Investigations into Normal numbers and Experimental Mathematics

Elliot Catt

CARMA, University of Newcastle

February 3, 2015
Definition

A Normal number is an irrational number in which every combination of digits occurs as frequently as any other combination.

That is, when

1. \(a_1 a_2 \cdots a_k \) is any combination of \(k \) digits, and

2. \(N(t) \) is the number of times this combination occurs among the first \(t \) digits in the base \(b \) expansion,

then

\[
\lim_{t \to \infty} \frac{N(t)}{t} = \frac{1}{b^k}.
\]
Known Normal Numbers

<table>
<thead>
<tr>
<th>Date</th>
<th>The Number</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1933</td>
<td>$0.123456789\ldots$</td>
<td>Champernowne</td>
</tr>
<tr>
<td>1946</td>
<td>$0.23571113\ldots$</td>
<td>Copeland and Erdös Constant</td>
</tr>
<tr>
<td>1952</td>
<td>$0.f(1)f(2)f(3)\ldots$</td>
<td>Davenport and Erdös</td>
</tr>
<tr>
<td>1973</td>
<td>$\sum_{k=1}^{\infty} \frac{1}{b^ek^cck}$</td>
<td>Stoneham</td>
</tr>
<tr>
<td>2001</td>
<td>0.11011100101_2</td>
<td>Binary Champerownes, Bailey and Crandall</td>
</tr>
</tbody>
</table>
We investigated the Davenport-Erdös numbers, that when
$f \in \mathbb{Q}[x]$ such that $f(x) \geq 0$ for $x > 0$, have the form
$0.f(1)f(2)f(3)\ldots$.
We investigated the Davenport-Erdös numbers, that when \(f \in \mathbb{Q}[x] \) such that \(f(x) \geq 0 \) for \(x > 0 \), have the form

\[
0.f(1)f(2)f(3)\ldots
\]

Theorem (?)

Let \(f(x) \in \mathbb{Q}[x] \), so that when \(x \in \mathbb{N} \), \(f(x) \geq 0 \). Then the decimal \(.f(1)f(2)f(3)\ldots_{10} \) is 10-normal.
We investigated the Davenport-Erdös numbers, that when \(f \in \mathbb{Q}[x] \) such that \(f(x) \geq 0 \) for \(x > 0 \), have the form
\[
0.f(1)f(2)f(3)\ldots.
\]

Theorem (?)

Let \(f(x) \in \mathbb{Q}[x] \), so that when \(x \in \mathbb{N} \), \(f(x) \geq 0 \). Then the decimal \(.f(1)f(2)f(3)\ldots_{10} \) is 10-normal.

Theorem (Us)

Let \(f(x) \in \mathbb{Q}[x] \), so that when \(x \in \mathbb{N} \), \(f(x) \geq 0 \). Then the decimal \(.f(1)f(2)f(3)\ldots_{b} \) is \(b \)-normal.
Definition (Simply Strongly Normal)

1. Let $\alpha \in \mathbb{R}$ with base-b fractional part $0.a_0a_1a_2\ldots$, and

2. $m_k(n) := \# \{ i : a_i = k, i \leq n \}$.

α is simply strongly normal in base b if for each $0 \leq k \leq b - 1$

$$
\limsup_{n \to \infty} \frac{m_k(n) - n/b}{\sqrt{2n \log \log n}} = \frac{\sqrt{b-1}}{b}, \text{ and}
$$

$$
\liminf_{n \to \infty} \frac{m_k(n) - n/b}{\sqrt{2n \log \log n}} = -\frac{\sqrt{b-1}}{b}.
$$
Moreover...

A number is strongly normal in base b if it is simply strongly normal in each base b^j for $j = 1, 2, 3, \ldots$, and is absolutely strongly normal if it is strongly normal in every base.

It was proved in (?)

1. If a number is strongly normal, it is normal.

2. “Almost all” numbers are strongly normal in any base.
Strong Normality

Let $\alpha \in \mathbb{R}$ have base ten expansion $0.a_1a_2\ldots$, and take

$$p_k(n) = \frac{m_k(n) - n/b}{\sqrt{2n \log \log n}}$$

(this is equivalent to removing the limits from the definition of Simply Strongly Normal).

We plot, for various Davenport-Erdős numbers, p against n for all k of α and can observe whether $p_k(n)$ is tending towards $\pm \frac{3}{10}$ or not.
Strong Normality

<table>
<thead>
<tr>
<th>Colour</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>0</td>
</tr>
<tr>
<td>Green</td>
<td>1</td>
</tr>
<tr>
<td>Blue</td>
<td>2</td>
</tr>
<tr>
<td>Coral</td>
<td>3</td>
</tr>
<tr>
<td>Orange</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Colour</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pink</td>
<td>5</td>
</tr>
<tr>
<td>Yellow</td>
<td>6</td>
</tr>
<tr>
<td>Black</td>
<td>7</td>
</tr>
<tr>
<td>Turquoise</td>
<td>8</td>
</tr>
<tr>
<td>Maroon</td>
<td>9</td>
</tr>
</tbody>
</table>
\(f(x) = x \) for \(n = 1, \ldots, 10^6 \).
\(f(x) = x \) for \(n = 1, \ldots, 10^7 \).
\[f(x) = x \text{ for } n = 1, \ldots, 10^8. \]
\[f(x) = x^2 \text{ for } n = 1, \ldots, 10^6. \]
\[f(x) = x^2 \] for \(n = 1, \ldots, 10^7 \).
\[f(x) = x^2 \text{ for } n = 1, \ldots, 10^8. \]
$f(x) = x^3$ for $n = 1, \ldots, 10^6$.
\[f(x) = x^3 \text{ for } n = 1, \ldots, 10^7. \]
\[f(x) = x^3 \text{ for } n = 1, \ldots, 10^8. \]
$f(x) = 2x^4 + 2x^2$ for $n = 1, \ldots, 10^6$.
\[f(x) = 2x^4 + 2x^2 \] for \(n = 1, \ldots, 10^7 \).
\[f(x) = 2x^4 + 2x^2 \text{ for } n = 1, \ldots, 10^8. \]
\(f(x) = 3x^3 - 2x^2 + x \) for \(n = 1, \ldots, 10^6 \).
\[f(x) = 3x^3 - 2x^2 + x \text{ for } n = 1, \ldots, 10^7. \]
$f(x) = 3x^3 - 2x^2 + x$ for $n = 1, \ldots, 10^8$.
Conjecture

Let \(f(x) \in \mathbb{Q}[x] \), then the decimal

\[.f(1)f(2)f(3) \ldots_{10} \]

is not strongly normal when \(x \in \mathbb{N} \) and \(f(x) \geq 0 \).
Strong Normality

We repeated these graphs using famous (possibly normal?) constants rather than Davenport-Erdös numbers and observed something interesting...
Strong Normality

We repeated these graphs using famous (possibly normal?) constants rather than Davenport-Erdös numbers and observed something interesting.

We shall see that with these constants $p_k(n)$ is generally bound between $\pm \frac{3}{10}$ as $n \to \infty$.
\[\pi \text{ for } n = 1, \ldots, 10^6\]
\[\pi \text{ for } n = 1, \ldots, 10^7 \]
π for $n = 1, \ldots, 10^8$
e for $n = 1, \ldots, 10^6$
e for $n = 1, \ldots, 10^7$
e for $n = 1, \ldots, 10^8$
\(\varphi = \frac{1+\sqrt{5}}{2} \) for \(n = 1, \ldots, 10^6 \)
φ = \frac{1+\sqrt{5}}{2} \text{ for } n = 1, \ldots, 10^7
\[\varphi = \frac{1 + \sqrt{5}}{2} \text{ for } n = 1, \ldots, 10^8 \]
\log(2) \text{ for } n = 1, \ldots, 10^6
$\log(2)$ for $n = 1, \ldots, 10^7$
\[\log(2) \text{ for } n = 1, \ldots, 10^8 \]
Catalan’s Constant for $n = 1, \ldots, 10^6$
Catalan’s Constant for $n = 1, \ldots, 10^7$
Catalan’s Constant for $n = 1, \ldots, 10^8$
\(\zeta(3) \) for \(n = 1, \ldots, 10^6 \)
\[\zeta(3) \text{ for } n = 1, \ldots, 10^7 \]
$\zeta(3)$ for $n = 1, \ldots, 10^8$
Strong Normality

Conjecture

$\pi, \zeta(3), e, \log(2), \varphi$ and Catalan’s Constants constant are simply strongly normal in base 10.
Future Work

1. Plots for more digits, $10^{10}+$.

2. Plots in other bases apart from 10.

3. Comparing $p_k(n)$ with other functions.

4. A proof for the above conjectures.

5. A proof of the irrationality of $\pi + e$ (Probably above my calibre at this point).

6. Investigations into big data.
Acknowledgements

For helping me with everything from Pi to Python

▶ Laureate Professor Jonathan Borwein,

▶ Dr David Allingham,

▶ Mr Matthew Tam,

▶ Dr Paul Vbrik,

▶ Mr Corey Sinnamon,

▶ Mr Ghislain McKay,

▶ Mr Tony Jackson, and

▶ and all the wonderful people in the Mathematics department.

Thank you!