Simplicity of groupoid C^*-algebras

56th Meeting of the AustMS,
University of Ballarat

Aidan Sims
(joint work with J. Brown, L.O. Clark and C. Farthing)

University of Wollongong

25 September 2012
Outline

1. Groupoids
2. Groupoid C^*-algebras
3. Simplicity
Groupoids

A groupoid is a small category G with inverses: for each $\gamma \in G$ there exists $\gamma^{-1} \in G$ such that $\gamma \gamma^{-1} = r(\gamma)$ and $\gamma^{-1} \gamma = s(\gamma)$.

It’s a group with an identity crisis. The set of identity elements (“unit space”) is denoted $G^{(0)}$.

In a topological group, G is given a locally compact Hausdorff topology.

- Composition is continuous from $G \ast G \subseteq G \times G$ to G.
- Inversion is continuous from G to G.

G is étale if $r, s : G \to G^{(0)}$ are local homeomorphisms. This forces $G^{(0)}$ open in G.
Examples

1. Groups: these are groupoids with one object. Étale means discrete.

2. An $R \subseteq X \times X$ is a groupoid: define $r(x, y) = x$, $s(x, y) = y$, $(x, y)^{-1} = (y, x)$ and $(x, y)(y, z) = (x, z)$.

3. If a group G acts on a space X, then $G \times X$ is a groupoid with $r(g, x) = g \cdot x$, $s(g, x) = x$, $(g, x)^{-1} = (g^{-1}, g \cdot x)$ and $(g, h \cdot x)(h, x) = (gh, x)$; it’s étale if G is discrete.

By analogy with the last example, we think of groupoids as “acting” on their unit spaces.

Say G is *topologically principal* if $\{u \in G^{(0)} : uGu = \{u\}\}$ is dense in $G^{(0)}$. Like a topologically free action.
Bisections

A bisection of G is a subset $U \subseteq G$ such that r and s restrict to homeomorphisms on U.

Every étale groupoid has a basis consisting of precompact open bisections.

An étale groupoid is effective if $\text{Int}\{g \in G : r(g) = s(g)\} = G^{(0)}$. Like an effective group action.

Theorem (Renault)

Let G be an étale locally compact Hausdorff groupoid. If G is topologically principal then it is effective. If G is second countable then the converse holds.
C^*-algebras

A C^*-algebra is a complete (complex) normed $*$-algebra satisfying the C^*-identity $\|a^*a\| = \|a\|^2$.

Gelfand-Naimark: every C^*-algebra is isomorphic to a closed C^*-subalgebra of $B(\mathcal{H})$.

Key example: if G is a locally compact Hausdorff group, then $C_c(G)$ has a universal C^*-completion $C^*(G)$. If G is amenable, then this is the only completion.

$C^*(G)$ is universal for continuous unitary representations of G.

A C^*-algebra A is simple if every nonzero homomorphism of A is injective. $C^*(G)$ is only simple if $G = \{e\}$ (consider the 1-dimensional representation of G).
Groupoid C^*-algebras

To construct the groupoid C^*-algebra, consider $C_c(G)$. Operations:

$$f * g(\gamma) = \sum_{\alpha \beta = \gamma} f(\alpha)g(\beta) \quad f^*(\gamma) = \overline{f(\gamma^{-1})}$$

There is a universal C^*-completion $C^*(G)$ which is essentially unique if G is suitably amenable; Renault’s Disintegration Theorem says that representations of $C^*(G)$ correspond precisely to representations (in the appropriate sense) of G.

Question: when is $C^*(G)$ simple?
Simplicity

A groupoid G is minimal if $r(Gu) = G(0)$ for every $u \in G(0)$. Think of a minimal action: every orbit is dense.

Renault proved (early ’80’s): if G is amenable, topologically principal and minimal, then $C^*(G)$ is simple; further, minimality is necessary.

The full converse was unknown. Proved in various special cases by: Deaconu-Renault, Kumjian-Pask-Raeburn, Archbold-Spielberg, Exel-Vershik, Robertson-S.

Theorem (Brown-Clark-Farthing-S)

Suppose that G is étale, second-countable and amenable. Then $C^*(G)$ is simple if and only if G is topologically principal and minimal.
Other results

Also obtain nice C^*-algebraic characterisations of when G is (individually) minimal and topologically principal.

There is also a class of abstract algebras, called Steinberg algebras associated to étale groupoids with totally disconnected unit space. We obtain a characterisation of simplicity for Steinberg algebras.

Theorem

Suppose that G is étale with totally disconnected unit space. Then $A(G)$ is simple if and only if G is both effective and minimal.

In this case, “effective” is a strictly weaker hypothesis than “topologically principal.”