“[I]ntuition comes to us much earlier and with much less outside influence than formal arguments which we cannot really understand unless we have reached a relatively high level of logical experience and sophistication.”

“In the first place, the beginner must be convinced that proofs deserve to be studied, that they have a purpose, that they are interesting.”

George Polya (1887-1985)
The object of mathematical rigor is to sanction and legitimize the conquests of intuition, and there was never any other object for it.” – Jacques Hadamard (1865-1963)
I. Working Definitions and Five Examples of:
- Discovery
- Proof (and of Mathematics)
- Digital-Assistance
- Experimentation (in Maths and in Science)

II. (Some of) Five Numbers:
- \(p(n) \)
- \(\pi \)
- \(\phi(n) \)
- \(\zeta(3) \)
- \(1/\pi \)

"Keynes distrusted intellectual rigour of the Ricardian type as likely to get in the way of original thinking and saw that it was not uncommon to hit on a valid conclusion before finding a logical path to it."
- Sir Alec Cairncross, 1996

III. A Cautionary Finale

IV. Making Some Tacit Conclusions Explicit

"Mathematical proofs like diamonds should be hard and clear, and will be touched with nothing but strict reasoning."
- John Locke
Contents

Preface ix
1 What Is Experimental Mathematics? 1
2 What Is the Quadrillionth Decimal Place of π? 17
3 What Is That Number? 29
4 The Most Important Function in Mathematics 39
5 Evaluate the Following Integral 49
6 Serendipity 61
7 Calculating π 71
8 The Computer Knows More Math Than You Do 81
9 Take It to the Limit 93
10 Danger! Always Exercise Caution When Using the Computer 105
11 Stuff We Left Out (Until Now) 115
Answers and Reflections 131
Final Thought 149
Additional Reading and References 151
Index 155
Cookbook Mathematics

✓State of the art machine translation
✓math magic melting pot
✓full head mathematicians
✓No wonder Sergei Brin wants more
‘This is the essence of science. Even though I do not understand quantum mechanics or the nerve cell membrane, I trust those who do. Most scientists are quite ignorant about most sciences but all use a shared grammar that allows them to recognize their craft when they see it. The motto of the Royal Society of London is 'Nullius in verba': trust not in words. Observation and experiment are what count, not opinion and introspection. Few working scientists have much respect for those who try to interpret nature in metaphysical terms. For most wearers of white coats, philosophy is to science as pornography is to sex: it is cheaper, easier, and some people seem, bafflingly, to prefer it. Outside of psychology it plays almost no part in the functions of the research machine.” - Steve Jones

From his 1997 NYT BR review of Steve Pinker’s How the Mind Works.
“discovering a truth has three components. First, there is the independence requirement, which is just that one comes to believe the proposition concerned by one’s own lights, without reading it or being told. Secondly, there is the requirement that one comes to believe it in a reliable way. Finally, there is the requirement that one’s coming to believe it involves no violation of one’s epistemic state. …

In short, discovering a truth is coming to believe it in an independent, reliable, and rational way.”

“All truths are easy to understand once they are discovered; the point is to discover them.” – Galileo Galilei
Galileo was not alone in this view

“I will send you the proofs of the theorems in this book. Since, as I said, I know that you are diligent, an excellent teacher of philosophy, and greatly interested in any mathematical investigations that may come your way, I thought it might be appropriate to write down and set forth for you in this same book a certain special method, by means of which you will be enabled to recognize certain mathematical questions with the aid of mechanics. I am convinced that this is no less useful for finding proofs of these same theorems.

For some things, which first became clear to me by the mechanical method, were afterwards proved geometrically, because their investigation by the said method does not furnish an actual demonstration. For it is easier to supply the proof when we have previously acquired, by the method, some knowledge of the questions than it is to find it without any previous knowledge.” - Archimedes (287-212 BCE)

Archimedes to Eratosthenes in the introduction to The Method in Mario Livio’s, Is God a Mathematician? Simon and Schuster, 2009
1a. A Very Recent Discovery (July 2009)
(“independent, reliable and rational”)

The n-dimensional integral

$$W_n(s) := \int_0^1 \int_0^1 \cdots \int_0^1 \left| \sum_{k=1}^{n} e^{2\pi x_k i} \right|^s \, dx_1 \, dx_2 \cdots dx_n$$

occurs in the study of uniform random walks in the plane.

$W_n(1)$ is the expected distance moved after n steps.

$$W_1(1) = 1 \quad W_2(1) = \frac{4}{\pi}$$

$$W_3(1) \equiv \frac{3}{16} \frac{2^{1/3}}{\pi^4} \Gamma^6 \left(\frac{1}{3} \right) + \frac{27}{4} \frac{2^{2/3}}{\pi^4} \Gamma^6 \left(\frac{2}{3} \right). \quad (1)$$

We proved the formula below for $2k$ (it counts abelian squares) and numerically observed it was half-true at $k=1/2$. We confirmed (1) to 175 digits well before proof (my seminar)

$$W_3(2k) = \, _3F_2 \left(\begin{array}{c} \frac{1}{2}, -k, -k \\ 1, 1 \end{array} \right| 4 \right) \text{ and } W_3(1) \equiv \, \text{Re}_3F_2 \left(\begin{array}{c} \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2} \\ 1, 1 \end{array} \right| 4 \right)$$

Pearson (1906)
WHAT is MATHEMATICS?

MATHEMATICS, n. a group of related subjects, including algebra, geometry, trigonometry and calculus, concerned with the study of number, quantity, shape, and space, and their inter-relationships, applications, generalizations and abstractions.

This definition, from my Collins Dictionary has no mention of proof, nor the means of reasoning to be allowed (vidé Giaquinto). Webster's contrasts:

INDUCTION, n. any form of reasoning in which the conclusion, though supported by the premises, does not follow from them necessarily.

and

DEDUCTION, n. a. a process of reasoning in which a conclusion follows necessarily from the premises presented, so that the conclusion cannot be false if the premises are true. b. a conclusion reached by this process.

“If mathematics describes an objective world just like physics, there is no reason why inductive methods should not be applied in mathematics just the same as in physics.” - Kurt Gödel (in his 1951 Gibbs Lecture) echoes of Quine
“PROOF, n. a sequence of statements, each of which is either validly derived from those preceding it or is an axiom or assumption, and the final member of which, the conclusion, is the statement of which the truth is thereby established. A direct proof proceeds linearly from premises to conclusion; an indirect proof (also called reductio ad absurdum) assumes the falsehood of the desired conclusion and shows that to be impossible. See also induction, deduction, valid.”

Borowski & JB, Collins Dictionary of Mathematics

INDUCTION, n. 3. (Logic) a process of reasoning in which a general conclusion is drawn from a set of particular premises, often drawn from experience or from experimental evidence. The conclusion goes beyond the information contained in the premises and does not follow necessarily from them. Thus an inductive argument may be highly probable yet lead to a false conclusion; for example, large numbers of sightings at widely varying times and places provide very strong grounds for the falsehood that all swans are white.

“No. I have been teaching it all my life, and I do not want to have my ideas upset.” - Isaac Todhunter (1820-1884) recording Maxwell’s response when asked whether he would like to see an experimental demonstration of conical refraction.
Decide for yourself
WHAT is DIGITAL ASSISTANCE?

♦ Use of Modern Mathematical Computer Packages
 - Symbolic, Numeric, Geometric, Graphical, …

♦ Use of More Specialist Packages or General Purpose Languages
 - Fortran, C++, CPLEX, GAP, PARI, MAGMA, …

♦ Use of Web Applications
 - Sloane’s Encyclopedia, Inverse Symbolic Calculator, Fractal Explorer, Euclid in Java, Weeks’ Topological Games, Polymath (Sci. Amer.), …

♦ Use of Web Databases

♦ All entail data-mining [“exploratory experimentation” and “widening technology” as in pharmacology, astrophysics, biotech, … (Franklin)]
 - Clearly the boundaries are blurred and getting blurrier
 - Judgments of a given source’s quality vary and are context dependent

“Knowing things is very 20th century. You just need to be able to find things.” - Danny Hillis on how Google has already changed how we think in Achenblog, July 1 2008

- changing cognitive styles
Franklin argues that Steinle's “exploratory experimentation” facilitated by “widening technology”, as in pharmacology, astrophysics, medicine, and biotechnology, is leading to a reassessment of what legitimates experiment; in that a “local model” is not now prerequisite. Hendrik Sørenson cogently makes the case that experimental mathematics (as ‘defined’ below) is following similar tracks:

“These aspects of exploratory experimentation and wide instrumentation originate from the philosophy of (natural) science and have not been much developed in the context of experimental mathematics. However, I claim that e.g. the importance of wide instrumentation for an exploratory approach to experiments that includes concept formation is also pertinent to mathematics.”

In consequence, boundaries between mathematics and the natural sciences and between inductive and deductive reasoning are blurred and getting more so.
Inverse Symbolic Computation

Inferring mathematical structure from numerical data

- Mixes *large table lookup*, integer relation methods and intelligent preprocessing – needs *micro-parallelism*
- It faces the “curse of exponentiality”
- Implemented as *identify* in *Maple* 9.5

Expressions that are not numeric like ln(√2+√3) are evaluated in *Maple* in symbolic form first, followed by a floating point evaluation followed by a lookup.
Mathematics and Beauty

Aesthetic Approaches to Teaching Children

Nathalie Sinclair

Foreword by William Higginson

2006

“This is an exceptionally important book... It could be the starting point for many cognitive, social, and educational benefits.”
—From the Foreword by William Higginson, Queen’s University, Canada

“In a time of much sterile math teaching and grimly utilitarian school reform, this elegant and beautiful book brings to life a whole new vision... Nathalie Sinclair makes a brilliant case for rethinking math instruction so that an aesthetically rich learning environment becomes the path to meaning, intellectual journeys, and—dare we say the word?—pleasure.”
—Joseph Featherstone, Michigan State University

In this innovative book, Nathalie Sinclair makes a compelling case for the inclusion of the aesthetic in the teaching and learning of mathematics. Using a provocative set of philosophical, psychological, mathematical, technological, and educational insights, she illuminates how the materials and approaches we use in the mathematics classroom can be enriched for the benefit of all learners. While ranging in scope from the young learner to the professional mathematician, there is a particular focus on middle school, where negative feelings toward mathematics frequently begin. Offering specific recommendations to help teachers evoke and nurture their students’ aesthetic abilities, this book:

• Features powerful episodes from the classroom that show students in the act of developing a sense of mathematical aesthetics.
• Analyzes how aesthetic sensibilities to qualities such as connectedness, fruitfulness, apparent simplicity, visual appeal, and surprise are fundamental to mathematical inquiry.
• Includes examples of mathematical inquiry in computer-based learning environments, revealing some of the roles they play in supporting students’ aesthetic inclinations.

Nathalie Sinclair is an assistant professor in the Department of Mathematics at Michigan State University.

ALSO OF INTEREST—
Improving Access to Mathematics: Diversity and Equity in the Classroom
Na’ilah Suad Nasir and Paul Cobb, Editors
2007/Paper and cloth

In the course of studying **multiple** zeta values we needed to obtain the closed form partial fraction decomposition for

\[
\frac{1}{x^s(1 - x)^t} = \sum_{j \geq 0} \frac{a_j^{s,t}}{x^j} + \sum_{j \geq 0} \frac{b_j^{s,t}}{(1 - x)^j}
\]

Thus, \(a_j^{s,t} = (s + t - j - 1)\) \(j\) and \(b_j^{s,t} = s - j\).

This was known to Euler but is easily discovered in Maple.

We needed also to show that \(M = A + B - C\) is invertible where the \(n\) by \(n\) matrices \(A, B, C\) respectively had entries

\[
(-1)^{k+1} \binom{2n - j}{2n - k}, \quad (-1)^{k+1} \binom{2n - j}{k - 1}, \quad (-1)^{k+1} \binom{j - 1}{k - 1}
\]

Thus, \(A\) and \(C\) are triangular and \(B\) is full.

After messing with many cases I thought to ask for \(M\)'s minimal polynomial

\[
\begin{align*}
> \ linalg[\text{minpoly}](M(12),t); & \quad -2 + t + t^2 \\
> \ linalg[\text{minpoly}](B(20),t); & \quad -1 + t^3 \\
> \ linalg[\text{minpoly}](A(20),t); & \quad -1 + t^2 \\
> \ linalg[\text{minpoly}](C(20),t); & \quad -1 + t^2
\end{align*}
\]

\[
M(6) = \begin{bmatrix}
1 & -22 & 110 & -330 & 660 & -924 \\
0 & -10 & 55 & -165 & 330 & -462 \\
0 & -7 & 36 & -93 & 162 & -210 \\
0 & -5 & 25 & -56 & 78 & -84 \\
0 & -3 & 15 & -31 & 35 & -28 \\
0 & -1 & 5 & -10 & 10 & -6
\end{bmatrix}
\]
Once this was discovered proving that for all \(n > 2 \)
\[
A^2 = I, \quad BC = A, \quad C^2 = I, \quad CA = B^2
\]
is a nice combinatorial exercise (by hand or computer). Clearly then
\[
B^3 = B \cdot B^2 = B(CA) = (BC)A = A^2 = I
\]
and the formula
\[
M^{-1} = \frac{M + I}{2}
\]
is again a fun exercise in formal algebra; as is confirming that we have
discovered an amusing presentation of the symmetric group \(S_3 \).

- **characteristic and minimal polynomials** --- which were rather abstract for me
 as a student --- now become members of a rapidly growing box of symbolic
tools, as do many matrix decompositions, etc …

- **a typical** matrix has a full degree minimal polynomial

“Why should I refuse a good dinner simply because I don't understand the
digestive processes involved?” - Oliver Heaviside (1850-1925)
What is attention? *(Stroop test, 1935)*

1. Say the **color** represented by the **word**.
2. Say the **color** represented by the **font** color.

High *(young)* multitaskers perform #2 very easily. They are great at suppressing information.

http://www.snre.umich.edu/eplab/demos/st0/stroop_program/stroopgraphicnonshockwave.gif

Acknowledgements: Cliff Nass, CHIME lab, Stanford *(interference and twitter?)*
Experimental Methodology

1. Gaining insight and intuition

2. Discovering new relationships

3. Visualizing math principles

4. Testing and especially falsifying conjectures

5. Exploring a possible result to see if it merits formal proof

6. Suggesting approaches for formal proof

7. Computing replacing lengthy hand derivations

8. Confirming analytically derived results

Many people regard mathematics as the crown jewel of the sciences. Yet math has historically lacked one of the defining trappings of science: laboratory equipment. Physicists have their particle accelerators; biologists, their electron microscopes; and astronomers, their telescopes. Mathematics, by contrast, concerns not the physical landscape but an idealized, abstract world. For exploring that world, mathematicians have traditionally had only their imaginations.

Now, computers are starting to give mathematicians the lab instrument that they have been missing. Sophisticated software is enabling researchers to tinker further and deeper into the mathematical universe. They’re calculating the number pi with mind-boggling precision, for instance, or discovering patterns in the continua of beautiful, infinite chains of spheres that arise out of the geometry of knots.

Experiments in the computer lab are leading mathematicians to discover new insights that they never have reached by traditional means. “Pretty much every [mathematical] field has been transformed by it,” says Richard Canary, a mathematician at Reed College in Portland, Ore. “Instead of just being a number-crunching tool,” he says, “the computer is becoming more like a gardener who tills the soil and you find things underneath.”

At the same time, the new tool is raising unsettling questions about how to report experimental results.

“I have some of the excitement that Leonardo da Vinci must have felt when he encountered Arabic arithmetic. It suddenly made certain calculations frighteningly easy,” Darwin says. “That’s what I think is happening with computer experimentation today.”

EXPERIMENTERS OF OLD In the same way, math experiments are nothing new. Despite the field’s reputation as a purely deductive science, the great mathematicians of the centuries have never limited themselves to formal reasoning and proof.

For instance, in 1666, Sir Christopher Wren and his assistant Isaac Newton to calculate directly the first 36 digits of the number pi, later writing, “I am ashamed to tell you how many figures I carried these computations, having no other business at the time.”

Carl Friedrich Gauss, one of the towering figures of 19th-century mathematics, habitually discovered new mathematical results by experimenting with number and looking for patterns. When Gauss was a teenager, for instance, his experiments led him to one of the most important conjectures in the history of number theory: that the number of primes numbers less than a number is roughly equal to a divided by the logarithm of a.

Gauss often discovered results experimentally long before he could prove them formally. Once, he exclaimed, “I have the result, but I do not yet know how to get it.”

In the case of the prime number theorem, Gauss later refined his conjecture but never did figure out how to prove it. It took more than a century for mathematicians to come up with a proof.

LIKE today’s mathematicians, a math experiment in the late 19th century and computers – but by threedays, they wanted to play with a special facility for color-

Comparing \(-y^2 \ln(y)\) (red) to \(y^2\) and \(y^2-y^4\)
1d. What is that number? (1995-2009)

In 1995 or so Andrew Granville emailed me the number

$$\alpha := 1.433127426722312\ldots$$

and challenged me to identify it (our inverse calculator was new in those days).

Changing representations, I asked for its continued fraction? It was

$$[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, \ldots] \quad (1)$$

I reached for a good book on continued fractions and found the answer

$$\alpha = \frac{I_0(2)}{I_1(2)}$$

where I_0 and I_1 are Bessel functions of the first kind. (Actually I knew that all arithmetic continued fractions arise in such fashion).

In 2010 there are at least three other strategies:

- Given (1), type “arithmetic progression”, “continued fraction” into Google
- Type “1,4,3,3,1,2,7,4,2” into Sloane’s Encyclopaedia of Integer Sequences

I illustrate the outcomes on the next few slides:
Continued Fraction Constant -- from Wolfram MathWorld

Perron (1954-57) discusses continued fractions having terms even more general than the arithmetic progression and relates them to various special functions. ...

HAKMEM -- CONTINUED FRACTIONS -- DRAFT, NOT YET PROOFED

The value of a continued fraction with partial quotients increasing in arithmetic progression is \[\frac{I\left(\frac{2}{D}\right) A/D}{[A+D, A+2D, A+3D, \ldots]} \]

On simple continued fractions with partial quotients in arithmetic ...

0. This means that the sequence of partial quotients of the continued fractions under investigation consists of finitely many arithmetic progressions (with ...

Moreover the MathWorld entry includes

\[
[A + D, A + 2D, A + 3D, \ldots] = \frac{I_{A/D}\left(\frac{2}{D}\right)}{I_{1+A/D}\left(\frac{2}{D}\right)}
\]

(Schroeppel 1972) for real \(A\) and \(D \neq 0\).
In the Integer Sequence Data Base

Greetings from The On-Line Encyclopedia of Integer Sequences!

Search: 1, 4, 3, 3, 1, 2, 7, 4, 2
Displaying 1-1 of 1 results found.

Decimal representation of continued fraction 1, 2, 3, 4, 5, 6, 7, ...
A060997

1, 4, 3, 3, 1, 2, 7, 4, 2, 6, 7, 2, 3, 1, 7, 5, 8, 3, 1, 7, 1, 6, 3, 4, 5, 5, 7, 7, 5, 9, 9, 1, 0, 2, 0, 4, 3, 1, 5, 1, 2, 7, 6, 7, 9, 0, 5, 9, 9, 0, 5, 2, 3, 4, 3, 4, 4, 2, 8, 6, 3, 6, 3, 9, 4, 3, 0, 9, 1, 8, 3, 2, 5, 4, 1, 7, 2, 9, 0, 0, 1, 3, 6, 5, 0, 3, 7, 2, 6, 4, 3, 5, 7, 8, 6, 1, 1, 4, 6, 5, 9, 5, 0 [list; cons; graph; listen]

OFFSET
1, 2

COMMENT
The value of this continued fraction is the ratio of two Bessel functions: BesselI(0,2)/BesselI(1,2) = A070910/A096789. Or, equivalently, to the ratio of the sums: sum_{n=0..inf} 1/(n! n!) and sum_{n=0..inf} n/(n! n!) - Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 31 2003

FORMULA
1/A052116

EXAMPLE
c=1.43312742672311750317183455775 ...

MATHEMATICA
RealDigits[FromContinuedFraction[Range[44], 10, 110] [[1]]
(Or [RealDigits[BesselI[0, 2] / BesselI[1, 2], 10, 110] [[1]]
(Or [RealDigits[Sum[1/(n! n!), {n, 0, Infinity}]] / Sum[n/(n! n!), {n, 0, Infinity}]], 10, 110] [[1]]

CROSSREFS
cf. A052119, A001053.
Adjacent sequences: A060994 A060995 A060996 this_sequence A060998 A060999 A061000
Sequence in context: A016696 A060373 A090280 this_sequence A129624 A019975 A073871

KEYWORD
con, easy, non

AUTHOR
Robert G. Wilson v (rgwv(AT)rgwv.com), May 14 2001

“\textit{The price of metaphor is eternal vigilance.}” - Arturo Rosenblueth & Norbert Wiener quoted by R. C. Lewontin, \textit{Science} p.1264, Feb 16, 2001 [Human Genome Issue].

The Inverse Calculator returns
Best guess: BesI(0,2)/BesI(1,2)

- We show the ISC on another number next
- Most functionality of ISC is built into “identify” in Maple.
- There’s also Wolfram α
The Inverse Symbolic Calculator (ISC) uses a combination of lookup tables and integer relation algorithms in order to associate with a user-defined, truncated decimal expansion (represented as a floating point expression) a closed form representation for the real number.

Standard lookup results for 12.587886229548403854

\[\exp(1) + \pi^2 \]

ISC The original ISC

The Dev Team: Nathan Singer, Andrew Shouldice, Lingyun Ye, Tomas Daske, Peter Dobcsanyi, Dante Manna, O-Yeat Chan, Jon Borwein

Visit
Jon Borwein’s Webpage
David Bailey’s Webpage
Math Resources Portal

ISC+ now runs at CARMA

Less lookup & more algorithms than 1995
Projectors and Reflectors: $P_A(x)$ is the metric projection or nearest point and $R_A(x)$ reflects in the tangent: x is red.
The simplest case is of a line A of height h and the unit circle B. With $z_n := (x_n, y_n)$ the iteration becomes

$$
\begin{align*}
 x_{n+1} &:= \cos \theta_n, \\
 y_{n+1} &:= y_n + h - \sin \theta_n, \\
 (\theta_n &:= \arg z_n)
\end{align*}
$$

A *Cinderella* picture of two steps from $(4.2, -0.51)$ follows:
Computer Algebra + Interactive Geometry
the Grief is in the **GUI**

Divide-and-Concur
before and after accessing numerical output from Maple

Numerical errors in using double precision

Stability using Maple input

The Interactive Geometry Software
Cinderella

Jürgen Richter-Gebert
Ulrich H. Kortenkamp

The Interactive Geometry Software Cinderella

- General decidability hypotheses and their geometry.
- Unique mathematical and technical improvement of Cinderella complete and fast.
- Cinderella runs on Windows, MacOS, Linux, and any other java™1.1 enabled platform.

This picture is worth 100,000 ENIACs

The number of ENIACS needed to store the 20Mb TIF file the Smithsonian sold me

Eckert & Mauchly (1946)

The past
Only two years ago, Jobs contemptuously predicted that the Kindle would flop: “It doesn’t matter how good or bad the product is,” he told The New York Times, because “the fact is that people don’t read anymore. Forty percent of the people in the U.S. read one book or less last year. The whole conception is flawed at the top because people don’t read anymore.” (Alan Deutschman)

The Rest is Software

“It was my luck (perhaps my bad luck) to be the world chess champion during the critical years in which computers challenged, then surpassed, human chess players. Before 1994 and after 2004 these duels held little interest.” - Garry Kasparov, 2010
“The question of the ultimate foundations and the ultimate meaning of mathematics remains open: we do not know in what direction it will find its final solution or even whether a final objective answer can be expected at all. 'Mathematizing' may well be a creative activity of man, like language or music, of primary originality, whose historical decisions defy complete objective rationalisation.” - Hermann Weyl

Consider the number of additive partitions, \(p(n) \), of \(n \). Now

\[
5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1
\]

so \(p(5) = 7 \). The ordinary generating function discovered by Euler is

\[
\sum_{n=0}^{\infty} p(n) q^n = \prod_{k=1}^{\infty} (1 - q^k)^{-1}.
\] (1)

(Use the geometric formula for \(1/(1-q^k) \) and observe how powers of \(q^n \) occur.)

The famous computation by MacMahon of \(p(200) = 3972999029388 \) done symbolically and entirely naively using (1) on an Apple laptop took 20 min in 1991, and about 0.17 seconds in 2009. Now it took 2 min for \(p(2000) = 4720819175619413888601432406799959512200344166 \)

In 2008, Crandall found \(p(10^9) \) in 3 seconds on a laptop, using the Hardy-Ramanujan-Rademacher ‘finite’ series for \(p(n) \) with FFT methods. Such fast partition-number evaluation let Crandall find probable primes \(p(1000046356) \) and \(p(1000007396) \). Each has roughly 35,000 digits.

When does easy access to computation discourages innovation: would Hardy and Ramanujan have still discovered their marvellous formula for \(p(n) \)?
"You can’t imagine how tight our budget is. We can only work with single-digit numbers."
IIb. The computation of Pi (1986-2009)

BB4: Pi to 2.59 trillion places in 21 steps

These equations specify an algebraic number:

\[1/\pi \sim a_{20} \]

Set \(a_0 = 6 - 4\sqrt{2} \) and \(y_0 = \sqrt{2} - 1 \). Iterate

\[y_{k+1} = \frac{1 - (1 - y_k^4)^{1/4}}{1 + (1 - y_k^4)^{1/4}} \quad \text{and} \]

\[a_{k+1} = a_k (1 + y_{k+1})^4 \]

\[- 2^{2k+3} y_{k+1} (1 + y_{k+1} + y_{k+1}^2) \]

Then \(1/a_k \) converges quartically to \(\pi \)
Moore’s Law Marches On

1986: It took Bailey 28 hours to compute **29.36 million digits** on 1 cpu of the then new CRAY-2 at NASA Ames using (BB4). Confirmation using another BB quadratic algorithm took 40 hours.

This uncovered hardware and software errors on the CRAY.

2009 Takahashi on 1024 cores of a 2592 core **Appro Xtreme-X3** system **1.649 trillion digits** via (Salamin-Brent) took 64 hours 14 minutes with 6732 GB of main memory, and (BB4) took 73 hours 28 minutes with 6348 GB of main memory.

The two computations differed only in the last 139 places.

Fabrice Bellard (Dec 2009) **2.7 trillion places** on a 4 core desktop in 133 days after **2.59 trillion** by Takahashi (April)

“The most important aspect in solving a mathematical problem is the conviction of what is the true result. Then it took 2 or 3 years using the techniques that had been developed during the past 20 years or so.” - Leonard Carleson (Lusin’s problem on p.w. convergence of Fourier series in Hilbert space)
IF THERE WERE COMPUTERS IN GALILEO'S TIME
As another measure of what changes over time and what doesn't, consider two conjectures regarding Euler’s totient $\phi(n)$ which counts positive numbers less than and relatively prime to n.

Giuga's conjecture (1950) n is prime if and only if

$$G_n := \sum_{k=1}^{n-1} k^{n-1} \equiv (n - 1) \mod n.$$

Counterexamples are *Carmichael numbers* (rare birds only proven infinite in 1994) and more: if a number $n = p_1 \cdots p_m$ with $m > 1$ prime factors p_i is a counterexample to Giuga's conjecture then the primes are distinct and satisfy

$$\sum_{i=1}^{m} \frac{1}{p_i} > 1$$

and they form a *normal sequence*: $p_i \neq 1 \mod p_j$

(3 rules out 7, 13, 19, 31, ... and 5 rules out 11, 31, 41, ...)

II c. Guiga and Lehmer (1932-2009)
Guiga’s Conjecture (1951-2009)

With predictive experimentally-discovered heuristics, we built an efficient algorithm to show (in several months in 1995) that any counterexample had 3459 prime factors and so exceeded $10^{13886} \rightarrow 10^{14164}$ in a 5 day desktop 2002 computation.

The method fails after 8135 primes—my goal is to exhaust it.

2009 While preparing this talk, I obtained almost as good a bound of 3050 primes in under 110 minutes on my notebook and a bound of 3486 primes in 14 hours: using Maple not as before C++ which being compiled is faster but in which the coding is much more arduous.

One core of an eight-core MacPro obtained 3592 primes and so exceeds 16673 digits in 13.5 hrs in Maple. (Now running on 8 cores.)
Lehmer’s Conjecture (1932-2009)

A tougher related conjecture is

Lehmer's conjecture (1932) \(n \) is prime if and only if

\[\phi(n) | (n - 1) \]

He called this “as hard as the existence of odd perfect numbers.” Again, prime factors of counterexamples form a normal sequence, but now there is little extra structure.

In a 1997 SFU M.Sc. Erick Wong verified this for 14 primes, using normality and a mix of PARI, C++ and Maple to press the bounds of the ‘curse of exponentiality.’

The related \(\phi(n) | (n+1) \) is has 8 solutions with at most 7 factors (6 factors is due to Lehmer). Recall \(F_n := 2^{2^n} + 1 \) the Fermat primes. The solutions are 2, 3, 3.5, 3.5.17, 3.5.17.257, 3.5.17.257.65537 and a rogue pair: 4919055 and 6992962672132095, but 8 factors seems out of sight.

Lehmer “couldn’t” factor 6992962672132097 = 73 \times 95794009207289. If prime, a 9th would exist: \(\phi(n) | (n+1) \) and \(n+2 \) prime \(\Rightarrow \) \(N := n(n+2) \) satisfies \(\phi(N) | (N+1) \)
"Vacuums, black holes, antimatter - it's the elusive and intangible which appeals to me."
II d. Apéry-Like Summations

The following formulas for $\zeta(n)$ have been known for many decades:

\[(a)\quad \zeta(2) = 3 \sum_{k=1}^{\infty} \frac{1}{k^2 \binom{2k}{k}}, \]

\[(b)\quad \zeta(3) = \frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^3 \binom{2k}{k}}, \]

\[(c)\quad \zeta(4) = \frac{36}{17} \sum_{k=1}^{\infty} \frac{1}{k^4 \binom{2k}{k}}. \]

These results have led many to speculate that

$$Q_5 := \zeta(5)/\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^5 \binom{2k}{k}}$$

might be some nice rational or algebraic value.

Sadly, PSLQ calculations have established that if Q_5 satisfies a polynomial with degree at most 25, then at least one coefficient has 380 digits.

"He (Gauss) is like the fox, who effaces his tracks in the sand with his tail." - Niels Abel (1802-1829)
Two more things about $\zeta(5)$

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^5 \binom{2k}{k}} = 2\zeta(5) - \frac{4}{3} L^5 + \frac{8}{3} L^3 \zeta(2) + 4L^2 \zeta(3)$$

$$+ 80 \sum_{n>0} \left(\frac{1}{(2n)^5} - \frac{L}{(2n)^4} \right) \rho^{2n}$$

Here $\rho := \sqrt{\frac{5-1}{2}}$ and $L := \log \rho$

(JMB-Broadhurst-Kamnitzer, 2000).

Also, there is a simpler Ramanujan series for $\zeta(4n + 1)$. In particular:

$$\zeta(5) = \frac{1}{294} \pi^5 + \frac{2}{35} \sum_{k=1}^{\infty} \frac{1}{(1 + e^{2k\pi})k^5} + \frac{72}{35} \sum_{k=1}^{\infty} \frac{1}{(1 - e^{2k\pi})k^5},$$

and $\zeta(5) - \pi^5/294 = -0.0039555\ldots$.
Margo Kondratieva found a formula of Markov in 1890:

\[
\sum_{n=1}^{\infty} \frac{1}{(n + a)^3} = \frac{1}{4} \sum_{n=0}^{\infty} \frac{(-1)^n (n!)^6}{(2n + 1)!} \times \frac{(5(n + 1)^2 + 6(a - 1)(n + 1) + 2(a - 1)^2)}{\prod_{k=0}^{n} (a + k)^4}.
\]

Note: Maple establishes this identity as

\[- \frac{1}{2} \psi (2, a) = - \frac{1}{2} \psi (2, a) - \zeta (3) + \frac{5}{4} _4 \text{F}_3 ([1, 1, 1, 1], [3/2, 2, 2], -1/4)\]

Hence

\[
\zeta (4) = - \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\binom{2m}{m} m^4} + \frac{10}{3} \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\binom{2m}{m} m^3} \sum_{k=1}^{m} \frac{1}{k}.
\]

The case \(a=0\) above is Apéry’s formula for \(\zeta (3)\)!
Two Discoveries: 1995 and 2005

- Two computer-discovered generating functions
 - (1) was ‘intuited’ by Paul Erdös (1913-1996)
 - and (2) was a designed experiment
 - was proved by the computer (Wilf-Zeilberger)
 - and then by people (Wilf included)
 - What about 4k+1?

\[
\sum_{k=0}^{\infty} \zeta(4k+3) x^{4k} = \frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{3} {2k\choose k} (1 - x^{4}/k^{4})} \prod_{m=1}^{k-1} \left(\frac{1 + 4x^{4}/m^{4}}{1 - x^{4}/m^{4}} \right) \tag{1}
\]

\[
x=0 \text{ gives (b) and (a) respectively}
\]

\[
\sum_{k=0}^{\infty} \zeta(2k+2) x^{2k} = 3 \sum_{k=1}^{\infty} \frac{1}{k^{2} {2k\choose k} (1 - x^{2}/k^{2})} \prod_{m=1}^{k-1} \left(\frac{1 - 4x^{2}/m^{2}}{1 - x^{2}/m^{2}} \right) \tag{2}
\]
Apéry summary

1. via PSLQ to 5,000 digits (120 terms)

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \]
\[\zeta(2) = \frac{\pi^2}{6}, \zeta(4) = \frac{\pi^4}{90}, \zeta(6) = \frac{\pi^6}{945}, \ldots \]

\[\zeta(x) = 3 \sum_{k=1}^{\infty} \frac{1}{\binom{2k}{k} (k^2 - x^2)} \prod_{n=1}^{k-1} \frac{4x^2 - n^2}{x^2 - n^2} \]
\[= \sum_{k=0}^{\infty} \zeta(2k + 2)x^{2k} = \sum_{n=1}^{\infty} \frac{1}{n^2 - x^2} \]
\[= \frac{1 - \pi x \cot(\pi x)}{2x^2} \]

2. reduced as hoped

2005 Bailey, Bradley & JMB discovered and proved - in 3Ms - three equivalent binomial identities

3. was easily computer proven (Wilf-Zeilberger) (now 2 human proofs)
II e: Ramanujan-Like Identities

Truly novel series for $1/\pi$, based on elliptic integrals, were discovered by Ramanujan around 1910. One is:

$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)! (1103 + 26390k)}{(k!)^4 396^{4k}}. \quad (1)$$

Each term of (1) adds 8 correct digits. Gosper used (1) by the computation of a then-record 17 million digits of the c.f. for π in 1985—completing the first proof of (1).

A little later David and Gregory Chudnovsky found the following variant, which lies in $Q(\sqrt{-163})$ rather than $Q(\sqrt{58})$:

$$\frac{1}{\pi} = 12 \sum_{k=0}^{\infty} \frac{(-1)^k (6k)!}{(3k)! (k!)^3} \frac{(13591409 + 545140134k)}{640320^{3k+3/2}}. \quad (2)$$

Each term of (2) adds 14 correct digits.

The brothers used (2) several times --- culminating in a 1994 calculation to over four billion decimal digits. Their remarkable story was told in a Pulitzer-winning New Yorker article.
New Ramanujan-Like Identities

Guillera has recently found Ramanujan-like identities, including:

\[
\frac{128}{\pi^2} = \sum_{n=0}^{\infty} (-1)^n r(n)^5 (13 + 180n + 820n^2) \left(\frac{1}{32} \right)^{2n}
\]
\[
\frac{8}{\pi^2} = \sum_{n=0}^{\infty} (-1)^n r(n)^5 (1 + 8n + 20n^2) \left(\frac{1}{2} \right)^{2n}
\]
\[
\frac{32}{\pi^3} = \sum_{n=0}^{\infty} r(n)^7 (1 + 14n + 76n^2 + 168n^3) \left(\frac{1}{8} \right)^{2n}.
\]

where

\[
r(n) = \frac{(1/2)^n}{n!} = \frac{1/2 \cdot 3/2 \cdots (2n - 1)/2}{n!} = \frac{\Gamma(n + 1/2)}{\sqrt{\pi} \Gamma(n + 1)}
\]

Guillera proved the first two using the Wilf-Zeilberger algorithm. He ascribed the third to Gourevich, who found it using integer relation methods.

It is true but has no proof.

As far as we can tell there are no higher-order analogues!
Example of Use of Wilf-Zeilberger, I

The first two recent experimentally-discovered identities are

\[
\sum_{n=0}^{\infty} \frac{(4n)(2n) \, 4}{2^{16n}} \left(120n^2 + 34n + 3 \right) = \frac{32}{\pi^2}
\]

\[
\sum_{n=0}^{\infty} (-1)^n \frac{(2n) \, 5}{2^{20n}} \left(820n^2 + 180n + 13 \right) = \frac{128}{\pi^2}
\]

Guillera *cunningly* started by defining

\[
G(n, k) = \frac{(-1)^k}{2^{16n}2^{4k}} \left(120n^2 + 84nk + 34n + 10k + 3 \right) \frac{(2n) \, 4 \, (2k) \, 3 \, (4n-2k)}{(2n \choose k) \, (n+k) \, 2} \frac{(2n) \, 4 \, (2k) \, 3 \, (4n-2k)}{(2n \choose k) \, (n+k) \, 2}
\]

He then used the EKHAD software package to obtain the companion

\[
F(n, k) = \frac{(-1)^k \, 512}{2^{16n}2^{4k}} \frac{n^3}{4n - 2k - 1} \frac{(2n) \, 4 \, (2k) \, 3 \, (4n-2k)}{(2n \choose k) \, (n+k) \, 2}
\]
When we define

\[H(n, k) = F(n + 1, n + k) + G(n, n + k) \]

Zeilberger's theorem gives the identity

\[\sum_{n=0}^{\infty} G(n, 0) = \sum_{n=0}^{\infty} H(n, 0) \]

which when written out is

\[\sum_{n=0}^{\infty} \frac{(2n^4)(4n)}{2^{16n}} (120n^2 + 34n + 3) = \sum_{n=0}^{\infty} \frac{\frac{(-1)^n (n + 1)^3}{2^{20n+7}} \frac{(2n+2)^4 (2n)^3 (2n+4)}{(2n)} (2n+1)^2}{2n + 3} \]

\[+ \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{20n}} (204n^2 + 44n + 3) \left(\frac{2n}{n} \right)^5 = \frac{1}{4} \sum_{n=0}^{\infty} \frac{\frac{(-1)^n (2n)}{n}^5 (820n^2 + 180n + 13)}{2^{20n}} \]

A limit argument and **Carlson's theorem** completes the proof…
Searches for Additional Formulas

We had no PSLQ over number fields so we searched for additional formulas of either the following forms:

\[
\frac{c}{\pi^m} = \sum_{n=0}^{\infty} r(n)^{2m+1}(p_0 + p_1 n + \cdots + p_m n^m)\alpha^{2n}
\]

where \(c \) is some linear combination of

\[
1, 2^{1/2}, 2^{1/3}, 2^{1/4}, 2^{1/6}, 4^{1/3}, 8^{1/4}, 32^{1/6}, 3^{1/2}, 3^{1/3}, 3^{1/4}, 3^{1/6}, 9^{1/3}, 27^{1/4}, 243^{1/6}, 5^{1/2}, 5^{1/4}, 125^{1/4}, 7^{1/2}, 13^{1/2}, 6^{1/2}, 6^{1/3}, 6^{1/4}, 6^{1/6}, 7, 36^{1/3}, 216^{1/4}, 7776^{1/6}, 12^{1/4}, 108^{1/4}, 10^{1/2}, 10^{1/4}, 15^{1/2}
\]

where each of the coefficients \(p_i \) is a linear combination of

\[
1, 2^{1/2}, 3^{1/2}, 5^{1/2}, 6^{1/2}, 7^{1/2}, 10^{1/2}, 13^{1/2}, 14^{1/2}, 15^{1/2}, 30^{1/2}
\]

and where \(\alpha \) is chosen as one of the following:

\[
1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, \sqrt{5} - 2, (2 - \sqrt{3})^2, 5\sqrt{13} - 18, (\sqrt{5} - 1)^4/128, (\sqrt{5} - 2)^4, (2^{1/3} - 1)^4/2, 1/(2\sqrt{2}), (\sqrt{2} - 1)^2, (\sqrt{5} - 2)^2, (\sqrt{3} - \sqrt{2})^4
\]
Relations Found by PSLQ

- Including Guillera’s three we found all known series for $r(n)$ and no more.
- There are others for other pochhammer symbols

\[
\frac{4}{\pi} = \sum_{n=0}^{\infty} r(n)^3 (1 + 6n) \left(\frac{1}{2}\right)^{2n}
\]

\[
\frac{16}{\pi} = \sum_{n=0}^{\infty} r(n)^3 (5 + 42n) \left(\frac{1}{8}\right)^{2n}
\]

\[
\frac{12^{1/4}}{\pi} = \sum_{n=0}^{\infty} r(n)^3 (-15 + 9\sqrt{3} - 36n + 24\sqrt{3}n) \left(2 - \sqrt{3}\right)^{4n}
\]

\[
\frac{32}{\pi} = \sum_{n=0}^{\infty} r(n)^3 (-1 + 5\sqrt{5} + 30n + 42\sqrt{5}n) \left(\frac{\sqrt{5} - 1}{128}\right)^{2n}
\]

\[
\frac{5^{1/4}}{\pi} = \sum_{n=0}^{\infty} r(n)^3 (-525 + 235\sqrt{5} - 1200n + 540\sqrt{5}n) \left(\sqrt{5} - 2\right)^{8n}
\]

\[
\frac{2\sqrt{2}}{\pi} = \sum_{n=0}^{\infty} (-1)^n r(n)^3 (1 + 6n) \left(\frac{1}{2\sqrt{2}}\right)^{2n}
\]

\[
\frac{2}{\pi} = \sum_{n=0}^{\infty} (-1)^n r(n)^3 (-5 + 4\sqrt{2} - 12n + 12\sqrt{2}n) \left(\sqrt{2} - 1\right)^{4n}
\]

\[
\frac{2}{\pi} = \sum_{n=0}^{\infty} (-1)^n r(n)^3 (23 - 10\sqrt{5} + 60n - 24\sqrt{5}n) \left(\sqrt{5} - 2\right)^{4n}
\]

\[
\frac{2}{\pi} = \sum_{n=0}^{\infty} (-1)^n r(n)^3 (177 - 72\sqrt{6} + 420n - 168\sqrt{6}n) \left(\sqrt{3} - \sqrt{2}\right)^{8n}
\]

"What I appreciate even more than its remarkable speed and accuracy are the words of understanding and compassion I get from it."
III. A Cautionary Example

These **constants agree to 42 decimal digits** accuracy, but are **NOT** equal:

\[
\int_0^\infty \cos(2x) \prod_{n=0}^{\infty} \cos\left(x/n\right) \, dx = 0.39269908169872415480783042290993786052464543418723\ldots
\]
\[
\frac{\pi}{8} = 0.39269908169872415480783042290993786052464617492189\ldots
\]

Computing this integral is (or was) nontrivial, due largely to difficulty in evaluating the integrand function to high precision.

Fourier analysis explains this happens when a hyperplane meets a hypercube (LP) …
IV. Some Conclusions

- We like students of 2010 live in an information-rich, judgement-poor world
- The explosion of information is not going to diminish
 - nor is the desire (need?) to collaborate remotely
- So we have to learn and teach judgement (not obsession with plagiarism)
 - that means mastering the sorts of tools I have illustrated
- We also have to acknowledge that most of our classes will contain a very broad variety of skills and interests (few future mathematicians)
 - properly balanced, discovery and proof can live side-by-side and allow for the ordinary and the talented to flourish in their own fashion
- **Impediments** to the assimilation of the tools I have illustrated are myriad
 - as I am only too aware from recent experiences
- These impediments include our own inertia and
 - organizational and technical bottlenecks (IT - not so much dollars)
 - under-prepared or mis-prepared colleagues
 - the dearth of good modern syllabus material and research tools
 - the lack of a compelling business model (societal goods)

“*The plural of 'anecdote' is not 'evidence'.*”
- Alan L. Leshner (Science’s publisher)
Further Conclusions

New techniques now permit integrals, infinite series sums and other entities to be evaluated to high precision (hundreds or thousands of digits), thus permitting PSLQ-based schemes to discover new identities. These methods typically do not suggest proofs, but often it is much easier to find a proof (say via WZ) when one “knows” the answer is right.

Full details of all the examples are in Mathematics by Experiment or its companion volume Experimentation in Mathematics written with Roland Girgensohn. A “Reader’s Digest” version of these is available at www.experimentalmath.info along with much other material.

“Anyone who is not shocked by quantum theory has not understood a single word.” - Niels Bohr