Accelerated Series for Riemann Zeta Function at Integral Arguments

J. T. Olkkonen and H. Olkkonen

Abstract- Riemann zeta function is an important tool in signal analysis and number theory. Applications of the zeta function include e.g. the generation of irrational and prime numbers for encryption coding. In this work we present a new accelerated series for Riemann zeta function at integral arguments. As an application we give the recursive algorithm for computation of the zeta function sequences at integer arguments.

Index terms- Riemann zeta function, converging series, number theory, cryptography, signal processing.

J. T. Olkkonen is with VTT Technical Research Centre of Finland, 90571 Oulu, Finland (e-mail: juuso.olkkonen@vtt.fi).
H. Olkkonen is with the Department of Applied Physics, University of Kuopio, 70211 Kuopio, Finland (e-mail: hannu.olkkonen@uku.fi).

I. INTRODUCTION

Riemann zeta function \(\zeta(s) \) defined as for complex numbers \(s \) with \(R\{s\} > 1 \)
\[
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}
\] (1)
has a central role in number theory and appears in many areas of science and technology [1]. The Riemann zeta function is closely related to the prime numbers via (1) and it is an important tool in cryptography. Algorithms for evaluating \(\zeta(s) \) are vitally developing initialised by Euler, who invented the basic equation (1). Much of the research effort has been laid to the developing the accelerated series for computation of \(\zeta(s) \) for integer arguments [1,2,3,4]. For the even \(s \), the Riemann zeta function obeys the general rule \(\zeta(s) = \frac{\pi^s}{N(s)} \), where \(N(s) \) is an integer. For odd \(s \), no closed form solution for \(\zeta(s) \) has been solved and the computational algorithms are usually based on the acceleration of the series (1) by asymptotic expansion with Bernoulli numbers or via Euler's transformation [2]. Recursive algorithms have also presented for evaluation of \(\zeta(s) \) at odd integers [5].

In this work we describe a new accelerated series for the Riemann zeta function at integer arguments. The main result is involved in Theorem 1.
Theorem 1: Let us suppose that $\zeta(s)$ is the Riemann zeta function defined by (1). The following series converges as
\[
\sum_{s=0}^{\infty} \frac{\zeta(s+2)}{s!} = \zeta(2) + \sum_{n=1}^{\infty} \frac{e^{1/n}}{n^2}.
\]

In Section II we give the proof of Theorem 1. In Section III we present applications of the Theorem 1 and describe the method for accelerating the zeta function series given by Theorem 1. In Section IV we describe the recursive algorithm for evaluation of the Riemann zeta function at integer arguments.

II. PROOF OF THEOREM 1

Proof of Theorem 1: We may deduce
\[
\sum_{s=0}^{\infty} \frac{\zeta(s+2)}{s!} = \sum_{s=0}^{\infty} \frac{1}{s!} \sum_{n=1}^{\infty} \frac{1}{n^{s+2}} = \sum_{n=1}^{\infty} \frac{1}{n^2} \sum_{s=0}^{\infty} \frac{n^{-s}}{s!} = \sum_{n=1}^{\infty} \frac{1}{n^2} e^{1/n}.
\]
The series (2) converges very slowly. However, we may write
\[
\sum_{n=1}^{\infty} \frac{1}{n^2} e^{1/n} = \sum_{n=1}^{\infty} \frac{e^{1/n} - 1 + 1}{n^2} = \zeta(2) + \sum_{n=1}^{\infty} \frac{e^{1/n} - 1}{n^2},
\]
which has an accelerated convergence. The proof is now completed.

III. APPLICATIONS OF THEOREM 1

Lemma 1: For $m \geq 2$,
\[
\sum_{s=0}^{\infty} \frac{\zeta(s+m)}{s!} = \zeta(m) + \sum_{n=1}^{\infty} \frac{e^{1/n}}{n^m}.
\]
Proof: Similar as Theorem 1.

Lemma 2: For $m \geq 2$,
\[
\sum_{s=0}^{\infty} \frac{\zeta(s+m)}{s!} = \sum_{n=1}^{\infty} \frac{e^{1/n}}{n^m}.
\]
Proof: Follows directly from Lemma 1 by elimination of the first term in series (4).

Lemma 3:
\[
\sum_{s=0}^{\infty} \frac{\zeta(2s+2)}{s!} = \zeta(2) + \sum_{n=1}^{\infty} \frac{e^{1/n^2}}{n^2}.
\]
Proof: Similar as Theorem 1.
Lemma 4: \[\sum_{s=0}^{\infty} \frac{\zeta(2s+3)}{s!} = \zeta(3) + \sum_{n=1}^{\infty} \frac{e^{1/n^2} - 1}{n^3} \] (7)

Proof: Follows directly Lemma 3.

Lemmas 3 and 4 can be generalised as

Lemma 5: For \(m \geq 2 \), \[\sum_{s=0}^{\infty} \frac{\zeta(2s+m)}{s!} = \zeta(m) + \sum_{n=1}^{\infty} \frac{e^{1/n^2} - 1}{n^m} \] (8)

Lemma 6: For \(m \geq 2 \), \[\sum_{s=1}^{\infty} \frac{\zeta(2s+m)}{s!} = \sum_{n=1}^{\infty} \frac{e^{1/n^2} - 1}{n^m} \] (9)

The last series (Lemma 6) can be further generalized as

Lemma 7: For \(k \geq 1 \) and \(m \geq 2 \), \[\sum_{s=1}^{\infty} \frac{\zeta(k s + m)}{s!} = \sum_{n=1}^{\infty} \frac{e^{1/n^2} - 1}{n^m} \] (10)

The series can be further accelerated by noting that \(\lim_{s \to \infty} \zeta(s) = 1 \). We may write Lemma 7 as

\[\sum_{s=1}^{\infty} \frac{\zeta(k s + m) - 1 + 1}{s!} = \sum_{s=1}^{\infty} \frac{\zeta(k s + m) - 1}{s!} + \sum_{s=1}^{\infty} \frac{1}{s!} = \sum_{n=1}^{\infty} \frac{e^{1/n^2} - 1}{n^m} \]

which gives

Lemma 8: For \(k \geq 1 \) and \(m \geq 2 \), \[\sum_{s=1}^{\infty} \frac{\zeta(k s + m) - 1}{s!} = 1 - e + \sum_{n=1}^{\infty} \frac{e^{1/n^2} - 1}{n^m} \] (11)

IV. RECURSIVE ALGORITHM

From Lemma 8 we may deduce

Lemma 9: For \(k \geq 1 \) and \(m \geq 2 \), \[\zeta(k + m) = 2 - e + \sum_{n=1}^{\infty} \frac{e^{1/n^2} - 1}{n^m} \] (12)

The last series can be computed if \(\zeta(k s + m) \), \(s = 2, 3, ... \) are known. This leads to the fast recursive computation of the zeta function. Especially for \(k = 1 \) we obtain the sequential \(\zeta(m+1) \) values as

\[\zeta(m+1) = 2 - e + \sum_{n=1}^{\infty} \frac{e^{1/n^2} - 1}{n^m} - \sum_{s=2}^{\infty} \frac{\zeta(m+s) - 1}{s!} \] (13)
Both series in (13) have accelerated convergence and to obtain the required accuracy only a few previously computed $\zeta(m+s)$, $s = 2,3,...$ are needed.

IV. DISCUSSION

In this work we present a new accelerated series for Riemann zeta function. The key observation is presented in Theorem 1. The infinite summation of the zeta functions weighted by $1/s!$ can be represented by fastly converging series. One application is the recursive computation of the zeta function from the sequence of previously known zeta function values. The recursive algorithm can be initialised using (13), which has itself accelerated convergence. Especially in high values of m the first series in (13) has high convergence due to the term n^m in the denominator.

The zeta function values for odd integers are generally believed to be irrational, though consistent proof is given only for $\zeta(3)$ [6,7]. The irrational number sequences, which can be easily reproduced from a few parameters are important in encryption coding. The recursive algorithm (Lemma 9) serves as a good candidate for the irrational number generator, since it requires only two parameters $(k$ and $m)$. By altering the parameters a countless number of irrational number sequences are obtained.

References: