P}(\cdot) \subset N^{F}(\cdot)$, by the approximation result in Ioffe [26, p. 190] (see also [34, Lemma 2.37]) there exist sequences
\begin{align*}
(u_n, f(u_n)) &\to (x, f(x)),
(u_n^*, -\mu_n) \in N^F_{epi f}(u_n, f(u_n)) \text{ such that } \mu_n > 0 \text{ and } \|u_n^* - \mu_n\| - (x^*, 0) \| \to 0. \text{ By Proposition 3.1, for each integer } n \text{ choose } (x_n, \alpha_n) \in epi f \text{ and then } (y_n^*, -\mu_n) \in N^P_{epi f}(x_n, \alpha_n) \text{ such that } \\
\|u_n, f(u_n)) - (x_n, \alpha_n)\| < \lambda_n/2 \text{ and } \|y_n^*, -\mu_n - (u_n^*, -\lambda_n)\| < \lambda_n/2. \text{ The latter inequality ensures in particular } \mu_n > (\lambda_n/2) > 0 \text{ and hence } \alpha_n = f(x_n). \text{ Consequently for } x_n^* := \mu_n^{-1} y_n^* \text{ we have } x_n^* \in \partial_p f(x_n), (x_n, f(x_n)) \to (x, f(x)), \mu_n \downarrow 0, \text{ and } \|\mu_n x_n^* - x^*\| \to 0. \text{ For } n \text{ large enough, say } n \geq N, \text{ we have } \|x_n - x\| < \varepsilon \text{ and } \mu_n < 1. \text{ Suppose for a moment that } x^* \neq 0. \text{ Putting } t_n := \max(\frac{1}{\mu_n}\Theta, \frac{1}{\|x^*\|/r}) \text{ for } n \geq N, \text{ we see that } t_n \geq \max(\Theta, \|x_n^*\|/r) \text{ since } 1/\mu_n > 1 \text{ and } 1/\|x^*\| \geq 1, \text{ and hence applying (4.3) with } y = x' \text{ we have } \\
f(x') \geq f(x_n) + \langle J[J^*(x_n^*) - t_n(x' - x_n)], x' - x_n \rangle. \\
\text{Multiplying this inequality by } \mu_n \text{ and taking the limit we obtain } \\
0 \geq \langle J[J^*(x^*) - \rho(x' - x)], x' - x \rangle \\
\text{for } \rho := \max(\Theta, 1/r). \text{ This yields in particular } \\
0 \geq \langle J[J^*(x^*) - \rho(x' - x)], x' - x \rangle - \rho(\alpha' - \alpha)^2, \\
i.e., \\
0 \geq \langle J_{X \times R}[J^*_{X \times R}(x^*), 0] - \rho((x', \alpha') - (x, \alpha)), (x', \alpha') - (x, \alpha) \rangle, \\
\text{and it is obvious that the inequality continues to hold for } x^* = 0. \text{ Hence both (4.4) and (4.5) hold with } t' = \rho, \text{ which entails that the truncated set-valued mapping } N^P_{epi f, 1} \text{ is } J\text{-hypomonotone of degree } \rho \text{ on } B(x, \varepsilon') \text{ and hence by Theorem 2.3, the set } epi f \text{ is prox-regular at } (x, f(x)). \tag{4.5} \nonumber \end{align*}
Proposition 4.4 Assume that the moduli of uniform convexity and smoothness of the norm \(\| \cdot \| \) of \(X \) are of power type. If \(f \) is uniformly \(J \)-plr on \(X \) with parameter \(r, \Theta \), then \(\text{epi } f \) is uniformly \(r' \)-prox-regular for some \(r' \geq \frac{1}{2} \min(1/\Theta, r) \).

Proof: According to the proof of Proposition 4.1, the truncated set-valued mapping \(N^P_{\text{epi } f, 1} \) is \(J \)-hypomonotone of degree \(\rho = \max(\Theta, 1/r) \). With \(\delta = \rho - 1 \), that fact is equivalent to \(N^P_{\text{epi } f, \delta} \) being \(J \)-hypomonotone of degree 1 which by Theorem 2.6 (e) allows us to conclude. \(\blacksquare \)

That proposition allows us to establish the \(J \)-plr property of the basic function equal to the opposite of the square of the norm whenever the latter has moduli of convexity and smoothness of power type.

Proposition 4.5 Assume that the moduli of uniform convexity and smoothness of the norm \(\| \cdot \| \) of \(X \) are of power type. Then the opposite function of the square of the norm, say \(-\| \cdot \|^2 \), is uniformly \(J \)-plr on \(X \) and hence in particular \(\text{epi } (-\| \cdot \|^2) \) is uniformly \(r \)-prox-regular for some \(r \geq \frac{1}{4} \).

Proof: For any \(x \in X \), \(y = x + h \in X \), \(x^* = \partial(-\| \cdot \|^2)(x) = -2J(x) \), by the convexity of \(\| \cdot \|^2 \), we may write
\[
\| x \|^2 = \| y - h \|^2 \geq \| y \|^2 + \langle 2J(y), -h \rangle.
\]
So, we have
\[
-\| y \|^2 \geq -\| x \|^2 + \langle -2J(y), h \rangle
\]
which yields, according to the equality \(-2y = J^*(x^*) - 2(y - x) \), that
\[
-\| y \|^2 \geq -\| x \|^2 + \langle J^*[J^*(x^*) - 2(y - x)], y - x \rangle.
\]
This entails the \(J \)-hypomonotonicity of degree 2 of \(N^P_{C,1} \) where \(C := \text{epi } (-\| \cdot \|^2) \), hence the conclusion follows from (e) of Theorem 2.6 and Proposition 4.4. \(\blacksquare \)

In order to compare \(J \)-plr functions with pln functions, we suppose in Proposition 4.6 and Corollary 4.7 below that the modulus of uniform convexity is of power type \(q = 2 \). Let us recall the definition of pln functions, introduced by Poliquin in \(\mathbb{R}^n \), studied in the Hilbert setting with further developments in [31]. In [5], the definition was slightly extended in a Banach space setting into a \(\partial \)-pln concept a priori depending on the choice of a subdifferential operator \(\partial \). This is the definition given below. See also [28, 7] concerning pln functions.

Following [19] (see also [5] and the references therein), a subdifferential operator \(\partial \) associates with each function \(f : X \to \mathbb{R} \cup \{+\infty\} \) a multivalued mapping \(\partial f : X \rightrightarrows X^* \) and satisfies various assumptions commonly fulfilled by the usual subdifferentials (Fréchet, ...) on appropriate spaces. Here we will just assume that for any function \(f \) from \(X \) into \(\mathbb{R} \cup \{+\infty\} \), one has
\[
\partial_P f(x) \subset \partial f(x) \quad \text{for all } x \in X.
\]
A lsc function \(f \) is \(\partial\)-pln at \(\bar{x} \) \in \text{dom} \(f \) if there are \(\varepsilon, c, \Theta > 0 \) such that whenever \(t \geq \Theta \), \(x^* \in \partial f(x) \) with \(\|x - \bar{x}\| < \varepsilon \) and \(\|x^*\| \leq ct \), one has
\[
f(x') \geq f(x) + \langle x^*, x' - x \rangle - \frac{t}{2}\|x' - x\|^2 \quad \text{for all } x' \in B(\bar{x}, \varepsilon).
\]
Obviously, for \(\beta = 2 \) one has \(\partial f(\cdot) \subseteq \partial_\beta f(\cdot) \) on \(B(\bar{x}, \varepsilon) \) for such a function \(f \).

Note that examples of subdifferential operators that contain the proximal subdifferential operator \(\partial_P \) are given by \(\partial_P \) itself, by \(\partial_F \), and hence also by any of the many subdifferential operators that contain \(\partial_F \).

Proposition 4.6 Assume that the modulus of uniform convexity of the norm \(\| \cdot \| \) of \(X \) is of power type \(q = 2 \). If \(f \) is \(\partial\)-pln at \(\bar{x} \), then \(f \) if \(J\)-plr at \(\bar{x} \).

Proof: Under the assumptions, there exist positive numbers \(\varepsilon, r, \Theta \) such that for any \((x, x^*) \in \text{gph} \partial_P f\) with \(\|x - \bar{x}\| < \varepsilon \), \(\|x^*\| \leq rt \) and \(t \geq \Theta \),
\[
f(x') \geq f(x) + \langle x^*, x' - x \rangle - \frac{t}{2}\|x' - x\|^2 \quad \text{for all } x' \in B(\bar{x}, \varepsilon).
\]
Further, for any \(x^* \in X^*, h \in X, t' > 0 \) we may write
\[
\langle x^*, h \rangle = \langle J[J^*(x^*)] - J[J^*(x^*) - t'h], h \rangle + \langle J[J^*(x^*) - t'h], h \rangle \\
\quad \geq \frac{K}{t'}\|t'h\|^2 + \langle J[J^*(x^*) - t'h], h \rangle,
\]
the inequality being due to (2.6) with \(q = 2 \). Hence taking \(h = x' - x \), we have for any \(t' > 0 \),
\[
\langle x^*, x' - x \rangle - Kt'\|x' - x\|^2 \geq \langle J[J^*(x^*) - t'(x' - x)], x' - x \rangle.
\]
Combining the latter inequality and (4.7), we see that for any \(t' \geq \Theta/(2K) \), \((x, x^*) \in \text{gph} \partial_P f\) with \(\|x - \bar{x}\| < \varepsilon \) and \(\|x^*\| \leq (2Kr)t' \), we have
\[
f(x') \geq f(x) + \langle J[J^*(x^*) - t'(x' - x)], x' - x \rangle \quad \text{for all } x' \in B(\bar{x}, \varepsilon),
\]
that is, \(f \) is \(J\)-plr with parameters \(\varepsilon, 2rK, \Theta/(2K) \).

Corollary 4.7 Assume that the moduli of uniform convexity and smoothness of the norm \(\| \cdot \| \) of \(X \) are of power type. Under the inclusion \(\partial f(\cdot) \subseteq \partial_{C} f(\cdot) \) and the assumption of Proposition 4.6, the lsc function \(f \) is \(\partial\)-pln at \(\bar{x} \) if and only if \(f \) is \(\partial_P\)-pln at \(\bar{x} \) and then for \(\beta = 2 \) one has
\[
\partial_\beta f(x) = \partial_P f(x) = \partial f(x) = \partial_F f(x) = \partial_{L} f(x) = \partial_{C} f(x)
\]
for all \(x \) in a neighborhood of \(\bar{x} \).
Proof: Suppose that f is ∂-pln at \bar{x}. On the one hand, by (4.6), it is ∂_P-pln at \bar{x}. On the other hand, by definition of ∂-pln property the inclusion $\partial f(x) \subset \partial_\beta f(x)$ holds for $\beta = 2$ and for x in a neighborhood of \bar{x}, and by Proposition 4.6, the function f is also J-plr at \bar{x}. Therefore using (4.6) and Corollary 4.3 we obtain the equalities of the corollary.

Conversely, if f is ∂_P-pln at \bar{x}, then Proposition 4.6 again entails that f is J-plr at \bar{x} and hence by Proposition 4.1 and Theorem 3.2 we have $\partial_P f(x) = \partial_{CL} f(x)$ for all x in some neighborhood of \bar{x}. Combining the latter equality with (4.6) and the inclusion assumption $\partial f(\cdot) \subset \partial_{CL} f(\cdot)$ we obtain that $\partial f(x) = \partial_P f(x)$ for all x near \bar{x}. So f is ∂-pln at \bar{x}. ■

We have a symmetrical result when the modulus of smoothness is $s = 2$.

Proposition 4.8 Assume that the moduli of uniform convexity and uniform smoothness of the norm $\| \cdot \|$ are of power type and that the power type of smoothness is $s = 2$. If f is J-plr at \bar{x}, then f is ∂-pln at \bar{x} for any subdifferential ∂ satisfying the inclusions $\partial_P f(\cdot) \subset \partial f(\cdot) \subset \partial_{CL} f(\cdot)$.

Proof: By Corollary 4.3, for all x near \bar{x} we have $\partial CL f(x) = \partial_P f(x)$ and hence $\partial_P f(x) = \partial f(x)$. The J-plr assumption then entails that there exist positive numbers ε, r, Θ such that for any $t \geq \Theta$, $(x, x^*) \in \text{gph} \partial_P f$ with $\|x - \bar{x}\| < \varepsilon$, $\|x^*\| \leq rt$,

$$f(x') \geq f(x) + \langle J[J^*(x^*)] - t(x' - x), x' - x \rangle \quad \text{for all} \ x' \in B(\bar{x}, \varepsilon). \tag{4.8}$$

Fix now any $t \geq \Theta$, $x', x \in B(\bar{x}, \varepsilon)$ and $x^* \in \partial f(x)$ with $\|x^*\| \leq rt$. By (2.7) since $s = 2$ (the power type of smoothness of the norm), we have

$$\langle J[J^*(x^*)] - t(x' - x), x' - x \rangle \leq L\|x' - x\|^2,$$

which is equivalent to

$$\langle J[J^*(x^*)] - t(x' - x), x' - x \rangle \geq \langle x^*, x' - x \rangle - tL\|x' - x\|^2.$$

Then according to (5.3) we obtain

$$f(x') - f(x) \geq \langle x^*, x' - x \rangle - tL\|x' - x\|^2.$$

So f is ∂-pln at \bar{x}. ■

Corollary 4.9 Assume that the moduli of uniform convexity and smoothness of the norm $\| \cdot \|$ of X are of power type and that the power type of smoothness is $s = 2$. Under the assumption of Proposition 4.8, if the lsc function f is J-plr at \bar{x} then for $\beta = 2$,

$$\partial_\beta f(x) = \partial_P f(x) = \partial f(x) = \partial_{CL} f(x) = \partial_{CL} f(x)$$

for all x in a neighborhood of \bar{x}.

Proof: This a consequence of Corollary 4.3 and Proposition 4.8. ■

Uniformly pln functions are defined analogously to uniformly plr functions, i.e., f is uniformly ∂-pln if there are $c, \Theta > 0$ such that whenever $t \geq \Theta$, $x^* \in \partial f(x)$ with $\|x^*\| \leq ct$,

$$f(x') \geq f(x) + \langle x^*, x' - x \rangle - \frac{t}{2}\|x' - x\|^2 \quad \text{for all} \ x' \in X.$$
5 Prox-regularity and N-hyporegularity

Let $N(\cdot)$ be a given normal cone concept (e.g., $N^F(\cdot)$, $N^P(\cdot)$, ...) associated with a subdifferential operator ∂, i.e., for any closed set C with indicator function ψ_C, one has $N_C = \partial \psi_C$ and $\partial f(x) = \{x^* \in X^* : (x^*, -1) \in N_{\text{epi}} f(x, f(x))\}$. The normal cone $N(\cdot)$ is assumed to satisfy, for any closed set C, the inclusion $N^P_C(\cdot) \subset N_C(\cdot)$. Following [37] and the adaptation in [5], the set $C \subset X$ is N-hyporegular at $\pi \in C$ if there exist $\varepsilon, r > 0$ such that for any $x^* \in N_C(x)$ with $\|x - \pi\| < \varepsilon$, $\|x^*\| \leq 1$,

$$0 \geq \langle x^*, x' - x \rangle - \frac{1}{2r} \|x' - x\|^2 \text{ for all } x' \in B(\pi, \varepsilon) \cap C. \quad (5.1)$$

Of course, (5.1) holds if and only if the truncated normal cone $N_C(\cdot) \cap \mathbb{B}^*$ is hypomonotone near π in the usual sense, that is, there exist some $\varepsilon, r > 0$ such that for all $x_1, x_2 \in C \cap B(\pi, \varepsilon)$ and $x^*_1 \in N_C(x_1) \cap \mathbb{B}^*$, $i = 1, 2$ one has

$$\langle x^*_1 - x^*_2, x_1 - x_2 \rangle \geq -\frac{1}{r} \|x_1 - x_2\|^2. \quad (5.2)$$

In [5] a set C satisfying (5.1) with $N(\cdot)$ has been called prox-regular with respect to the normal cone $N(\cdot)$. Here we prefer to use the name of N-hyporegular set because of the characterization (5.2) as the hypomonotonicity of $N_C(\cdot) \cap \mathbb{B}^*$ (which has nothing to do with the metric projection mapping) and to reserve the name of prox-regularity set merely to translate the regularity property of the metric projection mapping in Definition 2.1 or in (iii) of Theorem 2.3.

We observe by (5.1) that C is N-hyporegular at π if and only if its indicator function ψ_C is ∂-pln at π. Remember (see Theorem 2.3 (ii)) that C is prox-regular at π if and only if ψ_C is J-plr at π. Similarly, the uniform N-hyporegularity means that the inequality (5.1) holds for all $x, x' \in C$ and $x^* \in N_C(x) \cap \mathbb{B}^*$ and this corresponds to the uniform ∂-pln property for the indicator function ψ_C. In the same way, the uniform prox-regularity of C is equivalent to the uniform J-plr property of the function ψ_C. Remember that q and s are the moduli of convexity and of smoothness respectively, and that they satisfy $1 < s \leq 2 \leq q$. The case $q = 2$ corresponds for instance to L^p spaces with $p \in]1, 2]$ and $s = 2$ to L^p spaces with $p \in [2, +\infty[$.

In the case $q = 2$, we have from the previous section the following result.

Corollary 5.1 Assume that the moduli of uniform convexity and smoothness of the norm $\|\cdot\|$ of X are of power type. When the power type of the modulus of convexity is $q = 2$, a closed set $C \subset X$ is N-hyporegular at $\pi \in C$ (resp. uniformly N-hyporegular) for a normal cone N which satisfies $N^P(\cdot) \subset N(\cdot) \subset N^G(\cdot)$ if and only if it is N^P-hyporegular at π (resp. uniformly N^P-hyporegular), and then it is also prox-regular at π (resp. uniformly prox-regular) and for $\beta = 2$ one has $N^G_C(x) = N^L_C(x) = N_C(x) = N^G_C(x)$ for any x in some neighborhood of π (resp. any $x \in C$).

Proof: The corollary is a direct consequence of Proposition 4.6 and Corollary 4.7. ■
In the case $s = 2$ we have the reverse implication. If the moduli of uniform convexity and smoothness are of power type with the power type of smoothness $s = 2$, then its proof directly follows from Proposition 4.8 and Corollary 4.9. In fact the proof below shows that the result holds without requiring that the modulus of uniform convexity be of power type.

Proposition 5.2 Assume that the modulus of smoothness of the norm $\|\cdot\|$ of X is of power type $s = 2$. If a closed set $C \subset X$ is prox-regular at $\bar{x} \in C$ (resp. uniformly prox-regular), then it is N-hyporegular at \bar{x} (resp. uniformly N-hyporegular) for any normal cone N which satisfies $N^P(\cdot) \subset N(\cdot) \subset N^{CI}(\cdot)$, and further for $\beta = 2$ one has

$$N^\beta_C(x) = N^P_C(x) = N_C(x) = N^{CI}_C(x)$$

for any x in some neighborhood of \bar{x} (resp. any $x \in C$).

Proof: We prove the result when we have local prox-regularity at a point. The prox-regularity assumption entails by Proposition 2.2 in [8] that there exist positive numbers ε, r such that for any $x \in B(\bar{x}, \varepsilon) \cap C$ and for any $x^* \in N^P_C(x)$ with $\|x^*\| \leq 1$,

$$0 \geq \langle J[J^*(x^*) - r^{-1}(x' - x)], x' - x \rangle, \quad \forall x' \in C \text{ with } \|x' - \bar{x}\| < \varepsilon. \tag{5.3}$$

Fix now any $x', x \in C \cap B(\bar{x}, \varepsilon)$ and $x^* \in N^P_C(x)$ with $\|x^*\| \leq 1$. By (2.7) since $s = 2$ (the power type of smoothness of the norm), we have

$$\langle J[J^*(x^*) - r^{-1}(x' - x)] - J[J^*(x^*)], -r^{-1}(x' - x) \rangle \leq L\|r^{-1}(x' - x)\|^2,$$

which is equivalent to

$$\langle J[J^*(x^*) - r^{-1}(x' - x)], x' - x \rangle \geq \langle x^*, x' - x \rangle - Lr^{-1}\|x' - x\|^2.$$

Then according to (5.3) we obtain

$$0 \geq \langle x^*, x' - x \rangle - Lr^{-1}\|x' - x\|^2.$$

So the set C is also N^P-hyporegular at \bar{x}.

Further, putting $\beta = 2$, on the one hand the N^P-hyporegularity ensures us that for an appropriate neighborhood U of \bar{x}, for any $x \in U \cap C$, the inclusion $N^P_C(x) \subset N^\beta_C(x)$ holds, and on the other hand by Theorem 3.2, we know that $N^\beta_C(x) \subset N^P_C(x) = N^{CI}_C(x)$. Since by assumption we have the inclusions $N^P_C(\cdot) \subset N_C(\cdot) \subset N^{CI}_C(\cdot)$, we obtain that for $\beta = 2$

$$N^\beta_C(x) = N^P_C(x) = N_C(x) = N^{CI}_C(x) \quad \text{for all } x \in U \cap C$$

and consequently, C is also N-hyporegular.

For a family of norms $(\|\cdot\|_i)_{i \in I}$, let us denote by N^i_j the normal cone N^i (e.g., N^F, N^{CI}, N^P ...) obtained by using the norm $\|\cdot\|_i$ in its definition and computation. The N^P_i cones for a closed set C will be denoted by $N^P_i(C; \cdot)$. When the norms $\|\cdot\|_i$ and $\|\cdot\|_j$ are equivalent, some normal cone concepts N^i yield $N^i_j = N^j_i$, as in the cases $N^i = N^F, N^\beta, N^{L,s}, N^L, N^{CI}$.
for instance. We will speak of \((\| \cdot \|, N)\)-hyporegularity of a set \(C\) when the property (5.1) is satisfied with the norm \(\| \cdot \| = \| \cdot \|_i\) and with the cone \(N = N_i^\beta\). When \(C\) is \((\| \cdot \|, N^\beta)\)-hyporegular for any \(i \in I\), we will say that \(C\) is \(N^\beta\)-hyporegular relatively to the family \((\| \cdot \|_i)_{i \in I}\). Similarly, the concept of prox-regularity in Definition 2.1 is a priori norm dependent, so for a given norm \(\| \cdot \|\) it has been said in that definition that the set \(C\) is \(\| \cdot \|\)-prox-regular.

From now on in the remaining of this section we address the problem of comparing the \((\| \cdot \|, N^\beta)\)-hyporegularities and \(\| \cdot \|_i\)-prox-regularities of a set \(C\) for norms in a given family \((\| \cdot \|_i)_{i \in I}\), and of comparing accordingly the normal cones \(N_i^P(C; \cdot)\) for such a set \(C\).

Note first that by passing to the limit in (5.1) and by using the comments preceding and following Proposition 3.1, it is easily seen, for a norm \(\| \cdot \|\) which is both uniformly convex and uniformly smooth, that whenever \(C\) is \((\| \cdot \|, N^\beta)\)-hyporegular at a point \(\varpi\) with \(N^\beta = N^P\) or \(N^\beta = N^F\), then it is \((\| \cdot \|, N^{L^\gamma})\)-hyporegular at \(\varpi\) with the same parameters. Further for some neighborhood \(U\) of \(\varpi\) and for \(\beta = 2\) the inclusion \(N^L_C(x) \subset N^\beta_C(x)\) holds for all \(x \in U\) and hence, \(N^L_C(x) = N^\beta_C(x) = N^L_C(x) = N^CL_C(x)\) and \(C\) is \((\| \cdot \|, N^\beta)\)-hyporegular at \(\varpi\) for any \(N^\beta\) with \(N^\beta(\cdot) \subset N^{CL}(\cdot)\).

Suppose that \((\| \cdot \|_i)_{i \in I}\) is a family of equivalent norms which are Fréchet differentiable outside zero and such that for some given \(i_0 \in I\), the norm \(\| \cdot \|_{i_0}\) is uniformly smooth and uniformly convex. From the previous remark we know that if \(C\) is \((\| \cdot \|_{i_0}, N^P)\)-hyporegular at \(\varpi \in C\) there exists some \(\gamma > 0\) and some open neighborhood \(U\) of \(\varpi\) such that for all \(x, x' \in U \cap C\) and \(x^* \in N^{L^\gamma}_{i_0}(C; x)\) with \(\|x^*\|_{i_0, *} \leq 1\) (the dual norm of \(\| \cdot \|_{i_0}\))

\[
0 \geq \langle x^*, x' - x \rangle - \alpha \|x' - x_0\|^2_{i_0}.
\]

Then for the same open neighborhood \(U\) of \(\varpi\), for each \(i \in I\) there exists some \(\gamma_i > 0\) such that for all \(x, x' \in U \cap C\) and \(x^* \in N^P(C; x)\) with \(\|x^*\|_{i, *} \leq 1\) one has

\[
0 \geq \langle x^*, x' - x \rangle - \gamma_i \|x' - x\|^2_i.
\]

Therefore for any \(i \in I\) the set \(C\) is \((\| \cdot \|_i, N^P)\)-hyporegular at any \(x \in U \cap C\) and for \(\beta = 2\) one has

\[
N^P_i(C; x) \subset N^P_C(x) = N^\beta_C(x) = N^CL_C(x) \quad \text{for all } x \in U \cap C. \tag{5.4}
\]

By specializing to certain families \((\| \cdot \|_i)_{i \in I}\) we have the next results of the section. Here is the first one.

Proposition 5.3 Suppose that \((\| \cdot \|_i)_{i \in I}\) is a family of equivalent norms which are uniformly smooth and uniformly convex with the moduli of convexity \(\delta_{\| \cdot \|_i}\) of power type \(q = 2\) for all \(i \in I\). If the closed set \(C\) is \((\| \cdot \|_{i_0}, N^P)\)-hyporegular at \(\varpi \in C\) for some \(i_0 \in I\), then the following hold.

(a) The set \(C\) is \((\| \cdot \|_{i}, N)\)-hyporegular at \(\varpi\) for any \(i \in I\), and for any normal cone \(N\) such that \(N(\cdot) \subset N^{CL}(\cdot)\);

(b) the set \(C\) is \(\| \cdot \|_{i}\)-prox-regular at \(\varpi\) for any \(i \in I\);

(c) there exists some neighborhood \(U\) of \(\varpi\) such that for any \(x \in U \cap C\) and any \(i \in I\) and
for \(\beta = 2 \) the equalities \(N^\beta_C(x) = N^P_{p_0}(C; x) = N^\text{cl}_C(x) \) hold and \(C \) is \((\| \cdot \|, N)\)-hyporegular at \(x \).

Proof: The first point has been seen above. The second and third ones come from the first one, from (5.4), and from Corollary 5.1. □

We specialize further, to the case of \(\mathbb{R}^n \) endowed with the family \((\| \cdot \|_{p>1})\) of classical \(l_p \)-norms, say \(\| x \|_p = (\sum_{k=1}^{\infty} |x_k|^p)^{1/p} \).

Proposition 5.4 Suppose that \(X = \mathbb{R}^n \) and \((\| \cdot \|_{p>1})\) is the family of \(l_p \)-norms with \(p > 1 \).

1) If for some \(p_0 > 1 \) the set \(C \) is \((\| \cdot \|_{p_0}, N^P)\)-hyporegular at \(\bar{x} \in C \), then

(a) the set \(C \) is \((\| \cdot \|_{p}, N)\)-hyporegular at \(\bar{x} \) for any \(p > 1 \) and any normal cone \(N \) such that \(N(\cdot) \subset N^\text{cl}(\cdot) \);

(b) the set \(C \) is \(\| \cdot \|_{p}\)\-prox-regular at \(\bar{x} \) for any \(p \in]1,2] \);

(c) there is some neighborhood \(U \) of \(\bar{x} \) such that for all \(p \in]1,2] \) and \(p' > 2 \) and for \(\beta = 2 \) one has

\[
N^P_{p'}(C; x) \subset N^P_{p}(C; x) = N^\beta_C(x) = N^\text{cl}_C(x) \quad \text{for any } x \in U.
\]

2) If for some \(p_0 \geq 2 \) the set \(C \) is \(\| \cdot \|_{p_0}\)-prox-regular at \(\bar{x} \in C \), then

(a') the set \(C \) is \((\| \cdot \|_{p}, N)\)-hyporegular at \(\bar{x} \) for any \(p > 1 \) and any normal cone \(N \) such that \(N(\cdot) \subset N^\text{cl}(\cdot) \);

(b') the set \(C \) is \(\| \cdot \|_{p}\)\-prox-regular at \(\bar{x} \) for any \(p \in]1,2] \);

(c') there is some neighborhood \(U \) of \(\bar{x} \) such that for all \(p \in]1,2] \) and \(p' > 2 \) and for \(\beta = 2 \) one has

\[
N^P_{p'}(C; x) \subset N^P_{p}(C; x) = N^\beta_{p_0}(C; x) = N^\text{cl}_C(x) \quad \text{for any } x \in U.
\]

Proof: Under the assumption of the first case, the property (a) like (a) in Proposition 5.3 has been seen ahead this latter. The second property (b) is a consequence of (b) in Proposition 5.3 since for any \(p \in]1,2] \), the norm \(\| \cdot \|_{p} \) has modulus of convexity of power type \(q = 2 \). Taking the open neighborhood \(U \) given by (c) of Proposition 5.3 for the family of norms \((\| \cdot \|_{p})_{p \in]1,2]}\), only the first inclusion of the third property (c) remains to be argued. It is a consequence of \(C \) being \((\| \cdot \|_{p'}, N^P)\)-hyporegular at any \(x \in U \cap C \) for any \(p' > 2 \) according to the property (a), which entails for \(\beta = 2 \) the inclusion \(N^P_{p'}(C; x) \subset N^\beta_{p_0}(C; x) \) for \(\beta = 2 \) and for any \(x \in U \cap C \).

Now concerning the second case, suppose that for some \(p_0 \geq 2 \) the set \(C \) is \(\| \cdot \|_{p_0}\)-prox-regular at \(\bar{x} \in C \). We first observe that Definition 2.1 furnishes some open neighborhood \(U \) of \(\bar{x} \) such that \(C \) is \(\| \cdot \|_{p_0}\)-prox-regular at any point \(x \in C \cap U \). Since the norm \(\| \cdot \|_{p_0} \) is uniformly smooth with modulus of smoothness \(s = 2 \), Corollary 5.1 yields that \(C \) is \(N^F \)-hyporegular at any \(x \in C \cap U \) relatively to the family \((\| \cdot \|_{p})_{p \geq 1}\) and that \(N^F_{p_0}(C; x) = N^F_{p_0}(C; x) \) for any \(x \in U \). Then for any \(p > 1 \) the set \(C \) is \((\| \cdot \|_{p}, N^P)\)-hyporegular at any \(x \in C \cap U \) and then from the first case and what precedes, we have the second and third properties (b') and (c'). □
6 Comparison of normal cones

The proposition of this section compares, for any closed subset C of X, the cone $N^P_C(\cdot)$ of proximal normal functionals with the normal cone $N^\beta_C(\cdot)$ when β is the power type of the modulus of uniform convexity or of smoothnees of the norm $\| \cdot \|$ of X.

Proposition 6.1 Let C be a closed subset of X and let $x \in C$.

(a) If the modulus of convexity of the norm $\| \cdot \|$ of X is of power type q, then

$$N^\beta_C(x) \subset N^P_C(x).$$

(b) Similarly, if the modulus of smoothness of the norm $\| \cdot \|$ of X is of power type s, then

$$N^P_C(x) \subset N^s_C(x).$$

Proof: Suppose that the modulus of convexity of $\| \cdot \|$ is of power type q. From (2.4), there exists some constant $K > 0$ such that for all $x, y \in X$,

$$\|x + y\|^q \geq \|x\|^q + q(J_q(x), y) + K\|y\|^q.$$

Take $x^* \in N^q_C(x)$, $x^* \neq 0$. There is some $\gamma, \varepsilon > 0$ such that for any $x' \in B(x, \varepsilon) \cap C$, $\langle x^*, x' - x \rangle \leq \gamma \|x' - x\|^q$. For any $x' \in B(x, \varepsilon) \cap C$ we then have for each $t > 0$

$$\|x + tJ_q^{-1}(x^*) - x'\|^q \geq \|tJ_q^{-1}(x^*)\|^q + q(J_q(tJ_q^{-1}(x^*)), x - x') + K\|x - x'\|^q,$$

that is, by the equality in (2.1)

$$\|x + tJ_q^{-1}(x^*) - x'\|^q \geq \|tJ_q^{-1}(x^*)\|^q + t^{q-1}q(J_q(tJ_q^{-1}(x^*)), x - x') + K\|x - x'\|^q,$$

hence

$$\|x + tJ_q^{-1}(x^*) - x'\|^q \geq \|tJ_q^{-1}(x^*)\|^q - t^{q-1}q\|x' - x\|^q + K\|x - x'\|^q,$$

so, whenever $t \leq (K/(\rho\gamma))^{1/(q-1)}$, we obtain

$$\|x + tJ_q^{-1}(x^*) - x'\|^q \geq \|tJ_q^{-1}(x^*)\|^q.$$

Because of the local character (2.11) of primal normal vector, the latter equality entails that $J_q^{-1}(x^*) \in PN_C(x)$, that is, $J(J_q^{-1}(x^*)) \in N^P_C(x)$. As $J(J_q^{-1}(x^*)) \in \mathbb{R}_+ x^*$, the first inclusion follows.

To prove now (b) fix any $x^* \in N^P_C(x)$ with $x^* \neq 0$. By definition of $N^P_C(\cdot)$, there exists $\delta > 0$ such that for any $t \in [0, \delta]$ and any $x' \in C$

$$\|x + tJ^{-1}(x^*) - x'\|^s \geq \|tJ^{-1}(x^*)\|^s.$$

From (2.5), there exists some constant $L > 0$ such that, for every $x, y \in X$,

$$\|x + y\|^s \leq \|x\|^s + s(J_s(x), y) + L\|y\|^s.$$

26
From the two previous estimations we derive for any $x' \in C$
\[s(J_s(\delta J^{-1}(x^*)), x - x') + L\|x - x'\|^s \geq 0, \]
that is, according to the equality in (2.1)
\[s\delta^{s-1}(J_s(J^{-1}(x^*)), x - x') + L\|x - x'\|^s \geq 0. \]
As $J_s(J^{-1}(x^*)) \in \mathbb{R}_+x^*$, we deduce that there exists some $\sigma > 0$ such that
\[\langle x^*, x' - x \rangle \leq \sigma\|x' - x\|^s \quad \text{for all} \quad x' \in C. \]
This entails that $x^* \in N^s_\mathcal{C}(x)$ and the inclusion of (b) is proved.

7 Preservation of hyporegularity and prox-regularity

This section is devoted to the study of the preservation of prox-regularity for the intersection of finitely many sets and for the inverse image. The characterizations of prox-regularity in Theorem 2.3 with the property (ii) of hypomonotonicity of the proximal normal cone as well as the property (iii) of local single valuedness and continuity of the metric projection mapping have been crucial in the study of [23] of differential inclusions of sweeping process type governed by nonconvex prox-regular sets. The regularization of such differential inclusions in Hilbert space in [42] uses the property (iv) of the same theorem. Below we will take advantage of the property (i) to investigate the stability of metrical prox-regularity under the above set-operations. In fact we will start with the stability of N^p-hyporegularity through the property (5.1) which is in the line of property (i) of Theorem 2.3.

To see first that the intersection of finitely many prox-regular sets may not be prox-regular, consider the example in \mathbb{R}^2 with its euclidian norm illustrated by the figure on the right, where the set C_1 is the whole line (x_1,x_2), $(x_i)_i$ being a sequence of points on C_1 that converges to some $x \in C_1$, and the set C_2 is the hatched surface delimited on one side by the closed arc $\hat{x}_i x$ of the half circle with radius $R = \|x_1 - x\|/2$ and on its other side by the arcs of the circles (all with the same radius $r < R$) $\hat{x}_i x_{i+1}$, $i \in \mathbb{N}$, so that x belongs also to C_2. It is easily seen that while C_1 and C_2 are both prox-regular at x (they are even uniformly prox-regular), their intersection $C_1 \cap C_2$ is not prox-regular at the point x. The figure illustrates the intersection of prox-regular sets.

Figure 1: Intersection of prox-regular sets
To provide general sufficient conditions under which the prox-regu-arity of intersection or inverse image is preserved, we need first to recall the concept of calmness. Translating the concept of calmness of a multivalued mapping in [39] we say that the intersection of a finite family of sets \((C_k)_{k=1}^m\) is \textit{metrically calm} at a point \(x \in \bigcap_{k=1}^m C_k\) provided there exist a constant \(\gamma > 0\) and a neighborhood \(U\) of \(x\) such that

\[
d(x, \bigcap_{k=1}^m C_k) \leq \gamma \left(d(x, C_1) + \cdots + d(x, C_m) \right) \quad \text{for all } x \in U. \tag{7.1}
\]

Let now \(F: X \to Y\) be a mapping from \(X\) into another uniformly convex Banach space \(Y\) and let \(D\) be a subset of \(Y\) and \(x \in F^{-1}(D)\). As above we say that the mapping \(F\) is \textit{metrically calm} at \(x\) relatively to the set \(D\) when there exist a constant \(\gamma > 0\) and a neighborhood \(U\) of \(x\) such that

\[
d(x, F^{-1}(D)) \leq \gamma d(F(x), D) \quad \text{for all } x \in U. \tag{7.2}
\]

Proposition 7.1 Let \((C_k)_{k=1}^m\) be a finite family of closed sets of \(X\) and let \(D\) be a closed set of \(Y\).

(a) If all sets \(C_k\) are \(N^p\)-hyporegular at a point \(x\) of all the sets \(C_k\) and if the intersection is metrically calm at \(x\), then this intersection set \(\bigcap_{k=1}^m C_k\) is \(N^p\)-hyporegular at \(x\) too.

(b) If a mapping \(F: X \to Y\) is of class \(C^{1,1}\) around a point \(x \in F^{-1}(D)\) and metrically calm at \(x\) relatively to \(D\) and if \(D\) is \(N^p\)-hyporegular at \(F(x)\), then the set \(F^{-1}(D)\) is \(N^p\)-hyporegular at \(x\).

Proof: Assume that each set \(C_k\) is \(N^p\)-hyporegular at \(x\) and put \(C := \bigcap_{k=1}^m C_k\). By definition of \(N^p\)-hyporegularity (see 5.1) it is easily seen that there exist some real number \(r > 0\) and some open neighborhood \(U\) of \(x\) such that for each \(k = 1, \cdots, m\) we have for all \(x \in C_k \cap U\) and \(u^* \in N_{C_k}^p(x) \cap B^*\)

\[
\langle u^*, x' - x \rangle \leq (2r)^{-1} \|x' - x\|^2 \quad \text{for all } x' \in C_k \cap U. \tag{7.3}
\]

Restricting the neighborhood \(U\) if necessary, we may suppose that the inequality (7.1) holds upon \(U\). Fix any \(x \in C \cap U\) and take any \(x^* \in N_{C_k}^p(x)\) with \(\|x^*\| \leq 1\). We have that \(x^* \in N_{C_k}^p(x)\) and hence \(x^* \in \partial_{F}d_{C}(x)\) since one knows that \(\partial_{F}d_{C}(x) = N_{C_k}^p(x) \cap B^*\) (see, e.g., [34, Corollary 1.96]). This inequality (7.1) and the definition of Fréchet subgradient easily yields that \(x^* \in \gamma \partial_{F}(d_{C_1} + \cdots + d_{C_m})(x)\) and hence in particular \(x^* \in \partial_{L}(d_{C_1} + \cdots + d_{C_m})(x)\). The functions \(d_{C_k}\) being Lipschitzian, the formula of the Mordukhovich subdifferential of a finite sum of locally Lipschitzian functions (see, e.g., [34, Theorem 3.36]) ensures us that there exist \(u^*_k \in \partial_{L}d_{C_k}(x)\) such that \(\gamma^{-1}x^* = u^*_1 + \cdots + u^*_m\). By the approximation result of Proposition 3.1 it is not difficult to see that

\[
\partial_{F}d_{C_k}(x) = N_{C_k}^F(x) \cap B^* \subset \limsup_{y \to x} N_{C_k}^p(y) \cap B^*,
\]
where we recall that the last member is the outer limit with respect the \(\| \cdot \| \)-topology of \(X^* \).
Therefore using (7.3) it is easily seen that
\[
\langle u^*_x, x' - x \rangle \leq (2r)^{-1} \| x' - x \|^2
\]
for every \(x' \in C_k \cap U \).
Consequently for any \(x' \in C \cap U \) we obtain
\[
\langle \gamma^{-1} x^*, x' - x \rangle \leq m(2r)^{-1} \| x' - x \|^2
\]
and this obviously implies that the intersection set \(C \) is \(N^P \)-hyporegular at \(\bar{\pi} \), that is, (a) is proven.

Let us now establish (b). Fix some open convex neighborhood \(U \) of \(\bar{\pi} \) over which (7.2) holds and over which the mapping \(F \) as well as its derivative \(DF(\cdot) \) are Lipschitzian with Lipschitzian constants \(K \) and \(K_1 \) respectively. For \(S := F^{-1}(D) \) fix any \(x \in U \cap S \) and \(x^* \in N^P_S(x) \) with \(\| x^* \| \leq 1 \). As above we have \(x^* \in \partial_P d_S(x) \) and this entails by (7.2) that \(x^* \in \gamma \partial_f (d_D \circ F)(x) \) and hence \(x^* \in \gamma \partial_{L_D}(d_D \circ F)(x) \). The subdifferential chain rule (see, e.g., [34, Corollary 3.43]) gives some \(y^* \in \partial_{L_D}(F(x)) \) such that \(\gamma^{-1} x^* = y^* \circ DF(x) \). Fix by (5.1) some open neighborhood \(V \) of \(F(\bar{\pi}) \) and some constant \(r > 0 \) such that
\[
\langle v^*, y' - y \rangle \leq (2r)^{-1} \| y' - y \|^2
\]
for all \(y \in V \cap D, y' \in V \cap D \) and \(v^* \in N^P_D(y) \cap \mathbb{B}^* \). (7.4)
Restricting the open convex neighborhood \(U \) of \(\bar{\pi} \) if necessary, we may suppose that \(F(U) \subset V \). Then
\[
y^* \in \partial_F d_D(F(x)) = N^P_D(F(x)) \cap \mathbb{B}^* \subset \limsup_{y \to F(x)} N^P_D(y) \cap \mathbb{B}^*
\]
and hence according to 7.4
\[
\langle y^*, y' - F(x) \rangle \leq (2r)^{-1} \| y' - F(x) \|^2
\]
for all \(y' \in V \cap D \). (7.5)
Fix any \(x' \in S \cap U \) and write
\[
F(x') - F(x) = DF(x)(x' - x) + \int_0^1 (DF(x + t(x' - x)) - DF(x))(x' - x) \, dt
\]
and then
\[
\langle \gamma^{-1} x^*, x' - x \rangle = \langle y^*, F(x') - F(x) \rangle - \int_0^1 \langle y^* \circ (DF(x + t(x' - x)) - DF(x)), x' - x \rangle \, dt
\]
Using (7.5) we obtain
\[
\langle x^*, x' - x \rangle \leq \gamma(2r)^{-1} \| F(x') - F(x) \|^2 + \gamma K_1 \| x' - x \|^2 \leq \gamma(K^2(2r)^{-1} + K_1) \| x' - x \|^2
\]
The latter being true for all \(x, x' \in S \cap U \) and \(x^* \in N^P_S(x) \cap \mathbb{B}^* \), we conclude that the set \(S \) is \(N^P \)-hyporegular at \(\bar{\pi} \).

For the convenience of the reader we made the choice to prove first the \(N^P \)-hyporegularity of the intersection and then to give the additional arguments yielding to the \(N^p \)-hyporegularity of the inverse image. However the case of the intersection can be derived from that of the inverse image. Indeed putting \(Y = X^m, F(x) = (x, \ldots, x) \) for all \(x \in X \), and \(D = C_1 \times \cdots \times C_m \) we see that \(F^{-1}(D) = \bigcap_{k=1}^m C_k \) and then some direct arguments and computation allow us to obtain through (b) the result of (a).

We state now the following corollary which is a direct consequence of Corollary 5.1.
Corollary 7.2 Assume that the moduli of convexity and smoothness of the norm of X are of power type and the power type of convexity is $q = 2$. Then under the assumptions of Proposition 7.1 the sets $\bigcap_{k=1}^{m} C_k$ and $F^{-1}(D)$ are prox-regular at \overline{x}.

When the spaces $(X, \| \cdot \|)$ and $(Y, \| \cdot \|)$ are Hilbert spaces, Proposition 7.1 translates, according to Corollary 5.1 and Proposition 5.2, the preservation of prox-regularity.

Corollary 7.3 Assume that X and Y are Hilbert spaces for their respective norms. Let $(C_k)_{k=1}^{m}$ be a finite family of closed sets of X and let D be a closed set of Y.

(a) If all sets C_k are prox-regular at a point \overline{x} of all the sets C_k and if the intersection is metrically calm at \overline{x}, then this intersection set $\bigcap_{k=1}^{m} C_k$ is prox-regular at the point \overline{x}.

(b) If a mapping $F : X \to Y$ is of class $C^{1,1}$ around a point $\overline{x} \in F^{-1}(D)$ and metrically calm at \overline{x} relatively to D and if D is prox-regular at $F(\overline{x})$, then the set $F^{-1}(D)$ is prox-regular at \overline{x}.

An analysis of the proof of Proposition 7.1 reveals that a uniform version also holds. We state it only in the case of an intersection and let the case of the inverse image to the reader.

Proposition 7.4 Assume that all the closed sets C_k, $k = 1, \ldots, m$, are r-uniformly N^P-hyporegular (resp. r-uniformly prox-regular and $(X, \| \cdot \|)$ is a Hilbert space) and that their intersection is calm at anyone of its points with the same modulus γ of metric calmness in (7.1). Then the set $\bigcap_{k=1}^{m} C_k$ is r'-uniformly N^P-hyporegular (resp. r'-uniformly metrically prox-regular) with $r' := r/(m\gamma)$.

In the literature there are conditions with normal cones easy to handle ensuring the metric calmness inequalities (7.1) and (7.2). For example such a condition for (7.1) is known (see, e.g., [27, p. 548-549]) under the name of general position condition for intersection of finitely many sets. In the context of our uniformly convex Banach space, the concept can be translated by saying that the closed sets C_1, \ldots, C_m are (relative to the Fréchet normal cone) in sequential general position at $\overline{x} \in \bigcap_{k=1}^{m} C_k$ whenever for any sequence of tuples $(x_{1,n}, \ldots, x_{m,n}, x_{1,n}^*, \ldots, x_{m,n}^*)$ such that $x_{k,n} \in C_k$, $x_{k,n} \to \overline{x}$, $x_{k,n}^* \in N_{C_k}(x_{k,n}) \cap B^*$ and such that $\| \sum_{k=1}^{m} x_{k,n}^* \| \to 0$, one has $\| x_{k,n}^* \| \to 0$ for any $k = 1, \ldots, m$.

Another condition which is much easier to handle involves as above a property with normal cones but at the fixed point \overline{x}. It probably appears for the first time as one of the assumptions of Theorem 4.10 of Federer’s seminal paper [25] for sets of \mathbb{R}^n which are not submanifolds. The sets C_k, $k = 1, \ldots, m$, are (relative to the limiting normal cone) in pointbased general position at \overline{x} provided the equality $x_1^* + \cdots + x_m^* = 0$ with $x_k^* \in N_{C_k}^L(x_k)$ entails $x_1^* = \cdots = x_m^* = 0$.

Recall now that a closed set of X is compactly epi-Lipschitzian at $\overline{x} \in C$ (a concept due to J. M. Borwein and H. M. Strójwas [10]) if there exist a compact set Q, a neighborhood V of zero, a neighborhood U of \overline{x} in X, and a positive real number ε such that

$$C \cap U + tV \subset C + tQ$$

for all $t \in [0, \varepsilon]$.
Of course any closed subset of X is compactly epi-Lipschitzian at any of its points whenever the space X is finite dimensional.

Corollary 7.5 Let $(C_k)_{k=1}^m$ be a finite family of closed sets of X and $\bar{x} \in \bigcap_{k=1}^m C_k$. Then the following hold.
(a) If the sets C_k are in sequential general position at \bar{x} and if each set C_k is N^p-hyporegular at \bar{x} (resp. prox-regular at \bar{x} and $(X, \| \cdot \|)$ is a Hilbert space), then the intersection $\bigcap_{k=1}^m C_k$ is N^p-hyporegular (resp. prox-regular) at \bar{x}.
(b) If all the sets C_k except at most one are compactly epi-Lipschitzian at \bar{x}, then the sequential general position in (a) may be replaced by the corresponding pointbased general position at \bar{x}.
(c) If the space X is finite dimensional, again the sequential general position in (a) may be replaced by the corresponding pointbased general position at \bar{x}.

Proof: (a) Since the uniformly convex Banach space X is an Asplund space, the sequential general position is known to entail the metric calmness property (7.1) (and even more) according to Proposition 6 in p. 548 and Theorem 2 in p. 545 of [26] (for example). Then the conclusion of (a) follows from Proposition 7.1 (resp. Corollary 7.3).
(b) The result comes from the fact that the assumption of compactly epi-Lipschitzian property combined with the pointbased general position at \bar{x} ensures (see, e.g., [29, Theorem 3.4]) that the intersection is metrically regular and hence metrically calm at \bar{x}.
(c) This is a direct consequence of (b).

The result in (c) was previously established in (5) of Theorem 4.10 in [25].

8 Conical derivative of the mapping P_C

The following result is well-known for convex sets of Hilbert space (see Zarantonello [45, p. 300]). The term conical derivative has been coined in page 301 of [45]. The result has been independently extended by Canino [14] to closed p-convex sets of Hilbert space and by Shapiro [40] to closed sets with 2-order tangential property of Hilbert space too. It is actually known (see [38]) that, in the context of Hilbert space, the concept of p-convex set is equivalent to uniform prox-regularity and the 2-order tangential property is equivalent to the local prox-regularity. The related result in [40] may then be translated for prox-regular sets. Note also that the proof in [14] still holds for sets which are prox-regular at the considered point of the Hilbert space. Our proposition below deals with the context of uniformly convex space.

Proposition 8.1 Assume that the moduli of uniform convexity and smoothness of the norm $\| \cdot \|$ of X are of power type. Assume also that the closed set C of X is prox-regular at $\bar{x} \in C$. Then there exists an open neighborhood U of \bar{x} such that P_C is single valued and continuous on U and such that for any $x \in U \cap C$ and $y \in X$ for which the mapping $t \mapsto \frac{1}{t}[P_C(x+ty)-x]$
is bounded on some interval \([0, t_0]\), one has

\[
\lim_{t \downarrow 0} \frac{1}{t} [P_C(x + ty) - x] = P_{K_C(x)}(y)
\]

and the directional derivative \(d'_C(x; y) := \lim_{t \downarrow 0} \frac{1}{t} [d_C(x + ty) - d_C(x)]\) of \(d_C\) at \(x\) in the direction \(y\) exists and

\[
d'_C(x; y) = d(y, K_C(x)),
\]

which translates in the terminology of [45] that \(d'_C(x; \cdot)\) is a conical derivative.

Proof: By the inequality (3.12) of the proof of Theorem 3.2, there exist \(\varepsilon, r > 0\) with \(\varepsilon < 1/2\) such that \(P_C\) is a single-valued continuous mapping on \(B(\mathcal{I}, \varepsilon)\) and

\[
\langle x^* - u^*, u - x \rangle \leq \frac{2}{r} \|x - u\| \omega_{r+1}(\|x - u\|) \quad (8.1)
\]

for all \(x, u \in B(\mathcal{I}, \varepsilon)\) and all \(x^* \in N_{r}^{P}(x), u^* \in N_{r}^{P}(u)\) with \(||x^*|| \leq 1\) and \(||u^*|| \leq 1\), where \(\omega_{r+1}\) is the modulus of uniform continuity of the duality mapping \(J\) over the bounded set \((r+1)\mathcal{B}\). Let \(x \in B(\mathcal{I}, \varepsilon) \cap C, y \in X\), and \(t_0 > 0\) such that the mapping \(t \mapsto \frac{1}{t}[P_C(x + ty) - x]\) is bounded on \([0, t_0]\), say by \(\beta > 0\). We may suppose that for all \(t \in [0, t_0]\) we have \(x + ty \in B(\mathcal{I}, \varepsilon)\) and \(P_C(x + ty) \in B(\mathcal{I}, \varepsilon)\). For any \(t \in [0, t_0]\) putting \(h'_t := \frac{1}{t}[P_C(x + ty) - x]\), we see that

\[
y - h'_t = \frac{1}{t}[x + ty - P_C(x + ty)]
\]

and hence \(y - h'_t \in PN_{C}(P_C(x + ty)), i.e., J(y - h'_t) \in N_{r}^{P}(P_C(x + ty))\).

Take now any sequence \((t_n)_n\) of \([0, t_0]\) converging to 0. The sequence \((J(y - h'_{t_n}))_n\) being bounded, there exists an increasing function \(\sigma : \mathbb{N} \to \mathbb{N}\) such that the sequence \((J(y - h'_{t_{\sigma(n)}}))_n\) converges weakly star to \(J(y - h)\) for some vector \(h \in X\). As \(N_{r}^{P}(x) = N_{r}^{P}(x)\) (see Theorem 3.2), we have \(J(y - h) \in N_{r}^{P}(x)\). Put \(h_n := h'_{t_{\sigma(n)}}\). By (8.1) there exists some constant \(\gamma > 0\) independent of \(n\) such that for \(\lambda_n := t_{\sigma(n)}\)

\[
\langle J(y - h_n) - J(y - h), x - P_C(x + \lambda_n y), -\lambda_n h_n \rangle \leq \frac{\gamma}{r} \|P_C(x + \lambda_n y) - x\| \omega_{r+1}(\|P_C(x + \lambda_n y) - x\|).
\]

The latter inequality is equivalent to

\[
\langle J(y - h_n) - J(y - h), -\lambda_n h_n \rangle \leq \frac{\gamma}{r} \|P_C(x + \lambda_n y) - x\| \omega_{r+1}(\|P_C(x + \lambda_n y) - x\|),
\]

that is,

\[
\langle J(y - h_n) - J(y - h), (y - h_n) - (y - h) \rangle - \langle J(y - h_n) - J(y - h), h \rangle \\
\leq \frac{\gamma}{r} \|\frac{1}{\lambda_n}[P_C(x + \lambda_n y) - x]\| \omega_{r+1}(\|P_C(x + \lambda_n y) - x\|).
\]

If \(\max\{\|y - h_n\|, \|y - h\|\} = 0\) for infinitely many \(n\), then for all these integers \(n\) we have \(y = h_n = h\) and hence by definition of \(h_n\) we obtain \(h = \frac{1}{\lambda_n}[P_C(x + \lambda_n y) - x]\), which yields
h ∈ K_C(x). Suppose now that max{\|y - h_n\|, \|y - h\|} > 0 for all n not less than some n_0. According to (2.2) for some constant K_2 > 0 we have for all n ≥ n_0
\[
K_2(\max\{\|y - h_n\|, \|y - h\|\})^2 \delta_{\|\cdot\|} \left(\frac{\|h_n - h\|}{2(\max\{\|y - h_n\|, \|y - h\|\})}\right)
\leq \langle J(y - h_n) - J(y - h), h \rangle + \frac{\gamma}{r} \frac{1}{\lambda_n} \|P_C(x + \lambda_n y) - x\| \omega_{r+1}(\|P_C(x + \lambda_n y) - x\|),
\]
and since the first expression of the second member tends to 0 and the modulus of convexity \(\delta_{\|\cdot\|}\) is an increasing function with \(\delta_{\|\cdot\|}(t) \rightarrow 0\) it is not difficult to see that \(\|h_n - h\| \rightarrow 0\) and by definition of \(h_n\) we obtain \(h ∈ K_C(x)\). So in any case, we have \(h ∈ K_C(x)\) and the sequence \((h_n)_n\) strongly converges to \(h\).

Take now any \(v ∈ K_C(x)\). Since \(K_C(x) = T_C(x)\) according to Theorem (3.2), there is a sequence \((z_n)_n\) converging to \(v\) such that \(x + \lambda_n z_n ∈ C\) for all \(n\). This entails that for all \(n\)
\[
\|x + \lambda_n y - (x + \lambda_n z_n)\| ≥ \|x + \lambda_n y - P_C(x + \lambda_n y)\|
\]
which is equivalent to
\[
\|y - z_n\| ≥ \|y + \frac{1}{\lambda_n} [x - P_C(x + \lambda_n y)]\|
\]
Then passing to the limit with \(n → ∞\), we obtain \(\|y - v\| ≥ \|y - h\|\) for all \(v ∈ K_C(x)\), which means that \(h = P_{K_C(x)}(y)\). So for any sequence of positive numbers \((t_n)_n\) converging to 0 there exists a subsequence \((t_{\sigma(n)})_n\) such that
\[
\lim_{n → ∞} \frac{1}{t_{\sigma(n)}} [P_C(x + t_{\sigma(n)} y) - x] = P_{K_C(x)}(y).
\]
Consequently
\[
\lim_{t↓0} \frac{1}{t} [P_C(x + ty) - x] = P_{K_C(x)}(y). \quad (8.2)
\]
Concerning the equality of the directional derivative of the distance function to the set \(C\), observe first that for any positive number \(t\) small enough
\[
\frac{1}{t} [d_C(x + ty) - d_C(x)] = \frac{1}{t} d_C(x + ty) = \frac{1}{t} \|P_C(x + ty) - (x + ty)\| = \|\frac{1}{t} [P_C(x + ty) - x] - y\|.
\]
Then taking (8.2) into account and passing to the limit when \(t ↓ 0\) give that the directional derivative \(d'_C(x; y)\) exists and
\[
d'_C(x; y) = \|P_{K_C(x)}(y) - y\| = d(y, K_C(x)).
\]
In the case of a Hilbert space \(X\) the mapping \(P_C\) is Lipschitzian near \(x\) (see [38]) and hence the boundedness assumption of the proposition above is fulfilled and one recovers in
Corollary 8.2 below the result of Proposition 2.12 in [14] and Theorem 3.1 in [40]. The result is proved in [40] through some properties of solutions of perturbed optimization problems satisfying some appropriate conditions. The proof in [14] is based on the duality in Hilbert space between the tangent cone $K_C(x)$ and the primal normal cone $PN_C(x)$ for prox-regular sets C. Such a duality property is not available in the non Hilbert setting because of the nonlinearity of the duality mapping J. Instead, our proof of Proposition 9.1 above is related to the tangential regularity of C established in Theorem 3.2 and to the sequential characterization of the Clarke tangent cone (recalled in the beginning of Section 3).

Corollary 8.2 ([14, Proposition 2.12] and [40, Theorem 3.1]) Assume that X is a Hilbert space and that C is prox-regular at $x \in C$. Then for some neighborhood U of x one has for all $x \in U \cap C$ and $y \in X$ the directional derivatives of P_C and d_C at x in the direction y exist and
\[
\lim_{t \to 0} \frac{1}{t} [P_C(x + ty) - x] = P_K_C(y) \quad \text{and} \quad d'_C(x; y) = d(y, K_C(x)).
\]

9 Convergence

In this section we are interested in the behavior of the projection mapping under convergence of prox-regular sets.

Let us begin by recalling some properties of the projection mapping of a prox-regular set and by providing some additional facts. Consider a uniformly r-prox-regular closed set C. We saw in the statement of Theorem 2.6 that the function d^2_C is Fréchet differentiable on the r-open neighborhood $O_C(r)$ and that P_C is a single-valued and norm-to-norm continuous mapping from $O_C(r)$ into C. Moreover, Proposition 5.5 in [8] gives for any $x \in O_C(r)$
\[
D\left(\frac{1}{2}d^2_C\right)(x) = J(x - P_C(x)).
\]

Concerning the continuity of P_C, Theorem 5.2 in [8] says more, in the sense that P_C is locally Hölder continuous on $O_C(r)$. The following two propositions furnish some further points that we will need in Theorem 9.4 below. Recall that q (resp. s) denotes the power type of the modulus of convexity (resp. smoothness) of the norm of X.

Proposition 9.1 Assume that the moduli of uniform convexity and smoothness of the norm $\|\cdot\|$ of X are of power type q and s respectively. Let r, r' be two positive numbers with $r' < \frac{r}{2}$ and let a number $\rho > 0$. Then there exists some constant $\gamma \geq 0$ depending only on r, r' and ρ such that, for any uniformly r-prox-regular closed subset C of X, one has
\[
\|P_C(x_1) - P_C(x_2)\| \leq \gamma \|x_1 - x_2\|^\frac{1}{q} \quad \text{and} \quad |Dd^2_C(x_1) - Dd^2_C(x_2)| \leq \gamma \|x_1 - x_2\|^\frac{s-1}{q} \quad (9.2)
\]
for all $x_1, x_2 \in O_C(r') \cap \rho B$.

Proof: Take $\alpha \in (0, 1/2]$ such that $r' = \alpha r$. By Step 1 of the proof of Theorem 5.2 in [8] the truncated normal cone set-valued mapping $N^P_{C,r}(\cdot)$ is J-hypomonotone of degree 1 and hence so is the set-valued mapping $N^P_{C,\alpha r}(\cdot)$. Referring to the proof of Lemma 2.7 in [8] with
\[T(\cdot) := N_{C_p}(\cdot) \text{ and } r := 1, \text{ since } \alpha^{-1} > 2\pi \]
the development there reveals that, fixing \(\lambda \) satisfying \(2\alpha < \lambda < 1 \), there exists some constant \(\gamma' > 0 \) depending only on \(\alpha, \rho, \) and \(r \) such that \(Q := (I + \alpha J^* \circ N_{C_p,r}^{-1}) \) is on \(\rho B \cap \text{Dom } Q \) a single valued mapping for which

\[\|Q(x_1) - Q(x_2)\| \leq \gamma' \|x_1 - x_2\|^{\frac{1}{\gamma}} \text{ for all } x_1, x_2 \in \rho B \cap \text{Dom } Q. \quad (9.3) \]

Observe now that for \(x \in O_C(\alpha r) \) we have \(J(x - P_C(x)) \in N_{C}^P(P_C(x)) \) (by definition of proximal normal functional) and \(\|J(x - P_C(x))\| < \alpha r \) and that those two facts imply \(J(x - P_C(x)) \in \alpha N_{C,r}^P(P_C(x)) \), that is, \(P_C(x) = (I + \alpha J^* \circ N_{C,r}^{-1})(x) \). We may then reformulate (9.3) in the form

\[\|P_C(x_1) - P_C(x_2)\| \leq \gamma' \|x_1 - x_2\|^{\frac{1}{\gamma}} \text{ for all } x_1, x_2 \in O_C(\alpha r') \cap \rho B. \]

Concerning the square distance function \(d_C^2 \), we know that it is (see 9.1) Fréchet differentiable on \(O_C(r) \) with \(Dd_C^2(x) = 2J(x - P_C(x)) \) for all \(x \in O_C(r) \). So using (2.9) and the latter inequality above, we have for all \(x_1, x_2 \in O_C(\alpha r') \cap \rho B \)

\[\|Dd_C^2(x_1) - Dd_C^2(x_2)\| \leq 2L(\|x_1 - P_C(x_1) - x_2 + P_C(x_2)\|) \]

\[\leq 2L(\|x_1 - x_2\| + \gamma' \|x_1 - x_2\|^{\frac{1}{\gamma}}) \]

\[\leq 2L(\gamma' + (2\rho)^{1-\frac{1}{\gamma}}) \|x_1 - x_2\|^{\frac{1}{\gamma}} . \]

It suffices to take \(\gamma = \max\{\gamma', 2L(\gamma' + (2\rho)^{1-\frac{1}{\gamma}})\} \) to obtain both inequalities in the statement of the proposition.

In the proposition above, under the restriction \(r' < r \), the power of Hölder continuity of \(P_C \) over \(O_C(\alpha r') \cap \rho B \) is the constant \(1/q \) (the inverse of the power type of uniform convexity of \(\| \cdot \| \)), i.e., only the modulus \(\gamma \) of Hölder continuity varies with \(r' \) and \(\rho \). Relaxing the restriction \(r' < r/2 \) into \(r' < r \) and letting the power of Hölder continuity depending also on \(r' \) and \(\rho \), we can prove the following result of Hölder continuity of \(P_C \) on \(O_C(\alpha r') \cap \rho B \) but this time with any \(r' < r \).

Before stating the result, recall that for any \(r > 0 \) the (closed) \(r \)-enlargement \(C(r) \) of \(C \) is given by \(C(r) := \{x \in X : d(x, C) \leq r\} \).

Proposition 9.2 Assume that the moduli of uniform convexity and smoothness of the norm \(\| \cdot \| \) of \(X \) are of power type \(q \) and \(s \) respectively. Let \(\rho, r, r' \) be positive real numbers with \(r' < r \). Then there exist some positive constants \(\gamma \) and \(\theta \leq 1 \) both depending only on \(r', r \) and \(\rho \), such that for any uniformly \(r \)-prox-regular closed set \(C \) of \(X \) one has

\[\|P_C(x_1) - P_C(x_2)\| \leq \gamma \|x_1 - x_2\|^\theta \text{ and } \|Dd_C^2(x_1) - Dd_C^2(x_2)\| \leq \gamma \|x_1 - x_2\|^{\theta(s-1)} \quad (9.4) \]

for all \(x_1, x_2 \in O_C(\alpha r') \cap \rho B \).

More precisely, defining \((\alpha_n) \) by \(\alpha_1 = \frac{1}{2} \) and \(\alpha_{n+1} = \frac{1+\alpha_n}{2} \), then for any \(n \in \mathbb{N}, \rho > 0, \alpha' \in [0, \alpha_n], \) there exists some positive real number \(k \) (depending only on \(\rho, \alpha' \) and \(n \)) such that, for any uniformly \(r \)-prox-regular closed set \(C \) of \(X \), the metric projection mapping \(P_C \) is Hölder continuous on \(O_C(\alpha r') \cap \rho B \) with power \(\theta := \frac{1}{q'} \) and with modulus \(k \).
Proof: Let us call $P(n)$ the property above in the second part of the proposition for P_C of any uniformly r-prox-regular closed set C. Note that $P(1)$ is Proposition 9.1. Suppose that $P(n)$ is fulfilled, and fix any uniformly r-prox regular closed set C and any $\rho > 0$, $\alpha' \in]0, \alpha_n]$. We may suppose that $O_C(r) \cap \rho \mathbb{B} \neq \emptyset$. By Theorem 2.6 and Lemma 5.4 in [8], the closed set $C(\alpha' r)$ is uniformly $(1 - \alpha')r$-prox-regular. Then applying now Proposition 9.1 to the set $C(\alpha' r)$ yields that for any $\lambda \in]0, 1]$,}

$$P_{C(\alpha' r)}$$

is Hölder continuous on $O_{C(\alpha' r)}(\lambda \frac{1 - \alpha'}{2} r) \cap \rho \mathbb{B}$ with power $1/q$ \quad (9.5)

and with modulus depending only on ρ, λ, α', and r. On the other hand, we have that for any $t > 0$, $O_C(\alpha' r + t) = O_{C(\alpha' r)}(t)$. Indeed, from Lemma 5.3 (a) in [8] (see also [13]), for any $\tau > 0$ and any $u \notin C(\tau)$ one has $d_C(u) = \tau + d_{C(\tau)}(u)$. Hence, for any $u \in X$, one has the equivalence $d_C(u) < \alpha' r + t \iff d_{C(\alpha' r)}(u) < t$, that is, the desired equality holds. This entails that

$$O_{C(\alpha' r)}(\lambda \frac{1 - \alpha'}{2} r) = O_{C(\alpha' r + \lambda \frac{1 - \alpha'}{2} r)}.$$ \quad (9.6)

By (9.5) and (9.6) there exists some constant $K_1 > 0$ (depending only on ρ, λ, α', and r) such that

$$\|P_{C(\alpha' r)}(u_1) - P_{C(\alpha' r)}(u_2)\| \leq K_1 \|u_1 - u_2\|^{1/q} \text{ for all } u_i \in O_{C(\alpha' r + \lambda \frac{1 - \alpha'}{2} r)}.$$ \quad (9.7)

Fixing $b_\rho \in O_C(r) \cap \rho \mathbb{B} \neq \emptyset$, we find some $a_\rho \in C$ with $\|a_\rho\| \leq r + \rho$. Combining this with (9.7), we obtain that there is some $\rho' > 0$ (depending only on ρ, λ, α', and r) such that

$$\|P_{C(\alpha' r)}(u)\| \leq \rho' \text{ for all } u \in (\rho \mathbb{B}) \cap O_{C(\alpha' r + \lambda \frac{1 - \alpha'}{2} r)}$$ \quad (9.8)

(take $u_1 = u$ and $u_2 = a_\rho$ in (9.7)). The equality (9.6) also implies, according to Theorem 2.6 that for any $u \in O_{C(\alpha' r + \lambda \frac{1 - \alpha'}{2} r)} \setminus C(\alpha' r)$, the points $y := P_{C(\alpha' r)}(u)$ and $z := P_C(y)$ exist. By (c) of Lemma 5.3 in [8], for any such u we have consequently $z = P_C(u)$ and so, $P_C(u) = P_C \circ P_{C(\alpha' r)}(u)$. From this, if $u_1, u_2 \in (\rho \mathbb{B}) \cap (O_{C(\alpha' r + \lambda \frac{1 - \alpha'}{2} r)} \setminus C(\alpha' r))$, then for any $\alpha'' \in]\alpha', \alpha_n]$ we have

$$\|P_C(u_1) - P_C(u_2)\| = \|P_C(P_{C(\alpha' r)}(u_1)) - P_C(P_{C(\alpha' r)}(u_2))\| \leq K_2 \|P_{C(\alpha' r)}(u_1) - P_{C(\alpha' r)}(u_2)\|^{1/q'}$$

for some constant $K_2 > 0$ (depending only on ρ', α'', and n), according to $P(n)$ and to the fact that, by (9.8), for $i = 1, 2$, $P_{C(\alpha' r)}(u_i) \in \rho' \mathbb{B} \cap O_{C(\alpha'' r)}$. Taking (9.7) into account we obtain that there exists some constant K_3 (depending only on ρ, λ, α', r and n) such that for all $u_1, u_2 \in (\rho \mathbb{B}) \cap (O_{C(\alpha' r + \lambda \frac{1 - \alpha'}{2} r)} \setminus C(\alpha' r))$

$$\|P_C(u_1) - P_C(u_2)\| \leq K_3 \|u_1 - u_2\|^{1/q''}$$

(9.9)

and this inequality is still true for all $u_i \in \rho \mathbb{B}$ satisfying $\alpha' r \leq d(u_i, C) < \alpha' r + \lambda \frac{1 - \alpha'}{2} r$. On $\rho \mathbb{B} \cap C(\alpha' r)$, $P(n)$ ensures that P_C also has the Hölder continuity property with power $1/q''$.
and hence also with power $1/q^{n+1}$ (because of the boundedness of $\rho B \cap (\alpha')r$). Then there exists some positive constant K_4 (depending only on ρ, λ, α', r and n) such that
\[
\|P_C(u_1) - P_C(u_2)\| \leq (K_4/2) \|u_1 - u_2\|^{1/q^{n+1}}
\]
for all $u_1, u_2 \in (\rho B) \cap (OC(\alpha' r + \lambda \frac{1-\alpha'}{2} r))$ satisfying either $d(u_i, C) \geq \alpha' r$ for $i = 1$ and $i = 2$ or $d(u_i, C) \leq \alpha' r$ for $i = 1$ and $i = 2$. In the remaining case where $u_1, u_2 \in (\rho B) \cap (OC(\alpha' r + \lambda \frac{1-\alpha'}{2} r))$ with $d(u_1, C) < \alpha' r$ and $d(u_2, C) > \alpha' r$, the continuity of $d(\cdot, C)$ over the line segment $[u_1, u_2]$ yields some point $u_0 \in \]u_1, u_2[\$ such that $d(u_0, C) = \alpha' r$; then
\[
\|P_C(u_1) - P_C(u_2)\| \leq (K_4/2)(\|u_1 - u_0\|^{1/q^{n+1}} + \|u_0 - u_2\|^{1/q^{n+1}}) \leq K_4(\|u_1 - u_2\|^{1/q^{n+1}}),
\]
the second inequality being due to the inequalities $\|u_i - u_0\| \leq \|u_1 - u_2\|$. The mapping P_C is then Hölder continuous on $\rho B \cap (OC(\alpha' r + \lambda \frac{1-\alpha'}{2} r))$ with modulus K_4 and power $1/q^{n+1}$.

We have shown that, for any $\lambda \in [0, 1]$, $\alpha' \in [0, \alpha_n]$, and $\rho > 0$, there exists some positive real number k (depending only on ρ, α', λ, and n) such that, for any uniformly r-prox-regular set C, the metric projection mapping P_C is Hölder continuous on $\rho B \cap OC(\alpha' r + \lambda \frac{1-\alpha'}{2} r)$ with power $1/q^{n+1}$ and with modulus k. This means that for any $\alpha' \in [0, \alpha_n]$, there is some positive k (depending only on ρ, α', and n) such that, for any uniformly r-prox-regular set C of X, the mapping P_C is Hölder continuous on $\rho B \cap OC(\alpha' r + \lambda \frac{1-\alpha'}{2} r)$ with power $1/q^{n+1}$ and modulus k. Consequently $\mathcal{P}(n + 1)$ holds true since $\alpha' r + \frac{1-\alpha'}{2} r = \frac{1+\alpha'}{2} r$.

The Hölder continuity of the function $Dd_C^2(\cdot)$ is obtained like in the proof of Proposition 9.1.

\textbf{Remark 9.3} When $(X, \| \cdot \|)$ is a Hilbert space, where $\| \cdot \|$ is the norm associated with the inner product, the behavior of $P_C(\cdot)$ and $Dd_C^2(\cdot)$ is distinctly better. Indeed by [38] for any real positive numbers r, r' with $r' < r$ and any uniformly r-prox-regular closed set C of X one has
\[
\|P_C(x_1) - P_C(x_2)\| \leq \frac{r}{r - r'} \|x_1 - x_2\|
\]
for all $x_1, x_2 \in OC(r')$, and hence
\[
\|Dd_C^2(x_1) - Dd_C^2(x_2)\| \leq 2(1 + \frac{r}{r - r'})\|x_1 - x_2\|
\]
according to (9.1) and to the Lipschitz property of J here with Lipschitz modulus 1. So, not only the Lipschitz continuity (instead of the Hölder one) is available for the metric projection but also no restriction to bounded subsets of $OC(r')$ is required.

We can now study convergence properties of families of uniformly prox-regular sets. Let $T \cup \{t_0\}$ be a topological space with t_0 as a cluster point of T. Recall that a family $(C_t)_{t \in T}$ of non empty closed subsets of X converges in the sense of Attouch-Wets (see [1, 3, 39]) to a closed subset C of X when t goes to t_0 provided for each positive real number ρ one has
\[
\sup_{x \in \rho B} |d_{C_t}(x) - d_{C}(x)| \xrightarrow{t \to t_0} 0.
\]
Theorem 9.4 Assume that the moduli of uniform convexity and smoothness of the norm \(\| \cdot \| \) of \(X \) are of power type. Let \((C_i)_{i \in T} \) be a family of closed uniformly \(r \)-prox-regular sets of \(X \) which converges in the sense of Attouch-Wets to a closed set \(C \) of \(X \). Then \(C \) is uniformly \(r \)-prox-regular and for each \(x_0 \in X \) satisfying \(d(x_0, C) < r \) the mapping \(t \mapsto P_{C_t}(x_0) \) and the function \(t \mapsto Dd^2_{C_t}(x_0) \) are defined on a neighborhood of \(t_0 \) and

\[
P_{C_t}(x_0) \rightarrow P_C(x_0) \quad \text{and} \quad Dd^2_{C_t}(x_0) \rightarrow Dd^2_C(x_0).
\]

(9.11)

Proof: Fix a positive number \(r' \) with \(d(x_0, C) < r' < r \) and choose by (9.10) some neighborhood \(T_0' \) of \(t_0 \) and some \(\beta > 0 \) such that \(d(x, C_t) < r' \) for all \(t \in T_0' \setminus \{t_0\} \) and \(x \in x_0 + 2\beta B \). According to Proposition 9.2, there exist some positive constants \(\gamma \) and \(\sigma \leq 1 \) (both depending only \(x_0, \beta, r' \) and \(r \)) such that for all \(t \in T_0' \) with \(t \neq t_0 \) and \(x, x_2 \in x_0 + 2\beta B \) the derivatives \(Dd^2_{C_t}(x_i), i = 1, 2 \), exist and

\[
\|Dd^2_{C_t}(x_1) - Dd^2_{C_t}(x_2)\| \leq \gamma \|x_1 - x_2\|^\sigma.
\]

(9.12)

Fix another neighborhood \(T_0'' \) of \(t_0 \) with \(T_0'' \subset T_0' \) and such that, according to (9.10), the function \(v \) given for \(\rho := 1 + 2\beta + \|x_0\| \) by

\[
v(t) := \sup_{x \in \rho B} |d_{C_t}(x) - d_C(x)|
\]

is bounded on \(T_0 := T_0'' \setminus \{t_0\} \). Writing

\[
d_{C_t}(x) \leq d_{C_t}(x_0) + \|x - x_0\| \leq d_C(x_0) + \|x - x_0\| + v(t) \quad \text{for all} \ x \in X \text{ and } t \in T,
\]

we see that there exists some constant \(M > 0 \) such that

\[
d_{C_t}(x) \leq M/2 \quad \text{for all} \ (t, x) \in T_0 \times \rho B.
\]

(9.13)

Fix now any positive number \(\varepsilon < \beta \). Choose by (9.10) a neighborhood \(T'_\varepsilon \subset T_0'' \) of \(t_0 \) such that for \(T_\varepsilon := T'_\varepsilon \setminus \{t_0\} \)

\[
|d_{C_t}(x) - d_C(x)| \leq \frac{\varepsilon^{\sigma+1}}{2} \quad \text{for all} \ t \in T_\varepsilon \text{ and } x \in \rho B.
\]

(9.14)

Fix any \(x \in B(x_0, \beta) \), any \(w \in X \) with \(\|w\| = \varepsilon \), and any \(t, \tau \in T_\varepsilon \). We have

\[
d^2_{C_t}(x + w) - d^2_{C_\tau}(x) = \langle Dd^2_{C_t}(x), w \rangle + \int_0^1 \langle Dd^2_{C_t}(x + sw) - Dd^2_{C_t}(x), w \rangle ds
\]

and a similar equality with \(d^2_{C_\tau} \) in place of \(d^2_{C_t} \), hence

\[
\langle Dd^2_{C_t}(x) - Dd^2_{C_\tau}(x), w \rangle \\
= \langle d^2_{C_t}(x + w) - d^2_{C_\tau}(x + w) \rangle - \langle d^2_{C_t}(x) - d^2_{C_\tau}(x) \rangle \\
- \int_0^1 \langle Dd^2_{C_t}(x + sw) - D^2_{C_\tau}(x), w \rangle + \int_0^1 \langle Dd^2_{C_\tau}(x + sw) - Dd^2_{C_\tau}(x), w \rangle.
\]

38
Further, on the one hand by \((9.12)\) we have
\[
| \int_0^1 \langle Dd^2_{C_t}(x + sw) - Dd^2_{C_t}(x), w \rangle \, ds \leq \int_0^1 \gamma s^\sigma \|w\|^\sigma s^1 \, ds = \frac{1}{\sigma + 1} \gamma \|w\|^\sigma + 1 \leq \gamma \varepsilon^{\sigma + 1}
\]
and a similar inequality with \(d^2_{C_r}\) in place of \(d^2_{C_t}\). On the other hand by \((9.13)\) and \((9.14)\), with \(y := x + w\) or \(y := x\) we also have
\[
|d^2_{C_t}(y) - d^2_{C_t}(y)| = (d_{C_t}(y) + d_{C_t}(y))|d_{C_t}(y) - d_{C_t}(y)| \leq M \varepsilon^{\sigma + 1}.
\]
Consequently
\[
\langle Dd^2_{C_t}(x) - Dd^2_{C_t}(x), w \rangle \leq (2M + 2\gamma) \varepsilon^{\sigma + 1}
\]
and hence that for every \(u\) in \(X\) with \(\|u\| = 1\)
\[
\langle Dd^2_{C_t}(x) - Dd^2_{C_t}(x), u \rangle \leq (2M + 2\gamma) \varepsilon^{\sigma},
\]
which ensures that
\[
\|Dd^2_{C_t}(x) - Dd^2_{C_t}(x)\| \leq (2M + 2\gamma) \varepsilon^{\sigma}.
\]
This uniform Cauchy property says that the family \((Dd^2_{C_t})_t\) converges uniformly to some mapping from \(B(x_0, \beta)\) into \(X^*\). This is known to entail that the function \(d^2_C\) is Fréchet differentiable on \(B(x_0, \beta)\) and hence, in particular, Fréchet differentiable at \(x_0\) with
\[
Dd^2_{C_t}(x_0) \xrightarrow{\quad t \to t_0 \quad} Dd^2_{C_t}(x_0).
\]
Then the function \(d_C\) is Fréchet differentiable on the open tube \(U_C(r)\) and this differentiability property translates through Theorem 2.6 the uniform \(r\)-prox-regularity of \(C\). Further \((9.1)\) and \((9.15)\) yield
\[
P_{C_t}(x_0) \xrightarrow{\quad t \to t_0 \quad} P_{C_t}(x_0).
\]
This completes the proof of the proposition. ■

References

