Origami Mathematics in Education

Michael Assis
Melbourne University
School of Mathematics and Statistics

Tools and Mathematics
29 November 2016
Origami

• The Art of Folding

http://www.jccc.on.ca/assets/images/origami5.jpg
Origami

- The Art of Folding

http://img.gawkerassets.com/img/17jp3vs9qkjb6jpg/original.jpg
http://res.artnet.com/news-upload/2014/05/origami-6.jpg
http://www.joostlangeveldorigami.nl/fotos/historyoforigami/bug.jpg
http://i.ytimg.com/vi/5nZtibCqFxw/hqdefault.jpg
Origami

- The Art of Folding
Origami

- The Art of Folding
Origami in the Classroom
1D Origami
Folding In Half

- How many times can you fold paper in half?
 - 8 times?
Folding In Half

• How many times can you fold paper in half?
 – 8 times?

• Is there an upper limit?
Folding In Half

• Britney Gallivan 2001

\[L = \frac{\pi \cdot t}{6} \cdot (2^n + 4)(2^n - 1) \]

\[W = \pi \cdot t \cdot 2^{3(n-1)/2} \]
Activity 1
Parabolas

• Why does it work?
• Can other conics be constructed?
• What if you use non-flat paper?
• What can we learn concerning:
 – Parabolas?
 – Envelopes?
 – Derivatives?
 – Tangents?
 – Convergence of sequences?
Knots
Knots

(a)

(b)

(c) $a=b$

(d)
Knots
Knots

(a)

(b)

(c)

(d)
Knots

(a)

(b)

(c)
Knots

\[2 \cos(2\pi - \theta) = \frac{1}{2} \]
Knots

Crease: 1st 2nd 3rd

M: Mountain
V: Valley
U: Upper
M: Middle
L: Lower

Mirror Image

Lower ← Upper
Knots
Knots

- Explorations:
 - Perimeter, area
 - Irregular patterns
 - Enumerations
 - Knot theory, topology
Activity 2

- Fujimoto approximation
Fujimoto Approximation

- Error is halved at each operation
- Repeating left-right pattern represented as the binary expansion of $1/n$
 - $1/5: \ 0.00110011\ldots$
 - $1/7: \ 0.011011011\ldots$
Between 1D and 2D
Origami Constructions

- What geometric constructions are possible?
Origami Constructions

(O1) Given two points p_1 and p_2, we can fold a line connecting them.

(O2) Given two points p_1 and p_2, we can fold p_1 onto p_2.

(O3) Given two lines l_1 and l_2, we can fold line l_1 onto l_2.

(O4) Given a point p_1 and a line l_1, we can make a fold perpendicular to l_1 passing through the point p_1.

(O5) Given two points p_1 and p_2 and a line l_1, we can make a fold that places p_1 onto l_1 and passes through the point p_2.

(O6) Given two points p_1 and p_2 and two lines l_1 and l_2, we can make a fold that places p_1 onto line l_1 and places p_2 onto line l_2.

(O7) Given a point p_1 and two lines l_1 and l_2, we can make a fold perpendicular to l_2 that places p_1 onto line l_1.
Origami Constructions

(A1) $F_{LF}(P_1) \leftrightarrow P_2$

(A2) $F_{LF}(L_1) \leftrightarrow L_2$

(A3) $F_{LF}(L) \leftrightarrow L$

(A4) $F_{LF}(P) \leftrightarrow L$

(A5) $L_F \leftrightarrow P$
Origami Constructions

• 22.5 degree angle restriction
 - All coordinates of the form $\frac{m+n\sqrt{2}}{2^l}$ are constructible
 - Algorithm linear in l, $\log(m)$, $\log(n)$
Origami Constructions

• More generally:
 - Constructible numbers of the form $2^m 3^n$
 - Angle trisection, cube doubling possible
 - Roots of the general cubic
Origami Constructions

- Polynomial root finding, Lill's method

\[x^4 - a_3 x^3 + a_2 x^2 - a_1 x - a_0 = 0 \]

\[x^2 - a_1 x - a_0 = 0 \]

\[x^3 - a_2 x^2 + a_1 x - a_0 = 0 \]
Origami Constructions

(AL1) $F_{LF_a}(L_{F_b}) \leftrightarrow L_{F_b}$

(AL2) $F_{LF_a}(L) \leftrightarrow L$

(AL3) $L_{F_a} \leftrightarrow P$

(AL4) $F_{LF_a}(L) \leftrightarrow L_{F_b}$

(AL5) $F_{LF_a}(P) \leftrightarrow L_{F_b}$

(AL6) $F_{LF_a}(P) \leftrightarrow L$

(AL7) $F_{LF_a}(P) \leftrightarrow F_{LF_b}(L)$

(AL8) $F_{LF_a}(P_1) \leftrightarrow F_{LF_b}(P_2)$

(AL9) $F_{LF_a}(L_1) \leftrightarrow F_{LF_b}(L_2)$

(AL10) $F_{LF_b}(P_{LF_a,L_1}) \leftrightarrow L_2$
Origami Constructions

- 489 distinct two-fold line constructions
Origami Constructions

- General quintic construction
Origami Constructions

- Higher order equations, real solutions
 - Order n requires $(n-2)$ simultaneous folds
- What can we learn concerning:
 - Polynomial roots
 - Geometric constructions
 - Field theory
 - Galois theory
2D Folding
Flat Foldability Theorems

- Maekawa's theorem: $|M-V|=2$, even degrees

[Image: http://en.wikipedia.org/wiki/Maekawa%27s_theorem#/media/File:Kawasaki%27s_theorem.jpg]
Flat Foldability Theorems

- **Kawasaki's theorem**: sum of alternating angles equals 180°
Flat Foldability Theorems

- Crease patterns are two-colorable

Flat Foldability is Hard

- Deciding flat-foldability is NP-complete

Circle Packing

- What is a flap?
Circle Packing

- What is a flap?

Origami Design Secrets, by Robert Lang
Circle Packing

- Understanding crease patterns using circles
Circle Packing

- Design algorithm
 - Uniaxial tree theory
 - Universal molecule

Origami Design Secrets, by Robert Lang
Circle Packing

$r = 0.354$

$r = 0.324$
Circle Packing

- $N = 1$
 - $r = 1.000$

- $N = 2$
 - $r = 0.707$

- $N = 3$
 - $r = 0.518$

- $N = 4$
 - $r = 0.500$

- $N = 5$
 - $r = 0.354$

- $N = 6$
 - $r = 0.300$

- $N = 7$
 - $r = 0.270$

- $N = 8$
 - $r = 0.259$

- $N = 9$
 - $r = 0.250$
Circle Packing

$N=1$

$N=2$

$N=3$

$N=4$

$N=5$

$N=6$

$N=7$

$N=8$

$N=9$
Circle Packing
Circle Packing
Circle Packing

- Software TreeMaker automates solving the circle packing problem
- Non-linear constrained optimization problem
Coloring Problems

- Miura-ori: row staggered pattern
- One angle parameter
Coloring Problems

- Miura-ori: 3-colorings of the square lattice
- Equivalent to an ice problem in statistical mechanics
- Asymptotic number of colorings is \((4/3)^{3N/2}\)
Beyond Flat 2D origami
Fractal Origami
Fractal Origami
Fractal Origami
Breaking Flat Foldability

• Explorations:
 – Surface Area
 – Volume
 – Optimization problem
 – Other shapes
Non-flat paper
Non-flat paper

- Conics
Non-flat paper

- Spherical paper, hyperbolic paper
 - One fold constructions are known
Curved Folding
Curved Folding
Curved Folding
Curved Folding
Curved Folding
Curved Folding

- No systematic algorithm for design known
- Direct applications in differential geometry
- Curved folding on non-flat paper not yet explored
A World Of Origami Maths

- Areas of mathematics involved only limited by imagination
- Many more applications in textbooks and convention proceedings
- Many simple research projects are awaiting students and teachers
Thank You!