SOLUTION OF THE INDETERMINATE CUBIC EQUATION $z^2 = f(x, y)$. 233

fying the canonical equation (11) identically, on substituting in (15), (16), (22) for ξ, η, ζ from (26) and (25). The unicursal curve represented by this parametric solution of (11) is clearly of order 18. From a previous general result*, it is the complete intersection of the cubic surface (11) and another algebraic surface of order six.

The University,
Manchester.

ON LATTICE POINTS IN AN INFINITE STAR DOMAIN

K. MAHLER†.

In my paper "On lattice points in star domains", which is to appear in the Proceedings of the London Mathematical Society, I defined a finite star domain by the following properties:

1. The domain K is a bounded closed point set in the (x, y)-plane.
2. K contains the origin $O = (0, 0)$ as an inner point.
3. The boundary C of K is a Jordan curve.
4. Every radius vector from O intersects C in just one point.
5. If K contains the point $P = (x, y)$, then it also contains the point $-P = (-x, -y)$ symmetrical to P in O.

I called a lattice

$(\Lambda) (x, y) = (ah + \beta k, \gamma h + \delta k) \ (a, \beta, \gamma, \delta$ real numbers; $h, k = 0, \pm 1, \ldots)$

K-admissible, if O is the only inner point of K belonging to Λ. Then

$d(\Lambda) = |a\delta - \beta\gamma|$

is called the determinant of Λ, and $\Delta(K)$ denotes the lower bound of $d(\Lambda)$ for all K-admissible lattices. It was shown that $\Delta(K) > 0$, and that there exists at least one critical lattice, i.e. a K-admissible lattice Λ such that $d(\Lambda) = \Delta(K)$. It was further proved trivially that if the finite star

* Cf. B. Segre, "A note on arithmetical properties of cubic surfaces", loc. cit., Theorem VII.
† Received 23 June, 1943; read 16 December, 1943.
domain K is contained in the finite star domain K', then

$$\Delta(K) \leq \Delta(K').$$

In this note, I consider infinite star domains, i.e. point sets K in the (x, y)-plane such that

"If K_r is, for every positive number r, the set of all those points of K which have a distance not greater than r from 0, then K_r is a finite star domain".

If $r < r'$, then K_r is contained in $K_{r'}$; hence

$$\Delta(K_r) \leq \Delta(K_{r'}).$$

Therefore $\Delta(K_r)$ is an increasing function of r. Put

$$\Delta(K) = \lim_{r \to \infty} \Delta(K_r).$$

If $\Delta(K) = \infty$, then every lattice contains an infinity of points of K; an example of a domain of this kind is given by

$$|xy| \leq \delta/5, \ |x| < \epsilon$$

is solvable for every $\epsilon > 0$. In this note, I assume from now on that $\Delta(K)$ is finite.

Theorem 1. There exists at least one critical lattice Λ of K, i.e. a lattice with the following properties:

1. O is the only inner point of K belonging to Λ.
2. $d(\Lambda) = \Delta(K)$, i.e. $= \lim_{r \to \infty} \Delta(K_r)$. [This differs from the definition of $\Delta(K)$ for finite domains.]
3. There is no K-admissible lattice of determinant less than $\Delta(K)$. [I.e. the definition of $\Delta(K)$ in (2) is equivalent to that in the case of a finite domain.]

Proof. The origin is an inner point of K; there is therefore a positive number ρ such that the circle K of centre O and radius ρ lies entirely in K_1. Hence K is also a subset of K_n for $n = 1, 2, 3, \ldots$.

Denote by Λ_n a critical lattice of K_n, and by R_n, S_n a basis of Λ_n. This basis can be chosen so as to be reduced; i.e. all angles of the parallelogram with vertices at $O, R_n, R_n + S_n, S_n$ lie between 60° and 120°. Then
by a well-known property of reduced lattices,
\[\sqrt{\frac{2}{3}} \overline{OR_n} \overline{OS_n} \leq d(\Lambda_n) = \Delta(K_n) \leq \Delta(K). \]
Further, since no element of \(\Lambda_n \) can be an inner point of \(K \),
\[\overline{OR_n} \geq \rho, \quad \overline{OS_n} \geq \rho. \]
Hence
\[\overline{OR_n} \leq \frac{2\Delta(K)}{\rho \sqrt{3}}, \quad \overline{OS_n} \leq \frac{2\Delta(K)}{\rho \sqrt{3}}, \]
and so the two basis points \(R_n, S_n \) of \(\Lambda_n \) lie at a bounded distance from \(O \).
Hence there exists an infinite sequence of indices
\(n_1, n_2, n_3, \ldots \),
such that the two basis points
\[R_n, S_n \quad (n = n_1, n_2, n_3, \ldots) \]
tend to limit points \(R \) and \(S \), respectively.
Denote by \(\Lambda \) the lattice of basis \(R, S \). Then
\[d(\Lambda) = \lim_{r \to \infty} d(\Lambda_n) = \Delta(K). \]
This lattice \(\Lambda \) is \(K \)-admissible. For if this be false, let
\[P = hR + kS \quad (h, k \text{ integers}) \]
be a point of \(\Lambda \) different from \(O \) which is an inner point of \(K \). The sequence of points
\[P_n = hR_n + kS_n \quad (n = n_1, n_2, n_3, \ldots) \]
tends to \(P \), and so \(P_n \) is arbitrarily near to \(P \) for large \(n \). Hence also \(P_{n_v} \) is an inner point of \(K \) if \(v \) is sufficiently large. Let \(r \) be the distance of \(P \) from \(O \). Then, for \(n_v > r \), \(P \) is also an inner point of \(K_{n_v} \). This, however, is contrary to the assumption that \(\Lambda_{n_v} \) is a \(K_{n_v} \)-admissible lattice.
There cannot be a \(K \)-admissible lattice \(\Lambda^* \) for which
\[d(\Lambda^*) < \Delta(K). \]
For, if such a lattice should exist, let \(n \) be an index such that
\[d(\Lambda^*) < \Delta(K_n). \]
Then at least one point \(P \neq O \) of \(\Lambda^* \) is an inner point of \(K_n \), and hence an inner point of \(K \), contrary to hypothesis. This completes the proof.
It was proved in my paper that every critical lattice of a finite star domain has at least four points on its boundary. This is not so for infinite domains.

Theorem 2. There exists an infinite star domain K of boundary C such that no critical lattice of K has a point on C.

Proof. Denote by K a domain with the properties:

1. K is an infinite star domain.
2. All points of K are inner points of the infinite star domain K^* defined by
 \[|xy| \leq 1. \]
3. If the point $P = (x, y)$ on C is at the distance r from O, then
 \[\lim_{r \to \infty} |xy| = 1. \]

By a theorem of Hurwitz,

\[\Delta(K^*) = \sqrt{5}; \]

hence, since K is contained in K^*,

(I) \[\Delta(K) \leq \Delta(K^*) = \sqrt{5}. \]

Let further ϵ and t be two positive numbers, of which ϵ is sufficiently small, and denote by $K(\epsilon, t)$ the finite star domain

\[|xy| \leq (1 - \epsilon)^2, \quad |tx + \frac{1}{t} y| \leq \sqrt{5}(1 - \epsilon). \]

Then, by a theorem of mine (in my paper: “On lattice points in the star domain $|xy| \leq 1, |x+y| \leq \sqrt{5}$”, which is to appear in the Proceedings of the Cambridge Philosophical Society),

\[\Delta(K(\epsilon, t)) = \sqrt{5}(1 - \epsilon)^2 \]

is independent of the value of t. I assert that, for all sufficiently large t, $K(\epsilon, t)$ is contained in K, so that

(II) \[\Delta(K) \geq \Delta(K(\epsilon, t)) = \sqrt{5}(1 - \epsilon)^2. \]
For choose a positive number $r(\epsilon)$ such that

$$|xy| > (1 - \epsilon)^2$$

for all points P of C for which $r > r(\epsilon)$; such a constant exists by the property (3) of K. It is clear from this definition of $r(\epsilon)$ that no point P on C with $r > r(\epsilon)$ belongs to $K(\epsilon, t)$; hence it suffices to show that no point on C with $r \leq r(\epsilon)$ belongs to $K(\epsilon, t)$. Now the two coordinate axes are asymptotes of C, but do not intersect C. Hence there exists a positive number $\delta(\epsilon)$ such that

$$|x| \geq \delta(\epsilon), \quad |y| \leq r$$

for all points $P = (x, y)$ on C with $r \leq r(\epsilon)$. Choose t so large that

$$t > \frac{1 + \sqrt{5}}{\delta(\epsilon)}, \quad t > r;$$

then

$$\left| tx + \frac{1}{t} y \right| > \frac{1 + \sqrt{5}}{\delta(\epsilon)} \delta(\epsilon) - \frac{1}{r} r = \sqrt{5} > \sqrt{5(1 - \epsilon)},$$

as asserted.

Since ϵ may be arbitrarily small, from (I) and (II),

$$\Delta(K) = \sqrt{5}.$$

Hence, if

$$(\Lambda) \quad (x, y) = (\alpha h + \beta k, y_\delta + \delta k) \quad (h, k = 0, \pm 1, \pm 2, \ldots)$$

is a critical lattice of K, then

$$d(\Lambda) = |\alpha \delta - \beta y| = \sqrt{5}.$$

To Λ, we make correspond the indefinite quadratic form

$$\Phi(h, k) = (\alpha h + \beta k)(\gamma h + \delta k) = \alpha h^2 + 2bhk + c(k^2$$

of determinant

$$b^2 - ac = \left(\frac{\alpha \delta - \beta y}{2}\right)^2 = \frac{5}{4}.$$

By the property (3) of K, this form satisfies the inequality

$$|\Phi(h, k)| \geq (1 - \epsilon)^2$$

for all integers h, k with sufficiently large $h^2 + k^2$.
Now, by a theorem of Markoff, the forms equivalent to
\[\pm (h^2 - hk - k^2) \]
are the only ones of determinant \(\frac{5}{3} \) which do not assume values numerically less than 1 for integral \(h, k \) not both zero; every other form of determinant \(\frac{5}{3} \) represents numbers numerically not greater than
\[\sqrt{\frac{5}{3}} \]
for an infinity of integral \(h, k \).

Hence, since \(\epsilon \) may be chosen so small that
\[(1 - \epsilon)^2 > \sqrt{\frac{5}{3}}, \]
\(\Phi(h, k) \) must be the form
\[\Phi(h, k) = \pm (h^2 - hk - k^2), \]
and so
\[|xy| = |\Phi(h, k)| \geq 1 \]
for all points of \(\Lambda \) different from 0. Therefore, as asserted, no point of \(\Lambda \) lies on the boundary \(C \) of \(K \). We also see that \(K \) has actually an infinity of critical lattices, namely
\[(x, y) = \left(\lambda \left(h - \frac{1+\sqrt{5}}{2} k \right), \frac{1}{\lambda} \left(h - \frac{1-\sqrt{5}}{2} k \right) \right) \quad (h, k = 0, \pm 1, \pm 2, \ldots), \]
where \(\lambda \) is any positive or negative number.

A slight modification of this proof proves that suitable infinite star domains possess critical lattices with any even number of points on \(C \).

There is no difficulty in extending Theorem 1 to more than two dimensions, if use is made of the theory of reduced quadratic forms to find \(n \) points forming a basis of the lattice.

Theorem 2 has an analogue in three dimensions, as can be deduced from results of Davenport on the product of three linear forms, but I do not know whether such an analogue holds in more than three dimensions†.

January, 1944. I have recently extended the result of this note to more dimensions, and proved some further existence theorems.

Mathematics Department,
University of Manchester.

† I am much indebted to Prof. Mordell for his help with the manuscript.