Interdisciplinarity: What Works, What Doesn’t

Jonathan Borwein, FRSC
Canada Research Chair in Collaborative Technology

www.cs.dal.ca/~jborwein

dis·ci·pline – n.
(Webster) 9. a branch of instruction or learning: the disciplines of history and economics.

“I never run for trains.”
Nasim Nicholas Taleb (The Black Swan)
Interdisciplinarity: Some Definitions

(guiding not prescriptive)

in·ter·dis·ci·pli·nar·y, adj. (Webster)

1. combining or involving two or more academic disciplines or fields of study: The economics and history departments are offering an interdisciplinary seminar on Asia.

2. combining or involving two or more professions, technologies, departments, or the like, as in business or industry.

[1935–40; INTER- + DISCIPLINARY]

Often tightly coupled with collaboration but not of necessity. How many disciplines sit in this Faculty? How many spill over?

col·lab·o·rate, v.i. (Webster)

1. to work, one with another; cooperate, as on a literary work: They collaborated on a novel. [1870–75]

2. Nasty meaning: to cooperate, usually willingly, with an enemy nation, He collaborated with the Nazis during World War II.
<table>
<thead>
<tr>
<th>Course</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry for Geologists</td>
<td>127</td>
</tr>
<tr>
<td>Math for Archeologists</td>
<td>214</td>
</tr>
<tr>
<td>Physics for Psychologists</td>
<td>206</td>
</tr>
<tr>
<td>Biology for Mathematicians</td>
<td>319</td>
</tr>
<tr>
<td>Geology for Entomologists</td>
<td>114</td>
</tr>
<tr>
<td>Botany for Astronomers</td>
<td></td>
</tr>
<tr>
<td>Anatomy for Physicists</td>
<td></td>
</tr>
<tr>
<td>Psychology for Laboratorians</td>
<td></td>
</tr>
<tr>
<td>Anthropology for Chemists</td>
<td></td>
</tr>
<tr>
<td>Topology for Paleontologists</td>
<td></td>
</tr>
<tr>
<td>Nuclear Physics</td>
<td></td>
</tr>
</tbody>
</table>
Interdisciplinarity: what works, what doesn’t

Some General Observations

• Modern Research is Global and increasingly demands Interdisciplinary Collaboration
 • building knowledge networks & social networks is crucial
• Proposals, Papers, Presentations must simultaneously reach diverse groups
 • experts are rare; knowledge is not; information is over abundant
• Success rates are low (20%?)
 • so ideas must be repurposable
• Interdisciplinary collaboration can be great fun or very painful: each University has both many collegial assets and serious institutional impediments
Further General Observations

• distinct mediocre competences do not often make a good interdisciplinary marriage; but
 • Faraday "A centre of excellence is, by definition, a place where second class people may perform first class work."
 • Robin Wilson "At Oxford they thought me a second rate research mathematician and a first-rate teacher. At the OU just the opposite…"
• You/we are your/our own best proponents (sales-people)
 • but bullshit is really obvious
• E.g., I advocate Experimental (Inductive) Mathematics
 ≠ sloppy experiment + missing proofs
 (though many try to publish such)
More use of visualization
``The first [axiom] said that when one wrote to the other (they often preferred to exchange thoughts in writing instead of orally), it was completely indifferent whether what they said was right or wrong. As Hardy put it, otherwise they could not write completely as they pleased, but would have to feel a certain responsibility thereby.

The second axiom was to the effect that, when one received a letter from the other, he was under no obligation whatsoever to read it, let alone answer it, --- because, as they said, it might be that the recipient of the letter would prefer not to work at that particular time, or perhaps that he was just then interested in other problems....
The third axiom was to the effect that, although it did not really matter if they both thought about the same detail, still, it was preferable that they should not do so.

And, finally, the fourth, and perhaps most important axiom, stated that it was quite indifferent if one of them had not contributed the least bit to the contents of a paper under their common name; otherwise there would constantly arise quarrels and difficulties in that now one, and now the other, would oppose being named co-author.”

• Pretty good rules for collaboration a century later
• Shared (even expressed) expectations are crucial!
• IP issues & treatment of students often need addressing

The most celebrated collaboration in math; the post worked then!
“On the Internet, nobody knows you’re a dog.”
Interdisciplinarity: My own Evolution

• I would not have felt comfortable writing my recent books without having also studied some Logic, and some Philosophy & History (of Science)

• One of my most challenging experiences was coauthoring and advocating the 2005 Long Range Plan for Advanced Computation in Canada (2003-2005) for all disciplines

 • E.g., to Science Advisor, Grant Councils, Space Agency, Politicos
 • Led to recent $180 million infusion for Compute Canada
The Seven Consortia (55 Universities) on the CANARIE Backbone
Three Rings: Canadian HPC Needs

Canadian High Performance Computing Needs

The array of Canadian research projects each have unique high performance computing requirements.

- **Ring 1**
 - Desktop Computers (1-64 processors)

- **Ring 2**
 - Small Cluster System (64-300 processors)

- **Ring 3**
 - Supercomputers / Terascale System
Changing Research Landscape: a new Triad

When the facts change, I change my mind. What do you do, sir?" (John Maynard Keynes)

Grant council boundaries are a huge impediment
D-Drive’s Nova Scotia location lends us unusual freedom when interacting globally. Many cities around the world are close enough in a chronological sense to comfortably accommodate real-time collaboration.
Ddrive in Action

Local

Global
C2C biweekly national colloquium: Samples: from SFU and Edmonton

Local Presentation
Speaker
Presentation Slides

Remote Presentation
Remote Audience
Local Camera Placement

Solver of Checkers
Interdisciplinarity: Success Relies On

• Willingness to take **reasonable risks**
 • but should be viewed like portfolio diversification

• Lack of fear & mutual **respect** for the other’s discipline:
 "**Hardy asked** ‘What's your father doing these days. How about that esthetic measure of his?’ **I replied** that my father's book was out. **He said,** 'Good, now he can get back to real mathematics'." (Garret Birkhoff on his father’s book Aesthetic Measures, 1933).
 • many physicists **fear** mathematicians; who are often **uncomfortable** or **dismissive** of informal reasoning and ‘physical or economic intuition’

• **Sufficient common language**
 • a **slow process** as I found working with Vancouver Hospital’s Medical Imaging Group (**especially clinicians**). [Web tools and computing help]

• Above all, a **real project** which interests all
 • not grant foraging or publication snaring
 • much facilitated by shared students/PDFS

My collaborator’s renal system
Interdisciplinarity: Success Relies On

- The view of one of the enthusiasts

- Roy (2000): there is no successful single institution example of “I3R”

The key findings include the following: The entire research enterprise demands and is moving toward "interactive research" (Interactive includes inter-disciplinary, inter-institutional, and inter-sectoral research); The university world has, by and large, failed to organize itself to respond to this new reality; Specific hindrances to I3R are the traditional peer review process and academic intellectual property practices; New directions proposed include: funding largely on past performance and matching fund strategies.
"I'm on the verge of a major breakthrough, but I'm also at that point where chemistry leaves off and physics begins, so I'll have to drop the whole thing."
“Keynes distrusted intellectual rigour of the Ricardian type as likely to get in the way of original thinking and saw that it was not uncommon to hit on a valid conclusion before finding a logical path to it.

`I don't really start', he said, `until I get my proofs back from the printer. Then I can begin serious writing.' ”

(Alec Cairncross, 1996)

• Keynes the Man written 50 years after Keynes' death

``Far better an approximate answer to the right question, which is often vague, than the exact answer to the wrong question, which can always be made precise." (J. W. Tuckey, 1962)

Ability to exchange intuition is fundamental to interdisciplinary success
Interdisciplinarity: Some Assessment Experience

- **NSERC Collaborative Research Initiatives (1992-96)**
 - Big Science from SNO to NASA and Global Warming
 - the more interdisciplinary the panel, the more protective members become of their disciplines
 - few good metrics for success; ‘algorithms will be developed’

 - by 2000 a Georgian sat on the committee
 - Kosovo and Madeline Albright intervened

- **Killam Selection Committee of Canada Council (2003-06)**
 - great good will ---- but “Two solitudes” and “Two Cultures” (CP Snow) both rear their heads
"You can't imagine how tight our budget is. We can only work with single-digit numbers."
Interdisciplinarity: Some Consequences

• Many breakthroughs are made on boundaries of disciplines, often by brilliant interlopers
 • You have to speak enough of the new language to contribute; this should influence our graduate curriculum
 • Team Work is becoming the rule not the exception (biology, physics, engineering, finance, ..., even math)

• This is still premised on having a core competence: in a discipline which has one
 • You have to know something substantial to contribute; this should influence our under-graduate curriculum
 • Is Computer Science such a discipline? Michigan decided Geography was not!
 • I question the value of Interdisciplinary PhD (at Dal: everyone’s favourite niece?); what is wrong with a Management PhD which also contains a lot of IT or Sociology?

Interdisciplinarity: Further Consequences

- You need to know enough about the **culture** of the other discipline or country
 - publishing practices & styles: books **vs** papers **vs** proceedings
 - citation rates differ wildly: "*Multidisciplinary journals tend to have low self-citation rates.*" (ISI)
- Finance, Economics (social science) rank a lot like Mathematics

Table 1. Comparison of the numbers of citations in different fields of science. Based on the data from Science and Engineering Indicators 2004. *National Science Foundation, May 04, 2004.*

<table>
<thead>
<tr>
<th>Field</th>
<th>Average ratio of citation number to the number of citations in mathematics</th>
<th>1992</th>
<th>1994</th>
<th>1996</th>
<th>1997</th>
<th>1999</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number of citations ratio to maths</td>
</tr>
<tr>
<td>Clinical medicine</td>
<td>78</td>
<td>69</td>
<td>516665</td>
<td>78</td>
<td>554332</td>
<td>80</td>
<td>574859</td>
</tr>
<tr>
<td>Biomedical research</td>
<td>78</td>
<td>67</td>
<td>518304</td>
<td>78</td>
<td>562361</td>
<td>81</td>
<td>572122</td>
</tr>
<tr>
<td>Biology</td>
<td>8</td>
<td>8</td>
<td>57825</td>
<td>9</td>
<td>58649</td>
<td>8</td>
<td>58130</td>
</tr>
<tr>
<td>Chemistry</td>
<td>15</td>
<td>13</td>
<td>96827</td>
<td>15</td>
<td>106960</td>
<td>15</td>
<td>105762</td>
</tr>
<tr>
<td>Physics</td>
<td>19</td>
<td>20</td>
<td>141653</td>
<td>21</td>
<td>138417</td>
<td>20</td>
<td>131958</td>
</tr>
<tr>
<td>Earth/space sciences</td>
<td>9</td>
<td>5</td>
<td>58818</td>
<td>9</td>
<td>71230</td>
<td>10</td>
<td>73507</td>
</tr>
<tr>
<td>Engineering/technology</td>
<td>5</td>
<td>3280</td>
<td>5</td>
<td>36189</td>
<td>5</td>
<td>33664</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics</td>
<td>1</td>
<td>6858</td>
<td>1</td>
<td>6631</td>
<td>1</td>
<td>6961</td>
<td>1</td>
</tr>
</tbody>
</table>

- In some countries (UK, Oz) University funding is being driven by such "impact factor" metrics (MPUs)
- Europe and the English-speaking World are diverging?
Interdisciplinarity: Further Consequences

• The Jury is still out, somewhat
 • good research, however performed, will usually rise to the top
 • “collaboration is associated with higher article citation rates, … research has suggested that this is, in part, related to the access to a larger social network and the increased visibility of research …” (2003, NZ study)

Scientometrics,

SCIENTIFIC COLLABORATION IN FINANCE DOES NOT LEAD TO BETTER QUALITY RESEARCH

N. K. AVKIRAN

Hospitality, Tourism, and Property Management, The University of Queensland, Gatton, Queensland 4345 (Australia)

(Received January 27, 1997)

The study reports an empirical comparison of quality of collaborative research with the quality of individual research. Quality of a paper is measured by the citation rate over the four years following the year of publication. Papers published in fourteen Finance journals between 1987–1991 are sampled. There is no significant difference between the quality of collaborative and individual research. Decision-makers should hesitate in interpreting collaborative research as a definitive sign of ability to produce better research.
An acclaimed tradition in the history and sociology of science emphasizes the role of the individual genius in scientific discovery (1, 2). This tradition focuses on guiding contributions of solitary authors, such as Newton and Einstein, and can be seen broadly in the tendency to equate great ideas with particular names, such as the Heisenberg uncertainty principle, Euclidean geometry, Nash equilibrium, and Kantian ethics. The role of individual contributions is also celebrated through science's award-granting institutions, like the Nobel Prize Foundation (3).
Interdisciplinarity: Final Conclusion

<table>
<thead>
<tr>
<th></th>
<th>Increasing team size</th>
<th></th>
<th>RTI > 1 (with self-citations)</th>
<th></th>
<th>RTI > 1 (no self-citations)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N_{fields}</td>
<td>N_{fields}</td>
<td>%</td>
<td>N_{fields}</td>
<td>%</td>
</tr>
<tr>
<td>Science and engineering</td>
<td>171</td>
<td>170</td>
<td>99.4</td>
<td>167</td>
<td>97.7</td>
</tr>
<tr>
<td>Social sciences</td>
<td>54</td>
<td>54</td>
<td>100.0</td>
<td>54</td>
<td>100.0</td>
</tr>
<tr>
<td>Arts and humanities</td>
<td>27</td>
<td>24</td>
<td>88.9</td>
<td>23</td>
<td>85.2</td>
</tr>
<tr>
<td>Patents</td>
<td>36</td>
<td>36</td>
<td>100.0</td>
<td>32</td>
<td>88.9</td>
</tr>
</tbody>
</table>

Trends for individual fields are presented in table S1. In the sciences, areas like medicine, biology, and physics have seen at least a doubling in mean team size over the 45-year period. Surprisingly, even mathematics, long thought the domain of the lone scientist and least dependent of the hard sciences on lab scale and capital-intensive equipment, showed a marked increase in the fraction of work done in teams, from 19% to 57%, with mean team size rising from 1.22 to 1.84. In the social sciences, psychology, economics, and political science show enormous shifts toward teamwork, sometimes doubling or tripling the propensity for teamwork. With regard to average team size, psychology, the closest of the social sciences to a lab science, has the highest growth (75.1%), whereas political science has the lowest (16.6%). As reflected in Fig. 1A, the humanities show lower growth rates in the fraction of publications done in teams, yet a tendency toward increased teamwork is still observed. All areas of patents showed a positive change in both the fraction of papers done by teams and the team size, with only small variations across the areas of patenting, suggesting that the conditions favoring teamwork in patenting are largely similar across subfields.
Fig. 1. The growth of teams

Mr. Gruenberg told reporters gathered at his institute that he was not too surprised to win the Nobel. “Because I have received a lot of awards, I was often asked: ‘When will the big award come?’ ” Mr. Gruenberg said. He said the prize money would let him do research “without having to apply for grants for every tiny bit.”
What are the implications for
- Mathematics?
- Australian Mathematics?
- Australian Science?
- This University?
- This Department?

"'BE CAREFUL'! ALL YOU CAN TELL ME IS 'BE CAREFUL'?
"
“My morale has never been higher than since I stopped asking for grants to keep my lab going.”

Robert Pollack, Columbia Professor of biology, speaking on "the crisis in scientific morale", Sept. 19, 1996 at GWU symposium Science in Crisis at the Millennium. (p. 1805, 27/09/96 Science)