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Walks in a graph
Consider a directed, edge-labeled graph, like:

a a a a a a a a a a a a a a
· · ·−→◦−→◦−→◦−→◦−→◦−→◦−→•−→◦−→◦−→◦−→◦−→◦−→◦−→· · ·

A walk on the graph can be expressed as a string of as (going forwards along an a edge) and a−1s (going
backwards along an a edge). So the number of walks in this graph of length n, starting from the black node,
is 2n.

A return is a walk starting and ending at the black node. The number of returns in this graph of length n is
0 if n is odd, and

(
n

n/2

)
if n is even (choose where the as go in a string of length n).

Asymptotically,
(

n
n/2

)
∼ 2n (think Catalan numbers), so the number of returns is asymptotically the same

as the total number of walks.

Cogrowth
If G is a group with a finite set of generators X , one can consider the Cayley graph of G, which is a directed,
edge-labeled graph such that each node has an incoming and an outgoing edge labeled a for each a ∈ X ,
and with a distinguished node. In such graphs, the number of walks starting at this node is (2|X|)n.

If rn = the number of returns of length n, then rnrk ≤ rn+k since rnrk counts the returns of length n + k

that return at steps n and n+ k. Then by Fekete’s lemma [4], ρ = lim sup
n→∞

r1/nn exists. This constant is called

the cogrowth of the Cayley graph of G.

Since the number of all walks in the Cayley graph is (2|X|)n, an upper bound for ρ is 2|X|. Grigorchuk [3]
(and independently Cohen [1]) proved that ρ = 2|X| if and only if the group is amenable, an important and
much studied property in group theory.

Another (amenable) example
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This is the Cayley graph of Z× Z = 〈a, b | ab = ba〉 (think a = (1, 0) and b = (0, 1) with addition).

The number of walks (strings of a±1, b±1) from the black node is 4n, and the number of returns is 0 if n is

odd, else (sequence A002894 [5])
(

n
n/2

)2

∼ 4n, so ρ = 4 = 2|X|.

A nonamenable example
The free group on two letters a, b is the set of all strings of a±1, b±1 with no cancelling pairs
aa−1, a−1a, bb−1, b−1b. Its Cayley graph is the 4-regular infinite tree.

An exact formula for its cogrowth series can be obtained, and ρ ≈ 3.464. Note that this give a lower bound
for the cogrowth of any group with two generators, since the Cayley graph of such a group has at least this
many returns.

Computations
Since cogrowth is such a computational and combinatorial property, we decided to use it to tackle an open
problem concerning the amenability of a particular example, Richard Thompson’s group F .

As an experiment, we computed bounds on the cogrowth of a number of different groups, some amenable
and some nonamenable, and compared their behaviour against that of Thompson’s group F , to see if it
looks more like an amenable group or a nonamenable one.

If A is the adjacency matrix of the Cayley graph, then (An)1,1 is the number of returns of length n. Of course
A is infinite, but we can get a lower bound on rn by taking a finite subgraph. If Ak is the adjacency matrix
for a subgraph with k nodes, then (by Perron-Frobenious) its leading eigenvalue gives a lower bound for ρ.

We computed this eigenvalue for various groups with two generators. The horizonal axis is the size of the
subgraph on a logarithmic scale, and the vertical axis is the eigenvalue. As k increases (so log(1/k) → 0)
the lower bounds approach the real cogrowth rate ρ for each of the groups.

F (black) vs. amenable groups F (black) vs. non-amenable groups

It is hard to conclude from this preliminary data which way F will go. We are currently working on better
algorithms to produce more data.
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