Effective Computation of Bessel Functions, Part II

David Borwein1, Jonathan M. Borwein2, and O-Yeat Chan3

1Department of Mathematics, University of Western Ontario
2Faculty of Computer Science, Dalhousie University
3Department of Mathematics and Statistics, Dalhousie University

8th Annual Bluenose Numerical Analysis Day
27 July 2007
For any complex pair \((p, q)\) and real numbers \(\alpha, \beta \in (-\pi, \pi)\), let

\[
I(p, q, \alpha, \beta) := \int_{\alpha}^{\beta} e^{-iq\omega} e^{p\cos \omega} d\omega.
\]

Then we have the absolutely convergent representation

\[
I(p, q, \alpha, \beta) = \frac{ie^p}{q} \sum_{k=0}^{\infty} \frac{r_{k+1}(-2i)}{k!} \int_{\sin \frac{\alpha}{2}}^{\sin \frac{\beta}{2}} x^k e^{-2px^2} dx,
\]

where

\[
\begin{align*}
r_{2m+1}(\nu) &:= \nu \prod_{j=1}^{m} \left(\nu^2 + (2j - 1)^2 \right), \\
r_{2m}(\nu) &:= \prod_{j=1}^{m} \left(\nu^2 + (2j - 2)^2 \right).
\end{align*}
\]

These are, you may recall, the coefficients in the series expansion of \(\exp(\arcsin x)\).
For any complex pair \((p, q)\) and real numbers \(\alpha, \beta \in (-\pi, \pi)\), let

\[
I(p, q, \alpha, \beta) := \int_{\alpha}^{\beta} e^{-i\omega} e^{p \cos \omega} d\omega.
\]

Then we have the absolutely convergent representation

\[
I(p, q, \alpha, \beta) = \frac{ie^p}{q} \sum_{k=0}^{\infty} \frac{r_{k+1}(-2i)q}{k!} \int_{\sin \frac{\alpha}{2}}^{\sin \frac{\beta}{2}} x^k e^{-2px^2} dx,
\]

where

\[
r_{2m+1}(\nu) := \nu \prod_{j=1}^{m} \left(\nu^2 + (2j-1)^2 \right), \quad r_{2m}(\nu) := \prod_{j=1}^{m} \left(\nu^2 + (2j-2)^2 \right).
\]

These are, you may recall, the coefficients in the series expansion of \(\exp(\arcsin x)\).
For any complex pair \((p, q)\) and real numbers \(\alpha, \beta \in (-\pi, \pi)\), let

\[
I(p, q, \alpha, \beta) := \int_{\alpha}^{\beta} e^{-iq\omega} e^{p\cos \omega} d\omega.
\]

Then we have the absolutely convergent representation

\[
I(p, q, \alpha, \beta) = \frac{ie^p}{q} \sum_{k=0}^{\infty} \frac{r_{k+1}(-2iq)}{k!} \int_{\sin \frac{\alpha}{2}}^{\sin \frac{\beta}{2}} x^k e^{-2px^2} dx,
\]

where

\[
r_{2m+1}(\nu) := \nu \prod_{j=1}^{m} \left(\nu^2 + (2j - 1)^2 \right), \quad r_{2m}(\nu) := \prod_{j=1}^{m} \left(\nu^2 + (2j - 2)^2 \right).
\]

These are, you may recall, the coefficients in the series expansion of \(\exp(\arcsin x)\).
For any complex pair \((p, q)\) and real numbers \(\alpha, \beta \in (-\pi, \pi)\), let

\[
I(p, q, \alpha, \beta) := \int_{\alpha}^{\beta} e^{-i\omega} e^{p \cos \omega} d\omega.
\]

Then we have the absolutely convergent representation

\[
I(p, q, \alpha, \beta) = \frac{ie^p}{q} \sum_{k=0}^{\infty} \frac{r_{k+1}(-2i)}{k!} \int_{\sin \frac{\alpha}{2}}^{\sin \frac{\beta}{2}} x^k e^{-2px^2} dx,
\]

where

\[
r_{2m+1}(\nu) := \nu \prod_{j=1}^{m} \left(\nu^2 + (2j - 1)^2 \right), \quad r_{2m}(\nu) := \prod_{j=1}^{m} \left(\nu^2 + (2j - 2)^2 \right).
\]

These are, you may recall, the coefficients in the series expansion of \(\exp(\arcsin x)\).
In particular, for the case where \((\alpha, \beta) = (-\pi/2, \pi/2)\), we have

\[
I(p, q) := I(p, q, -\pi/2, \pi/2) = \frac{2ie^p}{q} \sum_{k=0}^{\infty} \frac{r_{2k+1}(-2iq)}{(2k)!} B_k(p),
\]

with

\[
B_k(p) := \int_0^{1/\sqrt{2}} x^{2k} e^{-2px^2} \, dx = \frac{1}{2^{k+1}\sqrt{2}} \int_0^1 e^{-pu} u^{k-\frac{1}{2}} \, du
\]

\[
= -\frac{e^{-p}}{p2^{k+1}\sqrt{2}} + \left(k - \frac{1}{2}\right) \frac{B_{k-1}(p)}{2}.
\]
In particular, for the case where \((\alpha, \beta) = (-\pi/2, \pi/2)\), we have

\[
\mathcal{I}(p, q) := \mathcal{I}(p, q, -\pi/2, \pi/2) = \frac{2i e^p}{q} \sum_{k=0}^{\infty} \frac{r_{2k+1}(-2iq)}{(2k)!} B_k(p),
\]

with

\[
B_k(p) := \int_{0}^{1/\sqrt{2}} x^{2k} e^{-2px^2} \, dx = \frac{1}{2^{k+1} \sqrt{2}} \int_{0}^{1} e^{-pu} u^{k-\frac{1}{2}} \, du
\]

\[
= -\frac{e^{-p}}{p 2^{k+1} \sqrt{2}} + \left(k - \frac{1}{2} \right) \frac{B_{k-1}(p)}{2}.
\]
In particular, for the case where \((\alpha, \beta) = (-\pi/2, \pi/2)\), we have

\[
I(p, q) := I(p, q, -\pi/2, \pi/2) = \frac{2i e^p}{q} \sum_{k=0}^{\infty} \frac{r_{2k+1}(-2iq)}{(2k)!} B_k(p),
\]

with

\[
B_k(p) := \int_0^{1/\sqrt{2}} x^{2k} e^{-2px^2} \, dx = \frac{1}{2^{k+1} \sqrt{2}} \int_0^1 e^{-pu} u^{k-\frac{1}{2}} \, du
\]

\[
= - \frac{e^{-p}}{p 2^{k+1} \sqrt{2}} + \left(k - \frac{1}{2} \right) \frac{B_{k-1}(p)}{2}.
\]
For integral order, we have from the Laguerre paper

\[J_n(z) = \frac{1}{2\pi} \left(e^{-in\pi/2} \mathcal{I}(iz, n) + e^{in\pi/2} \mathcal{I}(-iz, n) \right), \]

and

\[I_n(z) = \frac{1}{2\pi} \left(\mathcal{I}(z, n) + \cos(\pi n) \mathcal{I}(-z, n) \right). \]

As Jon mentioned, we want to use the integral representations to get expressions for general \(\nu \).
For integral order, we have from the Laguerre paper

\[J_n(z) = \frac{1}{2\pi} \left(e^{-in\pi/2}I(iz, n) + e^{in\pi/2}I(-iz, n) \right), \]

and

\[I_n(z) = \frac{1}{2\pi} \left(I(z, n) + \cos(\pi n)I(-z, n) \right). \]

As Jon mentioned, we want to use the integral representations to get expressions for general \(\nu \).
The integral representations are:

\[J_\nu(z) = \frac{1}{\pi} \int_{0}^{\pi} \cos(\nu t - z \sin t) \, dt - \frac{\sin \nu \pi}{\pi} \int_{0}^{\infty} e^{-\nu t - z \sinh t} \, dt, \]

\[Y_\nu(z) = \frac{1}{\pi} \int_{0}^{\pi} \sin(z \sin t - \nu t) \, dt \]
\[- \frac{1}{\pi} \int_{0}^{\infty} \left(e^{\nu t} + e^{-\nu t} \cos \nu \pi \right) e^{-z \sinh t} \, dt, \]

\[I_\nu(z) = \frac{1}{\pi} \int_{0}^{\pi} e^{z \cos t} \cos \nu t \, dt - \frac{\sin \nu \pi}{\pi} \int_{0}^{\infty} e^{-z \cosh t - \nu t} \, dt, \]

and

\[K_\nu(z) = \int_{0}^{\infty} e^{-z \cosh t} \cosh \nu t \, dt = \frac{1}{2} \int_{-\infty}^{\infty} e^{-z \cosh t - \nu t} \, dt. \]
The integrals on $[0, \pi]$ can be expressed in terms of the I function. Specifically,

$$J_{\nu}(z) = \frac{1}{2\pi} \left(e^{-i\nu\pi/2}I(iz, \nu) + e^{i\nu\pi/2}I(-iz, \nu) \right) - \frac{\sin \nu \pi}{\pi} \int_0^\infty \ldots$$

$$Y_{\nu}(z) = \frac{1}{2\pi i} \left(e^{-i\nu\pi/2}I(iz, \nu) - e^{i\nu\pi/2}I(-iz, \nu) \right) - \frac{1}{\pi} \int_0^\infty \ldots$$
\[\begin{align*}
l_\nu(z) &= \frac{1}{2} \left(\mathcal{I}(z, \nu) + e^{i\nu\pi} \mathcal{I}(-z, \nu, 0, \pi/2) + e^{-i\nu\pi} \mathcal{I}(-z, -\nu, 0, \pi/2) \right) \\
&\quad - \frac{\sin \nu\pi}{\pi} \int_0^\infty \ldots \\
&\quad = \frac{1}{2\pi} \left(\mathcal{I}(z, \nu) + \cos \nu\pi \mathcal{I}(-z, \nu) - \sin \nu\pi \mathcal{I}^*(z, \nu) \right) \\
&\quad - \frac{\sin \nu\pi}{\pi} \int_0^\infty \ldots ,
\end{align*}\]

where

\[\mathcal{I}^*(z, \nu) = \frac{2e^z}{\nu} \sum_{n=0}^{\infty} \frac{r_{2n+2}(2i\nu)}{(2n+1)!} B_{n+\frac{1}{2}}(z).\]
To get the generalizations we want, we basically just need to evaluate the infinite integrals.

Let us look at the integrals in the J and Y cases. A change of variables plus integration by parts gives us

$$
\int_{0}^{\infty} e^{-\nu t - z \sinh t} \, dt = \frac{1}{\nu} - \frac{Z}{\nu} \int_{0}^{\infty} e^{-zs} e^{-\nu \text{arcsinh } s} \, ds.
$$

The expansion of $e^{-\nu \text{arcsinh } s}$ about $s = 0$, used in the finite case to obtain the series, is only valid on $[0, 1)$.
To get the generalizations we want, we basically just need to evaluate the infinite integrals.

Let us look at the integrals in the J and Y cases. A change of variables plus integration by parts gives us

$$\int_{0}^{\infty} e^{-\nu t - z \sinh t} \, dt = \frac{1}{\nu} - \frac{Z}{\nu} \int_{0}^{\infty} e^{-zs} e^{-\nu \arcsinh s} \, ds.$$

The expansion of $e^{-\nu \arcsinh s}$ about $s = 0$, used in the finite case to obtain the series, is only valid on $[0, 1)$.
For large s, it makes sense to expand about infinity!

The series, valid on $(1, \infty)$, is

\[s^\nu e^{-\nu \operatorname{arcsinh} s} = \sum_{n=0}^{\infty} \frac{A_n(\nu)}{s^{2n}}, \]

where $A_0(\nu) = 2^{-\nu}$ and for $n \geq 1$,

\[A_n = \frac{(\nu + 2n - 2)(\nu + 2n - 1)}{4n(n + \nu)} A_{n-1}, \]

from which we easily obtain

\[A_n(\nu) = \frac{(-1)^n \nu 2^{-\nu} (\nu + n + 1)_{n-1}}{2^{2n} n!}. \]
For large \(s \), it makes sense to expand about infinity!

The series, valid on \((1, \infty)\), is

\[
s^\nu e^{-\nu \arcsinh s} = \sum_{n=0}^{\infty} \frac{A_n(\nu)}{s^{2n}},
\]

where \(A_0(\nu) = 2^{-\nu} \) and for \(n \geq 1 \),

\[
A_n = -\frac{(\nu + 2n - 2)(\nu + 2n - 1)}{4n(n + \nu)} A_{n-1},
\]

from which we easily obtain

\[
A_n(\nu) = \frac{(-1)^n \nu 2^{-\nu}(\nu + n + 1)_{n-1}}{2^{2n} n!}.
\]
For large s, it makes sense to expand about infinity!

The series, valid on $(1, \infty)$, is

$$s^\nu e^{-\nu \arcsinh s} = \sum_{n=0}^{\infty} \frac{A_n(\nu)}{s^{2n}},$$

where $A_0(\nu) = 2^{-\nu}$ and for $n \geq 1$,

$$A_n = -\frac{(\nu + 2n - 2)(\nu + 2n - 1)}{4n(n + \nu)} A_{n-1},$$

from which we easily obtain

$$A_n(\nu) = \frac{(-1)^n \nu 2^{-\nu}(\nu + n + 1)_{n-1}}{2^{2n} n!}.$$
Note that when ν is a negative integer, we have problems with the recurrence.

When $n = \lfloor (1 - \nu)/2 \rfloor$, the numerator is 0. When $n = -\nu$, the denominator is zero.

In this case, $A_n(\nu) = (-1)^{\nu+1} A_{n+\nu}(-\nu)$ for $n \geq -\nu$
Note that when ν is a negative integer, we have problems with the recurrence.

When $n = \lfloor (1 - \nu)/2 \rfloor$, the numerator is 0. When $n = -\nu$, the denominator is zero.

In this case, $A_n(\nu) = (-1)^{\nu+1} A_{n+\nu}(-\nu)$ for $n \geq -\nu$.
Note that when ν is a negative integer, we have problems with the recurrence.

When $n = \lfloor (1 - \nu)/2 \rfloor$, the numerator is 0. When $n = -\nu$, the denominator is zero.

In this case, $A_n(\nu) = (-1)^\nu + 1 A_{n+\nu}(-\nu)$ for $n \geq -\nu$
If we only used the expansions at 0 and ∞, we could get a series; but there are issues with interchanging summations and integration, since we are integrating up to the boundary of the interval of convergence.

Even after justifying the interchange, the resulting series is very slow due to the “bad” approximation by the series near the boundary.
If we only used the expansions at 0 and ∞, we could get a series; but there are issues with interchanging summations and integration, since we are integrating up to the boundary of the interval of convergence.

Even after justifying the interchange, the resulting series is very slow due to the “bad” approximation by the series near the boundary.
Localize!

For fixed k, $f_k(s) := e^{-\nu \arcsinh(k+s)}$ satisfies the second order differential equation

$$f''_k(s) = \frac{1}{k^2 + 1 + 2ks + s^2} \left(\nu^2 f_k(s) - (k + s)f'_k(s) \right).$$

So if we set

$$e^{-\nu \arcsinh(k+s)} = \sum_{n=0}^{\infty} \frac{a_n(k, \nu)}{n!} s^n,$$

then we have the recurrence relation

$$a_{n+2} = \frac{1}{k^2 + 1} \left((\nu^2 - n^2) a_n - k(2n + 1) a_{n+1} \right),$$

with

$$a_0 = (k + \sqrt{k^2 + 1})^{-\nu}, \quad a_1 = -\frac{\nu a_0}{\sqrt{k^2 + 1}}.$$
Localize!

For fixed \(k \), \(f_k(s) := e^{-\nu \arcsinh(k+s)} \) satisfies the second order differential equation

\[
f''_k(s) = \frac{1}{k^2 + 1 + 2ks + s^2} \left(\nu^2 f_k(s) - (k + s)f'_k(s) \right).
\]

So if we set

\[
e^{-\nu \arcsinh(k+s)} = \sum_{n=0}^{\infty} \frac{a_n(k, \nu)}{n!} s^n,
\]

then we have the recurrence relation

\[
a_{n+2} = \frac{1}{k^2 + 1} \left((\nu^2 - n^2) a_n - k(2n + 1) a_{n+1} \right),
\]

with

\[
a_0 = (k + \sqrt{k^2 + 1})^{-\nu}, \quad a_1 = -\frac{\nu a_0}{\sqrt{k^2 + 1}}.
\]
Localize!

For fixed k, $f_k(s) := e^{-\nu \arcsinh(k+s)}$ satisfies the second order differential equation

$$f''_k(s) = \frac{1}{k^2 + 1 + 2ks + s^2} \left(\nu^2 f_k(s) - (k + s)f'_k(s) \right).$$

So if we set

$$e^{-\nu \arcsinh(k+s)} = \sum_{n=0}^{\infty} \frac{a_n(k, \nu)}{n!} s^n,$$

then we have the recurrence relation

$$a_{n+2} = \frac{1}{k^2 + 1} \left((\nu^2 - n^2)a_n - k(2n + 1)a_{n+1}\right),$$

with

$$a_0 = (k + \sqrt{k^2 + 1})^{-\nu}, \quad a_1 = -\frac{\nu a_0}{\sqrt{k^2 + 1}}.$$
We can subdivide $[0, \infty)$ into the intervals $[0, 1/2], [1/2, 3/2], \ldots, [N - 1/2, N + 1/2], [N + 1/2, \infty)$ and on each interval expand $e^{-\nu \arcsinh s}$ at k, the centre of the interval.

Each of these series has radius of convergence $\sqrt{k^2 + 1}$ and so we may interchange summation and integration.

For the infinite interval at the end, we use the expansion about infinity.
We can subdivide $[0, \infty)$ into the intervals $[0, 1/2], [1/2, 3/2], \ldots, [N - 1/2, N + 1/2], [N + 1/2, \infty)$ and on each interval expand $e^{-\nu \text{arcsinh} s}$ at k, the centre of the interval.

Each of these series has radius of convergence $\sqrt{k^2 + 1}$ and so we may interchange summation and integration.

For the infinite interval at the end, we use the expansion about infinity.
We can subdivide $[0, \infty)$ into the intervals $[0, 1/2], [1/2, 3/2], \ldots, [N - 1/2, N + 1/2], [N + 1/2, \infty)$ and on each interval expand $e^{-\nu \text{arcsinh} s}$ at k, the centre of the interval.

Each of these series has radius of convergence $\sqrt{k^2 + 1}$ and so we may interchange summation and integration.

For the infinite interval at the end, we use the expansion about infinity.
Thus for any positive integer N, we have

$$\int_0^\infty e^{-zs} e^{-\nu \arcsinh s} \, ds =$$

$$\sum_{n=0}^\infty \left(\frac{a_n(0, \nu)}{n!} \alpha_n(z) + \beta_n(z) \sum_{k=1}^N e^{-kz} \frac{a_n(k, \nu)}{n!} \right) + A_n(\nu) G_n(N + \frac{1}{2}, z, \nu),$$

where

$$\alpha_n(z) := \int_0^{1/2} e^{-zs} s^n \, ds = -\frac{e^{-z/2}}{2^n z} + \frac{n}{z} \alpha_{n-1}(z),$$

$$\beta_n(z) := \int_{-1/2}^{1/2} e^{-zs} s^n \, ds = \frac{e^{z/2}}{(-2)^n z} - \frac{e^{-z/2}}{2^n z} + \frac{n}{z} \beta_{n-1}(z),$$
and

\[G_n(\theta, z, \nu) := \frac{e^{-\theta z}}{\theta^{2n+\nu-1}} \int_0^\infty e^{-\theta z s} (1 + s)^{-2n-\nu} ds \]

\[= \frac{1}{(\nu + 2n - 1)(\nu + 2n - 2)} \times \left(\frac{e^{-\theta z (\nu + 2n - 2 - \theta z)}}{\theta^{2n+\nu-1}} + z^2 G_{n-1}(\theta, z, \nu) \right). \]
and

\[G_n(\theta, z, \nu) := \frac{e^{-\theta z}}{\theta^{2n+\nu-1}} \int_0^\infty e^{-\theta zs} (1 + s)^{-2n-\nu} ds \]

\[= \frac{1}{(\nu + 2n - 1)(\nu + 2n - 2)} \times \]

\[\left(\frac{e^{-\theta z}(\nu + 2n - 2 - \theta z)}{\theta^{2n+\nu-1}} + z^2 G_{n-1}(\theta, z, \nu) \right). \]
So we have found a representation for the Bessel functions in terms of several sums:

Sums involving I from the integral on $[0, \pi]$, where each summand looks like

$$\frac{r_{n+1}(2\nu)}{n!} B_{n(+1/2)}(z),$$

sums from the subdivisions of the real line on the infinite integral, where a typical summand is

$$\frac{a_n(k, \nu)}{n!} \beta_n(z) e^{-kz},$$

and the sum from the tail, where each summand is

$$A_n(\nu) G_n(N + \frac{1}{2}, z, \nu).$$
So we have found a representation for the Bessel functions in terms of several sums:

Sums involving I from the integral on $[0, \pi]$, where each summand looks like

$$r_{n+1}(2\nu)\frac{B_n(+1/2)(z)}{n!},$$

sums from the subdivisions of the real line on the infinite integral, where a typical summand is

$$a_n(k, \nu)\frac{\beta_n(z)e^{-kz}}{n!},$$

and the sum from the tail, where each summand is

$$A_n(\nu)G_n(N + \frac{1}{2}, z, \nu).$$
So we have found a representation for the Bessel functions in terms of several sums:

Sums involving I from the integral on $[0, \pi]$, where each summand looks like

$$\frac{r_{n+1}(2\nu)}{n!} B_n(+1/2)(z),$$

sums from the subdivisions of the real line on the infinite integral, where a typical summand is

$$\frac{a_n(k, \nu)}{n!} \beta_n(z) e^{-kz},$$

and the sum from the tail, where each summand is

$$A_n(\nu) G_n(N + \frac{1}{2}, z, \nu).$$
So we have found a representation for the Bessel functions in terms of several sums:

Sums involving I from the integral on $[0, \pi]$, where each summand looks like

$$\frac{r_{n+1}(2\nu)}{n!} B_{n(+1/2)}(z),$$

sums from the subdivisions of the real line on the infinite integral, where a typical summand is

$$\frac{a_n(k, \nu)}{n!} \beta_n(z) e^{-kz},$$

and the sum from the tail, where each summand is

$$A_n(\nu) G_n(N + \frac{1}{2}, z, \nu).$$
Let us first look at
\[\frac{r_{n+1}(2\nu)}{n!} \].

For simplicity we consider the case \(n \) even, \(n = 2m \). Then this is
\[
\prod_{j=1}^{m} \left(1 - \frac{1}{2j} - \frac{4\nu^2}{(2j - 1)(2j)} \right),
\]
which is bounded and decreasing for \(m > 2|\nu|^2 \). Similarly for odd \(n \).

Also, (for arbitrary \(n \))
\[
B_n(z) = \frac{1}{2^{n+3/2}} \int_0^1 e^{-zu} u^{n-1/2} du
\]
so it is bounded by
\[
|B_n(z)| \leq \frac{\max(1, e^{-\text{Re}(z)})}{2^{n+3/2}}.
\]
Let us first look at \(r_{n+1}(2\nu) \frac{1}{n!} \).

For simplicity we consider the case \(n \) even, \(n = 2m \). Then this is

\[
\prod_{j=1}^{m} \left(1 - \frac{1}{2j} - \frac{4\nu^2}{(2j - 1)(2j)} \right),
\]

which is bounded and decreasing for \(m > 2|\nu|^2 \). Similarly for odd \(n \).

Also, (for arbitrary \(n \))

\[
B_n(z) = \frac{1}{2^{n+3/2}} \int_{0}^{1} e^{-zu} u^{n-1/2} du
\]

so it is bounded by

\[
|B_n(z)| \leq \frac{\max(1, e^{-\text{Re}(z)})}{2^{n+3/2}} .
\]
Thus the terms of type

\[\frac{r_{n+1}(2\nu)}{n!} B_n(z) = O_{\nu,z}(2^{-n}), \]

where the big-\(O\) constant can be explicitly computed.
For terms of the type

\[\frac{a_n(k, \nu)}{n!} \beta_n(z) e^{-kz}, \]

note that \(a_n(k, \nu)/n! \) are the Taylor coefficients, and so they are \(O\left(\frac{1}{(k^2 + 1)^{n/2}}\right) \) from the radius of convergence. We can fairly easily get a weaker but explicit geometric bound using the recurrence relation for \(a_n(k, \nu) \).

\(\beta_n(z) \) is the \(n \)-th moment of the exponential, and can be explicitly computed. A simple estimate yields

\[|\beta_n(z) e^{-kz}| \leq \frac{e^{-(k-1/2) \Re(z)}}{2^n}. \]
For terms of the type

$$\frac{a_n(k, \nu)}{n!} \beta_n(z) e^{-kz},$$

note that $a_n(k, \nu)/n!$ are the Taylor coefficients, and so they are $O\left(\frac{1}{(k^2+1)^{n/2}}\right)$ from the radius of convergence. We can fairly easily get a weaker but explicit geometric bound using the recurrence relation for $a_n(k, \nu)$.

$\beta_n(z)$ is the n-th moment of the exponential, and can be explicitly computed. A simple estimate yields

$$|\beta_n(z) e^{-kz}| \leq \frac{e^{-(k-1/2) \Re(z)}}{2^n}.$$
For terms of the type

\[A_n(\nu) G_n(N + \frac{1}{2}, z, \nu), \]

we can get a bound

\[|A_n(\nu)| \leq \frac{\nu 2^{\lceil |\nu| \rceil - \nu - 1}}{n} \]

from the explicit formula,

and use bounds for the incomplete gamma function to get explicit big-O constants for the bound

\[G_n(N + \frac{1}{2}, z, \nu) = O_{\nu,z}((N + 1/2)^{-\text{Re}(\nu)-2n}). \]
For terms of the type

$$A_n(\nu) G_n(N + \frac{1}{2}, z, \nu),$$

we can get a bound

$$|A_n(\nu)| \leq \frac{\nu 2^{|\nu| - \nu - 1}}{n}$$

from the explicit formula,

and use bounds for the incomplete gamma function to get explicit big-O constants for the bound

$$G_n(N + \frac{1}{2}, z, \nu) = O_{\nu, z}((N + 1/2)^{-\text{Re}(\nu)-2n}).$$
Putting it all together, we see that the (slowest) sums converge like 2^{-n}, and with explicit big-O constants we may determine how many terms are needed for a specific accuracy.
Other features to note:

- For each type of sum, the summands are all computable via recursion.
- The most difficult computation involved are the computation of B_0 and G_0, each of which involves an incomplete gamma evaluation. It should be noted that this can be done via continued fractions, so this scheme can be thought of as a continued fraction evaluation scheme for Bessel functions.
- The sum involving $A_n G_n$ is bounded like $O_\nu (e^{-z(N+1/2)})$ by estimating the integral of the tail. So one can avoid the computation of G_0 altogether by choosing a large enough N.
Other features to note:

- For each type of sum, the summands are all computable via recursion.
- The most difficult computation involved are the computation of B_0 and G_0, each of which involves an incomplete gamma evaluation. It should be noted that this can be done via continued fractions, so this scheme can be thought of as a continued fraction evaluation scheme for Bessel functions.
- The sum involving A_nG_n is bounded like $O_{\nu}(e^{-z(N+1/2)})$ by estimating the integral of the tail. So one can avoid the computation of G_0 altogether by choosing a large enough N.
Other features to note:

- For each type of sum, the summands are all computable via recursion.
- The most difficult computation involved are the computation of B_0 and G_0, each of which involves an incomplete gamma evaluation. It should be noted that this can be done via continued fractions, so this scheme can be thought of as a continued fraction evaluation scheme for Bessel functions.
- The sum involving A_nG_n is bounded like $O_{\nu}(e^{-z(N+1/2)})$ by estimating the integral of the tail. So one can avoid the computation of G_0 altogether by choosing a large enough N.
Along the same lines, one does not need to compute all of the sums involving β_n for large k unless one needs accuracy beyond about $e^{-\left(k-1/2\right)\Re(z)}$.

In addition to choosing an optimal N, one can also adjust the intervals in dividing the integral on $[0, \infty)$. In particular, the sum arising out of an interval on (a, b) expanded at k converges like

$$O\left((b - a)e^{-a\Re(z)} \frac{\max(|k - a|^n, |b - k|^n)}{(k^2 + 1)^{n/2}} \right).$$
Along the same lines, one does not need to compute all of the sums involving β_n for large k unless one needs accuracy beyond about $e^{-(k-1/2)\Re(z)}$.

In addition to choosing an optimal N, one can also adjust the intervals in dividing the integral on $[0, \infty)$. In particular, the sum arising out of an interval on (a, b) expanded at k converges like

$$O \left((b - a) e^{-a \Re(z)} \frac{\max(|k - a|^n, |b - k|^n)}{(k^2 + 1)^{n/2}} \right).$$
Our computation scheme has some advantages over the traditional ascending-asymptotic switching scheme:

- Our series are all uniformly geometrically convergent, whereas some asymptotic formulas are divergent series, and some are only algebraically convergent (i.e., like $n^{-\alpha}$ rather than 2^{-n}).

- Each summand in our series is a product of functions that depend only on ν or only on z, and thus these values can be stored and recycled for one-ν-many-z or one-z-many-ν computations. Note also that each of these functions is eventually decreasing.

The following table compares the performance between the ascending series, the standard divergent asymptotic series, and our series for J_{ν} with the choice $N = 1$.

D. Borwein, J. M. Borwein, O-Y. Chan
Effective Computation of Bessel Functions, Part II
Our computation scheme has some advantages over the traditional ascending-asymptotic switching scheme:

- Our series are all uniformly geometrically convergent, whereas some asymptotic formulas are divergent series, and some are only algebraically convergent (i.e., like $n^{-\alpha}$ rather than 2^{-n}).
- Each summand in our series is a product of functions that depend only on ν or only on z, and thus these values can be stored and recycled for one-ν-many-z or one-z-many-ν computations. Note also that each of these functions is eventually decreasing.

The following table compares the performance between the ascending series, the standard divergent asymptotic series, and our series for J_ν with the choice $N = 1$.

D. Borwein, J. M. Borwein, O-Y. Chan

Effective Computation of Bessel Functions, Part II
Our computation scheme has some advantages over the traditional ascending-asymptotic switching scheme:

- Our series are all uniformly geometrically convergent, whereas some asymptotic formulas are divergent series, and some are only algebraically convergent (i.e., like $n^{-\alpha}$ rather than 2^{-n}).
- Each summand in our series is a product of functions that depend only on ν or only on z, and thus these values can be stored and recycled for one-ν-many-z or one-z-many-ν computations. Note also that each of these functions is eventually decreasing.

The following table compares the performance between the ascending series, the standard divergent asymptotic series, and our series for J_ν with the choice $N = 1$.

D. Borwein, J. M. Borwein, O-Y. Chan

Effective Computation of Bessel Functions, Part II
Table: Comparison between various series for $J_\nu(z)$.

<table>
<thead>
<tr>
<th>(ν, z)</th>
<th>M</th>
<th>Ascending Series</th>
<th>Asymptotic Series</th>
<th>Exp-arc Series</th>
</tr>
</thead>
</table>
| $\nu = 6.2$
$z = 100$ | 10 | 10^{22} | 10^{-32} | 10^{-5} |
| 50 | | 10^{41} | 10^{-76} | 10^{-18} |
| 100 | | 10^{22} | 10^{-89} | 10^{-33} |
| 150 | | 10^{-19} | 10^{-79} | 10^{-49} |
| 200 | | 10^{-75} | 10^{-55} | 10^{-64} |
| $\nu = 12.3$
$z = 50$ | 10 | 10^{18} | 10^{-23} | 10^2 |
| 30 | | 10^{17} | 10^{-41} | 10^{-10} |
| 50 | | 10^6 | 10^{-45} | 10^{-17} |
| 70 | | 10^{-11} | 10^{-42} | 10^{-23} |
| 100 | | 10^{-45} | 10^{-28} | 10^{-33} |
| $\nu = 12.3$
$z = 75 + 57i$ | 10 | 10^{27} | 10^{-4} | 10^{13} |
| 50 | | 10^{38} | 10^{-48} | 10^{-17} |
| 100 | | 10^{14} | 10^{-59} | 10^{-33} |
| 120 | | 10^{-2} | 10^{-56} | 10^{-39} |
| 150 | | 10^{-31} | 10^{-47} | 10^{-48} |
| 200 | | 10^{-89} | 10^{-20} | 10^{-64} |
Thank you for your attention!

A preprint is available at the AARMS docserver

http://locutus.cs.dal.ca:8088/archive/00000371/