CHAPTER 1

Homogeneous Spaces

Let G be a compact topological group and K be a compact Hausdorff space. We say that G acts transitively on K if there is a continuous map $G \times K \to K: (g, k) \mapsto g(k)$ such that

(i) $e(k) = k$ for all $k \in K$ (e is the identity of G);
(ii) $(g_1 g_2)(k) = g_1(g_2(k))$ for all $g_1, g_2 \in G, h \in K$;
(iii) given $k_1, k_2 \in K$ there is a $g \in G$ so that $g(k_1) = k_2$.

It is noteworthy that each $g \in G$ may be viewed as a homeomorphism of K onto itself; after all, the map $k \mapsto g(k)$ is continuous and has $k \mapsto g^{-1}(k)$ as an inverse.

Condition (iii) says, in particular, that the space K is homogeneous i.e., we can move points of K around K via homeomorphisms (members of G, in fact) of K onto itself.

If μ is the unique translation invariant Borel probability on G then μ induces a G–invariant Borel probability on K. This is an important construction, one worth understanding in general as well as in special cases.

Suppose H is a closed subgroup of the compact topological group G. Consider the set G/H with the so-called ‘quotient topology,’ that is, the strongest topology that makes the natural map $q_H: G \to G/H$ (taking $g \in G$ to $gH \in G/H$) continuous; so $U \subseteq G/H$ is open precisely when $q_H^{-1}(U)$ is open in G. In other words, a typical open set in G/H is of the form $\{xH : x \in V\}$ when V is open in G. Because H is supposed to be closed, this topology is Hausdorff; because q_H is continuous and surjective, G/H is compact.

More is so. G acts transitively on G/H. The map $(g, g'H) \mapsto gg'H$ fits the bill in the definition.

In fact, any transitive action of a compact group on a compact space is of the sort just described. To be sure we need to tell when seemingly different spaces are the same under G’s action. Let G act transitively on each of the compact Hausdorff spaces K_1, K_2. We say that K_1 and K_2 are isomorphic under G’s action if there is a homeomorphism $\phi: K_1 \to K_2$ such that

$$\phi(g(k_1)) = g(\phi(k_1))$$

for each $k_1 \in K_1$.

Theorem 1.1 (Weil). Let the compact group G act transitively on the compact Hausdorff space K. Then there is a closed subgroup H of G such that K and G/H are isomorphic under G’s action.

Proof. Fix $k_0 \in K$. Look at

$$H = \{g \in G : g(k_0) = k_0\}.$$
H is called the **isotopy subgroup**. It is plain that H is a closed subgroup of G. A natural candidate for the isomorphism of G/H and K is at hand: $\phi : G/H \to K$ given by

$$\phi(gH) = g(k_0).$$

For $g_1, g_2 \in G$, $g_1(k_0) = g_2(k_0)$ precisely when

$$g_1^{-1}(g_2(k_0)) = g_1^{-1}(g_1(k_0)) = e(k_0) = k_0,$$

or $g_1^{-1}g_2 \in H$, which is tantamount to $g_1H = g_2H$. This assures us that ϕ is well-defined and injective.

The transitivity of G’s action ensures ϕ’s surjectivity. To see that ϕ is also continuous, fix $g \in G$ and let V be an open set in K containing $g(k_0)$. By the continuity of the map $(g, k) \to g(k)$ on $G \times K$, there is an open set U in G which contains g so that $u(k_0) \in V$ for all $u \in U$. But $q_H(U)$ is open in G/H’s quotient topology and $q_H(U) \subseteq \phi^{-1}(V)$. This shows that ϕ is a continuous bijection between the compact Hausdorff spaces G/H and K; as such ϕ is a homeomorphism.

Further if $g_1, g_2 \in G$ then

$$g_1(\phi(g_2H)) = g_1(g_2(k_0)) = (g_1g_2)(k_0) = \phi(g_1(g_2H)).$$

Thus G/H and K are isomorphic under G’s action. \hfill \square

Note that because of this isomorphism theorem we can consider any G/H where H is the isotopy subgroup associated with any $k_0 \in K$.

Now we’re ready for the main course.

Theorem 1.2 (Weil). Suppose the compact group G acts transitively on the compact Hausdorff space K. Then there is a unique G–invariant regular Borel probability measure on K.

Proof. We identify K with the isotopy subgroup G/H as in our previous theorem. Let

$$q_H : G \to G/H$$

be the natural quotient map. Suppose μ is the normalized Haar measure on G and define $\mu_{G/H}$ on G/H by

$$\mu_{G/H}(B) = \mu(q_H^{-1}(B))$$

for any Borel set $B \subseteq G/H$.

If $g \in G$ and B is Borel subset of G/H then

$$g(q_H^{-1}(B)) = \{gx : xH \in B\}$$

$$= \{gx : gH \in gB\}$$

$$= q_H^{-1}(gB).$$
Therefore
\[
\mu_{G/H}(gB) = \mu(q^{-1}_H(gB)) = \mu(g(q^{-1}_H(B))) = \mu(q^{-1}_H(B)) = \mu_{G/H}(B),
\]
and \(\mu_{G/H}\) is \(G\)-invariant.

Uniqueness is a touchier issue, as is always the case it seems. We take a close look at how regular countably additive Borel measures, members of \(rca(\mathcal{B}_0(G)) = C(K)^*\) act on \(C(G)\).

Take \(\phi \in C(G)\) and \(g \in G\). Define \(\phi_g \in C(G)\) by
\[
\phi_g(x) = \phi(gx).
\]
Denote by \(\mu_H\) the Haar measure (normalized so \(\mu_H = 1\)) on \(H\). The map \(G \rightarrow C(G)\) that takes \(g\) to \(\phi_g\) is uniformly continuous (this is an easy modification of Theorem ??) so that
\[
\hat{\phi}(g) = \int_H \phi_g(h) d\mu_H(h), \quad g \in G
\]
defines a member \(\hat{\phi}\) of \(C(G)\).

Suppose \(g_1H = g_2H\). Then \(g_1^{-1}g_2 \in H\),
\[
\hat{\phi}(g_1) = \int_H \phi_{g_1}(h) d\mu_H(h)
\]
\[
= \int_H \phi_{g_1}(g_1^{-1}g_2h) d\mu_H(h) \quad \text{(by } \mu_H\text{'s invariance and } g_1^{-1}g_2 \in H)\]
\[
= \int_H \phi(g_2H) d\mu_H(h)
\]
\[
= \int_H \phi_{g_2}(h) d\mu_H(h) = \hat{\phi}(g_2).
\]
Therefore \(\hat{\phi}\) is constant on the left cosets of \(H\) so we can lift \(\hat{\phi}\) to a continuous function \(\hat{\phi}\) on \(G/H\):
\[
\hat{\phi}(gH) = \hat{\phi}(g).
\]
To summarize: if \(\phi \in C(G)\) then we define \(\hat{\phi} \in C(G)\) and from this we get \(\tilde{\phi} \in C(G/H)\).

Remarkably, each member of \(C(G/H)\) comes about from this procedure. In fact, if \(f \in C(G/H)\)
then \(f \circ q_H \in C(G) \) and for any \(g \in G \)
\[
(f \circ q_H)(gH) = \int_H (f \circ q_H)(gh) \, d\mu_H(h) = \int_H f(gh)d\mu_H(h) = f(gH)\mu_H(H) = f(gH).
\]

In other words, \(f = (f \circ \widetilde{q}_H) \).

Now we look at \(G \)'s action. Take any \(G \)-invariant regular Borel probability measure \(\nu \) on \(G/H \). For \(\phi \in C(G) \) define
\[
\lambda(\phi) = \int_{G/H} \hat{\phi}(gH) \, d\nu(gH).
\]
Then \(\lambda \) is a probability measure in \(C(G)^\ast \). Moreover, \(\lambda \) is translation invariant. Indeed if \(x \in G \)
\[
\lambda(\phi_x) = \int_{G/H} \hat{\phi}_x(gH) \, d\nu(gH)
= \int_{G/H} \hat{\phi}_x(g) \, d\nu(gH)
= \int_{G/H} \phi(xg) \, d\nu(gH)
= \int_{G/H} \hat{\phi}(xgH) \, d\nu(gH)
= \int_{G/H} \hat{\phi}(gH) \, d\nu(gH) = \lambda(\phi).
\]
So \(\lambda \) is nothing else but normalized Haar measure on \(G \).

If \(\nu_1 \) and \(\nu_2 \) are \(G \)-invariant regular Borel probabilities on \(G/H \) and if \(x = (x \circ q_H) \in C(G/H) \) then
\[
\nu_1(x) = \int_{G/H} x(gH) \, d\nu_1(gH)
= \int_{G/H} (x \circ q_H)(gH) \, d\nu_1(gH)
= \lambda(x \circ q_H)
= \int_{G/H} (x \circ q_H)(gH) \, d\nu_2(gH)
= \nu_2(x);
\]
1. HOMOGENEOUS SPACES

in other words, \(\nu_1 \) and \(\nu_2 \) are the same.

The worth of an abstract construction lies, at least in part, in its applicability to concrete cases. Our first application is classical and was well-known before Weil’s general theorem. It is, nonetheless, interesting and important.

Our setting: \(O(n) \), the orthogonal group of order \(n \) is our compact group; \(S^{n-1} \), the unit sphere in \(\mathbb{R}^n \) is our compact Hausdorff space. The action of \(O(n) \) on \(S^{n-1} \) is given, naturally by

\[(u, x) \to u(x).\]

It is easy to verify that \(O(n) \) acts on \(S^{n-1} \) in a suitable fashion! Transitivity follows by letting \(x_1, x'_1 \in S^{n-1} \); choose orthonormal bases \(x_1, x_2, \ldots, x_n \) and \(x'_1, x'_2, \ldots, x'_n \) for \(\mathbb{R}^n \), and let \(u : \mathbb{R}^n \to \mathbb{R}^n \) be the member of \(O(n) \) that takes \(x_j \) to \(x'_j \) for \(j = 1, \ldots, n \).

Acknowledging the descriptions of members of \(O(n) \) as rotations of \(\mathbb{R}^n \), a direct application of Weil’s theorem says: There is a unique rotation-invariant regular Borel probability measure on \(S^{n-1} \).

Geometry is replete with examples of compact Hausdorff spaces that are homogeneous spaces on which various compact groups act transitively.

Here are a few more.

Again our group is \(O(n) \). This time our underlying compact space is

\[\sum(n) = \{(x, y) \in S^{n-1} \times S^{n-1} : x \perp y \}, \]

where \(x \perp y \) means \(x \) is perpendicular to \(y \). Note that \((x, y) \in \sum(n) \) precisely when for any real valued numbers \(a, b \):

\[||ax + by||^2 = a^2 + b^2. \]

It is easy to see from this that \(\sum(n) \) is a closed subset of \(S^{n-1} \times S^{n-1} \), hence, is compact. The action of \(O(n) \) is natural enough, too: \((u, (x, y)) \to (ux, uy)\). It is quick and reasonably painless to see that \(O(n) \) acts transitively on \(\sum(n) \).

One more. Let \(1 \leq m \leq n \). Denote by \(\sum^{(m)}(n) \) the set

\[\sum^{(m)}(n) = \left\{(x_1, \ldots, x_m) \in S^{n-1} \times \cdots \times S^{n-1} : \{x_1, \ldots, x_m\} \text{ is orthonormal}\right\}. \]

Note that \((x_1, \ldots, x_m) \in \sum^{(m)}(n) \) precisely when regardless of the real numbers \(a_1, \ldots, a_m \), we have

\[\left\| \sum_{j=1}^{m} a_j x_j \right\|^2 = \sum_{j=1}^{m} a_j^2. \]

This in mind, \(\sum^m(n) \) is a compact set of \((S^{n-1})^m \) is easy to see; moreover, the action of \(O(n) \) on \(\sum^{(m)}(n) \) is given by

\[(u, (x_1, \ldots, x_m)) \to (ux_1, ux_2, \ldots, ux_m) \]
is a transitive one, establishing, with a modicum of tender love and care, that \(O(n) \) acts transitively on \(\sum^{(m)}(n) \).

Next let \(G_m(n) \) denote the \(m \)--dimensional Grassmanian manifold, that is, \(G_m(n) \) is the space of all \(m \)--dimensional linear subspaces of \(\mathbb{R}^n \). There is a natural surjection of \(\sum^{(m)}(n) \) onto \(G_m(n) \) that takes \((x_1, \ldots, x_m) \in \sum^{(m)}(n) \) to the linear span of \(\{x_1, \ldots, x_m\} \in G_m(n) \). If we equip \(G_m(n) \) with the natural quotient topology the result is a compact Hausdorff space. Clearly \(O(n) \) acts transitively on \(G_m(n) \). The map reflecting the action of \(O(n) \) on \(G_m \) is plain: if \(\{x_1, \ldots, x_m\} \) is an orthonormal set in \(\mathbb{R}^n \) then

\[
(u, \text{span}\{x_1, \ldots, x_m\}) = \text{span}\{ux_1, \ldots, ux_m\}.
\]

Here we interject that the geometry imparted above on \(G_m(n) \) is such that if \(E = \text{span}\{x_1, \ldots, x_m\} \) and \(E' = \text{span}\{x'_1, \ldots, x'_m\} \) are members of \(G_m(n) \) and if each \(x_k \) is close to \(x'_k \) in \(\mathbb{R}^n \) then \(E \) is close to \(E' \) in \(G_m(n) \).

In this way we find that there is a unique rotation invariant probability Borel measure on the \(n \)--dimensional Grassmanian manifold \(G_m(n) \).