Channel Coordination under Competition
A Strategic View

Guillermo Gallego
Columbia University

Masoud Talebian
University of Newcastle

CARMA Retreat
Newcastle
Aug 18, 2012
Competition

Suppliers

Market
Bertrand model considers oligopolistic firms which compete with price.

Gallego and Hu [2007] consider the same setting, but firms are allowed to dynamically change their prices.
Coordination
A monopolistic supply chain is not coordinated with simple wholesale pricing contracts, due to several factors including:

- Double marginalization: Spengler [1950], ...
- Not enough sales effort: Cachon and Lariviere [2005], Taylor [2002], Krishnan et al. [2004], ...
Competition and Coordination

Suppliers -> Market

Suppliers

Retailer

Market
Elmaghraby [2000]: “If suppliers submit curves that reflect volume discount, then solving for the least-cost (set of) suppliers given the submitted curves is not guaranteed to be a simple task.”

Cachon [2003]: “More research is needed on how multiple suppliers compete for the affection of multiple retailers, i.e., additional emphasis is needed on many-to-one or many-to-many supply chain structures.”
- Contracts: general format quantity discounts
- Pricing: price taker or price setting retailer
- Method: non-cooperative non-zero-sum game theory
Definitions

\[\pi(x) = \sum_i x_i p_i(x) - e(x) \]

- \(p_i(x) \): the price of product \(i \) when selling \(x \) units.
- \(e(x) \): the sales cost when selling \(x \) units.
 Definitions

\(\pi(x) = \sum_i x_i p_i(x) - e(x) \)
 - \(p_i(x) \): the price of product \(i \) when selling \(x \) units.
 - \(e(x) \): the sales cost when selling \(x \) units.

\(c_i \): capacity of supplier \(i \).

\(c = \sum c_i \)

\(c_{-i} = c - c_i \)
Definitions

- \(\pi(x) = \sum_i x_i p_i(x) - e(x) \)
 - \(p_i(x) \) : the price of product \(i \) when selling \(x \) units.
 - \(e(x) \) : the sales cost when selling \(x \) units.

- \(c_i \) : capacity of supplier \(i \).
- \(c = \sum c_i \)
- \(c_{-i} = c - c_i \)
- \(r(c) = \max\{\pi(x) : x \in [0, c]\} \)
- \(s(c) = \arg \max\{\pi(x) : x \in [0, c]\} \).
Definitions

\[\pi(x) = \sum_i x_i p_i(x) - e(x) \]
 - \(p_i(x) \): the price of product \(i \) when selling \(x \) units.
 - \(e(x) \): the sales cost when selling \(x \) units.

\(c_i \): capacity of supplier \(i \).
\(c = \sum c_i \)
\(c_{-i} = c - c_i \)
\(r(c) = \max\{\pi(x) : x \in [0, c]\} \).
\(s(c) = \arg\max\{\pi(x) : x \in [0, c]\} \).
\(r_i(c) = r(c) - r(c_{-i}) \)
Definitions

- T_i: the contract between supplier i and the retailer.
Definitions

- T_i: the contract between supplier i and the retailer.
- $\pi(x|T) = \pi(x) - \sum T_i(x_i)$.
- $r(c|T) = \max\{\pi(x|T) : x \in [0, c]\}$.
- $s(c|T) = \text{arg max}\{\pi(x|T) : x \in [0, c]\}$.
Assumption

r is submodular, i.e., has decreasing difference.

$(r(x \lor y) - r(x) \leq r(y) - r(x \land y))$.

While supermodularity is preserved under maximization (Topkis [1998]), submodularity is not generally preserved under maximization. Maximizing a submodular function in general is NP hard.
Sub-modularity

Assumption

\(r \) is submodular, i.e., has decreasing difference.
\((r(x \lor y) - r(x) \leq r(y) - r(x \land y)) \).

- While supermodularity is preserved under maximization (Topkis [1998]), submodularity is not generally preserved under maximization.
- Maximizing a submodular function in general is NP hard.
Lemma

\(r(c) \) is submodular if:

- For all \(i = 1, \ldots, m \): \(p_i(x) \) is anti-multimodular,
- For all \(i = 1, \ldots, m \): \(p_i(x) \) is decreasing on \(x_j \) for all \(j = 1, \ldots, m \),
- \(e(x) \) is multimodular.

Multimodularity can be considered as a stronger assumption than submodularity.

Multimodularity results in component-wise concavity.

For Multimodularity definition and properties refer to Hajek [1985] and Li and Yu [2012].
Equilibrium

Theorem

In a competitive setting with sophisticated contracts, a set of contracts are Nash equilibrium if and only if they are in the following format:

\[
T_i^*(x) = \begin{cases}
0 & \text{for } x = 0 \\
\geq r_i(c_{-i} + x) & \text{for } 0 < x < s_i(c) \\
r_i(c) & \text{for } s_i(c) \leq x \leq \min_{j\neq i} s_i(c_{-j}) \\
\geq r_i(c) & \text{for } \min_{j\neq i} s_i(c_{-j}) < x \leq c_i
\end{cases}
\]

In addition, all Nash equilibria result in a coordinated chain with unique profit split as:

\[
T_i^*(s_i(c|T^*)) = r_i(c) = r(c) - r(c_{-i}) \\
r(c|T^*) = \sum_i r(c_{-i}) - (m-1)r(c)
\]
Proposition

A franchise contract is equilibrium if and only if it is in the following format:

\[T_i^*(x) = r(c) - r(c_{-i}) \] for \(0 < x \)
Proposition

A marginal units discount contract is equilibrium if and only if it charges price p for units less than threshold l, and 0 for units over the threshold, where:

$$\frac{\partial r}{\partial c_i}(c_{-i}) \leq p \text{ and } l = \frac{r(c) - r(c_{-i})}{p}$$
Proposition

An all units discount contract is equilibrium if and only if it charges price p if order is less than threshold l, and, $\frac{r(c) - r(c_i)}{s_i(c_i)}$ if order is more than or equal to threshold, where:

$\frac{\partial r}{\partial c_i}(c_{-i}) \leq p$ and $l = \min_{j \neq i} s_i(c_j)$
Example

- $m = 2$
- $c = [5, 10]$
- Fully substitutable products
- Market of size 10
- Fixed price of 20
- $\pi(x) = 20(x_1 + x_2) - (x_1 + x_2)^2 - 0.01x_1^2 - x_2$
Example: Contracts

![Graph showing the relationship between contracts and capacity for two suppliers. Supplier 1's contract growth is linear, while Supplier 2's is exponential, eventually reaching a plateau.](graph.png)
Comparative statics

Proposition

As a supplier’s capacity increases, her profit increases, the competitor suppliers’ profits decrease, and the retailer’s profit increases.
Example: Sensitivity to first supplier’s capacity

<table>
<thead>
<tr>
<th>Total Chain</th>
<th>Supplier 1</th>
<th>Supplier 2</th>
<th>Retailer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit ($)</td>
<td>Capacity (units)</td>
<td>Profit ($)</td>
<td>Capacity (units)</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>90</td>
<td>200</td>
</tr>
<tr>
<td>90</td>
<td>2</td>
<td>80</td>
<td>300</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td>70</td>
<td>400</td>
</tr>
<tr>
<td>70</td>
<td>4</td>
<td>60</td>
<td>500</td>
</tr>
<tr>
<td>60</td>
<td>5</td>
<td>50</td>
<td>600</td>
</tr>
</tbody>
</table>
Example: Sensitivity to second supplier’s capacity
Proposition

Under sophisticated contracts capacity buildings are coordinated, i.e., the equilibrium capacities are given by \(c^*_i(c^*_i) = \arg \max_{c_i} \{ r(c_i + c^*_i) \} \)
Wholesale Pricing

Theorem

In competitive setting with wholesale prices, there exists a Nash equilibrium, in which the chain is uncoordinated unless suppliers’ capacities are less than a threshold.
Example: Win-lose analysis

<table>
<thead>
<tr>
<th>Supplier 1</th>
<th>0%</th>
<th>1%</th>
<th>2%</th>
<th>3%</th>
<th>4%</th>
<th>5%</th>
<th>6%</th>
<th>7%</th>
<th>8%</th>
<th>9%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier 2</td>
<td></td>
</tr>
<tr>
<td>0%</td>
</tr>
<tr>
<td>1%</td>
<td>6%</td>
<td>13%</td>
<td>23%</td>
<td>36%</td>
<td>55%</td>
<td>73%</td>
<td>86%</td>
<td>95%</td>
<td>99%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>2%</td>
<td>14%</td>
<td>17%</td>
<td>20%</td>
<td>18%</td>
<td>6%</td>
<td>29%</td>
<td>53%</td>
<td>75%</td>
<td>-87%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3%</td>
<td>18%</td>
<td>33%</td>
<td>56%</td>
<td>78%</td>
<td>5%</td>
<td>92%</td>
<td>99%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4%</td>
<td>25%</td>
<td>30%</td>
<td>38%</td>
<td>21%</td>
<td>6%</td>
<td>33%</td>
<td>59%</td>
<td>77%</td>
<td>-82%</td>
<td>-87%</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>22%</td>
<td>22%</td>
<td>43%</td>
<td>70%</td>
<td>89%</td>
<td>99%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6%</td>
<td>34%</td>
<td>51%</td>
<td>64%</td>
<td>32%</td>
<td>-1%</td>
<td>-33%</td>
<td>-58%</td>
<td>-75%</td>
<td>-83%</td>
<td>-84%</td>
<td></td>
</tr>
<tr>
<td>7%</td>
<td>11%</td>
<td>27%</td>
<td>32%</td>
<td>53%</td>
<td>64%</td>
<td>66%</td>
<td>66%</td>
<td>66%</td>
<td>66%</td>
<td>66%</td>
<td></td>
</tr>
<tr>
<td>8%</td>
<td>69%</td>
<td>88%</td>
<td>96%</td>
<td>49%</td>
<td>7%</td>
<td>26%</td>
<td>51%</td>
<td>67%</td>
<td>76%</td>
<td>-77%</td>
<td></td>
</tr>
<tr>
<td>9%</td>
<td>79%</td>
<td>88%</td>
<td>96%</td>
<td>49%</td>
<td>7%</td>
<td>26%</td>
<td>51%</td>
<td>67%</td>
<td>76%</td>
<td>-77%</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>79%</td>
<td>88%</td>
<td>96%</td>
<td>49%</td>
<td>7%</td>
<td>26%</td>
<td>51%</td>
<td>67%</td>
<td>76%</td>
<td>-77%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplier 1</th>
<th>0%</th>
<th>1%</th>
<th>2%</th>
<th>3%</th>
<th>4%</th>
<th>5%</th>
<th>6%</th>
<th>7%</th>
<th>8%</th>
<th>9%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier 2</td>
<td></td>
</tr>
<tr>
<td>0%</td>
</tr>
<tr>
<td>1%</td>
<td>-100%</td>
</tr>
<tr>
<td>2%</td>
<td>-100%</td>
<td>-56%</td>
<td>-52%</td>
<td>-52%</td>
<td>-52%</td>
<td>-40%</td>
<td>-15%</td>
<td>-4%</td>
<td>2%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>3%</td>
<td>-100%</td>
<td>-52%</td>
<td>-50%</td>
<td>-39%</td>
<td>-23%</td>
<td>-8%</td>
<td>6%</td>
<td>17%</td>
<td>22%</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>4%</td>
<td>-100%</td>
<td>-55%</td>
<td>-43%</td>
<td>-24%</td>
<td>5%</td>
<td>28%</td>
<td>37%</td>
<td>42%</td>
<td>42%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>-100%</td>
<td>-55%</td>
<td>-43%</td>
<td>-24%</td>
<td>5%</td>
<td>28%</td>
<td>37%</td>
<td>42%</td>
<td>42%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6%</td>
<td>-100%</td>
<td>-60%</td>
<td>-33%</td>
<td>-14%</td>
<td>13%</td>
<td>56%</td>
<td>70%</td>
<td>84%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7%</td>
<td>-100%</td>
<td>-54%</td>
<td>-22%</td>
<td>-1%</td>
<td>28%</td>
<td>51%</td>
<td>70%</td>
<td>84%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8%</td>
<td>-100%</td>
<td>-54%</td>
<td>-22%</td>
<td>-1%</td>
<td>28%</td>
<td>51%</td>
<td>70%</td>
<td>84%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9%</td>
<td>-100%</td>
<td>-47%</td>
<td>-11%</td>
<td>9%</td>
<td>37%</td>
<td>80%</td>
<td>94%</td>
<td>103%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>-100%</td>
<td>-47%</td>
<td>-11%</td>
<td>9%</td>
<td>37%</td>
<td>80%</td>
<td>94%</td>
<td>103%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplier 1</th>
<th>0%</th>
<th>1%</th>
<th>2%</th>
<th>3%</th>
<th>4%</th>
<th>5%</th>
<th>6%</th>
<th>7%</th>
<th>8%</th>
<th>9%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier 2</td>
<td></td>
</tr>
<tr>
<td>0%</td>
</tr>
<tr>
<td>1%</td>
<td>-100%</td>
</tr>
<tr>
<td>2%</td>
<td>-100%</td>
</tr>
<tr>
<td>3%</td>
<td>-100%</td>
</tr>
<tr>
<td>4%</td>
<td>-100%</td>
</tr>
<tr>
<td>5%</td>
<td>-100%</td>
</tr>
<tr>
<td>6%</td>
<td>-100%</td>
</tr>
<tr>
<td>7%</td>
<td>-100%</td>
</tr>
<tr>
<td>8%</td>
<td>-100%</td>
</tr>
<tr>
<td>9%</td>
<td>-100%</td>
</tr>
<tr>
<td>10%</td>
<td>-100%</td>
</tr>
</tbody>
</table>

