Finite Horizon Investment Risk Management

Collaborative research with Ralph Vince, LSP Partners, LLC, and Marcos Lopez de Prado, Guggenheim Partners.

Qiji Zhu
Western Michigan University

Workshop on Optimization, Nonlinear Analysis, Randomness and Risk
CARMA, New Castle, Australia

July 12, 2014
Can we loss playing a favorable game?

Absolutely!

Flip a coin: head you win the bet, tail you lose the bet.

If you always bet all that you have then soon or later you will lose all even if you loaded the coin to your favor 9:1.
Can we loss playing a favorable game?

Absolutely!

Flip a coin: head you win the bet, tail you lose the bet.

If you always bet all that you have then soon or later you will lose all even if you loaded the coin to your favor 9:1.
How much should we bet?

- If the odds in the above game is indeed 9:1 favoring you,
- then it is unreasonable not to bet.
- The question is how much?

J. Kelly first show in 1956 that one should bet 80% of the total capital in this case.
How much should we bet?

- If the odds in the above game is indeed 9:1 favoring you
- then it is unreasonable not to bet.
- The question is how much?

J. Kelly first show in 1956 that one should bet 80% of the total capital in this case.
Kelly’s formula

Let \(p = \text{Prob}(H) \) and \(q = 1 - p = \text{Prob}(T) \) and let \(f \) be the bet as % of bankroll. Then expected gain per play in log scale is

\[
l(f) = p \ln(1 + f) + q \ln(1 - f).\]

Solving \(l'(f) = 0 \) we have

Kelly’s formula

The best betting size

\[
\kappa = p - q.
\]
Kelly’s formula (picture)

Figure: Log return curve
Edward O. Thorp

- Professor and hedge fund manager
- author of 1962 classic “Beat the Dealer” is still the standard reference of Blackjack player,
- in which he applied Kelly’s formula to provide a guide to Blackjack betting size.
Edward O. Thorp

- He then generalized it to handle investment allocation with Kassouf in “Beat the market (1967),”
- which was dubbed ‘fortunes formula’ by Pounderstone in his NY Times best seller of the same title.
- The idea of statistic arbitrage in “Beat the market” also stimulated Black, Scholes and Merton to derive the Black-Scholes formula.
Limitations of the fortunes formula

Figure: Log return curve of 9:1 coin flip
In practice

Practitioners know that one cannot use the full Kelly bet size. **But there is no careful discussion on how to do it.**

“if you bet half the Kelly amount, you get about three-quarters of the return with half the volatility. So it is much more comfortable to trade. I believe that betting half Kelly is psychologically much better.” –Ed Thorp
In practice

Practitioners know that one cannot use the full Kelly bet size. **But there is no careful discussion on how to do it.**

“if you bet half the Kelly amount, you get about three-quarters of the return with half the volatility. So it is much more comfortable to trade. I believe that betting half Kelly is psychologically much better.” –Ed Thorp
What is missing?

- Accurate only when the gambler playing forever.
- Risk is not adequately addressed.
Betting size as proxy of risk

- **Maximum drawdown** is largest relative percentage loss,
- a very important risk measure but hard to estimate.
- However, drawdown is approximately proportional to the bet size f.
Betting size as proxy of risk

Assuming sequence of consecutive returns (mostly losses) of l_1, l_2, \ldots, l_m cause the maximum drawdown. Then the max drawdown with betting size f is

\[
(1 + fl_1)(1 + fl_2) \ldots (1 + fl_m) - 1
\]

\[
= f \sum_{i=1}^{m} l_i + f^2 \sum_{1 \leq i < j \leq m} l_i l_j + f^3 \sum_{1 \leq i < j < k \leq m} l_i l_j l_k + \ldots.
\]

Usually $f, l_1, \ldots, l_m << 1$ and, therefore, drawdown $\sim \sum_{i=1}^{m} l_i f$.

Qiji Zhu Western Michigan University

Finite Horizon Investment Risk Management
Return curve in finite horizon

When we play Q games the total return is

$$r_Q(f) = \exp(Ql(f)) - 1.$$
We can maximize $\frac{r_Q(f)}{f}$ as a proxy for the return/ drawdown ratio. Geometrically

Figure: Return/ f maximum
We can maximize \(r_Q(f)/f \) as a proxy for the return/drawdown ratio. Analytically: solve

\[
\left(\frac{r_Q(f)}{f} \right)' = \frac{r_Q'(f)f - r_Q(f)}{f^2} = 0.
\]

Equivalent to

\[
r_Q'(f) - \frac{r_Q(f)}{f} = 0.
\]

Solution depends on \(Q \) and we denote it \(\zeta_Q \).
Another important point is the inflection point.

Figure: Inflection point

Importance: critical point for the marginal increase of return with respect to f.
Find inflection point

Solve equation

\[0 = r''_Q(f) = Q \exp(Ql(f))[Q(l'(f))^2 + l''(f)] \]

or equivalently

\[Q(l'(f))^2 + l''(f) = 0. \]

The inflection point also depends on \(Q \) and we denote it by \(\nu_Q \).
Figure: Return/size ratios as slopes of the top line at ζ_Q, middle line at ν_Q and bottom line at κ

$\nu_Q < \zeta_Q < \kappa$
Blackjack simulation: Main Rules

- Use six decks.
- Dealer stop at soft 17.
- Player may split once and double on split.
Blackjack simulation: Basic strategy

Figure: Basic Strategy
Blackjack simulation: Revere counting system

Lawrence Revere: Playing Blackjack as a Business

- **Ace through Ten:** -2 +1 +2 +2 +2 +2 +1 0 0 -2
- **True Count Calculation:** divide by full decks.
- **Play only when true counts > 2.**
Probability of different scenarios

<table>
<thead>
<tr>
<th>a_n</th>
<th>Frequency $\sim p_n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.000000</td>
<td>0.000206</td>
</tr>
<tr>
<td>-3.000000</td>
<td>0.001638</td>
</tr>
<tr>
<td>-2.000000</td>
<td>0.045842</td>
</tr>
<tr>
<td>-1.000000</td>
<td>0.425114</td>
</tr>
<tr>
<td>0.000000</td>
<td>0.090411</td>
</tr>
<tr>
<td>1.000000</td>
<td>0.319943</td>
</tr>
<tr>
<td>1.500000</td>
<td>0.051173</td>
</tr>
<tr>
<td>2.000000</td>
<td>0.063130</td>
</tr>
<tr>
<td>3.000000</td>
<td>0.002102</td>
</tr>
<tr>
<td>4.000000</td>
<td>0.000441</td>
</tr>
</tbody>
</table>

Table 1. Frequencies from ten million hands
Based on scenario probability

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(\nu)</th>
<th>(\zeta)</th>
<th>(\kappa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15000</td>
<td>nonexist</td>
<td>nonexist</td>
<td>0.02539</td>
</tr>
<tr>
<td>20000</td>
<td>0.00093</td>
<td>0.0014</td>
<td>0.02539</td>
</tr>
<tr>
<td>25000</td>
<td>0.00351</td>
<td>0.0052</td>
<td>0.02539</td>
</tr>
<tr>
<td>30000</td>
<td>0.00542</td>
<td>0.0080</td>
<td>0.02539</td>
</tr>
</tbody>
</table>

Table 2. Optimal points at various horizons
Table 3. Direct simulations

<table>
<thead>
<tr>
<th>f</th>
<th>r_Q</th>
<th>Drawdown</th>
<th>Marginal r_Q</th>
<th>r_Q/f</th>
<th>$r_Q/\text{Drawdown}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.004</td>
<td>0.26</td>
<td>0.152</td>
<td>0.066</td>
<td>64.09</td>
<td>1.685</td>
</tr>
<tr>
<td>0.005</td>
<td>0.32</td>
<td>0.187</td>
<td>0.066</td>
<td>64.44</td>
<td>1.720</td>
</tr>
<tr>
<td>0.006</td>
<td>0.39</td>
<td>0.221</td>
<td>0.066</td>
<td>64.66</td>
<td>1.752</td>
</tr>
<tr>
<td>0.007</td>
<td>0.45</td>
<td>0.254</td>
<td>0.065</td>
<td>64.77</td>
<td>1.782</td>
</tr>
<tr>
<td>0.008</td>
<td>0.52</td>
<td>0.286</td>
<td>0.065</td>
<td>64.76</td>
<td>1.810</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0.014</td>
<td>0.87</td>
<td>0.456</td>
<td>0.052</td>
<td>62.13</td>
<td>1.910</td>
</tr>
<tr>
<td>0.015</td>
<td>0.92</td>
<td>0.480</td>
<td>0.049</td>
<td>61.27</td>
<td>1.913</td>
</tr>
<tr>
<td>0.016</td>
<td>0.96</td>
<td>0.504</td>
<td>0.046</td>
<td>60.29</td>
<td>1.913</td>
</tr>
<tr>
<td>0.017</td>
<td>1.01</td>
<td>0.527</td>
<td>0.042</td>
<td>59.19</td>
<td>1.909</td>
</tr>
</tbody>
</table>
Direct simulation

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.023</td>
<td>1.16</td>
<td>0.647</td>
<td>0.013</td>
<td>50.35</td>
<td>1.789</td>
</tr>
<tr>
<td>0.024</td>
<td>1.17</td>
<td>0.664</td>
<td>0.007</td>
<td>48.56</td>
<td>1.754</td>
</tr>
<tr>
<td>0.025</td>
<td>1.17</td>
<td>0.681</td>
<td>0.002</td>
<td>46.69</td>
<td>1.714</td>
</tr>
<tr>
<td>0.026</td>
<td>1.16</td>
<td>0.697</td>
<td>-0.004</td>
<td>44.76</td>
<td>1.670</td>
</tr>
</tbody>
</table>

Table 3. Direct simulations (continued)
Model for multiple risky assets

- Investing in M assets/strategies represented by a random vector $X = (X_1, \ldots, X_M)$,
- with N different outcomes $\{b^1, \ldots, b^N\}$ where $b^n = (b^n_1, \ldots, b^n_M)$;
- for Q holding periods and suppose that $\text{Prob}(X = b^n) = p_n$.
- Define $w_m = \min\{b^1_m, \ldots, b^N_m\}$ and scale $Y = (-X_1/w_1, \ldots, -X_M/w_M)$;
- the scaled outcome is $a^n = (-b^n_1/w_1, \ldots, -b^n_M/w_M)$ with $\text{Prob}(Y = a^n) = p_n$.
Leverage space

- Each allocation is represented by \(f = (f_1, \ldots, f_M) \in [0, 1]^M \),
- where \(f_m \) represents shares in the \(m \)th asset, \([0, 1]^M\) the leverage space.
- Define the log return function

\[
l_Y(f) := \sum_{n=1}^{N} p_n \ln(1 + f \cdot a_n) \tag{2}
\]

- Then \(Q \)-period return is \(r_Q(f) = \exp(Ql_Y(f)) - 1 \).
- \(r_Q(f) \) attains a unique maximum \(\kappa \) (Kelly optimal) determined by

\[
\nabla l_Y(f) = 0.
\]
Log return function $l_Y(f)$ is convex but $r_Q(f)$ may not be. The following is the return of playing two coins for $Q = 50$ times: Coin 1 is .50/.50 that pays 2:1, and Coin 2 is .60/.40 that pays 1:1.
Return/ Risk Paths

One usually allocate in between 0 (too conservative) and Kelly optimal κ (too aggressive). A return / risk path $f : [a, b] \rightarrow \mathbb{R}^M$ is defined by the following properties

1. f is piecewise C^2.
2. $f(a) = 0$ and $f(b) = \kappa$.
3. $t \mapsto r_Q(f(t))$ is increasing on $[a, b]$.
4. There is a risk measure m such that $t \mapsto m(f(t))$ is increasing.
Following the Return/ Risk Paths

In theory one can use the one asset method on such a return/risk path. However, such path are not unique, even if we insist on path that optimize return / risk on every level of return. The following are two corresponding to the two coin flipping game. Blue path assuming drawdown completely correlate and Black path completely independent.
Difficulty in Following the Return/Risk Paths

- Computing for each risk measure the optimal path is rather costly.
- In general, it is more efficient in following a few heuristically determined paths among infinitely many possible;
- Even so use the one-dimensional method to each of such path is cumbersome.

So we turn to determine the manifolds of inflection points and return/risk maximum points.
This manifold can be determined by using the Sylvester’s criterion for negative definite matrix on the hessian of $r_Q(f)$.

The limitation is that computation is too costly when M is large. A practical (conservative) approximation is

$$\left\{ f \in [0, 1]^M : \max \left[\frac{\partial^2 l_Y(f)}{\partial f_n^2} + Q \left(\frac{\partial^2 l_Y(f)}{\partial f_n^2} \right)^2, n = 1, \ldots, M \right] = 0 \right\}.$$
Manifold of return / risk maximum points

It turns out this manifold has a clean characterization:

Return / risk maximum points

Let \(m(f) \) be a risk measure homogeneous in \(f \). Then the set of allocations \(f \) that maximizes \(r_Q(f)/m(f) \) is represented by

\[
\{ f : \langle \nabla r_Q(f), f \rangle = r_Q(f) \}.
\]
Example

This is another look of the two coin flip example: as before Blue path assuming drawdowns completely correlate and Black path completely independent. We added Green curve—manifold of inflection points and Red curve—manifold of return/risk maximization points.
Conclusion

- Considering investing in finite time horizon
- and adjusting for the risks,
Conclusion

- Considering investing in finite time horizon
- and adjusting for the risks,
- the allocation to risky assets should be much more conservative than Kelly’s formula suggested.
Conclusion

- Considering investing in finite time horizon
- and adjusting for the risks,
- the allocation to risky assets should be much more conservative than Kelly’s formula suggested.
- Since Kelly’s formula is quite influential in investment capital allocation
Conclusion

- Considering investing in finite time horizon
- and adjusting for the risks,
- the allocation to risky assets should be much more conservative than Kelly’s formula suggested.
- Since Kelly’s formula is quite influential in investment capital allocation
- bias to the risky side appears to be a serious problem.
Conclusion

- Considering investing in finite time horizon
- and adjusting for the risks,
- the allocation to risky assets should be much more conservative than Kelly’s formula suggested.
- Since Kelly’s formula is quite influential in investment capital allocation
- bias to the risky side appears to be a serious problem.
- For application efficient computation methods for large M is an important direction for further research.
Conclusion

- Considering investing in finite time horizon
- and adjusting for the risks,
- the allocation to risky assets should be much more conservative than Kelly’s formula suggested.
- Since Kelly’s formula is quite influential in investment capital allocation
- bias to the risky side appears to be a serious problem.
- For application efficient computation methods for large M is an important direction for further research.

THANK YOU
Conclusion

• Considering investing in finite time horizon
• and adjusting for the risks,
• the allocation to risky assets should be much more conservative than Kelly’s formula suggested.
• Since Kelly’s formula is quite influential in investment capital allocation
• bias to the risky side appears to be a serious problem.
• For application efficient computation methods for large M is an important direction for further research.

THANK YOU