On Projection Algorithms for Solving Convex Feasibility Problems

Heinz H. Bauschke; Jonathan M. Borwein

Stable URL:
http://links.jstor.org/sici?sici=0036-1445%28199609%2938%3A3%3C367%3AOPAFSC%3E2.0.CO%3B2-6

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

SIAM Review is published by Society for Industrial and Applied Mathematics. Please contact the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/siam.html.

SIAM Review
©1996 Society for Industrial and Applied Mathematics

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office. For more information on JSTOR contact jstor-info@umich.edu.

©2003 JSTOR
ON PROJECTION ALGORITHMS FOR SOLVING CONVEX FEASIBILITY PROBLEMS*

HEINZ H. BAUSCHKE† AND JONATHAN M. BORWEIN†

Abstract. Due to their extraordinary utility and broad applicability in many areas of classical mathematics and modern physical sciences (most notably, computerized tomography), algorithms for solving convex feasibility problems continue to receive great attention. To unify, generalize, and review some of these algorithms, a very broad and flexible framework is investigated. Several crucial new concepts which allow a systematic discussion of questions on behavior in general Hilbert spaces and on the quality of convergence are brought out. Numerous examples are given.

Key words. angle between two subspaces, averaged mapping, Cimmino's method, computerized tomography, convex feasibility problem, convex function, convex inequalities, convex programming, convex set, Fejér monotone sequence, firmly nonexpansive mapping, Hilbert space, image recovery, iterative method, Kaczmarz's method, linear convergence, linear feasibility problem, linear inequalities, nonexpansive mapping, orthogonal projection, projection algorithm, projection method, Slater point, subdifferential, subgradient, subgradient algorithm, successive projections

AMS subject classifications. 47H09, 49M45, 65-02, 65J05, 90C25

1. Introduction, preliminaries, and notation. A very common problem in diverse areas of mathematics and physical sciences consists of trying to find a point in the intersection of convex sets. This problem is referred to as the convex feasibility problem; its precise mathematical formulation is as follows.

Suppose X is a Hilbert space and C_1, \ldots, C_N are closed convex subsets with nonempty intersection C:

$$C = C_1 \cap \cdots \cap C_N \neq \emptyset.$$

Convex feasibility problem: Find some point x in C.

We distinguish two major types.

1. The set C_i is "simple" in the sense that the projection (i.e., the nearest point mapping) onto C_i can be calculated explicitly; C_i might be a hyperplane or a halfspace.

2. It is not possible to obtain the projection onto C_i; however, it is at least possible to describe the projection onto some approximating superset of C_i. (There is always a trivial approximating superset of C_i, namely, X.) Typically, C_i is a lower level set of some convex function.

One frequently employed approach in solving the convex feasibility problem is algorithmic. The idea is to involve the projections onto each set C_i (resp., onto a superset of C_i) to generate a sequence of points that is supposed to converge to a solution of the convex feasibility problem. This is the approach we will investigate. We are aware of four distinct (although intertwining) branches, which we classify by their applications.

I. Best approximation theory.

Properties: Each set C_i is a closed subspace. The algorithmic scheme is simple ("cyclic" control).

Basic results: von Neumann [103, Thm. 13.7], Halperin [61].

Comments: The generated sequence converges in norm to the point in C that is closest to the starting point. Quality of convergence is well understood.

References: Deutsch [44].

*Received by the editors July 7, 1993; accepted for publication (in revised form) June 19, 1995. This research was supported by NSERC and by the Shrum Endowment.

†Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6 (bauschke@ccem.sfu.ca and jborwein@ccem.sfu.ca).
Areas of application: Diverse. Statistics (linear prediction theory), partial differential equations (Dirichlet problem), and complex analysis (Bergman kernels, conformal mappings), to name only a few.

II. Image reconstruction: Discrete models.

Properties: Each set C_i is a halfspace or a hyperplane. X is a Euclidean space (i.e., a finite-dimensional Hilbert space). Very flexible algorithmic schemes.

Basic results: Kaczmarz [71], Cimmino [29], Agmon [1], Motzkin and Schoenberg [83].

Comments: Behaviour in general Hilbert space and quality of convergence only partially understood.

References: Censor [21, 23, 24], Censor and Herman [27], Viergever [102], Sezan [91].

Areas of application: Medical imaging and radiation therapy treatment planning (computerized tomography), electron microscopy.

III. Image reconstruction: Continuous models.

Properties: X is usually an infinite-dimensional Hilbert space. Fairly simple algorithmic schemes.

Basic results: Gubin, Polyak, and Raik [60].

Comments: Quality of convergence is fairly well understood.

References: Herman [63], Youla and Webb [108], Stark [95].

Areas of application: Computerized tomography, signal processing.

IV. Subgradient algorithms.

Properties: Some sets C_i are of type 2. Fairly simple algorithmic schemes ("cyclic" or "weighted" control).

Basic results: Ererino [52], Polyak [86], Censor and Lent [28].

Comments: Quality of convergence is fairly well understood.

References: Censor [22], Shor [92].

Areas of application: Solution of convex inequalities, minimization of convex non-smooth functions.

To improve, unify, and review algorithms for these branches, we must study a flexible algorithmic scheme in general Hilbert space and be able to draw conclusions on the quality of convergence. This is our objective in this paper.

We will analyze algorithms in a very broad and adaptive framework that is essentially due to Flämm and Zowe [53]. (Related frameworks with somewhat different ambitions were investigated by Browder [17] and Schott [89].) The algorithmic scheme is as follows.

Given the current iterate $x^{(n)}$, the next iterate $x^{(n+1)}$ is obtained by

$$
x^{(n+1)} := A^{(n)} x^{(n)} = \left(\sum_{i=1}^{N} \lambda^{(n)}_i \left[(1 - \alpha^{(n)}_i) I + \alpha^{(n)}_i P^{(n)}_i \right] \right) x^{(n)},$$

where every $P^{(n)}_i$ is the projection onto some approximating superset $C^{(n)}_i$ of C_i, every $\alpha^{(n)}_i$ is a relaxation parameter between 0 and 2, and the $\lambda^{(n)}_i$'s are nonnegative weights summing up to 1. In short, $x^{(n+1)}$ is a weighted average of relaxed projections of $x^{(n)}$.

Censor and Herman [27] expressly suggested the study of a (slightly) restricted version of (\star) in the context of computerized tomography. It is worthwhile to point out that the scheme (\star) can be thought of as a combination of the schemes investigated by Aharoni, Berman, and Censor [2] and Aharoni and Censor [3]. In Euclidean spaces, norm convergence results were obtained by Flämm and Zowe for (\star) and by Aharoni and Censor [3] for the restricted version. However, neither behaviour in general Hilbert spaces nor quality of convergence has been much discussed so far. To do this comprehensively and clearly, it is important to bring out
some underlying recurring concepts. We feel these concepts lie at the heart of many algorithms and will be useful for other researchers as well.

The paper is organized as follows.

In §2, the two important concepts of attracting mappings and Fejér monotone sequences are investigated. The former concept captures essential properties of the operator $A^{(n)}$, whereas the latter deals with inherent qualities of the sequence $(x^{(n)})$.

The idea of a focusing algorithm is introduced in §3. The very broad class of focusing algorithms admits results on convergence. In addition, the well-known ideas of cyclic and weighted control are subsumed under the notion of intermittent control. Weak topology results on intermittent focusing algorithms are given. We actually study a more general form of the iteration (\star) without extra work; as a by-product, we obtain a recent result by Tseng [100] and make connections with work by Browder [17] and Baillon [7].

At the start of §4, we exclusively consider algorithms such as (\star), which we name projection algorithms. Prototypes of focusing and linearly focusing (a stronger, more quantitative version) projection algorithms are presented. When specialized to Euclidean spaces, our analysis yields basic results by Flåm and Zowe [53] and Aharoni and Censor [3].

The fifth section discusses norm and particularly linear convergence. Many known sufficient sometimes ostensibly different looking conditions for linear convergence can be thought of as special instances of a single new geometric concept—regularity. Here the N-tuple (C_1, \ldots, C_N) is called regular if “closeness to all sets C_i implies closeness to their intersection C. “Four quantitative versions of (bounded) (linear) regularity are described. Having gotten all the crucial concepts together, we deduce our main results, one of which states in short that

\[
\begin{align*}
&\text{linearly focusing projection algorithm} \\
&+ \\
&\text{intermittent control} \\
&+ \\
&\text{“nice” relaxation parameters and weights} \\
&+ \\
&(C_1, \ldots, C_N) \text{ boundedly linearly regular}
\end{align*}
\]

implies linear convergence.

This section ends with results on (bounded) (linear) regularity, including a characterization of regular N-tuples of closed subspaces.

Section 6 contains a multitude of examples of algorithms from branches I, II, and III.

The final section examines the subgradient algorithms of branch IV, to which our previous results also apply. Thus, a well-known Slater point condition emerges as a sufficient condition for a subgradient algorithm to be linearly focusing, thus yielding a conceptionally simple proof of an important result by De Pierro and Iusem [40]. It is very satisfactory that analogous results are obtained for algorithms suggested by Dos Santos [47] and Yang and Murty [105].

For the reader’s convenience, an index is included.

We conclude this section with a collection of frequently-used facts, definitions, and notation.

The “stage” throughout this paper is a real Hilbert space X; its unit ball $\{x \in X : \|x\| \leq 1\}$ is denoted B_X.

FACTS 1.1.

(i) (parallelogram law) If $x, y \in X$, then
\[
\|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2).
\]

(ii) (strict convexity) If $x, y \in X$, then
\[
\|x + y\| = \|x\| + \|y\| \quad \text{implies} \quad \|y\| \cdot x = \|x\| \cdot y.
\]

(iii) Every bounded sequence in X possesses a weakly convergent subsequence.
Proof. (i) is easy to verify and implies (ii). (iii) follows from the Eberlein–Šmulian theorem (see, for example, Holmes [67, §18]). □

All "actors" turn out to be members of the distinguished class of nonexpansive mappings. A mapping \(T : D \to X \), where the domain \(D \) is a closed convex nonempty subset of \(X \), is called nonexpansive if

\[
\|T x - T y\| \leq \|x - y\| \quad \text{for all} \ x, y \in D.
\]

If \(\|T x - T y\| = \|x - y\| \), for all \(x, y \in D \), then we say \(T \) is an isometry. In contrast, if \(\|T x - T y\| < \|x - y\| \), for all distinct \(x, y \in D \), then we speak of a strictly nonexpansive mapping. If \(T \) is a nonexpansive mapping, then the set of all fixed points \(\text{Fix} \ T \), which is defined by

\[
\text{Fix} \ T = \{ x \in D : x = T x \},
\]

is always closed and convex [58, Lem. 3.4].

FACT 1.2 (demiclosedness principle). If \(D \) is a closed convex subset of \(X \), \(T : D \to X \) is nonexpansive, \((x_n) \) is a sequence in \(D \), and \(x \in D \), then

\[
\begin{align*}
 x_n &\to x \\
 x_n - T x_n &\to 0
\end{align*}
\]

implies \(x \in \text{Fix} \ T \), where, by convention, "\(\to \)" (resp., "\(\rightharpoonup \)") stands for norm (resp., weak) convergence.

Proof. This is a special case of Opial's [84, Lem. 2]. □

It is obvious that the identity \(\text{Id} \) is nonexpansive and easy to see that convex combinations of nonexpansive mappings are also nonexpansive. In particular, if \(N \) is a nonexpansive mapping, then so is

\[
(1 - \alpha) \text{Id} + \alpha N \quad \text{for all} \ \alpha \in [0, 1].
\]

These mappings are called averaged mappings. A firmly nonexpansive mapping is a nonexpansive mapping that can be written as

\[
\frac{1}{2} \text{Id} + \frac{1}{2} N \quad \text{for some nonexpansive mapping} \ N.
\]

FACT 1.3. If \(D \) is a closed convex subset of \(X \) and \(T : D \to X \) is a mapping, then the following conditions are equivalent,

(i) \(T \) is firmly nonexpansive,

(ii) \(\|T x - T y\|^2 \leq (T x - T y, x - y) \) for all \(x, y \in D \).

(iii) \(2 T - \text{Id} \) is nonexpansive.

Proof. See, for example, Zarantonello's [109, §1] or Goebel and Kirk's [56, Thm. 12.1]. □

A mapping is called relaxed firmly nonexpansive if it can be expressed as

\[
(1 - \alpha) \text{Id} + \alpha F \quad \text{for some firmly nonexpansive mapping} \ F.
\]

COROLLARY 1.4. Suppose \(D \) is a closed convex subset of \(X \) and \(T : D \to X \) is a mapping. Then \(T \) is averaged if and only if it is relaxed firmly nonexpansive.

The "principal actor" is the projection operator. Given a closed convex nonempty subset \(C \) of \(X \), the mapping that sends every point to its nearest point in \(C \) (in the norm induced by the inner product of \(X \)) is called the projection onto \(C \) and denoted \(P_C \).
FACTS 1.5. Suppose C is a closed convex nonempty subset of X with projection P_C. Then

(i) P_C is firmly nonexpansive.
(ii) If $x \in X$, then P_Cx is characterized by

$$P_Cx \in C \quad \text{and} \quad \langle C - P_Cx, x - P_Cx \rangle \leq 0.$$

Proof. See, for example, [109, Lem. 1.2] for (i) and [109, Lem. 1.1] for (ii). \hfill \Box

Therefore,

projection
\downarrow
firmly nonexpansive
\downarrow
relaxed firmly nonexpansive = averaged
\downarrow
isometry \Rightarrow nonexpansive \Leftrightarrow strictly nonexpansive.

The associated function $d(\cdot, C) : X \to \mathbb{R} : x \mapsto \inf_{c \in C} \|x - c\| = \|x - P_Cx\|$ is called the distance function to C; it is easy to see that $d(\cdot, C)$ is convex and continuous (hence weakly lower semicontinuous).

A good reference on nonexpansive mappings is Goebel and Kirk's recent book [58]. Many results on projections are in Zarantonello's [109].

The algorithms' quality of convergence will be discussed in terms of linear convergence: a sequence (x_n) in X is said to converge linearly to its limit x (with rate β) if $\beta \in [0, 1[$ and there is some $\alpha \geq 0$ such that (s.t.)

$$\|x_n - x\| \leq \alpha \beta^n \quad \text{for all } n.$$

PROPOSITION 1.6. Suppose (x_n) is a sequence in X, p is some positive integer, and x is a point in X. If $(x_{pn})_n$ converges linearly to x and $(\|x_n - x\|)_n$ is decreasing, then the entire sequence $(x_n)_n$ converges linearly to x.

Proof. There is some $\alpha > 0$ and $\beta \in [0, 1[$ s.t.

$$\|x_{pn} - x\| \leq \alpha \beta^n \quad \text{for all } n.$$

Now fix an arbitrary positive integer m and divide by p with remainder; i.e., write

$$m = p \cdot n + r, \quad \text{where } r \in \{0, 1, \ldots, p - 1\}.$$

We estimate

$$\|x_m - x\| \leq \|x_{pn} - x\| \leq \alpha \left(\beta^\frac{1}{p}\right)^{np} = \frac{\alpha \left(\beta^\frac{1}{p}\right)^{np+r}}{\left(\beta^\frac{1}{p}\right)^r} \leq \left(\frac{\alpha}{\left(\beta^\frac{1}{p}\right)^{p-1}}\right) \left(\beta^\frac{1}{p}\right)^m,$$

and the result follows. \hfill \Box

Finally, we recall the meaning of the following.

If S and Y are any subsets of X, then span S, $\text{conv} S$, \overline{S}, int$_Y S$, icrS, and intS denote, respectively, the span of S, the closed convex hull of S, the closure of S, the interior of S with
respect to (w.r.t.) \(Y \), the intrinsic core of \(S = \operatorname{int}_{\operatorname{aff}} S \), where \(\operatorname{aff} S \) is the closed affine span of \(S \), and the interior of \(S = \operatorname{int} Y S \).

\(S \) is called a cone if it is nonempty, convex, and closed under nonnegative scalar multiplication. If \(S \) is the intersection of finitely many halfspaces, then \(S \) is a polyhedron.

If \(r \) is a real number, then \(r^+ := \max\{r, 0\} \) is called the positive part of \(r \). In the context of sequences of real numbers, \(\lim \) (resp., \(\lim \)) stands for \textit{limes superior} (resp., \textit{limes inferior}). Occasionally, we will use the quantifiers \(\forall \) (for all) and \(\exists \) (there exists) to avoid monstrous sentences.

2. Two useful tools: Attracting mappings and Fejér monotone sequences. We focus on two important concepts. The first generalizes the idea of averaged (resp., strictly) nonexpansive mappings.

Definition 2.1. Suppose \(D \) is a closed convex nonempty set, \(T : D \rightarrow D \) is nonexpansive, and \(F \) is a closed convex nonempty subset of \(D \). We say that \(T \) is attracting w.r.t. \(F \) if for every \(x \in D \setminus F \), \(f \in F \),

\[
\|Tx - f\| < \|x - f\|.
\]

In other words, every point in \(F \) attracts every point outside \(F \). A more quantitative and stronger version is the following.

We say that \(T \) is strongly attracting w.r.t. \(F \) if there is some \(\kappa > 0 \) s.t. for every \(x \in D \), \(f \in F \),

\[
\kappa \|x - Tx\|^2 \leq \|x - f\|^2 - \|Tx - f\|^2.
\]

Alternatively, if we want to emphasize \(\kappa \) explicitly, we say that \(T \) is \(\kappa \)-attracting w.r.t. \(F \).

Remarks 2.3. Some authors do not require nonexpansivity in the definition of attracting mappings; see, for example, Bruck’s “strictly quasi-nonexpansive mappings” [18], Elsner, Koltracht, and Neumann’s “paracontracting mappings” [51], Eremin’s “\(F \)-weakly Fejér maps” [52], and Istratescu’s “\(T \)-mappings” [69, Chap. 6]. For our purposes, however, the above definitions are already general enough. As we will see, the class of strongly attracting mappings contains properly all averaged nonexpansive mappings and thus all relaxed projections—the mappings we are primarily interested in.

We would like to mention (but will not use) the fact that the class of attracting mappings properly contains all three of the following classes: the class of strictly nonexpansive mappings, Bruck and Reich’s strongly nonexpansive mappings [19], and a very nice class of nonexpansive mappings introduced by De Pierro and Iusem [41, Def. 1]. The mapping \(x \mapsto 1 - \ln(1 + e^x) \) is a first example of a mapping that is strictly nonexpansive but not averaged; hence the class of attracting mappings is genuinely bigger than the class of strongly attracting mappings. Finally, neither class contains isometries with fixed points.

The asserted proper containment statements are demonstrated by the following example.

Example 2.3. Suppose \(D \) is a closed convex symmetric interval in \(\mathbb{R} \) that contains the interval \([-1, 1]\) strictly. Let

\[
T : D \rightarrow D : x \mapsto \begin{cases} \frac{1}{2} |x|^2 & \text{if } |x| \leq 1, \\ |x| - \frac{1}{2} & \text{otherwise}. \end{cases}
\]

Then

- \(T \) is nonexpansive and \(\text{Fix } T = \{0\} \).
- \(T \) is not strictly nonexpansive.
• \(T \) is not strongly nonexpansive (in the sense of Bruck and Reich [19]); in particular,
 \(T \) is not averaged [19, Prop. 1.3].
• \(T \) is not nonexpansive in the sense of De Pierro and Iusem [41, Def. 1].
• \(T \) is attracting.
• \(T \) is strongly attracting if and only if \(D \) is compact.

Lemma 2.4 (prototype of a strongly attracting mapping). Suppose \(D \) is a closed convex nonempty set, \(T : D \rightarrow D \) is firmly nonexpansive with fixed points, and \(\alpha \in]0, 2[. \) Let \(R := (1 - \alpha)\text{Id} + \alpha T \) and fix \(x \in D, f \in \text{Fix} T \). Then

(i) \(\text{Fix} R = \text{Fix} T \).

(ii) \(\langle x - f, x - T x \rangle \geq \|x - T x\|^2 \) and \(\langle x - T x, T x - f \rangle \geq 0 \).

(iii) \(\|x - f\|^2 - \|R x - f\|^2 = 2\alpha\langle x - f, x - T x \rangle - \alpha^2\|x - T x\|^2 \).

(iv) \(R \) is \((2 - \alpha)/\alpha\)-attracting:

\[
\|x - f\|^2 - \|R x - f\|^2 \geq (2 - \alpha)/\alpha\|x - R x\|^2 = (2 - \alpha)\alpha\|x - T x\|^2.
\]

Proof. (i) is immediate.

(ii): Since \(T \) is firmly nonexpansive, we obtain

\[
\|T x - f\|^2 \leq \langle T x - f, x - f \rangle \\
\iff \|T x - x\|^2 + \|x - f\|^2 + 2\langle T x - x, x - f \rangle \leq \langle T x - f, x - f \rangle \\
\iff \|T x - x\|^2 \leq \langle x - T x, x - f \rangle = \langle x - T x, (x - T x) + (T x - f) \rangle \\
\iff 0 \leq \langle x - T x, T x - f \rangle.
\]

(iii) is a direct calculation:

\[
\|x - f\|^2 - \|R x - f\|^2 \\
= \|x - f\|^2 - \|(1 - \alpha)(x - f) + \alpha(T x - f)\|^2 \\
= \|x - f\|^2 - [(1 - \alpha)^2\|x - f\|^2 + \alpha^2\|T x - f\|^2 + 2\alpha(1 - \alpha)\langle x - f, T x - f \rangle] \\
= 2\alpha\|x - f\|^2 - \alpha^2\|x - f\|^2 - \alpha^2\|T x - f\|^2 \\
+ 2\alpha(x - f, T x - f) - 2\alpha(x - f, T x - f) \\
= 2\alpha(x - f, (x - f) - (T x - f)) \\
- \alpha(\|x - f\|^2 + \|T x - f\|^2 - 2\|x - f, T x - f \|) \\
= 2\alpha(x - f, x - T x) - \alpha^2\|x - T x\|^2.
\]

(iv): By (ii), (iii), and the definition of \(R \), we get

\[
\|x - f\|^2 - \|R x - f\|^2 = 2\alpha\langle x - f, x - T x \rangle - \alpha^2\|x - T x\|^2 \\
\geq 2\alpha\|x - T x\|^2 - \alpha^2\|x - T x\|^2 \\
= \alpha(2 - \alpha)\|x - T x\|^2 \\
= (2 - \alpha)/\alpha\|x - R x\|^2.
\]

Note that (i) and (iii) are actually true for an arbitrary nonexpansive mapping \(T \); this will, however, not be needed in what follows. Since projections are firmly nonexpansive (Facts 1.5(i)), we immediately obtain the following result which slightly improves Flåm and Zowe's [53, Lem. 1].

Corollary 2.5. If \(P \) is the projection onto some closed convex nonempty set \(S \) and \(\alpha \in]0, 2[\), then \(R := (1 - \alpha)\text{Id} + \alpha P \) is \((2 - \alpha)/\alpha\)-attracting w.r.t. \(S \) and for \(x \in X, s \in S \),

\[
\|x - s\|^2 - \|R x - s\|^2 \geq (2 - \alpha)\alpha d^2(x, S).
\]
DEFINITION 2.6. Suppose \((x_n)\) is a sequence in \(X\). We say that \((x_n)\) is asymptotically regular if

\[
x_n - x_{n+1} \longrightarrow 0.
\]

EXAMPLE 2.7. Suppose \(D\) is a closed convex nonempty set, \(F\) is a closed convex nonempty subset of \(D\), and \((T_n)_{n \geq 0}\) is a sequence of nonexpansive self mappings of \(D\), where each \(T_n\) is \(\kappa_n\)-attracting w.r.t. \(F\) and \(\lim \kappa_n > 0\). Suppose further the sequence \((x_n)\) is defined by

\[
x_0 \in D \text{ arbitrary, } \quad x_{n+1} := T_n x_n \text{ for all } n \geq 0.
\]

Then \((x_n)\) is asymptotically regular.

Proof: Fix \(f \in F\) and choose \(0 < \kappa < \lim \kappa_n\). Then for all large \(n\),

\[
\kappa \|x_{n-1} - x_n\|^2 \leq \|x_{n-1} - f\|^2 - \|x_n - f\|^2.
\]

Summing these inequalities shows that \(\sum \|x_{n-1} - x_n\|^2\) is finite; the result follows. \(\Box\)

COROLLARY 2.8. Suppose \(D\) is a closed convex nonempty set and \(T : D \to D\) is strongly attracting with fixed points. Then the sequence of iterates \((T^n x_0)_{n \geq 0}\) is asymptotically regular for every \(x_0 \in D\).

REMARK 2.9. The corollary is well known for firmly nonexpansive and, more generally, strongly nonexpansive mappings (see [19, Prop. 1.3 and Cor. 1.1]). In the literature, the conclusion of the corollary is often "\(T\) is asymptotically regular at \(x_0\)." We hope the reader accepts this as an a posteriori justification for introducing the notion of an asymptotically regular sequence.

The next propositions show that (strongly) attracting mappings respect compositions and convex combinations.

PROPOSITION 2.10. Suppose \(D\) is a closed convex nonempty set, \(T_1, \ldots, T_N : D \to D\) are attracting, and \(\bigcap_{i=1}^N \text{Fix } T_i\) is nonempty. Then

(i) \(\text{Fix } (T_N T_{N-1} \cdots T_1) = \bigcap_{i=1}^N \text{Fix } T_i\) and \(T_N T_{N-1} \cdots T_1\) is attracting.

(ii) If every \(T_i\) is \(\kappa_i\)-attracting, then \(T_N T_{N-1} \cdots T_1\) is \(\min \{\kappa_1, \ldots, \kappa_N\}/2^{N-1}\)-attracting.

Proof. It is enough to prove the proposition for \(N = 2\); the general case follows inductively.

(i): Clearly, \(\text{Fix } T_1 \cap \text{Fix } T_2 \subseteq \text{Fix } (T_2 T_1)\). To prove the other inclusion, pick \(f \in \text{Fix } (T_2 T_1)\). It is enough to show that \(f \in \text{Fix } T_1\). If this were false, then \(T_1 f \notin \text{Fix } T_2\). Now fix \(f \in \text{Fix } T_1 \cap \text{Fix } T_2\). Then, since \(T_2\) is attracting,

\[
\|f - \tilde{f}\| = \|T_2 (T_1 f) - \tilde{f}\| < \|T_1 f - \tilde{f}\| \leq \|f - \tilde{f}\|,
\]

which is absurd. Thus \(\text{Fix } T_1 \cap \text{Fix } T_2 = \text{Fix } (T_2 T_1)\). It remains to show that \(T_2 T_1\) is attracting. Fix \(x \in D \setminus \text{Fix } (T_2 T_1)\), \(f \in \text{Fix } (T_2 T_1)\). If \(x = T_1 x\), then \(T_2 x \neq x\) and hence \(\|T_2 T_1 x - f\| = \|T_2 x - \tilde{f}\| < \|x - f\|\). Otherwise \(x \neq T_1 x\); then \(\|T_2 T_1 x - f\| \leq \|T_1 x - f\| < \|x - f\|\). In either case, \(T_2 T_1\) is attracting.

(ii): Given \(x \in D\), \(f \in \text{Fix } (T_2 T_1)\), we estimate

\[
\|x - T_2 T_1 x\|^2 \leq \left(\|x - T_1 x\| + \|T_1 x - T_2 T_1 x\|\right)^2 \\
\leq 2(\|x - T_1 x\|^2 + \|T_1 x - T_2 T_1 x\|^2) \\
\leq \frac{2}{\kappa_1}(\|x - f\|^2 - \|T_1 x - f\|^2) \\
+ \frac{2}{\kappa_2}(\|T_1 x - f\|^2 - \|T_2 T_1 x - f\|^2) \\
\leq \frac{2}{\min \{\kappa_1, \kappa_2\}}(\|x - f\|^2 - \|T_2 T_1 x - f\|^2). \quad \Box
\]
REMARK 2.11. Let $X \not= \{0\}$, $D := X$, $N := 2$, and $T_1 := T_2 := \text{Id}$. Then

$$\text{Fix } T_1 \cap \text{Fix } T_2 = \{0\} \subseteq X = \text{Fix } (T_2 T_1);$$

hence the formula on the fixed point sets given in (i) of the last proposition does not hold in general for nonexpansive mappings.

PROPOSITION 2.12. Suppose D is a closed convex nonempty set, $T_1, \ldots, T_N : D \longrightarrow D$ are attracting, and $\bigcap_{i=1}^{N} \text{Fix } T_i$ is nonempty. Suppose further $\lambda_1, \ldots, \lambda_N > 0$ with $\sum_{i=1}^{N} \lambda_i = 1$. Then

(i) $\text{Fix } \left(\sum_{i=1}^{N} \lambda_i T_i \right) = \bigcap_{i=1}^{N} \text{Fix } T_i$ and $\sum_{i=1}^{N} \lambda_i T_i$ is attracting.

(ii) If every T_i is κ_i-attracting, then $\sum_{i=1}^{N} \lambda_i T_i$ is $\min\{\kappa_1, \ldots, \kappa_N\}$-attracting.

Proof. Again we have only to consider the case when $N = 2$.

(i) Once more, $\text{Fix } T_1 \cap \text{Fix } T_2 \subseteq \text{Fix } (\lambda_1 T_1 + \lambda_2 T_2)$. Conversely, let $f \in \text{Fix } (\lambda_1 T_1 + \lambda_2 T_2)$, $\bar{f} \in \text{Fix } T_1 \cap \text{Fix } T_2$. Then

$$\|f - \bar{f}\| = \|\lambda_1 T_1 f + \lambda_2 T_2 f - \lambda_1 \bar{f} - \lambda_2 \bar{f}\|$$

$$\leq \lambda_1 \|T_1 f - \bar{f}\| + \lambda_2 \|T_2 f - \bar{f}\|$$

$$\leq \lambda_1 \|f - \bar{f}\| + \lambda_2 \|f - \bar{f}\| = \|f - \bar{f}\|.$$

Hence the above chain of inequalities is actually one of equalities. This, together with the strict convexity of X, implies $f = T_1 f = T_2 f$. Next, we show that $\lambda_1 T_1 + \lambda_2 T_2$ is attracting. Suppose $x \neq \lambda_1 T_1 x + \lambda_2 T_2 x$ and $f \in \text{Fix } (\lambda_1 T_1 + \lambda_2 T_2)$. Then $x \not\in \text{Fix } T_1 \cap \text{Fix } T_2$ and thus

$$\|\lambda_1 T_1 x + \lambda_2 T_2 x - f\| \leq \lambda_1 \|T_1 x - f\| + \lambda_2 \|T_2 x - f\|$$

$$< \lambda_1 \|x - f\| + \lambda_2 \|x - f\| = \|x - f\|.$$

(ii) If $\kappa := \min\{\kappa_1, \kappa_2\}$, $x \in D$, and $f \in \text{Fix } (\lambda_1 T_1 + \lambda_2 T_2)$, then

$$\kappa \|x - (\lambda_1 T_1 x + \lambda_2 T_2 x)\| \leq \kappa (\lambda_1 \|x - T_1 x\| + \lambda_2 \|x - T_2 x\|)$$

$$\leq \kappa (\lambda_1 \|x - T_1 x\|^2 + \lambda_2 \|x - T_2 x\|^2)$$

$$\leq \lambda_1 \kappa_1 \|x - T_1 x\|^2 + \lambda_2 \kappa_2 \|x - T_2 x\|^2$$

$$\leq \lambda_1 (\|x - f\|^2 - \|T_1 x - f\|^2)$$

$$+ \lambda_2 (\|x - f\|^2 - \|T_2 x - f\|^2)$$

$$\leq \|x - f\|^2 - (\lambda_1 T_1 x + \lambda_2 T_2 x - f)^2.$$

REMARK 2.13. In contrast to the last remark, the above proof shows that the formula

$$\text{Fix } \left(\sum_{i=1}^{N} \lambda_i T_i \right) = \bigcap_{i=1}^{N} \text{Fix } T_i$$

holds even if the T_i's are not attracting.

EXAMPLE 2.14. Suppose S_1, \ldots, S_N are closed convex nonempty sets with projections P_1, \ldots, P_N and with nonempty intersection. Then

$$T := \frac{P_1 + P_2 P_1 + \cdots + P_N P_{N-1} \cdots P_1}{N}$$

is strongly attracting, $\text{Fix } T = \bigcap_{i=1}^{N} S_i$, and the sequence of iterates $(T^n x_0)$ is asymptotically regular for every x_0.

The second concept captures essential properties of iterates of nonexpansive mappings.

DEFINITION 2.15. Suppose C is a closed convex nonempty set and (x_n) is a sequence in X. We say that $(x_n)_{n \geq 0}$ is Fejér monotone w.r.t. C if

$$\|x_{n+1} - c\| \leq \|x_n - c\|$$

for all $c \in C$ and every $n \geq 0$.
THEOREM 2.16 (basic properties of Fejér monotone sequences). Suppose the sequence $(x_n)_{n \geq 0}$ is Fejér monotone w.r.t. C. Then

(i) (x_n) is bounded and $d(x_{n+1}, C) \leq d(x_n, C)$.

(ii) (x_n) has at most one weak cluster point in C. Consequently, (x_n) converges weakly to some point in C if and only if all weak cluster points of (x_n) lie in C.

(iii) If the interior of C is nonempty, then (x_n) converges in norm.

(iv) The sequence $(P_C x_n)$ converges in norm.

(v) The following are equivalent:
1. (x_n) converges in norm to some point in C.
2. (x_n) has norm cluster points, all lying in C.
3. (x_n) has norm cluster points, one lying in C.
4. $d(x_n, C) \to 0$.
5. $x_n - P_C x_n \to 0$.

Moreover, if (x_n) converges to some $x \in C$, then $\|x_n - x\| \leq 2d(x_n, C)$ for all $n \geq 0$.

(vi) If there is some constant $\alpha > 0$ s.t. $\alpha d^2(x_n, C) \leq d^2(x_n, C) - d^2(x_{n+1}, C)$ for every n, then (x_n) converges linearly to some point x in C. More precisely,

$$\|x_n - x\| \leq 2(1 - \alpha)^n/2d(x_0, C) \text{ for every } n \geq 0.$$

Proof. (i) is obvious.

(ii): For any $c \in C$, the sequence $(\|x_n\|^2 - 2(x_n, c))$ converges. Hence if we suppose c_1, c_2 are two weak cluster points of (x_n) in C, then we conclude that the sequence $((x_n, c_1 - c_2))$ converges and that $(c_1, c_1 - c_2) = (c_2, c_1 - c_2)$. Thus $c_1 = c_2$.

(iii): Fix $c_0 \in \text{int } C$ and get $\epsilon > 0$ s.t. $c_0 + \epsilon B_C \subseteq C$.

Claim:

$$2\epsilon \|x_n - x_{n+1}\| \leq \|x_n - c_0\|^2 - \|x_{n+1} - c_0\|^2 \quad \text{for all } n \geq 0.$$

We can assume $x_n \neq x_{n+1}$. Then $c_0 + \epsilon (x_n - x_{n+1})/\|x_n - x_{n+1}\| \in C$ and hence, by Fejér monotonicity,

$$\left\| \frac{x_0 + \epsilon (x_n - x_{n+1})}{\|x_n - x_{n+1}\|} - x_{n+1} \right\| \leq \left\| \frac{x_0 + \epsilon (x_n - x_{n+1})}{\|x_n - x_{n+1}\|} - x_n \right\|.$$

Squaring and expanding yields the claim.

The claim implies $2\epsilon \|x_n - x_{n+k}\| \leq \|x_n - c_0\|^2 - \|x_{n+k} - c_0\|^2$ for all $n, k \geq 0$. Because the sequence $(\|x_n - c_0\|^2)$ converges, we recognize (x_n) as a Cauchy sequence.

(iv): Applying the parallelogram law $\|a - b\|^2 = 2\|a\|^2 + 2\|b\|^2 - \|a + b\|^2$ to $a := P_C x_{n+k} - x_{n+k}$ and $b := P_C x_n - x_{n+k}$, we obtain for all $n, k \geq 0$,

$$\|P_C x_{n+k} - P_C x_n\|^2 = 2\|P_C x_{n+k} - x_{n+k}\|^2 + 2\|P_C x_n - x_{n+k}\|^2 - 4\|P_C x_{n+k} + P_C x_n)/2 - x_{n+k}\|^2 \leq 2\|P_C x_{n+k} - x_{n+k}\|^2 + 2\|P_C x_n - x_{n+k}\|^2 - 4\|P_C x_{n+k} - x_{n+k}\|^2 \leq 2\|P_C x_n - x_{n+k}\|^2 - 2\|P_C x_{n+k} - x_{n+k}\|^2 \leq 2\|P_C x_n - x_{n+k}\|^2 - \|P_C x_{n+k} - x_{n+k}\|^2 (2\|P_C x_{n+k} - x_{n+k}\|^2).$$

We identify $(P_C x_n)$ as a Cauchy sequence because $(\|x_n - P_C x_n\|)$ converges by (i).
(v): The equivalences follow easily from (i), (iv), and the definition of Fejér monotonicity. The estimate follows from letting k tend to infinity in

$$
\|x_{n+k} - x_n\| \leq \|x_{n+k} - P_C x_n\| + \|P_C x_n - x_n\|
\leq \|x_n - P_C x_n\| + \|P_C x_n - x_n\| = 2d(x_n, C).
$$

(vi): Summing the given inequalities shows that $d^2(x_n, C)$ tends to 0; therefore, (x_n) converges to some point x in C by (v). The estimate on the rate of convergence of (x_n) follows easily from the estimate given in (v). \(\square\)

Remarks 2.17. As far as we know, the notion of Fejér monotonicity was coined by Motzkin and Schoenberg [83] in 1954. Moreau [81] inspired (iii); see also [69, Thm. 6.5.3]. (iv) rests on an idea by Baillon and Brezis [8, Lemme 3] and partially extends [46, Thm. 3.4 (c)]. Finally, (v) and (vi) appeared implicitly in Gubin, Polyak, and Raik's [60, Proof of Lem. 6].

Example 2.18 (Krasnoselskii/Mann iteration). Suppose C is a closed convex nonempty set, $T : C \rightarrow C$ is nonexpansive with fixed points, and the sequence (x_n) is given by

$$
x_0 \in C, \quad x_{n+1} := (1 - t_n)x_n + t_nT x_n
$$

for all $n \geq 0$ and some sequence $(t_n)_{n \geq 0}$ in $[0, 1]$. Then (x_n) is Fejér monotone w.r.t. Fix T.

Remarks 2.19. In the early days, the Krasnoselskii/Mann iteration was studied in Hilbert space. Some authors then implicitly used properties of Fejér monotone sequences; see [79, Proof of Thm. 1] and [90, Proof of Thm. 2]. However, tremendous progress has been made and today the iteration is studied in normed or even more general spaces (see [15, 57] for further information).

Example 2.20 (Example 2.14 continued). The sequence $(T^n x_0)$ converges weakly to some fixed point of T for every x_0.

Proof. $(T^n x_0)$ is asymptotically regular (Example 2.14) and Fejér monotone w.r.t. Fix T (Example 2.18). By the demiclosedness principle, every weak limit point of $(T^n x_0)$ lies in Fix T. The result now follows from Theorem 2.16 (ii). \(\square\)

Remark 2.21. Alternatively, one can use Baillon, Bruck, and Reich's results on averaged mappings [9, Thms. 1.2 and 2.1] to understand the last example. In fact, using a suitable modification of [9, Thm. 1.1], one can show that $(T^n x_0)$ converges in norm whenever S_1, \ldots, S_N are closed affine subspaces.

Remark 2.22. We conclude this section by mentioning a method due to Halpern [62] which generates a sequence that converges in norm to the fixed point of T that is closest to the starting point. For extensions of Halpern's result, the interested reader is referred to Lions's [77], Wittmann's [104], and the first author's [11].

3. The algorithm: Basic properties and convergence results.

Setting. Suppose D is a closed convex nonempty set and C_1, \ldots, C_N are finitely many closed convex subsets of D with nonempty intersection:

$$
C := \cap_{i=1}^N C_i \neq \emptyset.
$$

For every $i \in \{1, \ldots, N\}$ (we will often refer to i as an index) and all $n \geq 0$, suppose that $T_i^{(n)} : D \rightarrow D$ is firmly nonexpansive with

$$
\text{Fix } T_i^{(n)} \supseteq C_i,
$$

that $\alpha_i^{(n)} \in [0, 2]$ is a relaxation parameter and

$$
R_i^{(n)} := (1 - \alpha_i^{(n)})I + \alpha_i^{(n)}T_i^{(n)}
$$
is the corresponding relaxation of $T_i^{(n)}$ (underrelaxed if $\alpha_i^{(n)} \in [0, 1]$, overrelaxed if $\alpha_i^{(n)} \in [1, 2]$), that $(\lambda_i^{(n)})_{i=1}^N$ in $[0, 1]$ is a weight, i.e., $\sum_{i=1}^N \lambda_i^{(n)} = 1$, and finally that

$$A^{(n)} := \sum_{i=1}^N \lambda_i^{(n)} R_i^{(n)}$$

is the corresponding weighted average of the relaxations.

With these abbreviations, we define the algorithm by the sequence

$$x^{(0)} \in D \text{ arbitrary}, \quad x^{(n+1)} := A^{(n)} x^{(n)} \text{ for all } n \geq 0,$$

with the implicit assumption that the sequence $(x^{(n)})$ lies in D. We also define the set of active indices

$$I^{(n)} := \{ i \in \{1, \ldots, N\} : \lambda_i^{(n)} > 0 \},$$

and we say i is active at n or n is active for i if $\lambda_i^{(n)} > 0$; i.e., $i \in I^{(n)}$. We always assume that every index is picked infinitely often; i.e., i is active at infinitely many n (this is sometimes referred to as repetitive control; see [22]). To facilitate the presentation, we abbreviate

$$\mu_i^{(n)} := \lambda_i^{(n)} \alpha_i^{(n)} [2 - \sum_{j=1}^N \lambda_j^{(n)} \alpha_j^{(n)}] \quad \text{for every index } i \text{ and } n \geq 0.$$

For convenience, we introduce some more notions. We say the algorithm is asymptotically regular if every sequence generated by the algorithm is. We say the algorithm is unrelaxed if $\alpha_i^{(n)} = 1$ for all n and every index i active at any n; note that in this case the algorithm reduces to a product of firmly nonexpansive mappings. We say the algorithm is singular if $I^{(n)}$ is a singleton for every n. Singular algorithms are also called row–action methods (see, for example, [21]). Finally, we say the algorithm is weighted if $I^{(n)} = \{1, \ldots, N\}$ for all n; the reader may also find the words “parallel” or “simultaneous” in the literature.

Remark 3.1. The algorithm is a direct generalization of Flåm and Zowe’s algorithm [53]. In fact, one just chooses X finite dimensional and $T_i^{(n)}$ as the projection onto a hyperplane containing C_i. We will examine their algorithm in detail in §4.

Lemma 3.2 (basic properties of the algorithm).

(i) If $x \in D$ and $n \geq 0$, then

$$\|x^{(n)} - x\|^2 - \|x^{(n+1)} - x\|^2 \geq \sum_{i \in I^{(n)}} \lambda_i^{(n)} \alpha_i^{(n)} \|T_i^{(n)} x^{(n)} - T_i^{(n)} x^{(n)}\|^2$$

$$+ 2 \sum_{i \in I^{(n)}} \lambda_i^{(n)} \alpha_i^{(n)} \|x^{(n)} - T_i^{(n)} x^{(n)} - T_i^{(n)} x^{(n)} - x\|$$

$$+ \sum_{i \in I^{(n)}} \lambda_i^{(n)} \alpha_i^{(n)} [2 - \sum_j \lambda_j^{(n)} \alpha_j^{(n)}] \|x^{(n)} - T_i^{(n)} x^{(n)}\|^2.$$

(ii) If $x \in \bigcap_{i \in I^{(n)}} C_i$ and $n \geq 0$, then

$$\|x^{(n)} - x\|^2 - \|x^{(n+1)} - x\|^2 \geq \sum_{i \in I^{(n)}} \mu_i^{(n)} \|x^{(n)} - T_i^{(n)} x^{(n)}\|^2.$$

(iii) If $x \in \bigcap_{i=n}^{n-1} \bigcap_{i \in I^{(n)}} C_i$ and $m \geq n \geq 0$, then

$$\|x^{(n)} - x\|^2 - \|x^{(n)} - x\|^2 \geq \sum_{i=n}^{m-1} \sum_{i \in I^{(n)}} \lambda_i^{(n)} \|x^{(n)} - T_i^{(n)} x^{(n)}\|^2.$$
(iv) The sequence \((x^{(n)})\) is Fejér monotone w.r.t. \(C\) and hence is bounded. Also,
\[+\infty > \sum_{i=0}^{\infty} \sum_{l} \mu_{i}^{(l)} \|x_{l} - T_{l}^{(i)} x_{l}\|^{2}. \]

(v) If \(n \geq 0\), then
\[\|x^{(n+1)} - x^{(n)}\| \leq \sum_{i} \lambda_{i}^{(n)} \alpha_{i}^{(n)} \|x^{(n)} - T_{i}^{(n)} x^{(n)}\|. \]

Proof. (i): We omit the somewhat tedious and lengthy but elementary calculation. It is easy to see that "(i) \(\Rightarrow\) (ii) \(\Rightarrow\) (iii) \(\Rightarrow\) (iv)" (use Lemma 2.4.(ii)). (v) is immediate by the definition of the algorithm. \(\Box\)

Using the tools from the previous section, we obtain the following corollary.

COROLLARY 3.3 (sufficient conditions for norm convergence).

(i) If the interior of \(C\) is nonempty, then the sequence \((x^{(n)})\) converges in norm to some point in \(D\).

(ii) If the sequence \((x^{(n)})\) has a subsequence \((x^{(\nu)})\) with \(d(x^{(n)}) = 0\), then the entire sequence \((x^{(n)})\) converges in norm to some point in \(C\).

Proof. This follows from Lemma 3.2.(iv) and Theorem 2.16. \(\Box\)

REMARK 3.4. If the interior of \(C\) is empty, then the convergence might only be weak: Genel and Lindenstrauss [56] present an example of a firmly nonexpansive self mapping \(T\) of some closed convex nonempty set in \(\ell_{2}\) such that the sequence of iterates \((T^{n} x_{0})\) converges weakly but not in norm for some starting point \(x_{0}\). (A norm convergent method is mentioned in Remark 2.22.) Since \((T^{n} x_{0})\) is Fejér monotone w.r.t. \(T\) (Example 2.18), we conclude that \(T^{n}\) has empty interior and norm convergence of the algorithm needs some hypothesis.

COROLLARY 3.5 (asymptotically regular algorithms). The algorithm is asymptotically regular whenever

(i) \(\lim_{n \to \infty} \mu_{i}^{(n)} = 0\) for every index \(i\) or

(ii) \(\lim_{n \to \infty} \alpha_{i}^{(n)} < 2\) for every index \(i\).

Proof. (i): There exists an \(\epsilon > 0\) s.t. for all \(n\) sufficiently large, \(\mu_{i}^{(n)} \geq \epsilon\) for every index \(i\) active at \(n\). Lemma 3.2.(iv) implies that \(\sum_{n \to \infty} \sum_{i: \text{active at } n} \|x^{(n)} - T_{i}^{(n)} x^{(n)}\|^{2}\) is finite. Consequently,
\[\sum_{i: \text{active at } n} \|x^{(n)} - T_{i}^{(n)} x^{(n)}\| \to 0. \]

On the other hand, by Lemma 3.2.(v),
\[\|x^{(n+1)} - x^{(n)}\| \leq \sum_{i: \text{active at } n} \lambda_{i}^{(n)} \alpha_{i}^{(n)} \|x^{(n)} - T_{i}^{(n)} x^{(n)}\|. \]

Hence \((x^{(n)})\) is asymptotically regular.

(ii): By Lemma 2.4.(iv) and Proposition 2.12, every \(A^{(n)}\) is \(\kappa_{n}\)-attracting w.r.t. \(C\), where \(\kappa_{n} := \min((2 - \alpha_{i}^{(n)})/\alpha_{i}^{(n)}: i \text{ active at } n)\). The hypothesis guarantees \(\lim_{n} \kappa_{n} > 0\), so the conclusion follows from Example 2.7. \(\Box\)

The following simple example shows that the algorithm is not necessarily asymptotically regular.

EXAMPLE 3.6. Suppose \(X := \mathbb{R}\), \(N := 1\), \(T_{1}^{(n)} := P_{[0]}\), \(\alpha_{1}^{(n)} := 2\). Then \(x^{(n)} = (-1)^{n} x^{(0)}\); hence the sequence \((x^{(n)})\) is not asymptotically regular for \(x^{(0)} \neq 0\).

The algorithm should converge at least weakly to some point; however, as the last example shows, further assumptions are necessary.
Definition 3.7. We say the algorithm is focusing if for every index \(i \) and every subsequence \((x^{(n_i)})_k \) of the algorithm,

\[
x^{(n_i)} \rightharpoonup x, \\
x^{(n_i)} - T^{(n_i)}_i x^{(n_i)} \to 0 \\
i \text{ active at } n_k
\]

implies \(x \in C_i \).

Thanks to the demiclosedness principle, we immediately obtain a first example.

Example 3.8. Suppose \(N := 1, \ T^{(a)}_1 := T \), and \(C_1 := \text{Fix } T \). Then the algorithm is focusing.

Remark 3.9. As almost all upcoming results show, the concept of a focusing algorithm is crucial. It can be viewed as a generalization of the demiclosedness principle for firmly nonexpansive mappings. The concept itself is investigated in Proposition 3.16 (cf. Theorem 4.3, Corollary 4.9, Theorem 7.7, and Theorem 7.12).

Theorem 3.10 (dichotomy I). Suppose the algorithm is focusing. If \(\lim_{n \to \infty} \mu_i^{(n_i)} > 0 \) for every index \(i \), then the sequence \((x^{(n_i)}) \) either converges in norm to some point in \(C \) or has no norm cluster points at all.

Proof. In view of the Fejér monotonicity of \((x^{(n_i)}) \) and Theorem 2.16.(v), it suffices to show that any norm cluster point of \((x^{(n_i)}) \) lies in \(C \). Suppose to the contrary that the theorem were false. Then there is some subsequence \((x^{(n_{k_i})})_k \) converging to some point \(x \notin C \). Let us define

\[
I_{in} := \{ i \in [1, \ldots, N] : x \in C_i \} \quad \text{and} \quad I_{out} := \{ i \in [1, \ldots, N] : x \notin C_i \};
\]

then \(I_{out} \) is nonempty. We assume, after passing to a subsequence if necessary, that

\[
I^{(n_i)} \cup I^{(n_i+1)} \cup \ldots \cup I^{(n_i-1)} = [1, \ldots, N].
\]

Now get \(m_k \in \{ n_k, \ldots, n_{k+1} - 1 \} \) minimal s.t. \(I^{(m_k)} \cap I_{out} \neq \emptyset \). Thus for \(n_k \leq m < m_k \), we have \(I^{(m)} \subseteq I_{in} \). Since \(x \in \bigcap_{i \in I_{in}} C_i \), Lemma 3.2.(iii) yields \(\| x^{(m_k)} - x \| \geq \| x^{(m_k)} - x \| \), which implies

\[
(1) \quad x^{(m_k)} \rightharpoonup x.
\]

After passing to another subsequence if necessary, we can assume that there is some index \(i \) s.t.

\[
(2) \quad i \in I^{(m_k)} \cap I_{out} \quad \text{for all } k.
\]

By Lemma 3.2.(iv), \(+\infty > \sum_k \mu_i^{(m_k)} \| x^{(m_k)} - T^{(m_k)}_i x^{(m_k)} \|^2 \). By (2) and the hypothesis on \((\mu_i^{(n_i)}) \), we conclude that

\[
(3) \quad x^{(m_k)} - T^{(m_k)}_i x^{(m_k)} \to 0.
\]

Because the algorithm is focusing, (1), (2), and (3) imply \(x \in C_i \), which is a contradiction to \(i \in I_{out} \). Therefore, the proof is complete. \(\square \)

Remarks 3.11. The finite-dimensional version of the last theorem is relatively recent and was discovered (in some form or another) independently by Flåm and Zowe [53], Tseng [100], and Elsner, Koltracht, and Neumann [51]. Unfortunately, since firmly nonexpansive mappings are not weakly continuous in general (see, for example, Zarantonello's [109, Example on p. 245]), the proof does not work in the weak topology.
COROLLARY 3.12. Suppose X is finite dimensional and the algorithm is focusing. If
\[\lim_{n \to \infty, \text{active for } i} \mu_i^{(n)} > 0 \quad \text{for every index } i, \]
then the sequence $(x^{(n)})$ converges in norm to some point in C.

Proof. $(x^{(n)})$ is bounded (Lemma 3.2.(iv)) and hence possesses a norm cluster point. Now apply Theorem 3.10. □

REMARK 3.13 (guaranteeing the “liminf” condition). A simple way to guarantee
\[\lim_{n \to \infty, \text{active for } i} \mu_i^{(n)} > 0 \quad \text{for some index } i \]
is to assume the existence of some $\varepsilon > 0$ s.t.
\[\varepsilon \leq \alpha_i^{(n)} \leq 2 - \varepsilon \quad \text{and} \quad \varepsilon \leq \lambda_i^{(n)} \quad \text{for all large } n \text{ active at } i, \]
because then $\mu_i^{(n)} \geq \varepsilon^3$. Moreover, this assumption is equivalent to (cf. to Corollary 3.5)
\[\lim_{n \to \infty, \text{active for } i} \mu_i^{(n)} > 0 \quad \text{and} \quad \lim_{n \to \infty, \text{active for } i} \alpha_i^{(n)} < 2. \]

Flåm and Zowe [53] used this assumption with great success; see also Example 4.18.

EXAMPLE 3.14 (Tseng’s framework [100, Thm. 1]). Suppose X is finite dimensional and the algorithm is singular. Suppose further $T_i^{(n)} := T_i, \ C_i := \text{Fix } T_i, \ \text{and there is some } \varepsilon > 0 \ \text{s.t.} \ \varepsilon \leq \alpha_i^{(n)} \leq 2 - \varepsilon \ \text{for all } n \text{ and every index } i$. Then the sequence $(x^{(n)})$ converges in norm to some point in C.

Proof. The demiclosedness principle readily implies that the algorithm is focusing. By the last remark, \[\lim_{n \to \infty, \text{active for } i} \mu_i^{(n)} > 0 \quad \text{for every index } i. \] The result follows from the last corollary. □

DEFINITION 3.15. Given an algorithm, we say that $(T_i^{(n)})$ converges actively pointwise to T_i for some index i if
\[\lim_{n \to \infty, \text{active for } i} T_i^{(n)} d = T_i d \quad \text{for every } d \in D. \]

PROPOSITION 3.16 (prototype of a focusing algorithm). Suppose $T_1, \ldots, T_N : D \to D$ are firmly nonexpansive and let $C_i := \text{Fix } T_i$ for every index i. If $(T_i^{(n)})$ converges actively pointwise to T_i for every index i, then the algorithm is focusing.

Proof. Fix an index i and a subsequence $(x^{(n_k)})$ of $(x^{(n)})$ with $x^{(n_k)} \to x \in D, \ x^{(n_k)} - T_i^{(n_k)} x^{(n_k)} \to 0$, and i active at every n_k. We must show that $x \in C_i$. Fix any $u \in X$. Because $T_i^{(n_k)} P_D$ is nonexpansive,
\[\langle (x^{(n_k)} - u) - (T_i^{(n_k)} x^{(n_k)} - T_i^{(n_k)} P_D u), x^{(n_k)} - u \rangle \geq 0 \quad \text{for all } k. \]
Let k tend to infinity; then, by hypothesis on $(T_i^{(n)})$ and $(x^{(n_k)})$, we conclude that
\[\langle T_i P_D u - u, x - u \rangle \geq 0. \]
Since u has been chosen arbitrarily, we might as well choose $u = x + tv$, where v is an arbitrary vector and $t > 0$. Then
\[\langle T_i P_D (x + tv) - (x + tv), v \rangle \leq 0; \]
hence, by letting t tend to 0, we get $\langle T_i P_D x - x, v \rangle \leq 0$. For $v = x - T_i P_D x$, we obtain
\[x = T_i P_D x. \]
But $x \in D$, so $P_D x = x$ and therefore $x \in \text{Fix } T_i = C_i$. □
REMARKS 3.17.
- The last proof is a special case of an argument of Baillon [7, Chapitre 6, Démonstration du Théorème 1.3].
- Note that the last proposition gives another explanation of the fact that the algorithms of Examples 3.8 and 3.14 are focusing.

DEFINITION 3.18 (control). We say the algorithm is cyclic if
\[I^{(n-1)} = \{ n \mod N \} \quad \text{for } n \geq 1, \]
where we use \(\{1, \ldots, N\} \) as remainders. If there is a positive integer \(p \) s.t.
\[i \in I^{(n)} \cup I^{(n+1)} \cup \cdots \cup I^{(n+p-1)} \quad \text{for every index } i \text{ and all } n \geq 0, \]
then we speak of an intermittent or \(p \)-intermittent algorithm or of intermittent control. Following Censor [21], we call an algorithm almost cyclic if it is intermittent and singular. We say the algorithm considers only blocks and speak of block control (cf. [25]) and a block algorithm if the following two conditions hold.
1. There is a decomposition \(J_1 \cap \cdots \cap J_M = \{1, \ldots, N\} \) with \(J_m \neq \emptyset \) and \(J_m \cap J_m' = \emptyset \) for all \(m, m' \in \{1, \ldots, M\} \) and \(m \neq m' \).
2. There is a positive integer \(p \) s.t. for all \(n \geq 0 \) and every \(m \in \{1, \ldots, M\} \), \(I^{(n')} = J_m \) for some \(n' \in \{n, n + 1, \ldots, n + p - 1\} \).

Finally, if we want to emphasize that the active indices do not necessarily follow some form of control, then we use the phrases random control and random algorithm. Clearly,
\[
\text{cyclic} \rightarrow \text{almost cyclic} \quad \downarrow \\
\text{considers only blocks} \rightarrow \text{intermittent} \rightarrow \text{random.} \\
\quad \uparrow \\
\text{weighted}
\]

REMARKS 3.19.
- Recently, block algorithms have received much attention in radiation therapy treatment planning; see [25] and the subsection on polyhedra in §6.
- Equivalent to the phrase “almost cyclic” is Amemiya and Ando’s “quasi-periodic” [5] or Browder’s “admissible (for finitely many sets)” [17].

THEOREM 3.20 (weak topology results).
(i) Suppose the algorithm is focusing and intermittent. If \(\lim_{n} \mu_i^{(n)} > 0 \) for every index \(i \), then the sequence \((x^{(n)}) \) is asymptotically regular and converges weakly to some point in \(C \).
(ii) Suppose the algorithm is focusing and \(p \)-intermittent for some positive integer \(p \).
Let
\[
v_n := \min(\mu_i^{(l)} : np \leq l \leq (n+1)p - 1 \text{ and } i \text{ active at } l) \quad \text{for all } n \geq 0.
\]
If \(\sum_n v_n = +\infty \), then the sequence \((x^{(n)}) \) has a unique weak cluster point in \(C \). More precisely, there is a subsequence \((x^{(n_i,p)}) \) converging weakly to this unique weak cluster point of \((x^{(n)}) \) in \(C \) s.t.
\[
(*) \quad \sum_{l=n_i p}^{(n_i+1)p-1} \sum_{l
eq l'} \| x^{(l)} - T^{(l)}_i x^{(l')} \| \rightarrow 0, \quad \text{which implies}
\]
\[
(**) \quad x^{(n_i p + n_i)} - x^{(n_i p + n_i)} \rightarrow 0
\]
for all sequences \((r_k), (s_k)\) in \([0, \ldots, p - 1]\). In particular, this happens whenever
\[\lim_{n \to \infty} \mu_i^{(k)} = 0\]
for every index \(i\).

(iii) Suppose the algorithm is focusing and the sequence \((x^{(n)})\) converges weakly to some point \(x\). If \(\sum_n \mu_i^{(n)} = +\infty\) for some index \(i\), then \(x \in C_i\). Consequently, if \(\sum_n \mu_i^{(n)} = +\infty\) for every index \(i\), then \(x \in C\).

Proof. (i): \((x^{(n)})\) is asymptotically regular (Corollary 3.5.(i)). Suppose to the contrary that \((x^{(n)})\) does not converge weakly to some point in \(C\). Then, by the Féjer monotonicity of \((x^{(n)})\) and Theorem 2.16.(ii), there exists an index \(i\) and a subsequence \((x^{(n_k)})_k\) converging weakly to some point \(x \notin C_i\). Because the algorithm is intermittent, we obtain \(m_k\) with
\[n_k \leq m_k \leq n_k + p - 1\]
and \(i \in I^{(m_k)}\) for all \(k \geq 0\).

Since the algorithm is asymptotically regular, we have \(x^{(n_k)} - x^{(m_k)} \to 0\) and hence
\[(x^{(m_k)})_k\] converges weakly to \(x\).

Since the algorithm is focusing, we conclude that
\[\lim_{k} \|x^{(m_k)} - T_i^{(m_k)}x^{(m_k)}\| > 0.\]

On the other hand, by Lemma 3.2.(iv), \(+\infty > \sum_k \mu_i^{(m_k)}\|x^{(m_k)} - T_i^{(m_k)}x^{(m_k)}\|^2\). This contradicts the hypothesis on \((\mu_i^{(n)})\), thus (i) holds.

(ii): Fix momentarily \(c \in C\). Then, by Lemma 3.2.(ii) and the definition of \(\nu_n\),
\[\|x^{(np)} - c\|^2 - \|x^{((n+1)p)} - c\|^2 \geq \nu_n \sum_{l=1}^{(n+1)p-1} \sum_{i \in I^l} \|x^{(l)} - T_i^{(l)}x^{(l)}\|^2\]
for all \(n \geq 0\). Summing over \(n\) and considering the hypothesis on \((\nu_n)\), we obtain a subsequence \((x^{(n_kp)})_k\) s.t.
\[(*) \sum_{i=n_kp}^{(n_k+1)p-1} \sum_{l \in I^l} \|x^{(l)} - T_i^{(l)}x^{(l)}\|^2 \to 0.\]

By Lemma 3.2.(v), we also have
\[(**) \quad x^{(n_k p+r_k)} - x^{(n_k p+n_k)} \to 0\]
for all sequences \((r_k), (s_k)\) in \([0, 1, \ldots, p - 1]\). After passing to a subsequence if necessary, we may assume that \((x^{(n_k p)})_k\) converges weakly to some \(x \in D\).

Claim:
\[x \in C\]

Fix any index \(i\). Since the algorithm is intermittent, there is some sequence \((r_k)\) in \([0, 1, \ldots, p - 1]\) s.t.
\[(1) \quad x^{(n_k p+r_k)} \to x\]
(this follows from (**) with \(s_k \equiv 0\)) and
\[(2) \quad i \in I^{(n_k p+r_k)} \quad \text{for all } k.\]
By (*),
\[x^{(n+1)} = T_i^{(n)} x^{(n)} \rightarrow 0. \]
Since the algorithm is focusing, (1), (2), and (3) imply \(x \in C_i \). The claim follows.

By Theorem 2.16.(ii), \(x \) is the unique weak cluster point of \((x^{(n)}) \) in \(C \). The proof of (ii) is complete.

(iii): By Lemma 3.2.(iv), \(+\infty > \sum_n \mu_i^{(n)} \| x^{(n)} - T_i^{(n)} x^{(n)} \|^2 \). Since we assume \(\sum_n \mu_i^{(n)} = +\infty \), the limsup inferior of the sequence
\[\| x^{(n)} - T_i^{(n)} x^{(n)} \| \] for \(n \) active for \(i \)
must equal 0. Since the algorithm is focusing, we readily see that \(x \) is in \(C_i \). The entire theorem is proven. \(\Box \)

Remarks 3.21. (i) is our basic weak convergence result. (ii) is a generalization of an idea due to Trummer [97, Thm. 1]. Tseng's [100, Thm. 2] is also a result on the existence of a unique weak cluster point of \((x^{(n)}) \) in \(C \); his hypothesis, however, is somewhat contrasting: he considers less general relaxation parameters and weights but more general control. (iii) can be viewed as a generalization of Flåm and Zowe's [53, Thm. 2] (see also Corollary 3.24 and Example 4.18.(ii)) and Aharoni and Censor's [3, Thm. 1] (see also Corollary 4.17 and Example 4.19).

Corollary 3.22. Suppose \(T_1, \ldots, T_d : D \rightarrow D \) are firmly nonexpansive, \(C_i := \text{Fix } T_i \), and \(\{T_i^{(n)}\} \) converges actively pointwise to \(T_i \). Suppose further there is some \(\epsilon > 0 \) s.t. \(\epsilon \leq \alpha_i^{(n)} \leq 2 - \epsilon \) and \(\epsilon \leq \lambda_i^{(n)} \) for all \(n \geq 0 \) and every index \(i \) active at \(n \). If the algorithm is intermittent, then the sequence \((x^{(n)}) \) converges weakly to some point in \(C \).

Proof. The algorithm is focusing (Proposition 3.16) and \(\limsup_{n, \epsilon} \lambda_i^{(n)} > 0 \) for every index \(i \) (Remark 3.13). The result now follows from Theorem 3.20.(i). \(\Box \)

Remarks 3.23.
(i) (a special case of a theorem of Browder) If the algorithm is almost cyclic and \(T_i^{(n)} = T_i \), then the last corollary gives [17, Thm. 5 for finitely many sets].

(ii) (a remark of Baillon) If the algorithm is almost cyclic and unrelaxed, then the last corollary gives Baillon's [7, Chapitre 6, Remarque II.2].

Corollary 3.24. Suppose the algorithm is focusing and the interior of \(C \) is nonempty. If \(\sum_n \mu_i^{(n)} = +\infty \) for every index \(i \), then the sequence \((x^{(n)}) \) converges in norm to some point in \(C \).

Proof. It is immediate from Corollary 3.3.(i) and Theorem 3.20.(iii). \(\Box \)

Corollary 3.25. Suppose \(X \) is finite dimensional and the algorithm is focusing and \(p \)-intermittent. If \(\sum v_n = +\infty \) (where \(v_n \) is defined as in Theorem 3.20.(ii)), then the sequence \((x^{(n)}) \) converges in norm to some point in \(C \).

Proof. By Theorem 3.20.(ii), \((x^{(n)}) \) has a weak cluster point \(x \in C \). Since \(X \) is finite dimensional, the point \(x \) is a norm cluster point of \((x^{(n)}) \). Now apply Corollary 3.3.(ii). \(\Box \)

Remark 3.26 (guaranteeing the “divergent sum” condition). One way to guarantee \(\sum_n \mu_i^{(n)} = +\infty \) for some index \(i \) is to assume that there exists some \(\epsilon > 0 \) s.t.
\[\epsilon \leq \alpha_i^{(n)} \leq 2 - \epsilon \quad \text{for all } n \quad \text{and} \quad \sum_n \lambda_i^{(n)} = +\infty. \]
This corresponds (in the case when the \(T_i \)'s are projections) to Flåm and Zowe's [53, Thm. 2] (see also Example 4.18.(ii)). Another way is to assume that
the algorithm is singular and \(\sum_{n, \text{ active for } i} \alpha_i^{(n)} (2 - \alpha_i^{(n)}) = +\infty \),
because then the preceding sum equals \(\sum_n \mu_i^{(n)} \).
4. Harvest Time I: Projection Algorithms. From now on, we consider exclusively the following situation.

Setting. We maintain the hypotheses of the last section, where we defined the algorithm. In addition, we assume that \(T_i^{(n)} \) is the projection onto some closed convex nonempty set \(C_i^{(n)} \) containing \(C_i \):

\[
T_i^{(n)} := P_i^{(n)} := P_{C_i^{(n)}} \quad \text{and} \quad C_i^{(n)} \supseteq C_i \quad \text{for every index } i \text{ and all } n \geq 0.
\]

We also assume that \(D := X \); that is possible since projections are defined everywhere. We abbreviate

\[
P_i := P_{C_i} \quad \text{for every index } i \in \{1, \ldots, N\}
\]

and refer to the algorithm in this setting as the projection algorithm. We say the projection algorithm has constant sets if \(C_i^{(n)} = C_i \) for all \(n \geq 0 \) and every index \(i \).

Remark 4.1. The projection algorithm is formally a slight generalization of Flåm and Zowe’s algorithm [53] (cf. Remark 3.1). Nevertheless, since we allow infinite-dimensional Hilbert spaces and assume less restrictive hypotheses, we will obtain a number of genuinely more general results.

Of course, all the results of the previous section may be applied to the projection algorithm. However, before we can do so, we first must understand the meaning of a focusing projection algorithm. A first prototype is formulated in terms of set convergence in the sense of Mosco [82] (see [10] for a good survey article on set convergence). It is essentially a reformulation of Tsukada’s [101] characterization of Mosco convergence.

Lemma 4.2. Suppose \((S_n) \) is a sequence of closed convex sets and there is some closed convex nonempty set \(S \) with \(S \subseteq S_n \) for all \(n \). Then the following conditions are equivalent.

(i) \(P_{S_n} \rightarrow P_S \) pointwise in norm.

(ii) \(S_n \rightarrow S \) in the sense of Mosco; i.e., the following two conditions are satisfied.

(a) For every \(s \in S \), there exists a sequence \((s_n) \) converging in norm to \(s \) with \(s_n \in S_n \) for all \(n \).

(b) If \((s_{n_k})_k \) is a weakly convergent sequence with \(s_{n_k} \in S_{n_k} \) for all \(k \), then its weak limit lies in \(S \).

(iii) If \((x_{n_k})_k \) is a weakly convergent sequence with \(x_{n_k} \rightarrow P_{S_n} x_{n_k} \rightarrow 0 \), then its weak limit lies in \(S \).

Moreover, if one (and hence each) of the above conditions is satisfied, then

\[
S = \bigcap_{n} S_n.
\]

Proof. "(i)\(\iff\)(ii)". This is the Hilbert space case of Tsukada’s [101, Thm. 3.2]. The proof of "(ii)\(\iff\)(iii)" and the "Moreover" part is easy and is thus omitted.

Theorem 4.3 (first prototype of a focusing projection algorithm). If \((P_i^{(n)}) \) converges actively pointwise to \(P_i \) for every index \(i \), then the projection algorithm is focusing and

\[
C_i = \bigcap_{n} C_i^{(n)} \quad \text{active for } i \quad \text{for every index } i.
\]

Proof. Apply Lemma 4.2 to \((C_i^{(n)}) \) active for \(i \) for every index \(i \).

Example 4.4. Suppose \(C_i := \bigcap_{n} C_i^{(n)} \) and \((C_i^{(n)}) \) is decreasing; i.e.,

\[
C_i^{(1)} \supseteq C_i^{(2)} \supseteq \cdots \supseteq C_i^{(n)} \supseteq C_i^{(n+1)} \supseteq \cdots \quad \text{for all } n \geq 0 \text{ and every index } i.
\]

Then the projection algorithm is focusing. If, furthermore, the projection algorithm is intermittent and \(\lim_{n \rightarrow \infty} \mu_i^{(n)} > 0 \) for every index \(i \), then the sequence \((x^{(n)}) \) is asymptotically regular and converges weakly to some point in \(C \).
Proof. Mosco proved that a decreasing sequence of closed convex sets converges to its intersection in his sense [82, Lem. 1.3]. The last theorem and the last lemma imply that the projection algorithm is focusing. The result now follows from Theorem 3.20.(i). □

Remark 4.5. Balzoni obtained the last example when the algorithm is in addition almost cyclic and unrelaxed [7, Chapitre 6, Remarque II.6].

Example 4.6 (random projections). Suppose the projection algorithm is singular, unrelaxed, and has constant sets. If for some index \(j \) the set \(C_j \) is boundedly compact, then the sequence \((z^{(n)}) \) converges in norm to some point in \(C \). In particular, this holds whenever \(X \) is finite dimensional.

Proof. The last example shows that the algorithm is focusing. Also, \(\mu_i^{(n)} = 1 \) for all \(n \geq 0 \) and every index \(i \) active at \(n \). The sequence \((x^{(n)})_{n \in \mathbb{N}} \) active for \(j \) lies in \(C_j \) and thus must have a norm cluster point; therefore, by Theorem 3.10, the entire sequence \((x^{(n)}) \) converges in norm to some point in \(C \). □

Remarks 4.7. The finite-dimensional version of the last example also follows from Aharoni and Censor's [3, Thm. 1], Flam and Zowe's [53, Thm. 1], Tseung's [100, Thm. 1], and Elsner, Koltracht, and Neumann's [51, Thm. 1]. We discuss generalizations of Example 4.6 in §6. Not too much is known when the compactness assumption is dropped. It is known that weak convergence is obtained whenever

(i) \(N = 2 \) or

(ii) each \(C_i \) is a subspace,

but no example is known where the convergence is not actually in norm.

Case (i) is also known as von Neumann's alternating projection algorithm. Since projections are idempotent, one can view the sequence generated by the random projection algorithm as an alternating projection algorithm. In [13], we discussed this algorithm in some detail and provided sufficient conditions for norm (or even linear) convergence.

In 1965, Amemiya and Ando [5] proved weak convergence for Case (ii)—this is still one of the best results. Recently, the first author [12] obtained norm convergence for Case (ii) whenever a certain condition (which holds, for example, if all subspaces have finite codimension) is satisfied.

In order to formulate the second prototype of a focusing projection algorithm (as well as the norm and linear convergence results in the following sections), we require some more definitions.

Definition 4.8. We say a projection algorithm is linearly focusing if there is some \(\beta > 0 \) s.t.

\[
\beta d(x^{(n)}, C_i) \leq d(x^{(n)}, C_i^{(n)}) \quad \text{for all large } n \text{ and every index } i \text{ active at } n.
\]

We speak of a strongly focusing projection algorithm if

\[
\begin{align*}
\lim k, n_k & : x^{(n_k)} \rightharpoonup x, \\
\lim d(x^{(n_k)}, C_i^{(n_k)}) & : i \text{ active at } n_k \\
\end{align*}
\]

imply \(d(x^{(n_k)}, C_i) \rightarrow 0 \) for every index \(i \) and every subsequence \((x^{(n_k)})_k \) of \((x^{(n)}) \).

By Definition 3.7 and the weak lower semicontinuity of \(d(\cdot, C_i) \), we obtain the following:

linearly focusing \(\implies \) strongly focusing \(\implies \) focusing.

Corollary 4.9 (second prototype of a focusing projection algorithm). Every linearly focusing projection algorithm is focusing.

Remark 4.10. Flam and Zowe [53] used linearly focusing projection algorithms in Euclidean spaces with great success (see also Example 4.18).
COROLLARY 4.11 (prototype of a linearly focusing projection algorithm). If the projection algorithm has constant sets, then it is linearly focusing.

COROLLARY 4.12 (prototype of a strongly focusing projection algorithm). Suppose the projection algorithm is focusing. If the terms of the sequence \((x^{(n)}) \) form a relatively compact set, then the projection algorithm is strongly focusing. In particular, this happens whenever \(X \) is finite dimensional or the interior of \(C \) is nonempty.

Proof. Suppose not. Then we get \(\varepsilon > 0 \), \(x \in X \), an index \(i \), and a subsequence \((x^{(n_k)})_k \) with \(x^{(n_k)} \to x \), \(x^{(n_k)} - P_{i} x^{(n_k)} \to 0 \), \(i \) active at \(n_k \), but \(\| x^{(n_k)} - P_{i} x^{(n_k)} \| \geq \varepsilon \) for all \(k \). Since the algorithm is focusing, \(x \in C_{i} \). After passing to a subsequence if necessary, we may assume (by the compactness assumption) that \(x^{(n_k)} \to x \). But then \(x^{(n_k)} - P_{i} x^{(n_k)} \to x - P_{i} x = 0 \), which is absurd. Therefore, the projection algorithm is strongly focusing. If \(X \) is finite dimensional, then the terms of \((x^{(n)}) \) form a relatively compact set because \((x^{(n)}) \) is bounded (Lemma 3.2.(iv)). Finally, if int \(C \neq \emptyset \), then \((x^{(n)}) \) converges in norm (Corollary 3.3.(i)). The proof is complete.

The two prototypes of a focusing projection algorithm (cf. Theorem 4.3 and Corollary 4.9) are unrelated, as the following examples demonstrate.

EXAMPLE 4.13. Suppose \(X := \mathbb{R} \), \(N := 1 \), \(C := C_{1} := \{0\} \), \(C_{i}^{(1)} := [0, 1/(n + 1)] \), and \(x^{(0)} := 2 \). Then the projection algorithm is strongly focusing and the sequence \((C_{i}^{(n)}) \) of compact convex decreasing sets converges to \(C_{1} \) in the sense of Mosco (Example 4.4 and Corollary 4.12). However, the projection algorithm is not linearly focusing. Indeed, for \(n \geq 1 \),

\[
x^{(n)} = \frac{1}{n} \quad \text{and} \quad \frac{d(x^{(n)}, C_{i}^{(n)})}{d(x^{(n)}, C_{1})} = \frac{1}{n + 1} \to 0.
\]

EXAMPLE 4.14. Suppose \(X := \mathbb{R} \), \(N := 1 \), \(C := C_{1} := \{0\} \), \(C_{i}^{(1)} := (-1)^{n}[0, 1] \), and \(x^{(0)} \in X \) arbitrary. Then the projection algorithm is linearly focusing since \(x^{(n)} = 0 \in C \) for \(n \geq 2 \). However, the sequence \((C_{i}^{(n)}) \) of compact convex sets does not converge to \(C \) in the sense of Mosco.

Having a feeling for the concept of a linearly focusing projection algorithm, we document its usefulness through a dichotomy result inspired by Aharoni and Censor’s [3, Proof of Thm. 1].

THEOREM 4.15 (dichotomy II). Suppose the projection algorithm is linearly focusing and there is some \(\varepsilon > 0 \) s.t. \(\varepsilon \leq \alpha^{(n)} \leq 2 - \varepsilon \) for all large \(n \) and every index \(i \) active at \(n \). Then the sequence \((x^{(n)}) \) either converges in norm or has no norm cluster points at all.

Proof. Assume to the contrary that \((x^{(l)}) \) has at least two distinct norm cluster points, say \(y \) and \(z \). Get \(\beta > 0 \) s.t. \(\beta d(x^{(l)}, C_{i}) \leq d(x^{(l)}, C_{i}^{(l)}) \) for all large \(l \) and every index \(i \) active at \(l \) \(\forall i \in C \). Since \(y \not\in C \) (otherwise, the sequence \((x^{(l)}) \) would converge in norm by Corollary 3.3.(ii)), the set of indices \(I := \{ i \in \{1, \ldots, N\} : y \not\in C_{i} \} \) is nonempty. Define \(B := y + r B_{X} \), where \(r := (1/2) \min(\{\|y - z\|\} \cup \{d(y, C_{i}) : i \in I\}) \).

Claim 1: For \(\exists \gamma_{l} > 0 \) \(l \) large implies \(\|x^{(l)} - c\| - \|x^{(l+1)} - c\| \geq \gamma_{l} \sum_{i \in I} \lambda^{(l)}_{i} \).

On the one hand, by Lemma 3.2.(ii), the definition of \(\beta \), and \(\|y - x^{(l)}\| \geq d(y, C_{i}) - d(x^{(l)}, C_{i}) \),

\[
\|x^{(l)} - c\|^{2} - \|x^{(l+1)} - c\|^{2} \geq \sum_{i \in I} \mu^{(l)}_{i} d^{2}(x^{(l)}, C_{i}^{(l)}) \geq \sum_{i \in I} \lambda^{(l)}_{i} \varepsilon^{2} \beta^{2} d^{2}(x^{(l)}, C_{i}) \geq \varepsilon^{2} \beta^{2} r^{2} \sum_{i \in I} \lambda^{(l)}_{i}.
\]
On the other hand,
\[\|x^{(t)} - c\|^2 - \|x^{(t+1)} - c\|^2 = (\|x^{(t)} - c\| - \|x^{(t+1)} - c\|) \times (\|x^{(t)} - c\| + \|x^{(t+1)} - c\|),\]
and the norm of the latter factor is at most \(2(r + \|y - c\|)\). Altogether, \(\gamma \lambda = c^2\beta^2\gamma^2/\langle 2(r + \|y - c\|)\rangle\) does the job and Claim 1 is verified.

Claim 2: \(\exists \gamma_2 > 0\) \(\gamma_2 > 0\) \(l\) large \(\implies\) \(\|x^{(t+1)} - y\| - \|x^{(t)} - y\| \leq \gamma_2 \sum_{i \in I} \lambda_i^{(t)}\).

For every \(i \in \{1, \ldots, N\} \setminus I\), the point \(y\) is fixed under the nonexpansive mapping \(R_i^{(t)}\) (cf. Facts 1.5.(i), Fact 1.3.(iii), and Corollary 1.4); thus we estimate
\[
\|x^{(t+1)} - y\| = \left\| \sum_{i=1}^{(t+1)} \lambda_i^{(t)} (R_i^{(t)} x^{(t)} - y) + \sum_{i \in I} \lambda_i^{(t)} (R_i^{(t)} x^{(t)} - y) \right\|
\leq \sum_{i \in \{1, \ldots, N\} \setminus I} \lambda_i^{(t)} \|x^{(t)} - y\| + \sum_{i \in I} \lambda_i^{(t)} \|R_i^{(t)} x^{(t)} - y\|
\leq \|x^{(t)} - y\| + \sum_{i \in I} \lambda_i^{(t)} \left(\|R_i^{(t)} x^{(t)} - x^{(t)}\| + \|x^{(t)} - y\| \right)
\leq \|x^{(t)} - y\| + \sum_{i \in I} \lambda_i^{(t)} \left(\|R_i^{(t)} x^{(t)} - P_i^{(t)} x^{(t)}\| + \|x^{(t)} - y\| \right)
\leq \|x^{(t)} - y\| + \sum_{i \in I} \lambda_i^{(t)} \left(\|x^{(t)} - y\| + \|x^{(t)} - y\| \right).
\]

Therefore, \(\gamma_2 = 2 \max_i (d(y, C_i) : i \in I) + 3r\) does the job and Claim 2 is also verified.

The rest is done quickly. Set
\[\delta := r \frac{\gamma_1}{\gamma_1 + \gamma_2} \quad (< r)\]
and find \(n\) large s.t. \(\|x^{(n)} - y\| < \delta\); thus \(x^{(n)} \in B\). Now \(z\) is another norm cluster point of \((x^{(n)})\) and has positive distance to \(B\), so there is a minimal \(m > n\) with \(x^{(m)} \notin B\). By the Fejér monotonicity of \((x^{(n)})\) and Claim 1,
\[
\|y - c\| \leq \|x^{(m)} - c\| \leq \|x^{(n)} - c\| - \gamma_1 \sum_{l=n}^{m-1} \sum_{i \in I} \lambda_i^{(l)}
< \delta + \|y - c\| - \gamma_1 \sum_{l=n}^{m-1} \sum_{i \in I} \lambda_i^{(l)};
\]
thus
\[
\sum_{l=n}^{m-1} \sum_{i \in I} \lambda_i^{(l)} < \frac{\delta}{\gamma_1}.
\]
By Claim 2, however,
\[
\|x^{(m)} - y\| \leq \|x^{(n)} - y\| + \gamma_2 \sum_{l=n}^{m-1} \sum_{i \in I} \lambda_i^{(l)} < \delta + \frac{\gamma_2 \delta}{\gamma_1} = r.
\]
which contradicts $y \not\in B$. Therefore, the sequence $(x^{(n)})$ has at most one norm cluster point. □

REMARK 4.16. As Example 3.6 demonstrates, some assumption is necessary to guarantee at most one norm cluster point.

COROLLARY 4.17. Suppose the projection algorithm is linearly focusing and there is some $\epsilon > 0$ s.t. $\epsilon \leq \alpha_i^{(n)} \leq 2 - \epsilon$ for all large n and every index i active at n. Suppose further that X is finite dimensional or the interior of C is nonempty. Then the sequence $(x^{(n)})$ converges in norm to some point x. If $\sum_n \mu_i^{(n)} = +\infty$ for some index i, then $x \in C_i$. Consequently, if $\sum_n \mu_i^{(n)} = +\infty$ for every index i, then $x \in C$.

Proof. If $\text{int} C \neq \emptyset$, then $(x^{(n)})$ converges in norm by Corollary 3.3(ii). If X is finite dimensional, then $(x^{(n)})$ has a norm cluster point, thus, by the last theorem, $(x^{(n)})$ is also norm convergent. The result now follows from Theorem 3.20.(ii). □

The next two examples follow immediately.

EXAMPLE 4.18 (Flåm and Zowe's framework [53, Thms. 1 and 2]). Suppose X is finite dimensional, the projection algorithm is linearly focusing, and there is some $\epsilon > 0$ s.t. $\epsilon \leq \alpha_i^{(n)} \leq 2 - \epsilon$ for all large n and every index i active at n. Then the sequence $(x^{(n)})$ converges in norm to some point x.

(i) If $\lim_{n \to \infty} \mu_i^{(n)} > 0$ for every index i, then $x \in C$.

(ii) If $\text{int} C \neq \emptyset$ and $\sum_n \mu_i^{(n)} = +\infty$ for every index i, then $x \in C$.

EXAMPLE 4.19 (Anaromi and Censor's framework [3, Thm. 1]). Suppose X is finite dimensional, the projection algorithm has constant sets (and is therefore linearly focusing by Corollary 4.11), and there is some $\epsilon > 0$ s.t. $\epsilon \leq \alpha_i^{(n)} \leq 2 - \epsilon$ for all large n and every index i active at n. Then the sequence $(x^{(n)})$ is norm convergent and its limit lies in $\bigcap_{i \in I} C_i$, where $I := \{i \in \{1, \ldots, N\} : \sum_n \mu_i^{(n)} = +\infty\}$.

REMARKS 4.20.

- Under the assumption on the relaxation parameters in the preceding examples, the condition $\lim_{n \to \infty} \mu_i^{(n)} > 0$ is equivalent to $\lim_{n \to \infty} \mu_i^{(n)} > 0$ (cf. to Remark 3.13) and the condition $\sum_n \mu_i^{(n)} = +\infty$ is equivalent to $\sum_n \lambda_i^{(n)} = +\infty$ (cf. to Remark 3.26) for every index i.

- Example 4.18(i) follows not only from Corollary 4.17 but also from Theorem 3.10.

The next example shows that if one drops the assumption $\sum_i \mu_i^{(n)} = +\infty$ in Example 4.19, then one cannot expect the limit of $(x^{(n)})$ to lie in C_i.

EXAMPLE 4.21. Let $X := \mathbb{R}$, $N := 2$, $C_1 := C_1^{(n)} := [1, 0]$, and $C_2 := C_2^{(n)} := [0, +\infty[$. Suppose $x^{(0)} > 0$, $\alpha_i^{(n)} := \alpha_i^{(n)} := 3/2$, and $\lambda_i^{(n)} < 2/3$ for all n. Then

$$x^{(n)} = \left(1 - \frac{3}{2} \lambda_1^{(n-1)} \right) \cdots \left(1 - \frac{3}{2} \lambda_1^{(0)} \right) x^{(0)},$$

and therefore

$$\lim_n x^{(n)} \in C_1 \iff \lim_n x^{(n)} = 0 \iff \sum_i \mu_i^{(n)} = +\infty.$$

THEOREM 4.22. Given a projection algorithm, suppose $(P_i^{(n)})$ converges actively pointwise to P_i for every index i. Suppose further there is some subsequence (n') of (n) s.t. for every index i,

$$a_i^{(n')} \longrightarrow a_i \quad \text{and} \quad \lambda_i^{(n')} \longrightarrow \lambda_i$$

for some $a_i \in [0, 2]$ and $\lambda_i \in [0, 1]$. If the interior of C is nonempty, then the sequence $(x^{(n)})$ converges in norm to some point $x \in C$.
Proof. By Corollary 3.3(i), \((x^{(n)})\) converges in norm to some point \(x\). We must show that \(x \in C\).

Claim:

\[P_i^{(n')} x^{(n')} \longrightarrow P_i x \quad \text{for every index } i. \]

Because \(\|P_i^{(n')} x^{(n')} - P_i^{(n')} x\| \leq \|x^{(n')} - x\|\), we have \(P_i^{(n')} x^{(n')} - P_i^{(n')} x \longrightarrow 0\). Since \(\lambda_i^{(n')} \longrightarrow \lambda_i > 0\), we see that \(i\) is active at \(n'\) for all large \(n'\). The assumption on \((P_i^{(n)})\) implies \(P_i^{(n')} x \longrightarrow P_i x\). The claim follows.

Now

\[x^{(n'+1)} = \sum_{i=1}^{N} \lambda_i^{(n')} \left((1 - \alpha_i^{(n)}) x^{(n')} + \alpha_i^{(n)} P_i^{(n')} x^{(n')} \right); \]

hence, by taking limits along the subsequence \((x^{(n')})\) and by the claim,

\[x = \sum_{i=1}^{N} \lambda_i \left((1 - \alpha_i) x + \alpha_i P_i x \right) \]

or

\[x = \sum_{i=1}^{N} \left(\frac{\lambda_i \alpha_i}{\sum_{j=1}^{N} \lambda_j \alpha_j} \right) P_i x. \]

Proposition 2.12 implies that \(x \in C\); the proof is complete.

Example 4.23 (Butnariu and Censor's framework [20, Thm. 4.4]). Suppose \(X\) is finite dimensional, the projection algorithm has constant sets, and the relaxation parameters depend only on \(n\), say \(\alpha_i^{(n)} = \alpha^n\) for every index \(i\) and all \(n\). Suppose further there is some subsequence \((n')\) of \((n)\) s.t. for every index \(i\), \(\lambda_i^{(n')} \longrightarrow \lambda_i\) for some \(\lambda_i > 0\).

(i) If there is some \(\varepsilon > 0\) s.t. \(\varepsilon \leq \alpha^{(n')} \leq 2 - \varepsilon\) for all large \(n\), then the sequence \((x^{(n)})\) converges in norm to some point in \(C\).

(ii) If the interior of \(C\) is nonempty and there is some subsequence \((n'')\) of \((n')\) s.t. \(\alpha^{(n'')} \longrightarrow 2\), then the sequence \((x^{(n'')})\) converges in norm to some point in \(C\).

Proof. (i): The assumption on the weights implies \(\sum_{i} \mu_i^{(n')} = +\infty\) for every index \(i\). Thus (i) follows from Example 4.19. (ii) is immediate from Theorem 4.22.

Remark 4.24. Note that the last theorem works especially when \(\alpha_i^{(n)} \equiv 2\). Since in this case \(\mu_i^{(n)} \equiv 0\), none of the previous results are applicable. If we drop the assumption that \(\text{int } C \neq \emptyset\), then the conclusion of the last theorem need not hold; see Example 3.6.

Definition 4.25 (control). We say the projection algorithm considers remotest sets if for every \(n\), at least one remotest index is active; i.e.,

\[I_{\text{rem}}^{(n)} := \{i : d(x^{(n)}, C_i) = \max\{d(x^{(n)}, C_j) : j = 1 \ldots N\}\} \cap I^{(n)} \neq \emptyset. \]

Following Censor [21], we speak of remotest set control if the projection algorithm is singular and considers remotest sets. Obviously,

remotest set control

\[\downarrow \]

considers remotest sets.

\[\uparrow \]

weighted

Theorem 4.26 (weak topology results). Suppose the projection algorithm is strongly focusing and considers remotest sets. Suppose further that \((I^{(n)})\) is a sequence of active remotest indices; i.e., \(I^{(n)} \in I_{\text{rem}}^{(n)}\) for all \(n\).
(i) If \(\sum_{\nu \in \Omega} \mu_{\nu}^{(n)} = +\infty \), then there is a subsequence \((x^{(n)})_k\) of \((x^{(n)})\) s.t.
\[
\max\{d(x^{(n)}), C_j\} : j = 1 \ldots N \rightarrow 0,
\]
and \((x^{(n)})_k\) converges weakly to the unique weak cluster point of \((x^{(n)})\) in \(C\).

(ii) If \(\lim_{n} \mu_{\nu}^{(n)} > 0 \), then \((x^{(n)})\) converges weakly to some point in \(C\) and
\[
\max\{d(x^{(n)}), C_j\} : j = 1 \ldots N \rightarrow 0.
\]

Proof. (i): By Lemma 3.2(iv), the series \(\sum_{\nu} \mu_{\nu}^{(n)} d^2(x^{(n)}, C_i^{(n)}) \) is convergent. Hence
\[
\lim_{n} d(x^{(n)}, C_i^{(n)}) = 0.
\]
Thus we can extract a subsequence \((x^{(n)})_k\) and fix an index \(i\) s.t.
\[
d(x^{(n)}_k), C_i^{(n)}_k \rightarrow 0, i^{(n)}_k \equiv i,
\]
and \((x^{(n)}_k)\) converges weakly. Since the algorithm is strongly focusing and considers remotest sets, we conclude that
\[
\max\{d(x^{(n)}), C_j\} : j = 1 \ldots N \rightarrow 0.
\]

By weak lower semicontinuity of \(d(\cdot, C_j)\) for every index \(j\), the weak limit of \((x^{(n)})\) lies in \(C\). By Theorem 2.16(ii), \((x^{(n)})\) has at most one weak cluster point in \(C\); therefore, (i) is verified. (ii) is proved similarly. \(\square\)

Remark 4.27. Remotest set control is an old and successful concept. In 1954, Agmon [1] and Motzkin and Schoenberg [83] studied projection algorithms for solving linear inequalities using remotest set control. Bregman [16] considered the situation when there is an arbitrary collection of intersecting closed convex sets. We will recapture Agmon's main result [1, Thm. 3] and some generalizations in §6.

5. Guaranteeing norm or linear convergence: Regularities. We uphold the notation of the preceding sections; in particular, we remember that \(C_1, \ldots, C_N\) are closed convex sets with nonempty intersection \(C\).

Norm convergence and (bounded) regularity.

Definition 5.1. We say that the \(N\)-tuple of closed convex sets \((C_1, \ldots, C_N)\) is regular if
\[
\forall \epsilon > 0 \exists \delta > 0 \forall x \in X : d(x, C) \leq \epsilon.
\]
\[
\max\{d(x, C_j) : j = 1 \ldots N\} \leq \delta
\]
If this holds only on bounded sets, i.e.,
\[
\forall X \subseteq S \text{ bounded} \forall \epsilon > 0 \exists \delta > 0 \forall x \in S : d(x, C) \leq \epsilon,
\]
\[
\max\{d(x, C_j) : j = 1 \ldots N\} \leq \delta
\]
then we speak of a boundedly regular \(N\)-tuple \((C_1, \ldots, C_N)\).

Although the definition of (bounded) regularity is independent of the order of the sets, we prefer to think of \(C_1, \ldots, C_N\) as a tuple. The geometric idea behind this definition is extremely simple: "If you are close to all sets, then the intersection cannot be too far away." In [13], we utilized this notion to formulate some norm convergence results for von Neumann's alternating projection algorithm for two sets.

The results of this subsection will illustrate the usefulness of this concept in our present framework.
THEOREM 5.2. Suppose the projection algorithm is strongly focusing and p-intermittent for some positive integer p. Suppose further the N-tuple (C_1, \ldots, C_N) is boundedly regular. Let

$$v_n := \min\{\mu_i^{(l)} : np \leq l \leq (n+1)p - 1 \text{ and } i \text{ active at } l\} \text{ for all } n \geq 0.$$

If $\sum v_n = +\infty$, then the sequence $(x^{(n)})$ converges in norm to some point in C. In particular, this happens whenever $\lim_{n \to \infty} \mu_i^{(n)} > 0$ for every index i.

Proof. By Theorem 3.20(ii), we obtain a subsequence $(x^{(n_k,p)})_k$ of $(x^{(n)})$ s.t. $(x^{(n_k,p)})_k$ converges weakly to the unique weak cluster point of $(x^{(n)})$ in C, say x,

$$\sum_{l=n_k p}^{(n_k+p-1)} \sum_{l \in I^{(l)}} d(x^{(l)}, C_i^{(l)}) \to 0, \quad \text{and}$$

$$x^{(n_k,p+r_k)} - x^{(n_k,p)} \to 0$$

for all sequences (r_k) in $[0, \ldots, p-1]$. Fix any index i. Because the projection algorithm is intermittent, we get a sequence (r_k) in $[0, \ldots, p-1]$ s.t. $i \in I^{(n_k+p+r_k)}$ for all k. Then, by (\ast), $d(x^{(n_k,p+r_k)}, C_i^{(n_k,p+r_k)}) \to 0$. Since $(x^{(n_k,p+r_k)})_k$ also converges to x (by $(\ast\ast)$) and the projection algorithm is strongly focusing, we deduce that

$$d(x^{(n_k,p+r_k)}, C_i) \to 0.$$

Hence, by $(\ast\ast)$, $d(x^{(n_k,p)}, C_i) \to 0$. Since i has been chosen arbitrarily, we actually have

$$\max\{d(x^{(n_k,p)}, C_j) : j = 1 \ldots N\} \to 0.$$

Now (C_1, \ldots, C_N) is boundedly regular and $(x^{(n_k,p)})_k$ is bounded; consequently, $d(x^{(n_k,p)}, C) \to 0$. Therefore, by Corollary 3.3(ii), $(x^{(n_k,p)})$ converges in norm to x. □

THEOREM 5.3. Suppose the projection algorithm is strongly focusing and considers remote sets. Suppose further the N-tuple (C_1, \ldots, C_N) is boundedly regular and $(i^{(n_k)})$ is a sequence of active remote indices. If $\sum v_n^{(i)} = +\infty$, then the sequence $(x^{(n_k)})$ converges in norm to some point in C. In particular, this happens whenever $\lim_{n \to \infty} \mu_i^{(n)} > 0$.

Proof. By Theorem 4.26(i), there exists a weakly convergent subsequence $(x^{(n_k)})_k$ of $(x^{(n)})$ with $\max\{d(x^{(n_k)}, C_j) : j = 1 \ldots N\} \to 0$. Since (C_1, \ldots, C_N) is boundedly regular, we get $d(x^{(n_k)}, C) \to 0$. Now apply Corollary 3.3(ii). □

In order to make use of these theorems, we must know when an N-tuple (C_1, \ldots, C_N) is boundedly regular. Fortunately, our observations on bounded regularity of a pair in [13] generalize easily to the N-set case.

PROPOSITION 5.4.

(i) If some set C_i is boundedly compact, then the N-tuple (C_1, \ldots, C_N) is boundedly regular.

(ii) If the N-tuple (C_1, \ldots, C_N) is boundedly regular and some set C_i is bounded, then (C_1, \ldots, C_N) is regular.

(iii) If X is finite dimensional, then every N-tuple (C_1, \ldots, C_N) is boundedly regular.

Proof. An easy modification of [13, Thm. 3.9 (resp., Thm. 3.15) given for two sets] yields (i) (resp., (ii)). (iii) follows from (i). □

REMARK 5.5. We gave an example [13, Ex. 5.5] of a pair which is not boundedly regular; therefore, bounded regularity requires some assumption.
Linear convergence and (bounded) linear regularity. The following stronger and more quantitative version of (bounded) regularity allows us to discuss rates of convergence.

Definition 5.6. We say that the N-tuple of closed convex sets (C_1, \ldots, C_N) is linearly regular if

$$
\exists \kappa > 0 \; \forall x \in X \; d(x, C) \leq \kappa \max\{d(x, C_j) : j = 1 \ldots N\}.
$$

Again, if this holds only on bounded sets, i.e.,

$$
\forall X \supseteq \mathcal{S} \text{ bounded } \kappa_S > 0 \; \forall x \in \mathcal{S} \; d(x, C) \leq \kappa_S \max\{d(x, C_j) : j = 1 \ldots N\},
$$

then we say that (C_1, \ldots, C_N) is boundedly linearly regular.

Clearly,

$$
\begin{align*}
\text{linearly regular} & \implies \text{boundedly linearly regular} \\
\Downarrow & \\
\text{regular} & \implies \text{boundedly regular}.
\end{align*}
$$

Theorem 5.7. Suppose the projection algorithm is linearly focusing and intermittent. Suppose further the N-tuple (C_1, \ldots, C_N) is boundedly linearly regular and there is some $\epsilon > 0$ s.t. $\epsilon \leq \alpha_i^{(n)} \leq 2 - \epsilon$ and $\epsilon \leq \beta_i^{(n)}$ for all large n and every index i active at n. Then the sequence $(x^{(n)})$ converges linearly to some point in C; the rate of convergence is independent of the starting point whenever (C_1, \ldots, C_N) is linearly regular.

Proof. Suppose the projection algorithm is p-intermittent. Fix any index i. Then, for all $k \geq 0$, we get m_k with $kp \leq m_k \leq (k + 1)p - 1$ and $i \in I^{(m_k)}$. Now $x^{(m_k)} = A^{(m_k-1)} \ldots A^{(kp)} x^{(kp)}$ and, by Lemma 2.4.(iv) and Proposition 2.12.(ii),

$$
A^{(n)} \text{ is } \min((2 - \alpha_j^{(n)})/\alpha_j^{(n)} : j \text{ active at } n) \text{-attracting w.r.t. } C \quad \text{for all } n \geq 0.
$$

Hence, by the assumption on the relaxation parameters, $A^{(n)}$ is $\epsilon/2$-attracting w.r.t. C for all large n. Thus, by Proposition 2.10.(ii),

$$
A^{(m_k-1)} \ldots A^{(kp)} \text{ is } \frac{\epsilon}{2p-1} \text{-attracting w.r.t. } C \quad \text{for all large } k.
$$

Since the projection algorithm is linearly focusing, there is some $\beta > 0$ s.t. $\beta d(x^{(n)}, C_i) \leq d(x^{(n)}, C_i^{(n)})$ for all large n and every index j active at n. Now

$$
\begin{align*}
d^2(x^{(kp)}; C_i) & \leq (\|x^{(kp)} - x^{(m_k)}\| + d(x^{(m_k)}, C_i))^2 \\
& \leq 2\|x^{(kp)} - x^{(m_k)}\|^2 + 2d^2(x^{(m_k)}, C_i);
\end{align*}
$$

here the first inequality follows from the nonexpansivity of $d(\cdot, C_i)$ and the second one is just $\sqrt{(a + b)^2 \leq 2a^2 + 2b^2}.$ Fix an arbitrary point $c \in C$. On the one hand, for all large k,

$$
\begin{align*}
\|x^{(kp)} - x^{(m_k)}\|^2 &= \|A^{(m_k-1)} \ldots A^{(kp)} x^{(kp)} - x^{(kp)}\|^2 \\
& \leq \frac{2^p-1}{\epsilon} (\|x^{(kp)} - c\|^2 - \|x^{(m_k)} - c\|^2) \\
& \leq \frac{2^p-1}{\epsilon} (\|x^{(kp)} - c\|^2 - \|x^{((k+1)p)} - c\|^2).
\end{align*}
$$
On the other hand, by the assumptions on β, relaxation parameters, weights, and by Lemma 3.2.(ii) and Remark 3.13, we estimate for all large k that

$$d^2(x^{(m_k)}, C_i) \leq \frac{1}{\beta^2} d^2(x^{(m_k)}, C_i^{(m_k)})$$

$$= \frac{1}{\beta^2} \|x^{(m_k)} - P_i^{(m_k)} x^{(m_k)}\|^2$$

$$\leq \frac{1}{\beta^2 \mu_i^{(m_k)}} (\|x^{(m_k)} - c\|^2 - \|x^{(m_k+1)} - c\|^2)$$

$$\leq \frac{1}{\beta^2 \epsilon^3} (\|x^{(m_k)} - c\|^2 - \|x^{(m_k+1)} - c\|^2)$$

$$\leq \frac{1}{\beta^2 \epsilon^3} (\|x^{(k)} - c\|^2 - \|x^{(k+1)} - c\|^2);$$

altogether

$$d^2(x^{(k)}, C_i) \leq \left(\frac{2p}{\epsilon} + \frac{2}{\beta^2 \epsilon^3} \right) (\|x^{(k)} - c\|^2 - \|x^{(k+1)} - c\|^2),$$

which, after choosing $c := P_C x^{(k)}$, yields

$$d^2(x^{(k)}, C_i) \leq \left(\frac{2p}{\epsilon} + \frac{2}{\beta^2 \epsilon^3} \right) (d^2(x^{(k)}, C) - d^2(x^{(k+1)}, C)).$$

Because i has been chosen arbitrarily, the last estimate is true for every index i, provided that k is large enough. Since (C_1, \ldots, C_N) is boundedly linearly regular, we obtain for $S := \{x^{(n)} : n \geq 0\}$ a constant $\kappa_S > 0$ s.t.

$$d(x^{(n)}, C) \leq \kappa_S \max\{d(x^{(n)}, C_j) : j = 1 \ldots N\} \quad \text{for all } n \geq 0.$$

Note that if (C_1, \ldots, C_N) is linearly regular, then the constant κ_S can be chosen independent of S. Combining gives

$$d^2(x^{(k)}, C) \leq \kappa_S^2 \left(\frac{2p}{\epsilon} + \frac{2}{\beta^2 \epsilon^3} \right) (d^2(x^{(k)}, C) - d^2(x^{(k+1)}, C)).$$

Therefore, by Theorem 2.16.(vi) applied to $(x^{(k)})$, the sequence $(x^{(k)})$ converges linearly to some point x in C. By Theorem 2.16.(i) and Proposition 1.6, the entire sequence $(x^{(n)})$ converges linearly to x; the rate of convergence is independent of the starting point whenever (C_1, \ldots, C_N) is linearly regular. □

THEOREM 5.8. Suppose the projection algorithm is linearly focusing and considers remotest sets. Suppose further the N-tuple (C_1, \ldots, C_N) is boundedly linearly regular and $(i^{(n)})$ is a sequence of active remotest indices. If $\lim_{n} \mu_i^{(n)} > 0$, then the sequence $(x^{(n)})$ converges linearly to some point in C; the rate of convergence is independent of the starting point whenever (C_1, \ldots, C_N) is linearly regular.

Proof. First, since the projection algorithm is linearly focusing, we get $\beta > 0$ s.t. $\beta d(x^{(n)}, C_i) \leq d(x^{(n)}, C_i^{(n)})$ for all n and every index i active at n. Second, since (C_1, \ldots, C_N) is boundedly linearly regular, we obtain for $S := \{x^{(n)} : n \geq 0\}$ a constant $\kappa_S > 0$ s.t.

$$d(x^{(n)}, C) \leq \kappa_S \max\{d(x^{(n)}, C_j) : j = 1 \ldots N\} \quad \text{for all } n \geq 0.$$ Once more, the constant κ_S can be chosen independent of S whenever (C_1, \ldots, C_N) is linearly regular. Third, there is some
\(\epsilon > 0 \) s.t. \(\mu_{i(n)}^{(n)} \geq \epsilon \) for all large \(n \). Putting this together and using Lemma 3.2.(ii), we estimate for all large \(n \) that

\[
d^2(x^{(n)}, C) \leq \kappa_2^2 \max \{ d^2(x^{(n)}, C_j) : j = 1 \ldots N \} \\
= \kappa_2^2 d^2(x^{(n)}, C_{(n)}) \\
\leq \left(\frac{\kappa_2}{\beta} \right)^2 \| x^{(n)} - P_{x^{(n)}} \| ^2 \\
\leq \left(\frac{\kappa_2}{\beta} \right)^2 \frac{1}{\mu_{i(n)}^{(n)}} (\| x^{(n)} - P_C x^{(n)} \| ^2 - \| x^{(n+1)} - P_C x^{(n)} \| ^2) \\
\leq \left(\frac{\kappa_2}{\beta} \right)^2 \frac{1}{\epsilon} (d^2(x^{(n)}, C) - d^2(x^{(n+1)}, C)).
\]

Therefore, by Theorem 2.16.(vi), \(x^{(n)} \) converges linearly to some point in \(C \) (again with a rate independent of the starting point whenever \((C_1, \ldots, C_N) \) is linearly regular). \(\square \)

\textbf{(Bounded) linear regularity: Examples.} Having seen the power of (bounded) linear regularity, we now investigate this concept itself and provide basic prototypes.

\textbf{Proposition 5.9.} If each set \(C_i \) is a closed convex cone, then the following conditions are equivalent.

(i) \((C_1, \ldots, C_N) \) is regular.

(ii) \((C_1, \ldots, C_N) \) is linearly regular.

(iii) \((C_1, \ldots, C_N) \) is boundedly linearly regular.

\textbf{Proof.} Adapt the proof of [13, Thm. 3.17]. \(\square \)

\textbf{Remark 5.10.} It follows that (i), (ii), and (iii) are equivalent if

- \(C_1, \ldots, C_N \) are closed convex translated cones with a common vertex (a simple translation argument),
- \(C_1, \ldots, C_N \) are closed affine subspaces with nonempty intersection.

\textbf{Theorem 5.11 (bounded) linear regularity: reduction to pairs.} If each of the \(N - 1 \) pairs

\[
(C_1, C_2), \\
(C_1 \cap C_2, C_3), \\
\vdots \\
(C_1 \cap C_2 \cap \cdots \cap C_{N-2}, C_{N-1}), \\
(C_1 \cap C_2 \cap \cdots \cap C_{N-2} \cap C_{N-1}, C_N)
\]

is (boundedly) linearly regular, then so is the \(N \)-tuple \((C_1, \ldots, C_N) \).

\textbf{Proof.} We consider the case when all pairs are boundedly linearly regular; the case when all pairs are linearly regular is treated analogously. Fix a bounded set \(S \) and get (by hypothesis) \(\kappa_1, \ldots, \kappa_{N-1} > 0 \) s.t. for every \(x \in S \), we have the estimates

\[
d(x, C_1 \cap C_2) \leq \kappa_1 \max \{ d(x, C_1), d(x, C_2) \}, \\
d(x, C_1 \cap C_2 \cap C_3) \leq \kappa_2 \max \{ d(x, C_1 \cap C_2), d(x, C_3) \}, \\
\vdots \\
d(x, C_1 \cap \cdots \cap C_N) \leq \kappa_{N-1} \max \{ d(x, C_1 \cap \cdots \cap C_{N-1}), d(x, C_N) \};
\]

hence \(d(x, C_1 \cap \cdots \cap C_N) \leq \kappa_1 \kappa_2 \cdots \kappa_{N-1} \max \{ d(x, C_j) : j = 1 \ldots N \}. \) \(\square \)
For bounded linear regularity of pairs, we gave the following sufficient condition (see [13, Cor. 4.5]).

FACT 5.12. Suppose \(E, F \) are two closed convex sets. If \(0 \in \text{icr} \ (E - F) \), then the pair \((E, F)\) is boundedly linearly regular. In particular, this happens whenever

(i) \(0 \in \text{int} \ (E - F) \) or

(ii) \(E - F \) is a closed subspace.

Combining the two preceding results immediately yields the following.

COROLLARY 5.13. If

\[
0 \in \text{icr} \ (C_1 - C_2) \cap \text{icr} \ ((C_1 \cap C_2) - C_2) \cap \ldots \cap \text{icr} \ ((C_1 \cap \ldots \cap C_{N-1}) - C_N),
\]

then the \(N \)-tuple \((C_1, \ldots, C_N)\) is boundedly linearly regular.

COROLLARY 5.14. If \(C_N \cap \text{int} \ (C_1 \cap \ldots \cap C_{N-1}) \neq \emptyset \), then \((C_1, \ldots, C_N)\) is boundedly linearly regular.

REMARK 5.15. These sufficient conditions for bounded linear regularity do depend on the order of the sets, whereas bounded linear regularity does not. Consequently, these conditions might still be applicable after a suitable permutation of the sets.

In applications, the \(N \)-sets almost always have additional structure. One important case is when all sets are closed subspaces. In the following, we will completely characterize regularity of an \(N \)-tuple of closed subspaces. We begin with the case when \(N = 2 \).

Recall that the angle \(\gamma = \gamma(C_1, C_2) \in [0, \pi/2] \) between two subspaces \(C_1, C_2 \) is given by (see Friedrichs [54] or Deutsch [42, 43])

\[
\cos \gamma = \sup \{ \langle c_1, c_2 \rangle : c_1 \in C_1 \cap (C_1 \cap C_2)^\perp, c_2 \in C_2 \cap (C_1 \cap C_2)^\perp, \|c_1\| = \|c_2\| = 1 \}.
\]

PROPOSITION 5.16. If \(C_1, C_2 \) are two closed subspaces and \(\gamma \) is the angle between them, then the following conditions are equivalent.

(i) \(\gamma > 0 \).

(ii) \(C_1 + C_2 \) is closed.

(iii) \(C_1^\perp + C_2^\perp \) is closed.

(iv) \((C_1, C_2) \) is linearly regular.

(v) \((C_1, C_2) \) is boundedly linearly regular.

(vi) \((C_1, C_2) \) is regular.

(vii) \((C_1, C_2) \) is boundedly regular.

Proof. "(i) \(\iff \) (ii)" is due to Deutsch [42, Lem. 2.5.4] and Simončič [93], a proof can be found in [13, Lem. 4.10]. "(ii) \(\iff \) (iii)" is well known (see Jameson's [70, Cor. 35.6]).

"(ii) \(\iff \) (iv) \(\iff \) (v) \(\iff \) (vi) \(\iff \) (vii)": Combine Fact 5.12.(i) and Proposition 5.9.

"(vii) \(\iff \) (i)" Let us prove the contrapositive. Suppose \(\gamma = 0 \). Then we obtain two sequences \((c_1^{(n)}, c_2^{(n)})\) with

\[
c_1^{(n)} \in C_1, \quad c_2^{(n)} \in C_2, \quad \|c_1^{(n)}\| = \|c_2^{(n)}\| = 1, \quad P_{C_1 \cap C_2} c_1^{(n)} = P_{C_1} c_2^{(n)} = 0
\]

for every \(n \), and

\[
(c_1^{(n)}, c_2^{(n)}) \longrightarrow 1 = \cos 0.
\]

Expanding \(\|c_1^{(n)} - c_2^{(n)}\|^2 \) yields \(c_1^{(n)} - c_2^{(n)} \rightarrow 0 \). On the one hand, if we define \(x^{(n)} := (c_1^{(n)} + c_2^{(n)})/2 \), then, by the parallelogram law,

\[
\|x^{(n)}\| \longrightarrow 1.
\]

On the other hand,

\[
P_{C_1 \cap C_2} x^{(n)} \equiv 0, \quad x^{(n)} - c_1^{(n)} \longrightarrow 0, \quad x^{(n)} - c_2^{(n)} \longrightarrow 0.
\]
Altogether, \((x^{(n)}) \) is bounded, \(d(x^{(n)}, C_1) \to 0 \), \(d(x^{(n)}, C_2) \to 0 \), but \(d(x^{(c)}, C_1 \cap C_2) = \|x^{(n)}\| \to 1 \). Therefore, \((C_1, C_2)\) is not boundedly regular and the proof is complete. \(\square\)

A short excursion into a useful product space. We build—in the spirit of Pierra [85]—the product space

\[
X := \prod_{i=1}^N (X, \frac{1}{N} \langle \cdot, \cdot \rangle)
\]

and define the **diagonal**

\[
\Delta := \{ (x_1, \ldots, x_N) \in X : x_1 = x_2 = \cdots = x_N \in X \}
\]

and the product

\[
B := \prod_{i=1}^N C_i.
\]

This allows us to identify the set \(C \) with \(\Delta \cap B \). Then (see, for example, [85]) for \(x, y \in X \), we have

\[
\|x - y\|^2 = \sum_{i=1}^N \frac{1}{N} \|x_i - y_i\|^2,
\]

and the projections onto \(\Delta \) and \(B \) are given by

\[
P_\Delta(x_1, x_2, \ldots, x_N) = \left(\sum_{i=1}^N \frac{1}{N} x_i, \sum_{i=1}^N \frac{1}{N} x_i, \ldots, \sum_{i=1}^N \frac{1}{N} x_i \right),
\]

\[
P_B(x_1, x_2, \ldots, x_N) = (P_1 x_1, P_2 x_2, \ldots, P_N x_N).
\]

Proposition 5.17. If \(\emptyset \in \text{icr} (\Delta - B) \), then \((\Delta, B)\) is boundedly linearly regular.

Proof. This is nothing but Fact 5.12 applied in \(X \). \(\square\)

We now tackle the \(N \)-subspace case.

Lemma 5.18. If each set \(C_i \) is a closed subspace, then the following conditions are equivalent.

(i) \(C_1^+ + \cdots + C_N^+ \) is closed.

(ii) \(\Delta + B \) is closed.

(iii) \((\Delta, B)\) is (boundedly) (linearly) regular.

Proof. Denote \(C_1^+ + \cdots + C_N^+ \) by \(S \) and consider

\[
T : X \to X : (x_1, \ldots, x_N) \mapsto x_1 + \cdots + x_N.
\]

Clearly, \(T \) is onto and \(\ker T = \Delta' \). By a useful consequence of the open mapping theorem (see, for example, Holmes’s [67, Lem. 17.1]),

\[
S \text{ is closed } \iff \Delta^+ + \prod_{i=1}^N C_i^+ \text{ is closed.}
\]

Now apply Proposition 5.16 to \(\Delta \) and \(B \) in \(X \). \(\square\)

Theorem 5.19 (linear regularity and subspaces). If each set \(C_i \) is a closed subspace, then the following conditions are equivalent.

(i) \(C_1^+ + \cdots + C_N^+ \) is closed.

(ii) \((C_1, \ldots, C_N)\) is linearly regular.

(iii) \((C_1, \ldots, C_N)\) is boundedly linearly regular.

(iv) \((C_1, \ldots, C_N)\) is regular.

(v) \((C_1, \ldots, C_N)\) is boundedly regular.
Proof. "(i)\implies (ii)": By the last lemma, there is some $\kappa > 0$ s.t.

$$d(x, \Delta \cap B) \leq \kappa \max\{d(x, \Delta), d(x, B)\} \quad \text{for every } x \in X.$$

In particular, if $x \in X$ and $x := (x, \ldots, x) \in \Delta$, then

$$d^2(x, C) = d^2(x, \Delta \cap B) \leq \kappa^2 d^2(x, B);$$

therefore, the linear regularity of (C_1, \ldots, C_N) follows from

$$d^2(x, C) \leq \kappa^2 (d^2(x, C_1) + \cdots + d^2(x, C_N))/N \leq \kappa^2 \max\{d^2(x, C_i) : i = 1 \ldots N\}.$$

"(ii)\iff (iii)\iff (iv)\iff (v)" follows from Proposition 5.9.

"(v)\implies (i)". We prove the contrapositive. Suppose $C_1 + \cdots + C_N$ is not closed. Then, by the preceding lemma, (Δ, B) is not boundedly regular. We thus obtain a bounded sequence $(x^{(n)})$ s.t.

$$d(x^{(n)}, \Delta) \to 0, \quad d(x^{(n)}, B) \to 0, \quad \text{but } \lim_{n} d(x^{(n)}, \Delta \cap B) > 0.$$

Define $x_{(n)}^{(n)}$ to be the first coordinate of $P_{\Delta} x^{(n)}$. Then the sequence $(x^{(n)})$ is bounded, $\frac{1}{N} \sum_{i=1}^{N} d^2(x^{(n)}, C_i) \to 0$, but $\lim_{n} d^2(x^{(n)}, \bigcap_{i=1}^{N} C_i) > 0$. Therefore, (C_1, \ldots, C_N) is not boundedly regular and the proof is complete. \qed

REMARKS 5.20.

- Browder implicitly proved "(i)\implies (ii)" of the last theorem in [17, \S 2].
- It is interesting that, unless $N = 2$, the closedness of the sum $C_1 + \cdots + C_N$ is not related to the regularity of the N-tuple (C_1, \ldots, C_N). Indeed, for $N \geq 3$, take two closed subspaces C_1, C_2 with nonclosed sum, (i): Set $C_3 := \cdots := C_N := X$; then (C_1, \ldots, C_N) is not regular (Proposition 5.16), but the sum $C_1 + \cdots + C_N$ is closed. (ii): Set $C_3 := \cdots := C_N := \{0\}$, then (C_1, \ldots, C_N) is regular, but the sum $C_1 + \cdots + C_N$ is not closed. Altogether, the closedness of the sum $C_1 + \cdots + C_N$ is neither necessary nor sufficient for regularity of the N-tuple (C_1, \ldots, C_N).
- For closed intersecting affine subspaces, a corresponding version of the last theorem can be formulated (since regularity is preserved under translation of the sets by some fixed vector).
- Applying the last theorem to orthogonal complements yields the following characterization.

If each set C_i is a closed subspace, then the following conditions are equivalent.

(i) $C_1 + \cdots + C_N$ is closed.

(ii) There is some $\kappa > 0$ s.t. for every $x \in X$,

$$\|P_{C_1 + \cdots + C_N} x\| \leq \kappa(\|P_{C_1} x\| + \cdots + \|P_{C_N} x\|).$$

(iii) For every bounded sequence $(x^{(n)})$,

$$\max\{\|P_{C_i} x^{(n)}\| : i = 1 \ldots N\} \to 0 \quad \text{implies } \|P_{C_1 + \cdots + C_N} x^{(n)}\| \to 0.$$

COROLLARY 5.21. Suppose each set C_i is a closed subspace. Then the N-tuple (C_1, \ldots, C_N) is linearly regular whenever

(i) at least one subspace is finite dimensional or

(ii) all subspaces except possibly one have finite co-dimension.
Proof. (i): Using Proposition 5.16, induction on \(N \), and the well-known fact that the sum of a closed subspace and a finite-dimensional subspace is closed (see, for example, Jameson's [70, Prop. 20.1]), we obtain readily that \(C_1^+ + \cdots + C_N^+ \) is finite co-dimensional and closed. Now apply the last theorem.

(ii): If without loss of generality \(C_1, \ldots, C_{N-1} \) are finite co-dimensional, then \(C_1^+ + \cdots + C_{N-1}^+ \) is finite dimensional. Again, \(C_1^+ + \cdots + C_N^+ \) is closed and the last theorem applies. \(\square \)

Once more, an analogous version of the last corollary holds for closed intersecting affine subspaces. We state the most important case.

Corollary 5.22 (linear regularity and intersecting hyperplanes). If each set \(C_i \) is a hyperplane, then the \(N \)-tuple \((C_1, \ldots, C_N) \) is linearly regular.

We now give another important class of linearly regular \(N \)-tuples.

Fact 5.23 (linear regularity and intersecting halfspaces). If each set \(C_i \) is a halfspace, then the \(N \)-tuple \((C_1, \ldots, C_N) \) is linearly regular.

Remark 5.24. In 1952, Hoffman [66] proved this fact, relying on some results by Agmon [1] for Euclidean spaces. It turns out that his proof also works for Hilbert spaces; a detailed proof will appear in the thesis of the first author.

The following result shows how one builds more examples of (boundedly) linearly regular tuples.

Proposition 5.25. Suppose \((C_1, \ldots, C_N) \) is a (boundedly) linearly regular \(N \)-tuple and \(J_1 \cup \cdots \cup J_M = \{1, \ldots, N\} \) is a disjoint decomposition of \(\{1, \ldots, N\} \); i.e., \(J_m \neq \emptyset \) and \(J_m \cap J_{m'} = \emptyset \) for \(m, m' \in \{1, \ldots, M\} \) and \(m \neq m' \). If we set

\[
D_m := \bigcap_{i \in J_m} C_i \quad \text{for every } m \in \{1, \ldots, M\},
\]

then the \(M \)-tuple \((D_1, \ldots, D_M) \) is (boundedly) linearly regular.

Proof. Suppose \((C_1, \ldots, C_N) \) is linearly regular. Then there is some \(\kappa > 0 \) s.t. \(d(x, C_1 \cap \cdots \cap C_N) \leq \kappa \max_n d(x, C_n) \) for every \(x \in X \); thus

\[
d(x, D_1 \cap \cdots \cap D_M) = d(x, C_1 \cap \cdots \cap C_N) \leq \kappa \max_n d(x, C_n) \leq \kappa \max_{m, n} d(x, C_n) \leq \kappa \max_{m} d(x, D_m).
\]

Therefore, \((D_1, \ldots, D_M) \) is linearly regular. The proofs of the remaining cases are similar and thus are omitted. \(\square \)

Corollary 5.26 (linear regularity and intersecting polyhedra). If each set \(C_i \) is a polyhedron, then the \(N \)-tuple \((C_1, \ldots, C_N) \) is linearly regular.

We finish this section with a result on the "frequency" (in the sense of Baire category) of boundedly linear \(N \)-tuples. Quite surprisingly, "bounded linear regularity is the rule." Since we will not use this result in what follows, we only sketch a proof. For basic results on the Hausdorff metric, we recommend Klein and Thompson's [76, §4]; for basic results on Baire category see, for example, Holmes's [67, §17].

Theorem 5.27. Suppose \(T \) is the set of all \(N \)-tuples of the form \((C_1, \ldots, C_N) \), where each set \(C_i \) is bounded closed convex and the intersection \(\bigcap_{i=1}^N C_i \) is nonempty. Then the subset of all boundedly linearly regular \(N \)-tuples is residual in \(T \) (equipped with the Hausdorff metric).

Sketch of a Proof. We work in the product space \(X \).

Step 1: Show that \(T \) is a closed subset in the complete metric space consisting of all closed subsets of \(X \) equipped with the Hausdorff metric.
Step 2: Denote by \mathcal{R} the subset of \mathcal{T} consisting of all boundedly linearly regular N-tuples. Deduce from Proposition 5.17 that if $B = (C_1, \ldots, C_N) \in \mathcal{T}$ and $0 \in \text{int} (\Delta - B)$, then $B \in \mathcal{R}$.

Step 3: Define $\mathcal{O} := \{B \in \mathcal{T} : 0 \in \text{int} (\Delta - B)\}$ and show that \mathcal{O} is dense in \mathcal{T} (given $B = (C_1, \ldots, C_N) \in \mathcal{T}$, consider the “nearby” $(C_1 + \epsilon B_X, \ldots, C_N + \epsilon B_X)$ in \mathcal{O} for small $\epsilon > 0$).

Step 4: Prove that \mathcal{O} is open in \mathcal{T}. Indeed, denote the Hausdorff metric by h, fix $B \in \mathcal{O}$, and get $\epsilon > 0$ s.t. $\epsilon B_X \subseteq \Delta - B$. Suppose $B' \in \mathcal{T}$ with $h(B, B') < \epsilon/2$. Then

$$\frac{\epsilon}{2} B_X + \frac{\epsilon}{2} B_X = \epsilon B_X \subseteq \Delta - B \subseteq \Delta - B' + \frac{\epsilon}{2} B_X.$$

By Rådström's cancellation lemma [87, Lem. 1],

$$\frac{\epsilon}{2} B_X \subseteq \Delta - B';$$

thus $B' \in \mathcal{O}$.

Conclusion. \mathcal{R} is residual in \mathcal{T} because $\mathcal{R} \supseteq \mathcal{O}$ and \mathcal{O} is open and dense in \mathcal{T}.

Remark 5.28. In view of Theorems 5.7, 5.8, and 5.27, we can loosely say that “linear convergence is the rule for certain algorithms.” The restriction that every C_i be bounded is not really severe since a reduction to this case can be made as soon as the starting point is chosen.

6. Harvest time II: Examples. In this section, numerous examples for our results are given. To demonstrate the applicability of our framework, we mainly chose examples that are closely related to known results and only occasionally comment on (sometimes very substantial) possible generalizations.

“Fairly” general sets.

Random control.

Example 6.1. Suppose the projection algorithm is linearly focusing and some set C_j is boundedly compact. Suppose further that

(i) $\lim_{n \to n} \mu_{ij}^{(n)} > 0$ for every index i or

(ii) there is some $\epsilon > 0$ s.t. $\epsilon \leq \alpha_i^{(n)} \leq 2 - \epsilon$ and $\sum_{i \text{ active for } n} \mu_{ij}^{(n)} = +\infty$ for every index i and all large n active for i.

Then the sequence $(x^{(n)})$ converges in norm to some point in C.

Proof. By Lemma 3.2.(iv), the sum $\sum_{i \text{ active for } n} \mu_{ij}^{(n)} d^2(x^{(n)}, C_j^{(n)})$ is finite. Since the projection algorithm is linearly focusing, the assumptions on $(\mu_{ij}^{(n)})$ imply the existence of a subsequence $(x^{(n')})$ of $(x^{(n)})$ with

$$||x^{(n')} - P_j x^{(n')}|| = d(x^{(n')}, C_j) \longrightarrow 0 \quad \text{and} \quad j \text{ is active at } n'.$$

After passing to a subsequence if necessary, we can assume that $(P_j x^{(n')})$ is norm convergent; hence, so is $(x^{(n')})$. Therefore, the sequence $(x^{(n)})$ has a norm cluster point. If (i) holds, then the result follows from Theorem 3.10. Otherwise (ii) holds and then the result follows from Theorems 4.15 and 3.20.(iii). \qed

Remarks 6.2.

- This result improves Examples 4.6, 4.18.(i), and 4.19.
- As we commented in Remarks 4.7, the problem becomes much harder without a compactness assumption. Nevertheless, some interesting results were obtained by Bruck [18], Yosua [107], and Dye and Reich [48].

An immediate consequence of Example 6.1 is the following.

Example 6.3 (Bruck's [18, Cor. 1.2]). Suppose the projection algorithm is singular and has constant sets where (at least) one is boundedly compact. If there is some $\epsilon > 0$ s.t.
\(\varepsilon \leq \alpha_i^{(n)} = \alpha_i \leq 2 - \varepsilon \) for every index \(i \), then the sequence \((x^{(n)}) \) converges in norm to some point in \(C \).

Remark 6.4. Bruck's proof is quite different and is highly recommended.

Intermittent control. We start with some results on linear convergence.

Example 6.5 (Browder's [17, Thm. 3]). Suppose the projection algorithm is almost cyclic, unrelated, and has constant sets. Suppose further that \(0 \in C \) and for every \(r > 0 \), there is some \(\kappa_r > 0 \) s.t.

\[
(*) \quad \|x\| \leq \kappa_r \max\{d(x, C_i) : i = 1 \ldots N\} \quad \text{for all } x \in rB_X.
\]

Then \(C = \{0\} \) and the sequence \((x^{(n)}) \) converges linearly to 0.

Proof. By (*), obviously \(C \cap rB_X = \{0\} \). Since \(r \) can be chosen arbitrarily large, it follows that \(C = \{0\} \). Thus (*) states that \(d(x, C) = \|x\| \leq \max\{d(x, C_i) : i = 1 \ldots N\} \); i.e., the \(N \)-tuple \((C_1, \ldots, C_N) \) is boundedly linearly regular. The result now follows from Theorem 5.7. \(\Box \)

Example 6.6 (Youla and Webb's [108, Thm. 3]). Suppose the projection algorithm is cyclic and has constant sets. Suppose further the relaxation parameters satisfy \(0 < \alpha_i^{(n)} = \alpha_i < 2 \) for every index \(i \) and all \(n \) active for \(i \). If there is some index \(j \in \{1, \ldots, N\} \) s.t.

\[
C_j \cap \bigcap_{i \in \{1, \ldots, N\} \setminus \{j\}} C_i \neq \emptyset,
\]

then the sequence \((x^{(n)}) \) converges linearly to some point in \(C \).

Proof. By Corollary 5.14 (cf. Remark 5.15), the \(N \)-tuple \((C_1, \ldots, C_N) \) is boundedly linearly regular. Now apply Theorem 5.7. \(\Box \)

Remark 6.7. An extended version of Youla and Webb's well-written paper is Youla's [106].

Analogously, we can prove the following.

Example 6.8 (Gubin, Polyak, and Raik's [60, Thm. 1(a)]). Suppose the projection algorithm is cyclic and has constant sets. Suppose further there is some \(\varepsilon > 0 \) s.t. \(\varepsilon \leq \alpha_i^{(n)} \leq 2 - \varepsilon \) for every index \(i \) and all \(n \) active for \(i \). If there is some index \(j \in \{1, \ldots, N\} \) s.t.

\[
C_j \cap \bigcap_{i \in \{1, \ldots, N\} \setminus \{j\}} C_i \neq \emptyset,
\]

then the sequence \((x^{(n)}) \) converges in norm (in fact, linearly) to some point in \(C \).

Remark 6.9. Gubin, Polyak, and Raik's paper [60] is a cornerstone for this field and contains many original results and applications.

Remark 6.10. The preceding examples all followed from Theorem 5.7 and the results on bounded linear regularity. Since Theorem 5.7 allows more general control, other iterations are covered as well. For example, the conclusions of the last three examples remain valid if we replace "(almost) cyclic" by "weighted." Similarly, adjusting Theorem 5.2 yields various examples on norm converge.

The following results on weak convergence follow readily from Theorem 3.20.(i).

Example 6.11 (Browder's [17, Thm. 2] for finitely many sets). Suppose the projection algorithm is almost cyclic, unrelated, and has constant sets. Then the sequence \((x^{(n)}) \) converges weakly to some point in \(C \).

Remark 6.12 (cyclic projections). If in the last example "almost cyclic" is replaced by "cyclic," then one obtains the method of cyclic projections; the conclusion of the last example becomes Bregman's [16, Thm. 1]. The case when the sets \(C_i \) do not necessarily intersect is discussed in some detail in [14].
EXAMPLE 6.13 (Crombez's [38, Thm. 3]). Suppose the projection algorithm is weighted and has constant sets. Suppose further the relaxation parameters and weights satisfy $0 < \alpha_i^{(n)} = \alpha_i < 2$ and $0 < \lambda_i^{(n)} = \lambda_i$ for every index i and all n. Then the sequence $(x^{(n)})$ converges weakly to some point in C.

REMARK 6.14. Crombez [38] assumed in addition that one of the sets is the entire space (which has the identity as projection).

Consideration of remotest sets control.

EXAMPLE 6.15 (Gubin, Polyak, and Raik's [60, Thm. 1.(a)] for finitely many sets). Suppose the projection algorithm has remotest set control and constant sets. Suppose further there is some $\epsilon > 0$ s.t. $\epsilon \leq \alpha_i^{(n)} \leq 2 - \epsilon$ for every index i and all n active for i. If there is some index $j \in [1, \ldots, N]$ s.t.

$$C_j \cap \text{int} \bigcap_{i \in [1, \ldots, N] \setminus \{j\}} C_i \neq \emptyset,$$

then the sequence $(x^{(n)})$ converges linearly to some point in C.

Proof. The projection algorithm is linearly focusing and the N-tuple (C_1, \ldots, C_N) is boundedly linearly regular (Corollary 5.14 and Remark 5.15). The result follows from Theorem 5.8. □

EXAMPLE 6.16 (Bregman's [16, Thm. 2] for finitely many sets). Suppose the projection algorithm is unrelaxed and has remotest set control and constant sets. Then the sequence $(x^{(n)})$ converges weakly to some point in C.

Proof. It is immediate from Theorem 4.26.(ii). □

Subspaces.

EXAMPLE 6.17 (Browder's [17, Cor. to Thm. 3]). Suppose the projection algorithm is almost cyclic, unrelaxed, and has constant sets that are closed subspaces. If

$$C_i^\perp + \cdots + C_N^\perp$$

is closed, then the sequence $(x^{(n)})$ converges linearly.

Proof. Combine Theorems 5.7 and 5.19. □

EXAMPLE 6.18 (a remark on Smith, Solmon, and Wagner's [94, Thm. 2.2]). Suppose the projection algorithm is cyclic, unrelaxed, and has constant sets that are closed subspaces. If the angle between C_i and $C_i \cap \cdots \cap C_N$

is positive for every index $i \in [1, \ldots, N - 1]$, then the sequence $(x^{(n)})$ converges linearly.

Proof. Combine Theorems 5.7 and 5.11 and Proposition 5.16. □

Remarks 6.19.

- In the last two examples, the two quite different looking hypotheses on the subspaces turned out to be *special instances of bounded linear regularity*. This, together with Theorem 5.7, explained linear convergence.
- It follows from Amemiya and Ando's work [5] that the limits of the sequences of the two previous examples equal

$$P_C x^{(0)}.$$

- The grandfather of these results on subspaces is the following.
Suppose the projection algorithm is cyclic, unrelaxed, and has constant sets that are closed subspaces. Then the sequence \((x^{(n)})\) converges in norm to \(P_{C_{X^{(0)}}}\).

The 2-subspace version is due to von Neumann [103, Thm. 13.7]; Halperin [61, Thm. 1] proved the \(N\)-subspace version. The reader will note that there is no hypothesis on the subspaces (and, however, no conclusion on the rate of convergence). Since bounded regularity and linear regularity of an \(N\)-tuple of subspaces are the same (Theorem 5.19), our framework is incapable of recapturing the von Neumann/Halperin result. For applications, though, one is often interested in linear convergence results. Those follow under additional hypotheses that imply regularity (see the last two examples) and are thus covered by our framework. The best and most complete reference on the von Neumann/Halperin framework and its impressive applications is Deutsch's survey article [44]; see also Deutsch and Hundal's recent [45].

- Although mathematically intriguing, controls that are different from intermittent or remotest set control seem to be of little use for applications; consider, for example, two closed subspaces with closed sum and with intersection \([0]\). A singular unrelaxed projection algorithm for these two sets converges linearly whenever its control is intermittent or considers remotest sets (cf. Theorems 5.7 and 5.8). However, if we consider, for example, the random control version where we project onto the first subspace whenever \(n\) is a power of 2, and onto the second subspace otherwise, then the resulting sequence \((x^{(n)})\) is not linearly convergent.

Hyperplanes. Hyperplanes play an important role in applications for two reasons. First, the solution of a system of linear equations is nothing but the intersection of the corresponding hyperplanes. Second, projections onto hyperplanes can be calculated easily. In fact, if a hyperplane \(C_i\) is given by

\[
C_i = \{ x \in X : \langle a_i, x \rangle = b_i \}
\]

for some \(a_i \in X \setminus \{0\}\) and \(b_i \in \mathbb{R}\), then, for every \(x \in X\),

\[
P_{C_i} x = P_{C_i} x = x - \frac{\langle a_i, x \rangle - b_i}{\|a_i\|^2} a_i \quad \text{and} \quad d(x, C_i) = \frac{|\langle a_i, x \rangle - b_i|}{\|a_i\|}.
\]

Intermittent control.

Example 6.20. Suppose the projection algorithm is intermittent and has constant sets that are hyperplanes. Suppose further there is some \(\epsilon > 0\) s.t. \(\epsilon \leq \alpha^{(n)}_i \leq 2 - \epsilon\) and \(\epsilon \leq \lambda^{(n)}_i\) for all large \(n\) and every index \(i\) active at \(n\). Then the sequence converges linearly to some point in \(C\) with a rate independent of the starting point.

Proof. Combine Theorem 5.7 and Corollary 5.22. \(\Box\)

The following special cases of the last example are well known.

Example 6.21 (Herman, Lent, and Lutz's [64, Cor. 1], Trummer's [97, Thm. 5]). Suppose \(X\) is finite dimensional and the projection algorithm is cyclic and has constant sets that are hyperplanes. Suppose further there is some \(\epsilon > 0\) s.t. \(\epsilon \leq \alpha^{(n)}_i \leq 2 - \epsilon\) for all large \(n\) and every index \(i\) active at \(n\). Then the sequence \((x^{(n)})\) converges linearly to some point in \(C\) with a rate independent of the starting point.

Example 6.22 (Kaczmarz [71], Gordon, Bender, and Herman [59]). Suppose \(X\) is finite dimensional and the projection algorithm is cyclic, unrelaxed, and has constant sets that are hyperplanes. Then the sequence \((x^{(n)})\) converges linearly to some point in \(C\) with a rate independent of the starting point.
REMARKS 6.23.
- The precursor of these results is certainly the last example, which was discovered by Kaczmarz as early as 1937.
- Kaczmarz’s method is well understood even in the infeasible case; we refer the interested reader to Tanabe’s [96] and Trummer’s [97, 99].
- The iteration described in Example 6.21 is also known as “ART” (algebraic reconstruction technique).

EXAMPLE 6.24 (Trummer’s [97, first part of Thm. 1]). Suppose X is finite dimensional and the projection algorithm is cyclic and has constant sets that are hyperplanes. If \(u_n \) is defined as in Theorem 5.2 and \(\sum u_n = +\infty \), then the sequence \((x^{(n)}) \) converges in norm to some point in \(C \).

Proof. It is immediate from Theorem 5.2. \(\square \)

REMARKS 6.25.
- Trummer also investigated the infeasible case; see [97, 99].
- Using Theorem 5.2, we can similarly recapture Trummer’s [97, second part of Thm. 1], where he describes an iteration that yields a nonnegative solution (assuming there exists at least one).

REMARK 6.26. Herman et al. [65] used block control variants of Example 6.20 for image reconstruction. Their algorithms are based on a (more matrix-theoretic) framework by Eggermont, Herman, and Lent [49].

Weighted control.

EXAMPLE 6.27 (Trummer’s [98, Thm. 8]). Suppose X is finite dimensional and the projection algorithm is weighted, unrelaxed, and has constant sets that are hyperplanes \(C_i = \{ x \in X : \langle a_i , x \rangle = b_i \} \). If the weights are given by

\[
\lambda_i^{(a)} = \frac{||a_i||^2}{\sum_{j=1}^{N} ||a_j||^2},
\]

then the sequence \((x^{(n)}) \) converges linearly to some point in \(C \).

Proof. The control is 1-intertwined; thus, the result follows from Example 6.20. \(\square \)

REMARK 6.28. Trummer even allowed infeasible systems and identified the limit; see [98].

THEOREM 6.29. Suppose the projection algorithm is weighted and has constant sets that are hyperplanes \(C_i = \{ x \in X : \langle a_i , x \rangle = b_i \} \). Suppose further there exists a subsequence \((n') \) of \((n) \) and some \(\epsilon > 0 \) s.t.

\[
\epsilon \leq \lambda_i^{(a)}, \lambda_i^{(a')} \text{ for all } n' \text{ and every index } i.
\]

If span \(\{a_1, \ldots, a_N\} \) is at least two dimensional, then the sequence \((x^{(n)}) \) converges in norm to some point in \(C \).

Proof. Without loss of generality, we assume \(||a_i|| = 1 \) for every index \(i \). Fix \(x \in C \).

Then, by Lemma 3.2.(i),

\[
\| x^{(n)} - x \|^2 - \| x^{(n+1)} - x \|^2 \geq \sum_{i<j} \lambda_i^{(a)} \lambda_j^{(a')} \alpha_i^{(a)} \alpha_j^{(a')} \| P_i x^{(n)} - P_j x^{(n)} \|^2
\]

for all \(n \geq 0 \). Summing over \(n \) and remembering that each set \(C_i \) is a hyperplane, we obtain a convergent series whose general term

\[
\sum_{i<j} \lambda_i^{(a)} \lambda_j^{(a')} \alpha_i^{(a)} \alpha_j^{(a')} \| (\langle a_i , x^{(n)} \rangle - b_i) a_i - (\langle a_j , x^{(n)} \rangle - b_i) a_j \|^2
\]
tends to 0. Hence, along the subsequence \((x^{(n_i)})\), we have
\[
(a_i, x^{(n_i)}) - b_i a_i - (a_j, x^{(n_j)}) - b_j a_j \to 0 \quad \text{whenever } i \neq j.
\]

Now fix any index \(i\) and obtain another index \(j \neq i\) s.t. \(a_i, a_j\) are linearly independent. Then, by \((\ast)\),
\[
(a_i, x^{(n_i)}) - b_i \to 0.
\]
Thus \(d(x^{(n_i)}, C_j) = |(a_i, x^{(n_i)}) - b_i| \to 0\). Since \(i\) has been chosen arbitrarily, we conclude that
\[
\max\{d(x^{(n_i)}, C_i) : i = 1 \ldots N\} \to 0,
\]
and further, by linear regularity of \((C_1, \ldots, C_N)\) (Corollary 5.22),
\[
d(x^{(n)}, C) \to 0.
\]
The result follows from Corollary 3.3.(ii). \(\square\)

The following classical example is now obvious.

Example 6.30 (Cimmino's method [29] in Hilbert space). Suppose the projection algorithm is weighted and has constant sets that are hyperplanes \(C_i = \{x \in X : \langle a_i, x \rangle = b_i\}\). Suppose further the relaxation parameters and weights satisfy
\[
\alpha_i^{(n)} = 2, \quad \lambda_i^{(n)} = \lambda_i > 0
\]
for all \(n \geq 0\) and every index \(i\). If \(\text{span} \{a_1, \ldots, a_N\}\) is at least two dimensional, then the sequence \((x^{(n)})\) converges in norm to some point in \(C\).

Remarks 6.31.
- For Euclidean spaces, the last example was known to Cimmino as far back as 1938. His method has a nice geometric interpretation: one obtains \(x^{(n+1)}\) from \(x^{(n)}\) by reflecting \(x^{(n)}\) in all \(N\) hyperplanes and then taking a weighted average.
- As Example 3.6 shows, the assumption on \(\text{span} \{a_1, \ldots, a_N\}\) is essential.
- Due to their parallelizability, Cimmino's and related methods with weighted control are currently used with great success; see Censor's survey article [23].

We present a variation of Cimmino's method that includes a method suggested by Ansorge.

Example 6.32 (a generalization of Ansorge's method [6]). Suppose \(X\) is finite dimensional and the projection algorithm has constant sets where \(\mathcal{C}_N = X\). Suppose further that
\[
\alpha_N^{(n)} = 1, \quad \lambda_N^{(n)} = \lambda_N > 0, \quad \alpha_1^{(n)} \equiv \ldots \equiv \alpha_{N-1}^{(n)} \equiv 2,
\]
and
\[
\lambda_i^{(n)} := \begin{cases}
\frac{(1 - \lambda_N) f(d(x^{(n)}, C_i))}{\sum_{j=1}^N f(d(x^{(n)}, C_j))} & \text{if } x^{(n)} \notin C, \\
\frac{1 - \lambda_N}{N - 1} & \text{otherwise}
\end{cases}
\]
for some strictly increasing continuous function \(f : [0, +\infty[\to [0, +\infty] \) with \(f(0) = 0\). Then the sequence \((x^{(n)})\) converges in norm to some point in \(C\).

Proof. Clearly, the projection algorithm is strongly focusing and considers remotest sets. The \(N\)-tuple \((C_1, \ldots, C_N)\) is boundedly regular (Proposition 5.4.(iii)). Suppose that \((i^{(n)})\) is a sequence of active remotest indices. Then \(i^{(n)} \in \{1, \ldots, N - 1\}\) and
\[
\mu_{i^{(n)}} = \lambda_{i^{(n)}}^2 \lambda_N.
\]
If $\sum_n \lambda^{(n)}_{(i)} = +\infty$, then we are done by Theorem 5.3. Otherwise $\sum_n \lambda^{(n)}_{(i)} < +\infty$ and hence $\lambda^{(n)}_{(i)} \to 0$. Now $(x^{(n)})$ is bounded and f is continuous; thus $(\sum_i f(d(x^{(n)}, C_i)))_n$ is a bounded sequence. Consequently,
\[
\frac{d(x^{(n)}, C_i)}{d(x^{(n)}, C_{(i)}))} \to 0 \quad \text{for every index } i,
\]
which implies that
\[
\max \{d(x^{(n)}, C_i) : i = 1, \ldots, N\} \to 0.
\]
Because of the bounded regularity of (C_1, \ldots, C_N), we get $d(x^{(n)}, C) \to 0$; now Corollary 3.3.(ii) completes the proof.

REMARK 6.33. Ansorge's method [6] arises when the sets C_1, \ldots, C_{N-1} are hyperplanes and $f = \| \cdot \|^\gamma$ for $\gamma > 0$.

Halfspaces. Halfspaces play an important role for essentially the same reasons hyperplanes do: their intersection describes the solution of the corresponding system of linear inequalities (this problem is also referred to as the linear feasibility problem) and the projections are easy to calculate. Indeed, if a halfspace C_i is given by
\[
C_i = \{x \in X : \langle a_i, x \rangle \leq b_i\}
\]
for some $a_i \in X \setminus \{0\}$ and $b_i \in \mathbb{R}$, then, for every $x \in X$,
\[
P_{C_i} x = P_{C_i} x = x - \frac{\langle a_i, x \rangle - b_i}{\|a_i\|^2} a_i \quad \text{and} \quad d(x, C_i) = \frac{\|a_i\|^2}{\|a_i\|}.
\]
Some of the algorithms for finding a solution of the linear feasibility problem discussed below have been used with great success in radiation therapy treatment planning; we refer the reader to Censor, Altschuler, and Powlis's interesting survey article [25].

Intermittent control.

Example 6.34. Suppose the projection algorithm is intermittent and has constant sets that are halfspaces. Suppose further there is some $\epsilon > 0$ s.t. $\epsilon \leq \alpha^{(n)}_{(i)} \leq 2 - \epsilon$ and $\epsilon \leq \lambda^{(n)}_{(i)}$ for all large n and every index i active at n. Then the sequence $(x^{(n)})$ converges linearly to some point in C with a rate independent of the starting point.

Proof. Combine Theorem 5.7 and Fact 5.23.

We deduce readily the next two examples.

Example 6.35 (Gubin, Polyak, and Raik's [60, Thm. 1.(d)], Herman, Lent, and Lutz's [64, Thm. 1]). Suppose the projection algorithm is cyclic and has constant sets that are halfspaces. Suppose further there is some $\epsilon > 0$ s.t. $\epsilon \leq \alpha^{(n)}_{(i)} \leq 2 - \epsilon$ for all large n and every index i active at n. Then the sequence $(x^{(n)})$ converges in norm to some point in C.

Remarks 6.36. By Example 6.34, the rate of convergence of the sequence $(x^{(n)})$ is actually linear and independent of the starting point. Herman, Lent, and Lutz assumed additionally that X is finite dimensional. Mandel [78, Thm. 3.1] offered an upper bound for the rate of convergence for the case when X is finite dimensional and $0 < \alpha^{(n)}_{(i)} = \alpha < 2$.

Example 6.37 (Censor, Altschuler, and Powlis's [25, Alg. 3]). Suppose the projection algorithm considers only blocks and has constant sets that are halfspaces. Suppose further there is some $\epsilon > 0$ s.t. $\epsilon \leq \alpha^{(n)}_{(i)} \leq 2 - \epsilon$ for all $n \geq 0$ and every index i. Suppose finally that for every index i, there is some $\lambda_i > 0$ s.t. $\lambda^{(n)}_{(i)} = \lambda_i$ for all n active for i. Then the sequence $(x^{(n)})$ converges linearly to some point in C with a rate independent of the starting point.

Remarks 6.38. Censor, Altschuler, and Powlis [25] offered no results on convergence; however, Aharoni and Censor's [3, Thm. 1] yields norm convergence of $(x^{(n)})$ in Euclidean spaces. We thus add two features. First, we remove the restriction on finite dimensionality. Second, we establish linear convergence.
Weighted control. The following two examples are also consequences of Example 6.34.

Example 6.39 (Eremin’s [52, Cor. to Thm. 1.2]). Suppose the projection algorithm is weighted and has constant sets that are halfspaces. Suppose further the relaxation parameters and weights satisfy

\[0 < \alpha_i^{(n)} = \alpha_i < 2, \quad 0 < \lambda_i^{(n)} = \lambda_i, \quad \alpha_i \lambda_i < \frac{2}{N} \]

for every index \(i \) and all \(n \). Then the sequence \((x^{(n)}) \) converges linearly to some point in \(C \) with a rate independent of the starting point.

Example 6.40 (the feasible case of De Pierro and Iusem’s [39, Lem. 8]). Suppose \(X \) is finite dimensional and the projection algorithm is weighted and has constant sets that are halfspaces. Suppose further there is some \(\varepsilon > 0 \) s.t. \(\varepsilon \leq \alpha_i^{(n)} = \alpha_i \leq 2 - \varepsilon, \quad 0 < \lambda_i^{(n)} = \lambda_i \)

for every index \(i \) and all \(n \). Then the sequence \((x^{(n)}) \) converges in norm to some point in \(C \).

Remarks 6.41. In the last example, the rate of convergence of the sequence \((x^{(n)}) \) is actually linear and independent of the starting point. For a slightly more restrictive scheme, De Pierro and Iusem could also identify the limit of \((x^{(n)}) \) in the infeasible case as a least squares solution; see [39].

Consideration of remotest sets control.

Example 6.42. Suppose the projection algorithm considers remotest sets and has constant sets that are halfspaces. Suppose further that \((i^{(n)}) \) is a sequence of active remotest indices. If \(\lim_{n} \mu_{i^{(n)}} > 0 \), then the sequence \((x^{(n)}) \) converges linearly to some point in \(C \) with a rate independent of the starting point.

Proof. Combine Theorem 5.8 and Fact 5.23.

Example 6.43 (Gubin, Polyak, and Raik’s [60, Thm. 1.(d)]). Suppose the projection algorithm has remotest set control and constant sets that are halfspaces. If there is some \(\varepsilon > 0 \) s.t. \(\varepsilon \leq \alpha_i^{(n)} \leq 2 - \varepsilon \) for all \(n \) and every index \(i \) active at \(n \), then the sequence \((x^{(n)}) \) converges linearly to some point in \(C \) with a rate independent of the starting point.

Proof. We have for any index \(i \) active at \(n \),

\[\mu_{i^{(n)}} = \lambda_i^{(n)} \alpha_i^{(n)} (2 - \sum_{j=1}^{N} \lambda_j^{(n)} a_j^{(n)}) = \alpha_i^{(n)} (2 - \alpha_i^{(n)}) \geq \varepsilon^2; \]

the result thus follows from the previous example.

The basic result in this subsection is due to Agmon and Motzkin and Schoenberg. It dates back to as early as 1954.

Example 6.44 (Agmon’s [1, Thm. 3], Motzkin and Schoenberg’s [83, Case 1 in Thm. 1 and Thm. 2]). Suppose \(X \) is finite dimensional and the projection algorithm has remotest set control and constant sets that are halfspaces. If \(0 < \alpha_i^{(n)} = \alpha < 2 \) for all \(n \) and every index \(i \) active at \(n \), then the sequence \((x^{(n)}) \) converges in norm to some point in \(C \).

Proof. This is a special case of the preceding example.

Remarks 6.45.

- While Agmon considered only the case when \(\alpha = 1 \), he already obtained linear convergence of \((x^{(n)}) \) with a rate independent of the starting point.
- Motzkin and Schoenberg did not establish linear convergence; they discussed, however, the case when \(\alpha = 2 \).
- It follows from Example 6.43 that the rate of convergence is linear and independent of the starting point. Again, Mandel provided an upper bound for the rate; see [78, Thm. 2.2].

Theorem 6.46. Suppose \(N \geq 2 \), the projection algorithm has constant sets that are halfspaces \(C_i = \{ x \in X : \langle a_i, x \rangle \leq b_i \} \), and violated constraints correspond exactly to active
indices; i.e., if $x^{(n)} \not\in C$, then

$$x^{(n)} \not\in C_i \iff i \in I^{(n)}.$$

Suppose further that there is some $\epsilon > 0$ s.t. $\epsilon \leq \alpha_i^{(n)}, \lambda_i^{(n)}$ for all large n and every index i active at n and that

$$I^{(n)} = \{i\} \text{ implies } \alpha_i^{(n)} \leq 2 - \epsilon.$$

Suppose finally that if i and j are two distinct indices, then

$$(*) \quad \begin{cases} \text{either } \{a_i, a_j\} \text{ is linearly independent} \\ \text{or } X \setminus C_i \subseteq C_j \text{ (equivalently, } X \setminus C_j \subseteq C_i) \text{,} \\ \text{but never both.} \end{cases}$$

Then the sequence $(x^{(n)})$ converges in norm to some point in C.

Proof. We assume without loss that $\|a_i\| = 1$ for every index i and that $x^{(n)} \not\in C$ for all n (otherwise, the projection algorithm becomes constant anyway). Clearly, the projection algorithm is linearly focusing and considers remotest sets, so let $I^{(n)}$ be a sequence of active remotest indices. Since the N-tuple (C_1, \ldots, C_N) is linearly regular (Fact 5.23), we can also assume that $\sum_i \mu_i^{(n)} < +\infty$ (otherwise, we are done by Theorem 5.3). Hence

$$\mu_i^{(n)} = \lambda_i^{(n)} \alpha_i^{(n)} (2 - \sum_{j=1}^N \lambda_j^{(n)} \alpha_j^{(n)}) \to 0.$$

Claim 1:

$I^{(n)}$ is not a singleton for all large n.

Otherwise, there would be a subsequence (n') of (n) s.t. $I^{(n')} = \{i^{(n')}\}$. On the other hand, $\mu_i^{(n')} = \lambda_i^{(n')} (2 - \alpha_i^{(n')}) \geq \epsilon^2$, which would contradict $\mu_i^{(n)} \to 0$. Hence Claim 1 is verified.

By Claim 1, we can find a subsequence (n') of (n) and two distinct indices i, j s.t.

$$i^{(n')} = i \quad \text{and} \quad [i, j] \subseteq I^{(n')} \quad \text{for all } n'.$$

Claim 2:

$[a_i, a_j]$ is linearly independent.

Otherwise, $X \setminus C_i \subseteq C_j$. Since $x^{(n')} \not\in C_i$, we would conclude $x^{(n')} \in C_j$, which would contradict $j \in I^{(n')}$. Thus Claim 2 holds.

Similarly to the proof of Theorem 6.29, we get

$$P_j x^{(n')} - P_j x^{(n')} \to 0$$

or

$$\left((a_i, x^{(n')}) - b_i \right) a_i = \left((a_j, x^{(n')}) - b_j \right) a_j \to 0.$$

Now $(a_i, x^{(n')}) - b_i = d(x^{(n')}, C_i)$ and $(a_j, x^{(n')}) - b_j = d(x^{(n')}, C_j)$; hence Claim 2 implies in particular that $d(x^{(n')}, C_i) \to 0$, or, recalling that $i^{(n')} = i$,

$$\max\{d(x^{(n')}, C_i) : i = 1 \ldots N\} \to 0.$$

The linear regularity of (C_1, \ldots, C_N) yields $d(x^{(n')}, C) \to 0$. Now apply Corollary 3.3.(ii).

\Box

Example 6.47 (Censor and Elfving’s framework [26, Alg. 1]). Suppose X is finite dimensional, $N \geq 2$, and the projection algorithm has constant sets that are halfspaces. Define $I^{(n)} := \{i \in \{1, \ldots, N\} : x^{(n)} \not\in C_i\}$ for all $n \geq 0$, and let $m_1, \ldots, m_N > 0$ be given constants with $\sum_{i=1}^N m_i = 1$. Suppose further the relaxation parameters and weights are chosen according to the following cases.
0: \(I_{\text{out}}^{(n)} \) is empty. Then choose the relaxation parameters and weights as you wish (the projection algorithm becomes constant anyway).

1: \(I_{\text{out}}^{(n)} = \{i^{(n)}\} \) is a singleton. Then set
\[
\alpha_i^{(n)} := 2m_{i^{(n)}} \quad \text{and} \quad I^{(n)} := \{i^{(n)}\}.
\]

2: \(I_{\text{out}}^{(n)} \) contains at least two indices. Then set
\[
\alpha_i^{(n)} := 2 \quad \text{and} \quad \lambda_i^{(n)} = \begin{cases}
0 & \text{if } x^{(n)} \in C_i, \\
\frac{m_i}{\sum_{j \in C_i} m_j} & \text{otherwise}.
\end{cases}
\]

Suppose finally that if \(i \) and \(j \) are two distinct indices, then
\[
\begin{cases}
\text{either } [a_i, a_j] \text{ is linearly independent} \\
or \ X \setminus C_i \subseteq C_j \text{ (equivalently, } X \setminus C_i \subseteq C_1\text{),}
\end{cases}
\]

but never both.

Then the sequence \((x^{(n)}) \) converges in norm to some point in \(C \).

\[\Box\]

Proof. This is a special case of the previous example.

Remarks 6.48.

- Censor and Elfving also investigated an iteration [26, Alg. 2] that is more general than the iteration in Example 6.47. Their method of proof is more matrix theoretic and is quite different from ours.

- They claimed that the last example does not need the hypothesis \((*) \). This is, however, false since otherwise a suitable modification of Example 3.6 would yield a counterexample.

- It is possible to recapture Cimmino's method (Example 6.30) for pairwise distinct hyperplanes by describing each hyperplane \(x \in X : \langle a_i, x \rangle = b_i \) by the corresponding two halfspaces \(x \in X : \langle a_i, x \rangle \leq b_i \), \(x \in X : \langle -a_i, x \rangle \leq -b_i \) and then applying the previous example. This nice observation is due to Censor and Elfving. The assumption that the hyperplanes are pairwise distinct is not really severe; it merely means that "each hyperplane should be counted only once."

Remark 6.49. More algorithms for solving the linear feasibility problem are given in §7.

Polyhedra. The class of polyhedra is large: it contains the class of halfspaces, the class of hyperplanes, and the class of finite-co-dimensional affine subspaces. It is generally not easy to calculate projections onto polyhedra; there are, however, besides the examples discussed in the previous subsections, two additional important exceptions—hyperslabs and the finite-dimensional positive cone.

A hyperslab \(C_i \) is given by
\[
C_i = \{x \in X : c_i \leq \langle a_i, x \rangle \leq b_i \}
\]
for some \(a_i \in X \setminus \{0\} \) and two real numbers \(c_i \leq b_i \). Then, for every \(x \),
\[
P_{C_i} x = P_{C_i} x = x - \frac{(\langle a_i, x \rangle - b_i)^+ - (c_i - \langle a_i, x \rangle)^+}{\|a_i\|^2} - a_i
\]
and
\[
d(x, C_i) = \frac{|(\langle a_i, x \rangle - b_i)^+ - (c_i - \langle a_i, x \rangle)^+|}{\|a_i\|}.
\]
The positive cone in $X := \mathbb{R}^d$ is denoted X^+ and is given by $X^+ = \{ x \in X : x_i \geq 0 \text{ for } i = 1, \ldots, d \}$. Its projection is given by $x = (x_i)_{i=1}^d \mapsto x^+ = (x_i^+)_{i=1}^d$ for every $x \in X$.

Example 6.50 (Censor, Altschuler, and Powis's [25, Alg. 4]). Suppose X is finite dimensional and the projection algorithm has constant sets that are hyperslabs except $C_N = X^+$. Suppose further the projection algorithm considers only blocks, where the number of blocks is M and $J_M = [N]$. If there is some $\epsilon > 0$ s.t. $\epsilon \leq \lambda_i^{(n)} \leq 2 - \epsilon$ and $\epsilon \leq \lambda_i^{(n)}$ for all n and every index i active at n, then the sequence $(x^{(n)})$ converges linearly to some point in C with a rate independent of the starting point.

Proof. By Corollary 5.26, the N-tuple (C_1, \ldots, C_N) is linearly regular. Now apply Theorem 5.7.

Remark 6.51. Again, Aharoni and Censor's [3, Thm. 1] guarantees norm convergence. We obtain in addition linear convergence.

Theory. We return to the setting of § 4, where we defined projection algorithms. Loosely speaking, a projection algorithm that for at least one index i chooses its supersets $C_i^{(n)}$ of C_i to be halfspaces constructed from subgradients of a fixed convex function" is called a subgradient algorithm. Before we make this "construction" precise, we collect some basic facts on subgradients.

Definition 7.1. Suppose $f : X \rightarrow \mathbb{R}$ is a convex function. Given a point $x_0 \in X$, the set

$$\{ x^* \in X : \langle x^*, x - x_0 \rangle \leq f(x) - f(x_0) \text{ for all } x \in X \}$$

is called the subdifferential of f at x_0 and is denoted $\partial f(x_0)$. The elements of $\partial f(x_0)$ are called subgradients of f at x_0. If $\partial f(x_0)$ is nonempty, then f is said to be subdifferentiable at x_0.

The importance of this concept stems from the easy-to-verify fact that

$$x_0 \text{ is a minimizer of } f \iff 0 \in \partial f(x_0).$$

Deeper are the following facts: for proofs see, for example, Ekeland and Ternam's [50, Chap. 1: Cor. 2.5, Prop. 5.3, Prop. 5.2, and Cor. 2.3].

Facts 7.2. Suppose $f : X \rightarrow \mathbb{R}$ is a convex function and $x_0 \in X$. Then

(i) f is continuous at x_0 and $\partial f(x_0)$ is a singleton if and only if f is lower semicontinuous and Gâteaux differentiable at x_0. In this case, the unique subgradient of f at x_0 coincides with the Gâteaux derivative of f at x_0.

(ii) If f is continuous at x_0, then f is subdifferentiable at x_0.

(iii) If X is finite dimensional, then f is continuous and subdifferentiable everywhere.

Lemma 7.3. Suppose $f : X \rightarrow \mathbb{R}$ is a convex function, $x_0 \in X$, and f is subdifferentiable at x_0. Suppose further $S := \{ x \in X : f(x) \leq 0 \}$ is nonempty. For any $g(x_0) \in \partial f(x_0)$, define the closed convex set H by

$$H := H(f, x_0, g(x_0)) := \{ x \in X : f(x_0) + (g(x_0), x - x_0) \leq 0 \}.$$

Then

(i) $H \supseteq S$. If $g(x_0) \neq 0$, then H is a halfspace; otherwise, $H = X$.

(ii) $P_H x_0 = \begin{cases} x_0 - \frac{f(x_0)}{\| g(x_0) \|^2} g(x_0) & \text{if } f(x_0) > 0, \\ x_0 & \text{otherwise.} \end{cases}$
(iii) \(d(x_0, H) = \begin{cases} \frac{f(x_0)}{\|g(x_0)\|} & \text{if } f(x_0) > 0, \\ 0 & \text{otherwise.} \end{cases} \)

Proof. (i): If \(s \in S \), then \(f(x_0) + \langle g(x_0), s - x_0 \rangle \leq f(s) \leq 0 \) and hence \(s \in H \).

(ii): Use Facts 1.5(ii) to verify the candidate for \(P_H x_0 \). (iii) follows immediately from (ii). \qed

REMARK 7.4. The importance of the halfspace defined in the last lemma is explained by the following. Suppose we want to find a point in \(S \); i.e., we look for a solution of the convex feasibility problem \(f(x) \leq 0 \). If \(f(x_0) \leq 0 \), then we are done. Otherwise \(f(x_0) > 0 \). It is usually "hard" to solve \(f(x) = 0 \) (otherwise, we would just solve); therefore, we instead consider a first-order approximation of \(f \), say

\[f(x) \approx \tilde{f}(x) := f(x_0) + \langle g(x_0), x - x_0 \rangle \]

for some \(g(x_0) \in \partial f(x_0) \),

and solve \(\tilde{f}(x_0) = 0 \), to which a solution is given by

\[P_H x_0 = x_0 - \frac{f(x_0)}{\|g(x_0)\|^2} g(x_0). \]

We now give the precise definition of a subgradient algorithm.

DEFINITION 7.5. Suppose for some index \(i \in \{1, \ldots, N\} \) and for all \(n \) every set \(C_i^{(n)} \) of a given projection algorithm is of the form

\[C_i^{(n)} = H(f_i, x^{(n)}, g_i(x^{(n)})) = \{ x \in X : f_i(x^{(n)}) + \langle g_i(x^{(n)}), x - x^{(n)} \rangle \leq 0 \} \]

for some fixed convex function \(f_i : X \to \mathbb{R} \), where \(f_i \) is subdifferentiable at every \(x^{(n)} \) and \(g_i(x^{(n)}) \in \partial f_i(x^{(n)}) \). Suppose further that

\[C_i = \{ x \in X : f_i(x) \leq 0 \}. \]

Then we call this projection algorithm a subgradient algorithm. Every such index \(i \) is called a subgradient index; the set of all subgradient indices is denoted \(I_i \).

REMARKS 7.6.

- Subgradient algorithms and projection algorithms are closely related in the following sense.

 (i) Every subgradient algorithm is a projection algorithm (by definition).

 (ii) Every projection algorithm with constant sets can be viewed as a subgradient algorithm. To see this, one chooses \(f_i := d(\cdot, C_i) \) and takes into account that

\[\partial f_i(x) = \partial d(x, C_i) = \begin{cases} \frac{x - P_{C_i} x}{\|x - P_{C_i} x\|} & \text{if } x \notin C_i, \\ N_{C_i}(x) \cap B_x & \text{otherwise,} \end{cases} \]

where \(N_{C_i}(x) = \{ x^* \in X : (C_i - x, x^*) \leq 0 \} \) is the normal cone of \(C_i \) at \(x \).

- The aim of subgradient algorithms is to solve convex feasibility problems. For a good survey on subgradient algorithms and other methods for solving convex feasibility methods, see Censor's [22].

- The reader should be warned that our use of the term "subgradient algorithm" is not quite standard. In the literature, "subgradient algorithms" may refer to considerably more general algorithms; see, for example, Shor's [92].
We now provide a fairly large class of focusing subgradient algorithms to which our previous results are applicable.

Theorem 7.7 (prototype of a focusing subgradient algorithm). Given a subgradient algorithm, suppose the subdifferentials of \(f_i \) are nonempty and uniformly bounded on bounded sets for every index \(i \in I_2 \). Suppose further \((P_i^{(n)}) \) converges actively pointwise to \(P_i \) for every index \(i \in \{1, \ldots, N\} \setminus I_2 \). Then the subgradient algorithm is focusing.

Proof. Fix an index \(i \in \{1, \ldots, N\} \). Suppose \((x^{(n)}) \) is a subsequence of \((x^{(n)}) \) with \(x^{(n)} \rightarrow x \), \(x^{(n)} - P_i^{(n)}x^{(n)} \rightarrow 0 \), and \(i \) is active at \(n \) for all \(k \). We must show that \(x \in C_i \) in view of Lemma 4.2, we need only consider the case when \(i \in I_3 \). Then, by weak lower semicontinuity of \(f \),

\[
f_i(x) \leq \lim_{k} f_i(x^{(n_k)}).
\]

If \(f_i(x^{(n_k)}) \leq 0 \) infinitely often, then clearly \(f_i(x) \leq 0 \) and so \(x \in C_i \). Otherwise \(f_i(x^{(n_k)}) > 0 \) for all large \(k \). Since the sequence \((x^{(n)}) \) is bounded, there is some \(M > 0 \) s.t. the norm of every subgradient of \(f_i \) at \(x^{(n_k)} \) is at most \(M \). Thus, by Lemma 7.3(iii),

\[
0 \rightleftharpoons d(x^{(n_k)}, C_i^{(n_k)}) = \frac{f_i(x^{(n_k)})}{\|g_i(x^{(n_k)})\|} \geq \frac{f_i(x^{(n_k)})}{M},
\]

hence \(f_i(x^{(n_k)}) \rightarrow 0 \). Therefore, \(f_i(x) \leq 0 \) and \(x \in C_i \). \(\square \)

The property that \(\partial f_i \) is uniformly bounded on bounded sets is a standard assumption for theorems on subgradient algorithms; see, for example, [52, 86, 28, 4, 40]. We now characterize this property.

Proposition 7.8 (uniform boundedness of subdifferentials on bounded sets). Suppose \(f : X \rightarrow \mathbb{R} \) is a convex function. Then the following conditions are equivalent.

(i) \(f \) is bounded on bounded sets.

(ii) \(f \) is (globally) Lipschitz continuous on bounded sets.

(iii) The subdifferentials of \(f \) are nonempty and uniformly bounded on bounded sets.

Proof. "(i)\(\rightarrow \) (ii)" can be found in Roberts and Varberg's [88, Proof of Thm. 41.B].

"(ii)\(\rightarrow \) (iii)". By Facts 7.2(ii), \(f \) is subdifferentiable everywhere. It is enough to show that the subgradients of \(f \) are uniformly bounded on open balls centered at \(0 \). So fix \(r > 0 \) and obtain (by assumption) a Lipschitz constant \(f \) on int \(rB_X \), say \(L \). Now fix \(x \in \text{int } rB_X \) and get \(s > 0 \) s.t. \(x + sB_X \subseteq \text{int } rB_X \). Pick any \(x^* \in \partial f(x) \) and \(b \in B_X \). Then

\[
\langle x^*, sb \rangle \leq f(x + sb) - f(x) \leq Ls\|b\|;
\]

thus \(\|x^*\| = \sup \langle x^*, B_X \rangle \leq L \) and therefore the subgradients of \(f \) are uniformly bounded on int \(rB_X \) by \(L \).

"(iii)\(\rightarrow \) (i)". It is enough to show that \(f \) is bounded on \(rB_X \) for every \(r > 0 \). By assumption, there is some \(M > 0 \) s.t. the norm of any subgradient of \(f \) at any point in \(rB_X \) is at most \(M \). Fix \(x \in rB_X \). On the one hand, pick \(x^* \in \partial f(x) \). Then \(\langle x^*, 0-x \rangle \leq f(0) - f(x) \); thus \(f(x) \leq f(0) + \langle x^*, x \rangle \leq f(0) + Mr \). Hence \(f \) is bounded above on \(rB_X \) by \(f(0) + Mr \). On the other hand, picking \(x^*_0 \in \partial f(0) \) shows similarly that \(f \) is bounded below on \(rB_X \) by \(f(0) - Mr \). Altogether, \(f \) is bounded on \(rB_X \) and the proof is complete. \(\square \)

Corollary 7.9. If \(X \) is finite dimensional, then every convex function from \(X \) to \(\mathbb{R} \) is subdifferentiable everywhere and its subdifferentials are uniformly bounded on bounded sets.

Proof. By Facts 7.2(iii), any convex function from \(X \) to \(\mathbb{R} \) is continuous everywhere. Since \(X \) is finite dimensional, this function attains its minimum and maximum on bounded closed sets; in particular, it is bounded on bounded closed sets. The result now follows from the previous proposition. \(\square \)
REMARKS 7.10.

- The last corollary implies that if X is finite dimensional, then every convex function from X to \mathbb{R} can be used in Theorem 7.7.
- As the following example demonstrates, the assumption that X is finite dimensional in the last corollary cannot be dropped. Consequently, the convex function constructed below cannot be used in Theorem 7.7.

EXAMPLE 7.11. Define the function f by

$$f : X := \ell_2 \rightarrow \mathbb{R} : x = (x_n) \mapsto \sum_{n=1}^{\infty} n x_n^{2n}.$$

Then f is everywhere finite, convex, continuous, and subdifferentiable. However, on B_X, neither is the function f bounded nor are the subdifferentials of f uniformly bounded.

Proof: Fix an arbitrary $x = (x_n) \in X$. Then, on the one hand, $x_n \rightarrow 0$. On the other hand, $\sqrt{n} \rightarrow 1$. Hence, eventually

$$x_n^2 \leq \frac{1}{(\sqrt{n})^3} \iff n x_n^{2n} \leq \frac{1}{n^2};$$

thus $f(x)$ is finite. Also, f is, as the supremum of convex and lower semicontinuous functions

$$f = \sup_m \sum_{n=1}^{m} n x_n^{2n},$$

convex and lower semicontinuous too. Therefore, f is everywhere continuous (see, for example, [50, Chap. I: Cor. 2.5]) and subdifferentiable (Fact 7.2.(ii)). Choosing $x = n$th unit vector in X shows that

$$\sup f(B_X) \geq f(x) = n;$$

thus f is unbounded on B_X. The proof of "(iii)\(\rightarrow\)(i)" in the last proposition shows that the subgradients of f are not uniformly bounded on B_X. \(\Box\)

Under a Slater-type constraint qualification, we even obtain *linearly* focusing subgradient algorithms.

Theorem 7.12 (prototype of a linearly focusing subgradient algorithm). *Given a subgradient algorithm, suppose that there is some Slater point $\hat{x} \in X$ s.t.*

$$f_i(\hat{x}) < 0$$

and that the subdifferentials of f_i are nonempty and uniformly bounded on bounded sets for every subgradient index $i \in I_2$. Suppose further there is some $\beta > 0$ s.t.

$$\beta d(x^{(n)}, C_i) \leq d(x^{(n)}, C_i^{(n)});$$

for every index $i \in \{1, \ldots, N\} \setminus I_2$ and all large n active for i. Then the subgradient algorithm is linearly focusing.

Proof: Fix any index $i \in \{1, \ldots, N\}$. It is sufficient to show that there is some $\beta_i > 0$ s.t.

$$\beta_i d(x^{(n)}, C_i) \leq d(x^{(n)}, C_i^{(n)}); \text{ for all large } n \text{ active for } i.$$

()

Case 1: $i \in \{1, \ldots, N\} \setminus I_2$. Then $\beta_i = \beta$ does the job for (*).

Case 2: $i \in I_2$. Since $(x^{(n)})$ is bounded, there is some $M > 0$ s.t. for all $n \geq 0$, $\|\hat{x} - x^{(n)}\| \leq M$ and the norm of every subgradient of f_i at every $x^{(n)}$ is at most M. Now
fix n active for i. Without loss, we assume that $f_i(x^{(n)}) > 0$ (otherwise, (\ast) holds trivially). Define
\[
\epsilon := -f_i(\hat{x}) > 0, \quad \lambda := \frac{\epsilon}{f_i(x^{(n)}) + \epsilon} \in [0, 1[.
\]
and set
\[
y := (1 - \lambda)\hat{x} + \lambda x^{(n)}.
\]
Then
\[
f_i(y) = f_i((1 - \lambda)\hat{x} + \lambda x^{(n)}) \leq (1 - \lambda)f_i(\hat{x}) + \lambda f_i(x^{(n)}) = 0;
\]
hence $y \in C_i$. We estimate
\[
d^2(x^{(n)}, C_i) \leq \|x^{(n)} - y\|^2
= \left(\frac{f_i(x^{(n)})}{f_i(x^{(n)}) + \epsilon}\right)^2 \|\hat{x} - x^{(n)}\|^2
\leq \left(\frac{f_i(x^{(n)})}{\epsilon}\right)^2 M^2
= \left(\frac{d(x^{(n)}, C_i^{(n)})}{{\beta}_n(x^{(n)})}\right)^2 \frac{1}{{\epsilon}^2} M^2
\leq \frac{M^4}{\epsilon^2} d^2(x^{(n)}, C_i^{(n)}).
\]
Therefore, (\ast) holds with $\beta_n = \epsilon/M^2$ and the proof is complete. \hfill \Box

Examples.

Censor and Lent's framework. We investigate in this subsection a framework essentially suggested by Censor and Lent [28]. They considered (cf. Example 7.14) subgradient algorithms where every index is a subgradient index; i.e., $I_0 = \{1, \ldots, N\}$. Then
\[
C = \bigcap_{i=1}^N C_i = \bigcap_{i=1}^N \{x \in X : f_i(x) \leq 0\}
\]
is the set of solutions of the convex feasibility problem
\[
f_i(x) \leq 0 \quad \text{for } i = 1, \ldots, N,
\]
where each f_i is a continuous convex function from X to \mathbb{R}.

Theorem 7.13 (Censor and Lent's framework in Euclidean spaces). Suppose X is finite dimensional. Then the sequence $(x^{(n)})$ converges in norm to some point in C whenever one of the following conditions holds.

(i) (random control) $\lim_{n \to \infty} \mu_i^{(n)} > 0$ for every index i.

(ii) (intermittent control) The subgradient algorithm is p-intermittent and $\sum_n v_n = +\infty$ (where v_n is defined as in Theorem 3.20 (ii)).

Proof. By Theorem 7.7 and Corollary 7.9, the subgradient algorithm is focusing. Now (i) follows from Corollary 3.12, whereas (ii) is immediate from Corollary 3.25. \hfill \Box

We now obtain Censor and Lent's fundamental result as a special case of the last theorem.
EXAMPLE 7.14 (Censor and Lent's [28, Thm. 1]). Suppose X is finite dimensional and the subgradient algorithm is almost cyclic. Suppose further there is some $\epsilon > 0$ s.t. $\epsilon \leq \alpha_i^{(n)} \leq 2 - \epsilon$ for all n and every index i active at n. Then the sequence $(x^{(n)})$ converges in norm to some point in C.

THEOREM 7.15 (Censor and Lent's framework in Hilbert spaces). Suppose the projection algorithm is p-intermittent and the functions f_i have nonempty and uniformly bounded subdifferentials on bounded sets.

(i) If $\lim_{n,n \to \infty} \alpha_i^{(n)} > 0$ for every index i, then the sequence $(x^{(n)})$ converges weakly to some point in C.

(ii) If $\sum_n u_n = +\infty$ (where u_n is defined as in Theorem 3.20(ii)), then the sequence $(x^{(n)})$ has a (unique) weak cluster point in C.

Proof. By Theorem 7.7, the subgradient algorithm is focusing. The result is now immediate from Theorem 3.20. \qed

EXAMPLE 7.16 (Eremin's [52, Thm. 1.1 for convex functions and subgradients]). Suppose $N = 1$ and f_i has nonempty and uniformly bounded subdifferentials on bounded sets.

(i) If there is some $\epsilon > 0$ s.t. $\epsilon \leq \alpha_1^{(n)} \leq 1$, then the sequence $(x^{(n)})$ converges weakly to some point in C.

(ii) If $\lim_n \alpha_1^{(n)} < 2$ and $\sum_n \alpha_1^{(n)} = +\infty$, then the sequence $(x^{(n)})$ converges weakly to some point in C.

REMARKS 7.17.

- Eremin considered a more abstract iteration scheme.

- In view of Theorem 7.15, the assumptions in Example 7.16 can be weakened to "there is some $\epsilon > 0$ s.t. $\epsilon \leq \alpha_i^{(n)} \leq 2 - \epsilon$" for (i), and "$\sum_n \alpha_i^{(n)}(2 - \alpha_i^{(n)}) = +\infty$" for (ii).

THEOREM 7.18 (Censor and Lent's framework with a Slater point). Suppose each function f_i has nonempty and uniformly bounded subdifferentials on bounded sets and there is some Slater point $x \in C$, i.e., $f_i(x) < 0$, for every index i. Then the sequence $(x^{(n)})$ converges in norm to some point in X, say x.

(i) If $\sum_n \beta_i^{(n)} = +\infty$ for every index i, then $x \in C$.

(ii) If the subgradient algorithm is intermittent and there is some $\epsilon > 0$ s.t. $\epsilon \leq \alpha_i^{(n)} \leq 2 - \epsilon$ and $\epsilon \leq \lambda_i^{(n)}$ for all large n and every index i active at n, then $x \in C$ and the sequence $(x^{(n)})$ converges linearly to x.

Proof. By Theorem 7.12, the subgradient algorithm is linearly focusing. The Slater point x lies in the interior of $C_i = \{x \in X : f_i(x) \leq 0\}$; thus $x \in \text{int} C$ and (C_1, \ldots, C_N) is boundedly linearly regular (Corollary 5.14). (i) follows from Theorem 3.20(iii), whereas (ii) follows from Theorem 5.7. \qed

EXAMPLE 7.19 (De Pierro and Iusem's [40, Thm. 2]). Suppose X is finite dimensional and there is some Slater point $x \in C$. Suppose further the subgradient algorithm is almost cyclic and there is some $\epsilon > 0$ s.t. $\epsilon \leq \alpha_i^{(n)} \leq 2 - \epsilon$ for all n and every index i active at n. Then the sequence $(x^{(n)})$ converges linearly to some point in C.

Proof. Combine Corollary 7.9 and Theorem 7.18(ii). \qed

REMARK 7.20. De Pierro and Iusem's proof is different from ours. They obtain Example 7.19 via an investigation of an iteration that converges finitely when a Slater point exists (but may diverge otherwise).

EXAMPLE 7.21 (Eremin's [52, Thm. 1.3]). Suppose each function f_i has nonempty and uniformly bounded subdifferentials on bounded sets and there is some Slater point $x \in C$. If $0 < \lambda_i^{(n)} \equiv \lambda_i$ and $0 < \alpha_i^{(n)} \equiv \alpha_i < 2$ for every index i, then the sequence $(x^{(n)})$ converges linearly to some point in C.

Proof. The subgradient algorithm is weighted; hence it is 1-intermittent and Theorem 7.18(ii) applies. \qed
Polyak's framework. In this subsection, we concentrate on a framework suggested by Polyak [86]. He considered a subgradient algorithm where

\[N = 2, \quad I_3 = \{1\}, \quad \text{and} \quad C^{(n)}_2 = C_2. \]

Hence the set \(C = C_1 \cap C_2 = \{ x \in C_2 : f_1(x) \leq 0 \} \) describes the solutions of the convex feasibility problem

\[f_1(x) \leq 0, \quad x \in C_2, \]

where \(f_1 \) is a continuous convex function from \(X \) to \(\mathbb{R} \).

We can view Polyak's framework as a special case of Censor and Lent's framework by setting \(N = 2 \) and letting \(f_2 = d(\cdot, C_2) \). We now "translate" some results obtained in the last subsection to this framework.

For example, Theorem 7.15.(i) becomes the following theorem.

THEOREM 7.22. Suppose the projection algorithm is 2-intermittent and the function \(f_1 \) has nonempty and uniformly bounded subdifferentials on bounded sets. If \(\lim_{n \to \infty} v_n = +\infty \) for \(i = 1 \) and 2, then the sequence \((x^{(n)}) \) converges weakly to some point in \(C \).

EXAMPLE 7.23 (Polyak's [86, Thm. 1]). Suppose the function \(f_1 \) has nonempty and uniformly bounded subdifferentials on bounded sets. If the subgradient algorithm is cyclic and there is some \(\epsilon > 0 \) s.t. \(\epsilon \leq \alpha^{(n)}_1 \leq 2 - \epsilon, \quad \alpha^{(n)}_2 \equiv 1 \) for all \(n \), then the sequence \((x^{(n)}) \) converges weakly to some point in \(C \).

A "translation" of Theorem 7.13.(ii) yields the following theorem.

THEOREM 7.24. Suppose \(X \) is finite dimensional. If the subgradient algorithm is 2-intermittent and \(\sum_n v_n = +\infty \) (where \(v_n \) is defined as in Theorem 3.20.(ii)), then the sequence \((x^{(n)}) \) converges in norm to some point in \(C \).

EXAMPLE 7.25 (a special case of Allen et al.'s [4, Prop. 7]). Suppose \(X \) is finite dimensional, the subgradient algorithm is cyclic, and there is some \(\epsilon > 0 \) s.t. \(0 < \alpha^{(n)}_1 \leq 2 - \epsilon \) and \(\alpha^{(n)}_2 \equiv \alpha^{(2n+1)}_1 = 1 \) for all \(n \geq 0 \). If \(\sum_n \alpha^{(n)}_1 = +\infty \), then the sequence \((x^{(n)}) \) converges in norm to some point in \(C \).

Proof. The subgradient algorithm is certainly 2-intermittent; hence define \(v_n \) as in Theorem 3.20.(ii) and check that \(v_n = \alpha^{(2n)}_1 (2 - \alpha^{(2n)}_1 \geq \alpha^{(n)}_1 \epsilon \). Therefore, \(\sum_n v_n = +\infty \) and the result follows from Theorem 7.24.

REMARKS 7.26.

- An inspection of the proof shows that we can replace the assumptions on \(\alpha^{(2n)}_1 \) by the more general \(\sum_n \alpha^{(2n)}_1 (2 - \alpha^{(2n)}_1) = +\infty \).

- Allen et al. [4] also investigated the situation where it is allowed that \(f_1 \) takes the value \(+\infty \) and \(C \) is empty.

The next theorem does not follow from Censor and Lent's framework. The necessary work, however, is modest.

THEOREM 7.27. Suppose the subgradient algorithm is intermittent and there is some \(\bar{x} \in C_2 \) with \(f_1(\bar{x}) < 0 \). Suppose further \(f_1 \) has nonempty and uniformly bounded subdifferentials on bounded sets. If there is some \(\epsilon > 0 \) s.t. \(\epsilon \leq \alpha^{(n)}_1 \leq 2 - \epsilon \) and \(\epsilon \leq \alpha^{(n)}_i \) for all large \(n \) and every index \(i \) active at \(n \), then the sequence \((x^{(n)}) \) converges linearly to some point in \(C \).

Proof. By Theorem 7.12, the subgradient algorithm is linearly focusing. Since \(\bar{x} \in C_2 \cap \text{int } C_1 \), the pair \((C_1, C_2) \) is boundedly linearly regular (Corollary 5.14). Now apply Theorem 5.7.

EXAMPLE 7.28 (a case of Polyak's [86, Thm. 4]). Suppose the subgradient algorithm is cyclic and there is some \(\bar{x} \in C_2 \) with \(f_1(\bar{x}) < 0 \). Suppose further \(f_1 \) has nonempty and uniformly bounded subdifferentials on bounded sets. If there is some \(\epsilon > 0 \) s.t. \(\epsilon \leq \alpha^{(2n)}_1 \leq 2 - \epsilon \) and \(\epsilon \leq \alpha^{(n)}_i \) for all large \(n \) and every index \(i \) active at \(n \), then the sequence \((x^{(n)}) \) converges linearly to some point in \(C \).

Proof. By Theorem 7.12, the subgradient algorithm is linearly focusing. Since \(\bar{x} \in C_2 \cap \text{int } C_1 \), the pair \((C_1, C_2) \) is boundedly linearly regular (Corollary 5.14). Now apply Theorem 5.7.

EXAMPLE 7.29 (a case of Polyak's [86, Thm. 4]). Suppose the subgradient algorithm is cyclic and there is some \(\bar{x} \in C_2 \) with \(f_1(\bar{x}) < 0 \). Suppose further \(f_1 \) has nonempty and uniformly bounded subdifferentials on bounded sets. If there is some \(\epsilon > 0 \) s.t. \(\epsilon \leq \alpha^{(2n)}_1 \leq 2 - \epsilon \) and \(\epsilon \leq \alpha^{(n)}_i \) for all large \(n \) and every index \(i \) active at \(n \), then the sequence \((x^{(n)}) \) converges linearly to some point in \(C \).
2 - \epsilon and \alpha_2^{(2n+1)} = \alpha_2^{(n)} = 1 for all n, then the sequence \((x^{(n)})\) converges linearly to some point in \(C\).

Remarks 7.29. On first sight, Polyak’s framework looks fairly special since it deals only with one function. A standard trick, however, allows one to handle finitely many convex functions. Suppose we are given \(M\) continuous convex functions \(\phi_1, \ldots, \phi_M\) from \(X\) to \(\mathbb{R}\). If we want to solve the convex feasibility problem

\[x \in C_2 \quad \text{and} \quad \phi_i(x) \leq 0, \quad i = 1, \ldots, M, \]

then we simply set

\[f_1 := \max\{\phi_1, \ldots, \phi_M\}, \quad C_1 := \{x \in X : f_1(x) \leq 0\}, \]

and we see that \(C = C_1 \cap C_2\) are precisely the solutions of the above problem. Hence all methods discussed in this subsection are applicable. For example, the reformulation of the last theorem to this situation yields a partial generalization of Polyak’s [86, Thm. 6]. It only remains to describe \(\partial f_1\). The reader can find a formula in Ioffe and Tihomirov’s book [68, Thm. 3 on p. 201f] that becomes in our setting

\[\partial f_1(x) = \text{conv} \bigcup_{j : f_1(x) = \phi_j(x)} \partial \phi_j(x). \]

A generalization of Dos Santos’s framework. In this section, we discuss a generalization of a framework due to Dos Santos (cf. Example 7.34). On first sight, this framework looks like a subgradient algorithm; it is, however, actually a projection algorithm as defined in §4. It works as follows.

Suppose we are given \(M\) continuous convex functions \(\phi_{i,k}\) from \(X\) to \(\mathbb{R}\) that are partitioned into \(N\) (\(\leq M\)) “blocks,” where the \(i\)th block consists of \(M_i\) functions

\[\{\phi_{i,1}, \ldots, \phi_{i,M_i}\} \quad \text{for every index } i, \]

so that \(M_1 + \cdots + M_N = M\). Let

\[C_i = \{x \in X : \phi_{i,k}(x) \leq 0 \text{ for } k = 1, \ldots, M_i\} \quad \text{for every index } i; \]

then \(C = \bigcap_{i=1}^N C_i\) is the set of solutions of the convex feasibility problem

\[\phi_{i,k}(x) \leq 0, \quad i = 1, \ldots, N, \quad k = 1, \ldots, M_i. \]

As always, we assume feasibility; i.e., \(C\) is nonempty.

Given a point \(x^{(n)}\), we define \(N\) continuous convex functions

\[f^{(n)}_i : X \rightarrow \mathbb{R} : x \mapsto \sum_{k=1}^{M_i} \alpha^{(n)}_{i,k} \frac{\phi^{+}_{i,k}(x^{(n)})}{\|\psi_{i,k}(x^{(n)})\|^2} \psi_{i,k}(x), \]

where we use the convention that

\[0^0 := 0, \]

and where \(\psi_{i,k}(x^{(n)}) \in \partial \phi^{+}_{i,k}(x^{(n)})\) and \(\alpha^{(n)}_{i,k}\) are nonnegative real numbers with \(\sum_{k=1}^{M_i} \alpha^{(n)}_{i,k} = 1\) for every index \(i\) and \(k = 1, \ldots, M_i\). We further set

\[g_i^{(n)}(x^{(n)}) := \sum_{k=1}^{M_i} \alpha^{(n)}_{i,k} \frac{\phi^{+}_{i,k}(x^{(n)})}{\|\psi_{i,k}(x^{(n)})\|^2} \psi_{i,k}(x^{(n)}) \quad \text{for every index } i. \]
and note that \(g_i^{(n)}(x^{(n)}) \in \partial f_i^{(n)}(x^{(n)}) \). Sticking to the notation of Lemma 7.3, we finally define \(N \) closed convex sets by
\[
C_i^{(n)} := H(f_i^{(n)}, x^{(n)}, g_i^{(n)}(x^{(n)})) \quad \text{for every index } i.
\]

Then Lemma 7.3 (and the convention \(\emptyset \ := 0 \)) yields the following lemma.

LEMMA 7.30. For every index \(i \) and all \(n \geq 0 \),
\[
C_i^{(n)} \supseteq \{ x \in X : f_i^{(n)}(x) \leq 0 \}
\]

(i) \[
\supseteq \bigcap_{k=1}^{M_i} \{ x \in X : \phi_i,k(x) \leq 0 \} = C_i.
\]

(ii) \[
P_i^{(n)} x^{(n)} = x^{(n)} - \left(\frac{f_i^{(n)}(x^{(n)})}{\| g_i^{(n)}(x^{(n)}) \|} \right) g_i^{(n)}(x^{(n)}).
\]

(iii) \[
d(x^{(n)}, C_i^{(n)}) = \frac{f_i^{(n)}(x^{(n)})}{\| g_i^{(n)}(x^{(n)}) \|}.
\]

By Lemma 7.30.(i), we are thus given a projection algorithm to which we refer as the *generalized DS algorithm*. Dos Santos [47, §6] gave an excellent motivation for a special case of the generalized DS algorithm. Of course, now we wish to bring our convergence results into play; hence, we must know what makes a generalized DS algorithm (linearly) focusing.

DEFINITION 7.31 (control). We say that the generalized DS algorithm *considers most violated constraints* if there is some \(\tau > 0 \) s.t. for every index \(i \), there is some \(k \in \{1, \ldots, M_i\} \) with
\[
\phi_{i,k}^+(x^{(n)}) = \max_{i,k} \phi_{i,k}^+(x^{(n)}) \quad \text{and} \quad \omega_{i,k}^{(n)} \geq \tau \quad \text{for all } n \geq 0.
\]

THEOREM 7.32 (prototype of a (linearly) focusing generalized DS algorithm). Suppose the generalized DS algorithm considers most violated constraints and the functions \(\phi_{i,k} \) have nonempty and uniformly bounded subdifferentials on bounded sets.

(i) Then the generalized DS algorithm is focusing.

(ii) Suppose that in addition for every index \(i \) at least one of the following conditions holds.

1. There is some Slater point \(\hat{x}_i \in C_i \) s.t.
\[
\phi_{i,k}(\hat{x}_i) < 0 \quad \text{for every } k = 1, \ldots, M_i.
\]

2. Each \(\phi_{i,k} \) is a distance function to some closed convex set \(C_i,k \) and the \(M_i \)-tuple
\[
(C_i,1, \ldots, C_i,M_i) \quad \text{is boundedly linearly regular.}
\]

Then the generalized DS algorithm is linearly focusing.

Proof. First, we get \(L_1 > 0 \) s.t. \(\| \psi_{i,k}(x^{(n)}) \| \leq L_1 \) for all \(n \geq 0 \), every index \(i \), and all \(k = 1, \ldots, M_i \). Second, we get \(\tau > 0 \) s.t. for all \(n \geq 0 \) and every index \(i \), \(\omega_{i,k}^{(n)} \geq \tau \) for some \(k^* \in \{1, \ldots, M_i\} \) with \(\phi_{i,k^*}^+(x^{(n)}) = \max_{i,k} \phi_{i,k}^+(x^{(n)}) \). Now fix an index \(i \) and \(n \geq 0 \) and assume (without loss, as we will see) that \(x^{(n)} \notin C_i \). It is convenient to abbreviate
\[
\omega_k := \omega_{i,k}^{(n)}, \quad q_k := \frac{\phi_{i,k}^+(x^{(n)})}{\| \psi_{i,k}(x^{(n)}) \|}, \quad z_k := \frac{\psi_{i,k}(x^{(n)})}{\| \psi_{i,k}(x^{(n)}) \|}
\]
and to let any appearing \(k \)'s range in \(\{k \in \{1, \ldots, M_i\} : z_k \neq 0\} \). Using the convexity of \(\| \cdot \| \) and \((\cdot)^2 \), we estimate
\[d(x^{(n)}, C_{i}^{(n)}) = \frac{f_{i}^{(n)}(x^{(n)})}{\|g_{i}^{(n)}(x^{(n)})\|} = \frac{\sum_{k} \omega_{k} q_{k}^2}{\| \sum_{k} \omega_{k} q_{k} z_{k} \|} \geq \frac{\sum_{k} \omega_{k} q_{k}^2}{\sum_{k} \omega_{k} q_{k} \| z_{k} \|} = \frac{\sum_{k} \omega_{k} q_{k}^2}{\sum_{k} \omega_{k} q_{k}} \geq \frac{(\sum_{k} \omega_{k} q_{k})^2}{\sum_{k} \omega_{k} q_{k}} = \sum_{k} \omega_{k} q_{k}. \]

By choice of \(\tau \) and \(L_{1} \), we conclude that

\[(*) \quad d(x^{(n)}, C_{i}^{(n)}) \geq \frac{\tau}{L_{1}} \max_{k} \phi_{i,k}^{+}(x^{(n)}) \quad \text{for every index } i \text{ and all } n \geq 0. \]

Note that if \(x^{(n)} \in C \), then \((*)\) holds trivially.

(i): If \((x^{(n)}) \) is a weakly convergent subsequence of \((x^{(n)}) \) with weak limit \(x \) and \(d(x^{(n)}), C_{i}^{(n)}) \rightarrow 0 \), then, by \((*)\), \(\lim_{n} \max_{k} \phi_{i,k}^{+}(x^{(n)}) \leq 0 \). Since \(\phi_{i,k}^{+} \) is weakly lower semicontinuous, this implies \(\phi_{i,k}^{+}(x) \leq 0 \) for \(k = 1, \ldots, M_{i} \). Hence \(x \in C_{i} \) and the generalized DS algorithm is focusing.

(ii): Case 1: Condition 1 holds. Get \(L_{2} > 0 \) s.t. \(\| \hat{x} - x^{(n)} \| \leq L_{2} \) for all \(n \geq 0 \). Now fix an index \(i \) and \(n \). Define

\[y := (1 - \lambda) \hat{x} + \lambda x^{(n)}, \]

where

\[\lambda := \frac{\min_{k} \{-\phi_{i,k}(\hat{x})\}}{\min_{k} \{-\phi_{i,k}(\hat{x})\} + \max_{k} \{\phi_{i,k}^{+}(x^{(n)})\}} \in [0, 1]. \]

Then one readily verifies that \(\phi_{i,k}(y) \leq 0 \) for all \(k \); thus \(y \in C_{i} \). We estimate

\[d^{2}(x^{(n)}, C_{i}) \leq \|x^{(n)} - y\|^{2} = (1 - \lambda)^{2} \|\hat{x} - x^{(n)}\|^{2} \leq \left(\frac{\max_{k} \{\phi_{i,k}^{+}(x^{(n)})\}}{\min_{k} \{-\phi_{i,k}(\hat{x})\}} \right)^{2} L_{2}^{2}. \]

Combining the previous estimate with \((*)\) yields

\[\frac{\tau}{L_{1} L_{2}} \min_{k} \{-\phi_{i,k}(\hat{x})\} d(x^{(n)}, C_{i}) \leq d(x^{(n)}, C_{i}) \quad \text{for all } n \geq 0. \]

Case 2: Condition 2 holds. Because \((C_{i,1}, \ldots, C_{i,M_{i}}) \) is boundedly linearly regular, there exists some \(L_{3} > 0 \) s.t.

\[d(x^{(n)}, C_{i}) \leq L_{3} \max_{k} d(x^{(n)}, C_{i,k}) = L_{3} \max_{k} \phi_{i,k}(x^{(n)}) \quad \text{for all } n \geq 0. \]

Fix an index \(i \). Combining the last estimate with \((*)\) this time yields

\[\frac{\tau}{L_{1} L_{3}} d(x^{(n)}, C_{i}) \leq d(x^{(n)}, C_{i}) \quad \text{for all } n \geq 0. \]

In both cases, we have found an inequality that makes the generalized DS algorithm linearly focusing. \(\square \)

Having identified nice classes of (linearly) focusing generalized DS algorithms, we could now systematically "translate" our previous results to this situation; again, we opt for a small selection.
Dos Santos's original framework. Dos Santos considered the situation when \(N = 2 \), and we set \(L := M_1 \),

\[\Phi_i := \Phi_{1,i}, \ldots, \Phi_L := \Phi_{1,M_1}, \]

\(M_2 = 1 \), and \(\phi_{2,1} = d(\cdot, C_2) \) for some closed convex nonempty set \(C_2 \). Thus \(C = C_1 \cap C_2 \) is the set of solutions of the convex feasibility problem

\[x \in C_2 \quad \text{and} \quad \phi_k(x) \leq 0 \quad \text{for} \quad k = 1, \ldots, L. \]

We refer to the generalized DS algorithm in this framework as the DS algorithm.

Theorem 7.33 (Dos Santos's original framework). Suppose the DS algorithm is intermittent and considers most violated constraints and there is some \(\epsilon > 0 \) s.t. \(\epsilon \leq \alpha_i^{(n)} \leq 2 - \epsilon \) and \(\epsilon \leq \lambda_i^{(n)} \) for all \(n \) and every index \(i \) active at \(n \). Suppose further each \(\phi_k \) has nonempty and uniformly bounded subdifferentials on bounded sets.

(i) Then the sequence \((x^{(n)}) \) converges weakly to some point in \(C \). Consequently, if \(X \) is finite dimensional, then the sequence \((x^{(n)}) \) converges in norm to some point in \(C \).

(ii) If there is some \(\tilde{x} \in C_2 \) s.t. \(\phi_k(\tilde{x}) < 0 \) for \(k = 1, \ldots, L \), then the sequence \((x^{(n)}) \) converges linearly to some point in \(C \).

Proof. (i): By Theorem 7.32.(i), the DS algorithm is focusing. The result now follows from Remark 3.13 and Theorem 3.20.(i).

(ii): On the one hand, the DS algorithm is linearly focusing (Theorem 7.32.(ii)). On the other hand, \(\tilde{x} \in C_2 \cap \text{int} C_1 \), so \(C_1, C_2 \) is boundedly linearly regular (Corollary 5.14).

 Altogether (Theorem 5.7), the sequence \((x^{(n)}) \) converges linearly to some point in \(C \). \(\Box \)

Example 7.34 (Dos Santos's [47, Thm.]). Suppose \(X \) is finite dimensional, the DS algorithm is cyclic, and there is some \(\epsilon > 0 \) s.t. \(\epsilon \leq \alpha_i^{(n)} \leq 2 - \epsilon \) and \(\alpha_i^{(n)} = 1 \) for all \(n \geq 0 \). Suppose further \(0 < \omega_0 < \omega_k \) for \(k = 1, \ldots, L \). Then the sequence \((x^{(n)}) \) converges in norm to some point in \(C \).

Proof. Since \(\omega_k > 0 \) for all \(k \), the DS algorithm certainly considers most violated constraints. Now combine Corollary 7.9 and Theorem 7.33.(i). \(\Box \)

Remarks 7.35.

- For \(L = 1 \), Dos Santos's and Polyak's frameworks coincide.
- Dos Santos reports good numerical results on his algorithm. Theorem 7.33.(i) shows that the qualitative performances of his and Censor and Lent's frameworks are comparable (cf. Theorem 7.18 and Example 7.19).

The polyhedral framework. The polyhedral framework is the special case of the generalized Dos Santos framework, where \(\phi_{i,k} \) is the distance function to some polyhedron \(C_{i,k} \) for every index \(i \) and all \(k = 1, \ldots, M_i \). Throughout this subsection, we investigate this situation.

Theorem 7.36 (polyhedral framework). In the polyhedral framework, suppose the generalized DS algorithm considers most violated constraints. Suppose further that it is intermittent or considers remotest sets. Suppose finally there is some \(\epsilon > 0 \) s.t. \(\epsilon \leq \alpha_i^{(n)} \leq 2 - \epsilon \) and \(\epsilon \leq \lambda_i^{(n)} \) for all \(n \) and every index \(i \) active at \(n \). Then the sequence \((x^{(n)}) \) converges linearly to some point in \(C \) with a rate independent of the starting point.

Proof. For every index \(i \), the \(M_i \)-tuple \((C_{i,1}, \ldots, C_{i,M_i}) \) is linearly regular (Corollary 5.26). Hence, by Theorem 7.32.(ii), the generalized DS algorithm is linearly focusing. Now each \(C_i \) is also a polyhedron; thus by Corollary 5.26, \((C_1, \ldots, C_N) \) is linearly regular. Therefore, the result follows from Theorem 5.7 (for intermittent control) or Theorem 5.8 (if the algorithm considers remotest sets). \(\Box \)

Remark 7.37. If \(N = M_1 \), each \(C_{i,1} \) is a halfspace, \(\omega_{i,1}^{(n)} = \omega_i > 0 \), and there is some \(\epsilon > 0 \) s.t. \(\epsilon \leq \alpha_i^{(n)} \equiv \alpha^{(n)}_i \leq 2 - \epsilon \) for all \(n \) and every index \(i \), then we recapture Example 6.40 (which is due to De Pierro and Iusem [39]).

We register two more special cases.
EXAMPLE 7.38 (Merzlyakov’s [80, Thm.]). In the polyhedral framework, suppose \(X \) is finite dimensional, \(N = 1 \), each \(C_{i,t} \) is a halfspace, and the generalized DS algorithm considers most violated constraints. Suppose further \(0 < \alpha_i^{(n)} = \alpha_i < 2 \). Then the sequence \((x^{(n)}) \) converges linearly to some point in \(C \) with a rate independent of the starting point.

REMARK 7.39. Merzlyakov [80] actually considered a more general version, where the \(\omega_i^{(n)} \) need not necessarily sum up to 1.

EXAMPLE 7.40 (Yang and Murty’s [105]). In the polyhedral framework, suppose \(X \) is finite dimensional, each \(C_{i,k} \) is a halfspace, and there is some \(\epsilon > 0 \) s.t. the generalized DS algorithm satisfies

\[
\alpha_{i,k}^{(n)} \begin{cases}
0 & \text{if } x^{(n)} \in C_{i,k}, \\
\geq \epsilon & \text{otherwise}
\end{cases}
\]

for all \(n \), every index \(i \), and all \(k = 1, \ldots, M_i \). Suppose further the relaxation parameters satisfy \(0 < \alpha_i^{(n)} = \alpha < 2 \) for all \(n \) and every index \(i \). Then the sequence \((x^{(n)}) \) converges linearly to some point in \(C \) with a rate independent of the starting point whenever one of the following conditions holds.

1. (Basic surrogate constraint method: [105, §3]) \(N = 1 \).
2. (Sequential surrogate constraint method: [105, §4]) The generalized DS algorithm is cyclic.
3. (Parallel surrogate constraint method: [105, §5]) There is some \(\epsilon' > 0 \) s.t. \(x^{(n)} \notin C_i \) implies \(\lambda_i^{(n)} \geq \epsilon' \) for all \(n \) and every index \(i \).

Proof. Obviously, the generalized DS algorithm considers most violated constraints. The first condition is a special case of the second one, which in turn follows from Theorem 7.36. The assumption in the third condition guarantees that the algorithm considers remotest sets; hence, this case is also covered by Theorem 7.36.

Acknowledgments. It is our pleasure to thank Yair Censor, Frank Deutsch, Sjur Flåm, Krzysztof Kiwiel, Adrian Lewis, Alex Simonič, Levent Tunçel, Jon Vanderwerff, and two referees for helpful suggestions.

Final remarks. This attempt to review and unify is necessarily incomplete—it is impossible to keep track of all relevant manuscripts in the field. We thus wish to apologize to the contributors who should have been included here but are not. The manuscript is merely a snapshot of what the authors knew in mid-1993; time, of course, has not stood still. The manuscripts sent to us recently by Combettes [30–37], García-Palomares [55], and Kiwiel [72–75] deal with exciting new generalizations and deserve much attention. A synthesis of a selection of these results may be found in the first author’s Ph.D. thesis (Projection Algorithms and Monotone Operators, Simon Fraser University, 1996).

Index.

- active index, 378
- active remotest index, 390
- Aharoni and Censor's framework, 389
- algorithm, 378
- almost cyclic algorithm, 382
- almost cyclic control, 382
- alternating projections, 386
- angle, 396
- asymptotically regular algorithm, 378
- asymptotically regular sequence, 374
- attracting mapping, 372
- averaged mapping, 370
- block algorithm, 382
- block control, 382
- bounded linear regularity, 393
- bounded regularity, 391
- boundedly linearly regular, 393
boundedly regular, 391
Bumariu and Censor’s framework, 390
Censor and Elfving’s framework, 408
Censor and Lent’s framework, 414
Cimmino’s method, 405
cone, 372
consideration of remotest sets control, 390
considers most violated constraints, 418
considers only blocks, 382
considers remotest sets, 390
converges actively pointwise, 381
converges linearly, 371
convex feasibility problem, 367
cyclic algorithm, 382
cyclic control, 382
cyclic projections, 401
demiclosedness principle, 370
distance function, 371
dos Santos’s original framework, 420
DS algorithm, 420
Fejér monotone sequence, 375
firmly nonexpansive mapping, 370
fixed points, 370
Flåm and Zowe’s framework, 389
focusing algorithm, 380
focusing subgradient algorithm, 412
generalized DS algorithm, 418
halfspace, 406
has constant sets, 385
hyperplane, 403
hyper slab, 409
icr, 372
index, 377
int, 372
intermittent algorithm, 382
intermittent control, 382
intrinsic core, 372
isometry, 370
linear convergence, 371
linear regularity, 393
linearly regular, 393
linearly focusing projection algorithm, 386
linearly focusing subgradient algorithm, 413
linear feasibility problem, 406
Mosco convergence, 385
nonexpansive mapping, 370
overrelaxation, 378
parallel algorithm, 378
parallel control, 378
parallelogram law, 369
Pierre’s product space formalization, 397
Polyak’s framework, 416
polyhedral framework, 420
polyhedron, 372
positive cone, 410
positive part, 372
projection, 370
projection algorithm, 385
random algorithm, 382
random control, 382
random projections, 386
regular, 391
regularity, 391
relaxation parameter, 377
relaxed firmly nonexpansive mapping, 370
remotest set control, 390
sequence of active remotest indices, 390
sequence of the algorithm, 378
singular algorithm, 378
singular control, 378
Slater point, 413
span, 371
strictly nonexpansive mapping, 370
strict convexity, 369
strongly attractive mapping, 372
strongly focusing projection algorithm, 386
subgradient algorithm, 411
subgradient index, 411
Tseng’s framework, 381
underrelaxation, 378
unrelaxed algorithm, 378
unrelaxed control, 378
von Neumann’s alternating projection algorithm, 386
von Neumann/Halperin’s framework, 403
weight, 378
weighted algorithm, 378
weighted control, 378
REFERENCES

pp. 301–309.

and Computer Science in Medical Imaging*, M. Viergever and A. Todd-Pokropek, eds., Berlin, 1988,
Springer-Verlag, pp. 43–65. NATO Advanced Science Institute Series F: Computer and Systems Sciences,

distributed in 1923.

pp. 486–491.

pp. 163–183.

University of Wisconsin, Mathematics Research Center. Publication No. 27.