Let \((x_1, \ldots, x_n)\) be rectangular coordinates in \(n\)-dimensional Euclidean space \(R^n\), and let \(K\) be a star body in \(R^n\), i.e. a closed bounded point set which

(a) contains the origin \(O = (0, \ldots, 0)\) of the coordinate system as an inner point, and

(b) is bounded by a continuous surface which is met by every radius vector from \(O\) in just one point.

A lattice

\[\Lambda : \quad x_h = \sum_{k=1}^{n} a_{hk} g_k \quad (h = 1, 2, \ldots, n; \ g_1, \ldots, g_n = 0, \pm 1, \pm 2, \ldots) \]

in \(R^n\), of determinant

\[\prod_{h,k=1}^{n} |a_{hk}| \neq 0, \]

is called \(K\)-admissible if \(O\) is its only point which is an inner point of \(K\).

Denote by \(\Delta(K)\) the lower bound of the determinants of all \(K\)-admissible lattices, and by \(V(K)\) the volume of \(K\).

In 1891, Minkowski found a theorem\(\ddagger\) which states, in effect, that

\[\Delta(K) \leq c_n V(K), \quad \text{where} \quad c_n = \left(E \sum_{v=1}^{\infty} v^{-n} \right)^{-1}, \]

and \(E\) is 2 or 1 according as \(K\) is, or is not, symmetrical in \(O\). From this Minkowski obtained an asymptotic formula for Hermite's constant \(\gamma_n\) connected with the minimum of a positive definite quadratic form in \(n\) variables\(\S\).

Minkowski gave a rather difficult proof of \(1\) in the special case of an \(n\)-dimensional sphere\(\|\). But he never published a proof of the general theorem, nor was any other proof known until recently. Then, last year, E. Hlawka published a paper\(\|$ which contained a very ingenious analytical proof of \(1\) and also other interesting results.

\(\dagger\) Received 17 July, 1944; read 16 November, 1944.
\(\ddagger\) Ges. Abh., 1 (1911), 265, 270, 277.
\(\S\) Hermite, Oeuvres, 1 (1906), 103 ff.; Minkowski, Ges. Abh., 1 (1911), 270.
\(\|\) Ges. Abh., 2 (1911), 94–95.
Before I knew of Hlawka’s paper, I had been trying to prove Minkowski’s theorem, and I had found a simple geometrical proof of the slightly less exact result,

\begin{equation}
\Delta(K) \leq c_n V(K), \quad \text{where } c_n = n/E.
\end{equation}

This inequality still implies Minkowski’s asymptotic formula for \(\gamma_n \); it may therefore be useful to publish the proof, which is entirely different from that of Hlawka.

I restrict myself, however, to the symmetrical case. The unsymmetrical case may be treated quite similarly, and the method holds also for infinite sets. For symmetrical convex bodies, it leads to the better value \(c_n = \frac{1}{2} \), but the true value is presumably at most of the order \(c_n = O(1/n) \).

I assume, without stating so each time, that all integrals occurring in this note exist.

1. **Notation.** Denote by \(D \) any number satisfying

\[0 < D < \Delta(K); \]

hence no lattice of determinant \(D \) is \(K \)-admissible;

by \(K_0 \) the intersection of \(K \) with the plane \(x_n = 0 \), so that \(K_0 \) is an \((n-1)\)-dimensional star body symmetrical in \(O \);

by \(\Lambda_0 \) any \(K_0 \)-admissible \((n-1)\)-dimensional lattice in the plane \(x_n = 0 \);

by \(d = |x_{hk}|_{h,k=1,2,...,n-1} \) the determinant of \(\Lambda_0 \);

by \(\xi = (\xi_1, \ldots, \xi_{n-1}) \) any point in \((n-1)\)-dimensional Euclidean space \(\mathbb{R}^{n-1} \);

by \(W \) the cube \(0 \leq \xi_1 < 1, \ldots, 0 \leq \xi_{n-1} < 1 \) in \(\mathbb{R}^{n-1} \);

by \(P_n^* \) and \(P_n^{(t)} \) the points†

\[P_n^* = (0, \ldots, 0, D/d), \quad P_n^{(t)} = \xi_1 P_1 + \ldots + \xi_{n-1} P_{n-1} + P_n^* \]

in \(\mathbb{R}^n \);

by \(\Lambda_t \) the lattice in \(\mathbb{R}^n \) of basis \(P_1, P_2, \ldots, P_{n-1}, P_n^{(t)} \)

and so of determinant \(d \times (D/d) = D \); hence this lattice is not \(K \)-admissible;

† Sums of points, or products of points into scalars, have the meaning usual in linear algebra or vector analysis.
by K_v, $v = 1, 2, 3, \ldots$, the intersection of K with the plane $x_n = vD/d$; when v is sufficiently large, then K_v is the null set, since K is bounded; by κ_v the $(n-1)$-dimensional volume

$$\kappa_v = \int \cdots \int_{K_v} dx_1 \cdots dx_{n-1}$$

of K_v; hence $\kappa_v = 0$ when v is sufficiently large.

Further, if $\xi = (\xi_1, \ldots, \xi_{n-1})$ and $\xi^0 = (\xi^0_1, \ldots, \xi^0_{n-1})$ are any two points in R_{n-1}, then we write

$$\xi \equiv \xi^0 \pmod{1}$$

as an abbreviation for the $n-1$ congruences

$$\xi_1 \equiv \xi^0_1 \pmod{1}, \ldots, \xi_{n-1} \equiv \xi^0_{n-1} \pmod{1}.$$

2. The fundamental lemma. Let $P = (x_2, \ldots, x_{n-1}, vD/d)$ describe the set K_v, and define the point $\xi = (\xi_1, \ldots, \xi_{n-1})$ in R_{n-1} by the condition

$$P = vP_n^{(v)} = v(\xi_1 P_1 + \cdots + \xi_{n-1} P_{n-1} + P_n),$$

so that

$$x_k = v \sum_{h=1}^{n-1} \xi_h x_{hk} \quad (k = 1, 2, \ldots, n-1).$$

Then ξ describes a certain set in R_{n-1}, L_v say, and this set is of volume

$$\lambda_v = \int \cdots \int_{L_v} d\xi_1 \cdots d\xi_{n-1} = \frac{\kappa_v}{d v^{n-1}},$$

since the linear equations connecting the x's with the ξ's are of determinant $v^{n-1}d$.

Next let M_v be the set of all points $(\xi_1 = \xi^1_1, \ldots, \xi^1_{n-1})$, in the cube W, for which there exist $n-1$ integers u_1, \ldots, u_{n-1} such that the point

$$P = u_1 P_1 + \cdots + u_{n-1} P_{n-1} + vP_n^{(u)}$$

$$= (u_1 + v\xi^1_1) P_1 + \cdots + (u_{n-1} + v\xi^1_{n-1}) P_{n-1} + vP_n$$

lies in K_v, and let

$$\mu_v = \int \cdots \int_{M_v} d\xi^1_1 \cdots d\xi^1_{n-1}$$

be the volume of this set. Evidently ξ^1 belongs to M_v if, and only if, the point ξ defined by

$$v\xi^1_1 = u_1 + v\xi^1_1, \ldots, v\xi^1_{n-1} = u_{n-1} + v\xi^1_{n-1}$$
is a point of L_v. Since ξ^1 lies in W, these equations imply that

$$0 \leq v_{\xi_1} - u_1 < v, \quad \ldots, \quad 0 \leq v_{\xi_{n-1}} - u_{n-1} < v,$$

and so, for any given point ξ of L_v, each of the integers u_1, \ldots, u_{n-1} has just v possible values. Hence to every point ξ of L_v there correspond at most v^{n-1} points ξ^1 of M_v, obtained by as many translations from ξ. Therefore

$$\mu_v \leq v^{n-1} \lambda_v,$$

whence, from (3),

$$(4) \quad \mu_v \leq \kappa_v/d.$$

Lemma. The volumes κ_v satisfy the inequality

$$(5) \quad \sum_{v=1}^{\infty} \kappa_v \geq d.$$

Proof. Let ξ^1 be any point in W. The lattice Λ_{ξ^1} is not K admissible and so contains at least one point

$$P = u_1 P_1 + \ldots + u_{n-1} P_{n-1} + u_n P_n^0,$$

different from O, which is an inner point of K. This point cannot lie in the plane $x_n = 0$. For in this plane Λ_{ξ^1} reduces to the $(n-1)$-dimensional lattice Λ_0 and K to the $(n-1)$-dimensional star body K_0, and, by hypothesis, Λ_0 is K_0-admissible.

Since K is symmetrical in O, both P and the symmetrical point $-P$ belong to K. Hence, without loss of generality, u_n, or v say, may be supposed positive. Then P lies in K_v, and so ξ^1 belongs to M_v.

We conclude therefore that the sets M_1, M_2, M_3, \ldots together cover the whole cube W, and so are of total volume

$$\sum_{v=1}^{\infty} \mu_v \geq 1,$$

since W has unit volume. The assertion now follows from (4).

3. **Conclusion.** Denote by T_v the cone of vertex O and base K_v, and hence of volume

$$\frac{1}{n} \times \kappa_v \times v \frac{D}{d}.$$

Further denote by T_v' the part of T_v between the two planes

$$x_n = vD/d \quad \text{and} \quad x_n = (v-1)D/d;$$
then T'_v is of volume not less than

$$\frac{1}{v} \times \left(\frac{1}{n} \times \kappa_v \times \frac{D}{d} \right) = \frac{D}{nd} \kappa_v.$$

Since K is a star body, and since K_v consists only of points of K, the cone T_v, and so also the truncated cone T'_v, are subsets of K, and the same is true for the cones $-T_v$ and $-T'_v$ symmetrical to T_v and T'_v in O. But it is obvious that no two of the truncated cones

$$T'_1, T'_2, T'_3, \ldots, -T'_1, -T'_2, -T'_3, \ldots$$

have inner points in common. Therefore, by (5),

$$V(K) \geq 2 \sum_{v=1}^{\infty} \frac{D}{nd} \kappa_v = 2 \frac{D}{nd} \sum_{v=1}^{\infty} \kappa_v \geq 2 \frac{D}{nd} \times d = \frac{2}{n} D.$$

Since D may be any number smaller than $\Lambda(K)$, the assertion (2) follows immediately.

Addition (May 1945). In a paper, "A mean value theorem in geometry of numbers", dated 8 December, 1944, which is to appear in the *Annals of Mathematics*, C. L. Siegel gives a beautiful new proof of the Minkowski-Hlawka theorem. He establishes the intimate connection of this theorem with the reduction of quadratic forms and the arithmetical theory of the group of all linear transformations, just as Minkowski had predicted.

Received 6 February, 1945; read 1 March, 1945.

ON THE EXISTENCE OF TANGENTS TO RECTIFIABLE CURVES

A. S. BESICOVITCH*

In this article I give a very simple proof, which is even independent of the theory of measure, of the existence of a tangent at almost all points of a rectifiable curve.

Lemma 1. Given two positive numbers α and β, there is a positive number γ such that, if a segment of length l subtends a simple arc S, of length less than $(1+\gamma)l$, then the points of S whose joins to other points of S form an angle greater than α with the segment all lie on a finite or enumerable set of arcs of total length at most βl.

Received 6 February, 1945; read 1 March, 1945.