Random walks in the plane

Armin Straub

Tulane University, New Orleans

August 2, 2010

Joint work with:

Jon Borwein
U. of Newcastle, AU

Dirk Nuyens
K.U. Leuven, BE

James Wan
U. of Newcastle, AU
Random walks in the plane

- We study random walks in the plane consisting of \(n \) steps. Each step is of length 1 and is taken in a randomly chosen direction.
We study random walks in the plane consisting of n steps. Each step is of length 1 and is taken in a randomly chosen direction.
Random walks in the plane

We study random walks in the plane consisting of \(n \) steps. Each step is of length 1 and is taken in a randomly chosen direction.
We study random walks in the plane consisting of n steps. Each step is of length 1 and is taken in a randomly chosen direction.
We study random walks in the plane consisting of n steps. Each step is of length 1 and is taken in a randomly chosen direction.
We study random walks in the plane consisting of \(n \) steps. Each step is of length 1 and is taken in a randomly chosen direction.
We study random walks in the plane consisting of \(n \) steps. Each step is of length 1 and is taken in a randomly chosen direction.

We are interested in the distance traveled in \(n \) steps. For instance, how large is this distance on average?
Long walks

- Asked by Karl Pearson in Nature in 1905

Long walks

- Asked by Karl Pearson in Nature in 1905
- For long walks, the probability density is approximately \(\frac{2x}{n} e^{-x^2/n} \)
- For instance, for \(n = 200 \):

Densities

$n = 2$

$n = 3$

$n = 4$

$n = 5$

$n = 6$

$n = 7$
Densities

\[n = 2 \]

\[n = 3 \]

\[n = 4 \]

\[n = 5 \]

\[n = 6 \]

\[n = 7 \]
Fact from probability theory: the distribution of the distance is determined by its moments.
Fact from probability theory: the distribution of the distance is determined by its moments.

Represent the kth step by the complex number $e^{2\pi ix_k}$. The sth moment of the distance after n steps is:

\[W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^n e^{2\pi x_k i} \right|^s \, d\vec{x} \]

In particular, $W_n(1)$ is the average distance after n steps.
Fact from probability theory: the distribution of the distance is determined by its moments.

Represent the kth step by the complex number $e^{2\pi i x_k}$. The sth moment of the distance after n steps is:

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^{n} e^{2\pi x_k i} \right|^s \, dx$$

In particular, $W_n(1)$ is the average distance after n steps.

This is hard to evaluate numerically to high precision. For instance, Monte-Carlo integration gives approximations with an asymptotic error of $O(1/\sqrt{N})$ where N is the number of sample points.
The \(s \)th moment of the distance after \(n \) steps:

\[
W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^{n} e^{2\pi x_k i} \right|^s \, dx
\]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(s = 1)</th>
<th>(s = 2)</th>
<th>(s = 3)</th>
<th>(s = 4)</th>
<th>(s = 5)</th>
<th>(s = 6)</th>
<th>(s = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.273</td>
<td>2.000</td>
<td>3.395</td>
<td>6.000</td>
<td>10.87</td>
<td>20.00</td>
<td>37.25</td>
</tr>
<tr>
<td>3</td>
<td>1.575</td>
<td>3.000</td>
<td>6.452</td>
<td>15.00</td>
<td>36.71</td>
<td>93.00</td>
<td>241.5</td>
</tr>
<tr>
<td>4</td>
<td>1.799</td>
<td>4.000</td>
<td>10.12</td>
<td>28.00</td>
<td>82.65</td>
<td>256.0</td>
<td>822.3</td>
</tr>
<tr>
<td>5</td>
<td>2.008</td>
<td>5.000</td>
<td>14.29</td>
<td>45.00</td>
<td>152.3</td>
<td>545.0</td>
<td>2037.</td>
</tr>
<tr>
<td>6</td>
<td>2.194</td>
<td>6.000</td>
<td>18.91</td>
<td>66.00</td>
<td>248.8</td>
<td>996.0</td>
<td>4186.</td>
</tr>
</tbody>
</table>
Moments

The sth moment of the distance after n steps:

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^{n} e^{2\pi x_k i} \right|^s \ dx$$

<table>
<thead>
<tr>
<th>n</th>
<th>$s = 1$</th>
<th>$s = 2$</th>
<th>$s = 3$</th>
<th>$s = 4$</th>
<th>$s = 5$</th>
<th>$s = 6$</th>
<th>$s = 7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.273</td>
<td>2.000</td>
<td>3.395</td>
<td>6.000</td>
<td>10.87</td>
<td>20.00</td>
<td>37.25</td>
</tr>
<tr>
<td>3</td>
<td>1.575</td>
<td>3.000</td>
<td>6.452</td>
<td>15.00</td>
<td>36.71</td>
<td>93.00</td>
<td>241.5</td>
</tr>
<tr>
<td>4</td>
<td>1.799</td>
<td>4.000</td>
<td>10.12</td>
<td>28.00</td>
<td>82.65</td>
<td>256.0</td>
<td>822.3</td>
</tr>
<tr>
<td>5</td>
<td>2.008</td>
<td>5.000</td>
<td>14.29</td>
<td>45.00</td>
<td>152.3</td>
<td>545.0</td>
<td>2037.</td>
</tr>
<tr>
<td>6</td>
<td>2.194</td>
<td>6.000</td>
<td>18.91</td>
<td>66.00</td>
<td>248.8</td>
<td>996.0</td>
<td>4186.</td>
</tr>
</tbody>
</table>

$W_2(1) = \frac{4}{\pi}$
The sth moment of the distance after n steps:

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^n e^{2\pi x_k i} \right|^s \, dx$$

<table>
<thead>
<tr>
<th>n</th>
<th>$s = 1$</th>
<th>$s = 2$</th>
<th>$s = 3$</th>
<th>$s = 4$</th>
<th>$s = 5$</th>
<th>$s = 6$</th>
<th>$s = 7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.273</td>
<td>2.000</td>
<td>3.395</td>
<td>6.000</td>
<td>10.87</td>
<td>20.00</td>
<td>37.25</td>
</tr>
<tr>
<td>3</td>
<td>1.575</td>
<td>3.000</td>
<td>6.452</td>
<td>15.00</td>
<td>36.71</td>
<td>93.00</td>
<td>241.5</td>
</tr>
<tr>
<td>4</td>
<td>1.799</td>
<td>4.000</td>
<td>10.12</td>
<td>28.00</td>
<td>82.65</td>
<td>256.0</td>
<td>822.3</td>
</tr>
<tr>
<td>5</td>
<td>2.008</td>
<td>5.000</td>
<td>14.29</td>
<td>45.00</td>
<td>152.3</td>
<td>545.0</td>
<td>2037.</td>
</tr>
<tr>
<td>6</td>
<td>2.194</td>
<td>6.000</td>
<td>18.91</td>
<td>66.00</td>
<td>248.8</td>
<td>996.0</td>
<td>4186.</td>
</tr>
</tbody>
</table>

$W_2(1) = \frac{4}{\pi}$

$W_3(1) = 1.57459723755189\ldots = ?$
The sth moment of the distance after n steps:

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^{n} e^{2\pi x_k i} \right|^s \, dx$$

<table>
<thead>
<tr>
<th>n</th>
<th>$s = 1$</th>
<th>$s = 2$</th>
<th>$s = 3$</th>
<th>$s = 4$</th>
<th>$s = 5$</th>
<th>$s = 6$</th>
<th>$s = 7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.273</td>
<td>2.000</td>
<td>3.395</td>
<td>6.000</td>
<td>10.87</td>
<td>20.00</td>
<td>37.25</td>
</tr>
<tr>
<td>3</td>
<td>1.575</td>
<td>3.000</td>
<td>6.452</td>
<td>15.00</td>
<td>36.71</td>
<td>93.00</td>
<td>241.5</td>
</tr>
<tr>
<td>4</td>
<td>1.799</td>
<td>4.000</td>
<td>10.12</td>
<td>28.00</td>
<td>82.65</td>
<td>256.0</td>
<td>822.3</td>
</tr>
<tr>
<td>5</td>
<td>2.008</td>
<td>5.000</td>
<td>14.29</td>
<td>45.00</td>
<td>152.3</td>
<td>545.0</td>
<td>2037.</td>
</tr>
<tr>
<td>6</td>
<td>2.194</td>
<td>6.000</td>
<td>18.91</td>
<td>66.00</td>
<td>248.8</td>
<td>996.0</td>
<td>4186.</td>
</tr>
</tbody>
</table>

$W_2(1) = \frac{4}{\pi}$

$W_3(1) = 1.57459723755189\ldots = ?$
Even moments

<table>
<thead>
<tr>
<th>n</th>
<th>$s = 2$</th>
<th>$s = 4$</th>
<th>$s = 6$</th>
<th>$s = 8$</th>
<th>$s = 10$</th>
<th>Sloane’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>20</td>
<td>70</td>
<td>252</td>
<td>A000984</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>15</td>
<td>93</td>
<td>639</td>
<td>4653</td>
<td>A002893</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>28</td>
<td>256</td>
<td>2716</td>
<td>31504</td>
<td>A002895</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>45</td>
<td>545</td>
<td>7885</td>
<td>127905</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>66</td>
<td>996</td>
<td>18306</td>
<td>384156</td>
<td></td>
</tr>
</tbody>
</table>
Even moments

<table>
<thead>
<tr>
<th>n</th>
<th>$s = 2$</th>
<th>$s = 4$</th>
<th>$s = 6$</th>
<th>$s = 8$</th>
<th>$s = 10$</th>
<th>Sloane’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>20</td>
<td>70</td>
<td>252</td>
<td>A000984</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>15</td>
<td>93</td>
<td>639</td>
<td>4653</td>
<td>A002893</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>28</td>
<td>256</td>
<td>2716</td>
<td>31504</td>
<td>A002895</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>45</td>
<td>545</td>
<td>7885</td>
<td>127905</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>66</td>
<td>996</td>
<td>18306</td>
<td>384156</td>
<td></td>
</tr>
</tbody>
</table>

- Sloane’s, etc.:

\[
W_2(2k) = \binom{2k}{k}
\]
\[
W_3(2k) = \sum_{j=0}^{k} \binom{k}{j}^2 \binom{2j}{j}
\]
\[
W_4(2k) = \sum_{j=0}^{k} \binom{k}{j}^2 \binom{2j}{j} \binom{2(k-j)}{k-j}
\]
Even moments

<table>
<thead>
<tr>
<th>n</th>
<th>s = 2</th>
<th>s = 4</th>
<th>s = 6</th>
<th>s = 8</th>
<th>s = 10</th>
<th>Sloane’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>20</td>
<td>70</td>
<td>252</td>
<td>A000984</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>15</td>
<td>93</td>
<td>639</td>
<td>4653</td>
<td>A002893</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>28</td>
<td>256</td>
<td>2716</td>
<td>31504</td>
<td>A002895</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>45</td>
<td>545</td>
<td>7885</td>
<td>127905</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>66</td>
<td>996</td>
<td>18306</td>
<td>384156</td>
<td></td>
</tr>
</tbody>
</table>

- Sloane’s, etc.:

\[
W_2(2k) = \binom{2k}{k}
\]

\[
W_3(2k) = \sum_{j=0}^{k} \binom{k}{j}^2 \binom{2j}{j}
\]

\[
W_4(2k) = \sum_{j=0}^{k} \binom{k}{j}^2 \binom{2j}{j} \binom{2(k-j)}{k-j}
\]

\[
W_5(2k) = \sum_{j=0}^{k} \binom{k}{j}^2 \binom{2(k-j)}{k-j} \sum_{\ell=0}^{j} \binom{j}{\ell}^2 \binom{2\ell}{\ell}
\]
Theorem (Borwein-Nuyens-S-Wan)

\[W_n(2k) = \sum_{a_1 + \cdots + a_n = k} \binom{k}{a_1, \ldots, a_n}^2. \]
Theorem (Borwein-Nuyens-S-Wan)

\[W_n(2k) = \sum_{a_1 + \cdots + a_n = k} \binom{k}{a_1, \ldots, a_n}^2. \]

- \(f_n(k) := W_n(2k) \) counts the number of abelian squares: strings \(xy \) of length \(2k \) from an alphabet with \(n \) letters such that \(y \) is a permutation of \(x \).
Combinatorics

Theorem (Borwein-Nuyens-S-Wan)

\[W_n(2k) = \sum_{a_1+\ldots+a_n=k} \binom{k}{a_1,\ldots,a_n}^2. \]

- \(f_n(k) := W_n(2k) \) counts the number of abelian squares: strings \(xy \) of length \(2k \) from an alphabet with \(n \) letters such that \(y \) is a permutation of \(x \).
- Introduced by Erdős and studied by others.

Combinatorics

Theorem (Borwein-Nuyens-S-Wan)

\[W_n(2k) = \sum_{a_1 + \cdots + a_n = k} \binom{k}{a_1, \ldots, a_n}^2. \]

- \(f_n(k) := W_n(2k) \) counts the number of abelian squares: strings \(xy \) of length \(2k \) from an alphabet with \(n \) letters such that \(y \) is a permutation of \(x \).
- Introduced by Erdős and studied by others.
- \(f_n(k) \) satisfies recurrences and convolutions.

For integers $k \geq 0$,

\[
(k + 2)^2 W_3(2k + 4) - (10k^2 + 30k + 23)W_3(2k + 2) + 9(k + 1)^2 W_3(2k) = 0.
\]
Functional Equations for $W_n(s)$

- For integers $k \geq 0$,

$$
(k + 2)^2 W_3(2k + 4) - (10k^2 + 30k + 23)W_3(2k + 2)
+ 9(k + 1)^2W_3(2k) = 0.
$$

Theorem (Carlson)

*If $f(z)$ is analytic for $\Re(z) \geq 0$, “nice”, and

$$
f(0) = 0, \quad f(1) = 0, \quad f(2) = 0, \quad \ldots,
$$

then $f(z) = 0$ identically.*
For integers $k \geq 0$,

\[
(k + 2)^2 W_3(2k + 4) - (10k^2 + 30k + 23)W_3(2k + 2) + 9(k + 1)^2 W_3(2k) = 0.
\]

Theorem (Carlson)

If $f(z)$ is analytic for $\Re(z) \geq 0$, “nice”, and $f(0) = 0$, $f(1) = 0$, $f(2) = 0$, ..., then $f(z) = 0$ identically.

\[
|f(z)| \leq A e^{\alpha |z|}, \text{ and } |f(iy)| \leq B e^{\beta |y|} \text{ for } \beta < \pi
\]
For integers $k \geq 0$,

$$(k + 2)^2 W_3(2k + 4) - (10k^2 + 30k + 23)W_3(2k + 2) + 9(k + 1)^2 W_3(2k) = 0.$$

Theorem (Carlson)

If $f(z)$ is analytic for $\text{Re}(z) \geq 0$, "nice", and

$$f(0) = 0, \quad f(1) = 0, \quad f(2) = 0, \quad \ldots,$$

then $f(z) = 0$ identically.

$W_n(s)$ is nice!

$$|f(z)| \leq Ae^{\alpha|z|}, \text{ and } |f(iy)| \leq Be^{\beta|y|} \text{ for } \beta < \pi$$
So we get complex functional equations like

\[(s + 4)^2 W_3(s + 4) - 2(5s^2 + 30s + 46)W_3(s + 2) + 9(s + 2)^2 W_3(s) = 0.\]
So we get complex functional equations like

\[(s+4)^2 W_3(s+4) - 2(5s^2 + 30s + 46)W_3(s+2) + 9(s+2)^2 W_3(s) = 0.\]

This gives analytic continuations of \(W_n(s)\) to the complex plane, with poles at certain negative integers.
$W_3(1) = 1.57459723755189 \ldots = ?$

- Easy: $W_2(2k) = \binom{2k}{k}$. In fact, $W_2(s) = \binom{s}{s/2}$.
$W_3(1) = 1.57459723755189 \ldots = ?$

- Easy: $W_2(2k) = \binom{2k}{k}$. In fact, $W_2(s) = \binom{s}{s/2}$.
- Again, from combinatorics:

\[
W_3(2k) = \sum_{j=0}^{k} \binom{k}{j}^2 \binom{2j}{j} = {}_3F_2 \left(\begin{array}{c} \frac{1}{2}, -k, -k \\ 1, 1 \end{array} \bigg| 4 \right) =: V_3(2k)
\]
\[W_3(1) = 1.57459723755189 \ldots = ? \]

- Easy: \(W_2(2k) = \binom{2k}{k} \). In fact, \(W_2(s) = \binom{s}{s/2} \).
- Again, from combinatorics:

\[
W_3(2k) = \sum_{j=0}^{k} \binom{k}{j}^2 \binom{2j}{j} = \binom{s}{s/2} =: V_3(2k)
\]

- We discovered numerically that \(V_3(1) \approx 1.574597 - .126027i \).
\(W_3(1) = 1.57459723755189 \ldots = ? \)

- Easy: \(W_2(2k) = \binom{2k}{k} \). In fact, \(W_2(s) = \binom{s}{s/2} \).
- Again, from combinatorics:

\[
W_3(2k) = \sum_{j=0}^{k} \binom{k}{j}^2 \binom{2j}{j} = \binom{3}{2, -k, -k \mid 1, 1 \mid 4} =: V_3(2k)
\]

- We discovered numerically that \(V_3(1) \approx 1.574597 - .126027i \).

Theorem (Borwein-Nuyens-S-Wan)

For integers \(k \) we have \(W_3(k) = \Re \binom{3/2, -k/2, -k/2 \mid 1, 1 \mid 4} \).
$W_3(1) = 1.57459723755189 \ldots = ?$

Corollary (Borwein-Nuyens-S-Wan)

$$W_3(1) = \frac{3}{16} \frac{2^{1/3}}{\pi^4} \Gamma^6 \left(\frac{1}{3} \right) + \frac{27}{4} \frac{2^{2/3}}{\pi^4} \Gamma^6 \left(\frac{2}{3} \right)$$

- Similar formulas for $W_3(3), W_3(5), \ldots$
A generating function

Recall:

\[W_n(2k) = \sum_{a_1 + \ldots + a_n = k} \binom{k}{a_1, \ldots, a_n}^2 \]
A generating function

- Recall:

\[W_n(2k) = \sum_{a_1 + \cdots + a_n = k} \left(\begin{array}{c} k \\ a_1, \ldots, a_n \end{array} \right)^2 \]

- Therefore:

\[
\sum_{k=0}^{\infty} W_n(2k) \frac{(-x)^k}{(k!)^2} = \sum_{k=0}^{\infty} \sum_{a_1 + \cdots + a_n = k} \frac{(-x)^k}{(a_1!)^2 \cdots (a_n!)^2} = \left(\sum_{a=0}^{\infty} \frac{(-x)^a}{(a!)^2} \right)^n = J_0(2\sqrt{x})^n
\]
Theorem (Ramanujan’s Master Theorem)

For “nice” analytic functions φ,

$$
\int_0^{\infty} x^{\nu-1} \left(\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \varphi(k) x^k \right) \, dx = \Gamma(\nu) \varphi(-\nu).
$$
Ramanujan’s Master Theorem

Theorem (Ramanujan’s Master Theorem)

For “nice” analytic functions \(\varphi \),

\[
\int_0^\infty x^{\nu-1} \left(\sum_{k=0}^\infty \frac{(-1)^k}{k!} \varphi(k)x^k \right) \, dx = \Gamma(\nu)\varphi(-\nu).
\]

- **Begs to be applied to**

\[
\sum_{k=0}^\infty W_n(2k) \frac{(-x)^k}{(k!)^2} = J_0(2\sqrt{x})^n
\]

by setting \(\varphi(k) = \frac{W_n(2k)}{k!} \)
Ramanujan’s Master Theorem

- We find:

\[W_n(-s) = 2^{1-s} \frac{\Gamma(1 - s/2)}{\Gamma(s/2)} \int_0^\infty x^{s-1} J_0^n(x) \, dx \]
Ramanujan’s Master Theorem

- We find:

\[W_n(-s) = 2^{1-s} \frac{\Gamma(1 - s/2)}{\Gamma(s/2)} \int_0^\infty x^{s-1} J_0^n(x) \, dx \]

- A 1-dimensional representation!
 Useful for symbolical computations
 as well as for high-precision integration
Ramanujan’s Master Theorem

- We find:

\[W_n(-s) = 2^{1-s} \frac{\Gamma(1 - s/2)}{\Gamma(s/2)} \int_0^\infty x^{s-1} J_0^n(x) \, dx \]

- A 1-dimensional representation!
 Useful for symbolical computations as well as for high-precision integration

- First and more inspiredly found by David Broadhurst building on work of J.C. Kluyver

A convolution formula

Conjecture

For even n,

$$W_n(s) = \sum_{j=0}^{\infty} \left(\frac{s}{2} \right)^2 \binom{\frac{s}{2}}{j} W_{n-1}(s-2j).$$
Conjecture

For even \(n \),

\[
W_n(s) = \sum_{j=0}^{\infty} \left(\frac{s}{2} \right)^2 W_{n-1}(s - 2j).
\]

- Inspired by the combinatorial convolution for \(f_n(k) = W_n(2k) \):

\[
f_{n+m}(k) = \sum_{j=0}^{k} \left(\begin{array}{c} k \\ j \end{array} \right)^2 f_n(j) f_m(k - j)
\]
A convolution formula

Conjecture

For even n,

\[
W_n(s) = \sum_{j=0}^{\infty} \left(\frac{s}{2j} \right)^2 W_{n-1}(s - 2j).
\]

- Inspired by the combinatorial convolution for $f_n(k) = W_n(2k)$:

\[
f_{n+m}(k) = \sum_{j=0}^{k} \binom{k}{j}^2 f_n(j) f_m(k - j)
\]

- True for even s
- True for $n = 2$
- Now proven up to some technical growth conditions
You will have to look at the papers to find…

- a hyper-closed form for $W_4(1)$,
- Meijer-G and hypergeometric expressions for $W_3(s)$ and $W_4(s)$,
- evaluations of derivatives including

\[W'_3(0) = \frac{1}{\pi} \text{Cl} \left(\frac{\pi}{3} \right) , \quad W'_4(0) = \frac{7\zeta(3)}{2\pi^2} , \]

- expressions for residues at the poles of $W_n(s)$,
- …
References

Both preprints as well as this talk are/will be available from: http://arminstraub.com

THANK YOU!

Special thanks to:
Tewodros Amdeberhan, David Bailey, David Broadhurst, Richard Crandall, Peter Donovan, Victor Moll, Michael Mossinghoff, Sinai Robins, Bruno Salvy, Wadim Zudilin