LATTICE POINTS IN TWO-DIMENSIONAL STAR DOMAINS (III)

By Kurt Mahler.

[Received 14 May, 1942.—Read 21 May, 1942.]

If

\[f(x, y) = ax^2 + 2bxy + cy^2 \]

is a positive definite binary quadratic form of determinant

\[ac - b^2 = 1, \]

and \(E \) denotes the domain

\[f(x, y) \leq 1, \]

bounded by the ellipse \(f(x, y) = 1 \), then by a classical result\(^\dagger\),

\[\Delta(E) = \sqrt{\frac{8}{2}}. \]

There exists a continuous infinity of critical lattices \(\Lambda \). Every such lattice contains just six points \(\pm P_1, \pm P_2, \pm P_3 \) on the boundary of \(E \). It is possible to choose the notation such that

\[P_1 + P_2 + P_3 = 0. \]

Conversely, six arbitrary boundary points of this type generate a critical lattice, any two independent points among them forming a basis.

The present fourth chapter of this paper deals with the more complicated domain \(K \) obtained by combining two concentric ellipses each of area \(\pi \). An algorithm is developed for determining \(\Delta(K) \), which turns out to be a rather complicated function of the simultaneous invariant of the two ellipses.

A similar method can be applied to all domains obtained by combining two convex domains with centre at \(O \), e.g. the star-shaped octagon investigated by Prof. Mordell.

\(^\dagger\) Bachmann, *Quadratische Formen*, II (Leipzig und Berlin, 1923), Kap. 5.
CHAPTER IV. THE DOMAIN BOUNDED BY TWO ELLIPSES.

25. The invariant J.

Let

\[(50)\quad f_1(x, y) = a_1x^2 + 2b_1xy + c_1y^2 \quad \text{and} \quad f_2(x, y) = a_2x^2 + 2b_2xy + c_2y^2\]

be two positive definite binary quadratic forms of determinants

\[(51)\quad a_1c_1 - b_1^2 = a_2c_2 - b_2^2 = 1.\]

Further, let

\[(52)\quad J = a_1c_2 - 2b_1b_2 + c_1a_2\]

be the simultaneous invariant of these two forms. If an affine transformation of determinant unity,

\[(53)\quad x = ax' + \beta y', \quad y = \gamma x' + \delta y', \quad \text{where} \quad a\delta - \beta\gamma = 1,\]

changes f_1 and f_2 into the new forms

\[f'_1(x', y') = a'_1x'^2 + 2b'_1x'y' + c'_1y'^2\]

and

\[f'_2(x', y') = a'_2x'^2 + 2b'_2x'y' + c'_2y'^2,\]

then by the invariantive property of the determinants and of J,

\[a'_1c'_1 - b'_1^2 = a'_2c'_2 - b'_2^2 = 1, \quad a'_1c'_2 - 2b'_1b'_2 + c'_1a'_2 = J.\]

It is always possible to choose the transformation (53) so that f'_1 and f'_2 take the canonical forms

\[(54)\quad f'_1(x', y') = x'^2 + y'^2 \quad \text{and} \quad f'_2(x', y') = \lambda x'^2 + \frac{1}{\lambda} y'^2,\]

where λ is a positive number. In this case

\[(55)\quad J = \lambda + \frac{1}{\lambda}.\]

I assume in this chapter that f_1 and f_2, and so also f'_1 and f'_2, are not identical. Hence $\lambda \neq 1$, and therefore, from (55),

\[(56)\quad J > 2.\]

We may further suppose without loss of generality that $\lambda > 1$.
26. *The domain K.*

Let now K be the domain of all points (x, y) satisfying at least one of the two inequalities

$$f_1(x, y) \leq 1 \quad \text{and} \quad f_2(x, y) \leq 1.$$

Hence K is formed by combining two concentric ellipses each of area π. It is evident that K is a simple star domain; we can then consider the lower bound $\Delta(K)$.

The affine transformation (53) changes K into a domain K' formed by the points (x', y') satisfying at least one of the inequalities

$$f_1'(x', y') \leq 1 \quad \text{and} \quad f_2'(x', y') \leq 1.$$

Hence K' is of the same type as K.

We can assert that

$$\Delta(K) = \Delta(K').$$

For (53) changes K-admissible lattices into K'-admissible lattices, and critical lattices of K into critical lattices of K'; and it leaves the determinant of two points and so also the determinant of a lattice invariant.

Choose the transformation (53) so that f_1, f_2 change into the two forms (54). Then K' becomes the set of all points (x', y') for which at least one of the inequalities

$$x'^2 + y'^2 \leq 1 \quad \text{and} \quad \lambda x'^2 + \frac{1}{\lambda} y'^2 \leq 1$$

holds. Here λ is determined uniquely as a function of J by

$$\lambda = \frac{J + \sqrt{(J^2 - 4)}}{2}.$$

Hence the lower bound $\Delta(K) = \Delta(K')$ becomes a function of J, say

$$\Delta(K) = D(J).$$

27. *A property of the critical lattices.*

By the last paragraph, we may assume from now on that

$$f_1(x, y) = x^2 + y^2, \quad f_2(x, y) = \lambda x^2 + \frac{1}{\lambda} y^2.$$

The two ellipses $f_1 = 1$ and $f_2 = 1$ intersect at the four points

$$Q_1: (\mu, \nu), \quad Q_2: (-\mu, \nu), \quad Q_3: (-\mu, -\nu), \quad Q_4: (\mu, -\nu),$$

where

$$\mu = \sqrt{\left(\frac{1}{\lambda+1}\right)}, \quad \nu = \sqrt{\left(\frac{\lambda}{\lambda+1}\right)}.$$
Denote by C_1 and C_2 those arcs of $f_1 = 1$ and $f_2 = 1$, respectively, which together form the boundary $C = C_1 + C_2$ of K. Hence, on describing C in a positive direction, the arc of C

- from Q_4 to Q_1 belongs to C_1,
- from Q_1 to Q_2 belongs to C_2,
- from Q_2 to Q_3 belongs to C_1,
- from Q_3 to Q_4 belongs to C_2.

We use the convention of counting every one of the four points Q_1, Q_2, Q_3, Q_4 twice, once in C_1 and once in C_2.

The affine transformation of determinant unity,

$$x \to \lambda^{-1} y, \quad y \to \lambda^t x,$$

evidently transforms K into itself, interchanges the parts C_1 and C_2 of C, and permutes the points Q_1, Q_2, Q_3, Q_4 cyclically, and by the last paragraph it changes critical lattices again into critical lattices. Hence to every critical lattice with just m points on C_1 and n points on C_2 there corresponds a second critical lattice with just n points on C_1 and m points on C_2.

Theorem 23. A critical lattice Λ of K has at most six points on C_1. If it contains six points on C_1, then these are of the form $\pm P_1, \pm P_2, \pm P_3$, where $P_1 + P_2 + P_3 = 0$. Further,

$$\Delta(\Lambda) = d(\Lambda) = \sqrt{2},$$

and there are also six lattice points of the same type on C_2.

Proof. The lattice Λ is admissible with respect to the circle $f_1 \leq 1$, and so, by the introduction, cannot contain more than six points on its boundary. If it has six points on C_1, then these are of the mentioned form, and the lattice is critical with respect to the circle; hence (60) is satisfied. Then Λ must also be critical with respect to the ellipse $f_2 \leq 1$; for otherwise, since $d(\Lambda) = \sqrt{2}$, at least one lattice point $P \neq 0$ would be an inner point of the ellipse and so also an inner point of K. Hence there are also exactly six points of Λ on C_2.

Theorem 24. Let Λ be a critical lattice with less than six points on C_1. Then there are just four lattice points $\pm P_1, \pm P_2$ on C_1, and four lattice points $\pm P_3, \pm P_4$ on C_2.

† It is possible for some of the lattice points on C_1 to be identical with lattice points on C_2. This happens when some of the points Q_1, Q_2, Q_3, Q_4 are lattice points.
Proof. First, let Λ be a singular lattice. Then, by Theorem 14, its only points on C are Q_1, Q_2, Q_3, Q_4; the assertion is therefore true. Secondly, let Λ be regular; then it has at least six points on C. We may assume, by the last theorem, that there are just four points of Λ on C_1; otherwise we apply the transformation (59) and thus obtain a regular lattice with this property.

Let, then, the four lattice points on C_1 be $\pm P_1$, $\pm P_2$, and assume that there are only two symmetrical lattice points $\pm P_3$ on C_2. Then at most one of the two pairs of symmetrical points Q_1, Q_3 and Q_2, Q_4 belong to Λ. Hence there exists a sufficiently small angle α such that the rotation

$$x \rightarrow x \cos \alpha - y \sin \alpha, \quad y \rightarrow x \sin \alpha + y \cos \alpha$$

changes Λ into a new lattice Λ^\times with only four points $\pm P_1^\times$, $\pm P_2^\times$ on C_1 and containing no further points $P \neq O$ of K. This lattice is therefore K-admissible, but not critical. Hence there exist lattices of smaller determinants. But this is impossible, since obviously $d(\Lambda^\times) = d(\Lambda)$.

By Theorem 11, any two points of Λ on C_1, or any two such points on C_2, form a basis. Hence, if for brevity we write

$$(61) \quad Y = D(J), \quad \text{then} \quad \sqrt{3} \leq Y \leq 1.$$

For K contains the circle $f_1 = 1$; further, $|\langle P, Q \rangle| \leq 1$ for any two points P and Q on C_1, or on C_2.

28. A sufficient condition for admissible lattices.

The construction of the critical lattices of K makes use of

THEOREM 25. Suppose that the lattice Λ of determinant

$$d(\Lambda) \geq \sqrt{3}$$

has a basis consisting of two points P_1, P_2 on $f_1 = 1$, and a second basis consisting of two points P_3, P_4 on $f_2 = 1$. Then Λ is K-admissible.

Proof. It suffices to show that no lattice point $P \neq O$ is an inner point of $f_2 = 1$; the analogous result for $f_1 \leq 1$ is proved similarly.

Every point $P: (x, y)$ can be written as

$$P = uP_3 + vP_4, \quad \text{where} \quad u = \frac{\langle P, P_3 \rangle}{\langle P_3, P_4 \rangle}, \quad v = -\frac{\langle P, P_4 \rangle}{\langle P_3, P_4 \rangle}.$$
The new coordinates u, v are integers if, and only if, P is a lattice point. The result of replacing x, y by u, v is that f_2 takes the form

$$f_2(x, y) = f_2^*(u, v) = u^2 + 2uw + v^2,$$

since the two points $u = 1, v = 0$ and $u = 0, v = 1$ lie on $f_2^* = 1$. By the invariance property of the determinant of a quadratic form,

$$1 - s^2 = (P_3, P_4)^2 = d(\Lambda)^2 \geq \frac{3}{2},$$

so that

$$-\frac{1}{2} \leq s \leq \frac{1}{2}.$$

Hence f_2^* is a reduced form†. Its minimum for integral u, v not both zero is then 1, as asserted.

Henceforth let $S(J)$ be the set of lattices Λ with the following properties:

(a) Λ has a basis P_1, P_2 on $f_1 = 1$, and a basis P_3, P_4 on $f_2 = 1$.

(b) The determinant $d(\Lambda) \geq \sqrt{\frac{3}{2}}$.

We shall prove later that $S(J)$ has only a finite number of elements, say the lattices

$$\Lambda_1, \Lambda_2, ..., \Lambda_n.$$

By Theorem 25, these lattices are K-admissible; by Theorems 23 and 24, all critical lattices Λ belong to $S(J)$. Hence

$$D(J) = \min_{r=1, 2, ..., n} d(\Lambda_r),$$

and so the critical lattices of K are just those elements Λ_r of $S(J)$ for which $d(\Lambda_r)$ assumes the minimum value $D(J)$.

29. Construction of the set $S(J)$.

Let Λ be a lattice in $S(J)$. We may assume, without loss of generality, that the two bases

$$P_1: (x_1, y_1), P_2: (x_2, y_2) \quad \text{and} \quad P_3: (x_3, y_3), P_4: (x_4, y_4)$$

of Λ satisfy the inequalities

$$\begin{align*}
(P_1, P_2) &> 0 \quad \text{and} \quad (P_3, P_4) > 0;
\end{align*}$$

† See footnote †, page 108.
(68) \[d(\Lambda) = (P_1, P_2) = (P_3, P_4) = x_1 y_2 - x_2 y_1 = x_3 y_4 - x_4 y_3. \]

The inequalities (67) remain satisfied if the pair of points \(P_1, P_2 \) is replaced by one of the four pairs

\[P_1, P_2, \quad P_2, -P_1, \quad -P_1, -P_2, \quad \text{or} \quad -P_2, P_1; \]

and if the pair of points \(P_3, P_4 \) is replaced by one of the four pairs

\[P_3, P_4, \quad P_4, -P_3, \quad -P_3, -P_4, \quad \text{or} \quad -P_4, P_3. \]

This gives a set \(\Omega \) of \(4 \times 4 = 16 \) pairs of bases of \(\Lambda \).

By the basis property and by (68), there are four integers \(a_1, \beta_1, a_2, \beta_2 \) such that

(69) \[P_3 = a_1 P_1 + \beta_1 P_2, \quad P_4 = a_2 P_1 + \beta_2 P_2, \quad a_1 \beta_2 - a_2 \beta_1 = +1. \]

When the pair of bases \(P_1, P_2 \) and \(P_3, P_4 \) is replaced by one of the other pairs in \(\Omega \), then \(a_1, \beta_1, a_2, \beta_2 \) undergo certain permutations and changes of signs, for which I refer to the following table.

The 16 elements of \(\Omega \).

<table>
<thead>
<tr>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(P_3)</th>
<th>(P_4)</th>
<th>(a_1)</th>
<th>(\beta_1)</th>
<th>(a_2)</th>
<th>(\beta_2)</th>
<th>(X)</th>
<th>(Y)</th>
<th>(u)</th>
<th>(v)</th>
<th>(s)</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>(P_2)</td>
<td>(P_3)</td>
<td>(P_4)</td>
<td>(-a_1)</td>
<td>(-\beta_1)</td>
<td>(-a_1)</td>
<td>(-\beta_1)</td>
<td>(X)</td>
<td>(Y)</td>
<td>(v)</td>
<td>(-u)</td>
<td>(-s)</td>
<td>2</td>
</tr>
<tr>
<td>(P_1)</td>
<td>(P_2)</td>
<td>(P_3)</td>
<td>(-P_4)</td>
<td>(a_2)</td>
<td>(\beta_2)</td>
<td>(-a_2)</td>
<td>(-\beta_2)</td>
<td>(X)</td>
<td>(Y)</td>
<td>(-u)</td>
<td>(-v)</td>
<td>(s)</td>
<td>3</td>
</tr>
<tr>
<td>(P_1)</td>
<td>(P_2)</td>
<td>(-P_3)</td>
<td>(-P_4)</td>
<td>(-a_2)</td>
<td>(-\beta_2)</td>
<td>(a_2)</td>
<td>(\beta_2)</td>
<td>(X)</td>
<td>(-Y)</td>
<td>(-v)</td>
<td>(u)</td>
<td>(-s)</td>
<td>4</td>
</tr>
<tr>
<td>(P_1)</td>
<td>(-P_2)</td>
<td>(P_3)</td>
<td>(P_4)</td>
<td>(\beta_1)</td>
<td>(-a_1)</td>
<td>(-\beta_1)</td>
<td>(-a_2)</td>
<td>(-X)</td>
<td>(Y)</td>
<td>(u)</td>
<td>(v)</td>
<td>(s)</td>
<td>5</td>
</tr>
<tr>
<td>(P_1)</td>
<td>(-P_2)</td>
<td>(P_3)</td>
<td>(-P_4)</td>
<td>(\beta_2)</td>
<td>(-a_2)</td>
<td>(-\beta_2)</td>
<td>(a_1)</td>
<td>(-X)</td>
<td>(Y)</td>
<td>(-u)</td>
<td>(-v)</td>
<td>(s)</td>
<td>6</td>
</tr>
<tr>
<td>(P_2)</td>
<td>(-P_1)</td>
<td>(P_3)</td>
<td>(P_4)</td>
<td>(-a_1)</td>
<td>(-\beta_1)</td>
<td>(a_1)</td>
<td>(\beta_1)</td>
<td>(-a_2)</td>
<td>(-X)</td>
<td>(-Y)</td>
<td>(-u)</td>
<td>(-v)</td>
<td>(s)</td>
</tr>
<tr>
<td>(P_2)</td>
<td>(-P_1)</td>
<td>(-P_3)</td>
<td>(-P_4)</td>
<td>(-a_2)</td>
<td>(-\beta_2)</td>
<td>(a_2)</td>
<td>(\beta_2)</td>
<td>(-a_1)</td>
<td>(-X)</td>
<td>(-Y)</td>
<td>(-u)</td>
<td>(-v)</td>
<td>(-s)</td>
</tr>
<tr>
<td>(-P_1)</td>
<td>(-P_2)</td>
<td>(-P_3)</td>
<td>(-P_4)</td>
<td>(a_1)</td>
<td>(\beta_1)</td>
<td>(-a_2)</td>
<td>(-\beta_2)</td>
<td>(X)</td>
<td>(Y)</td>
<td>(v)</td>
<td>(-u)</td>
<td>(-s)</td>
<td>9</td>
</tr>
<tr>
<td>(-P_1)</td>
<td>(-P_2)</td>
<td>(-P_3)</td>
<td>(-P_4)</td>
<td>(a_2)</td>
<td>(\beta_2)</td>
<td>(-a_2)</td>
<td>(-\beta_2)</td>
<td>(X)</td>
<td>(Y)</td>
<td>(u)</td>
<td>(-v)</td>
<td>(-s)</td>
<td>10</td>
</tr>
<tr>
<td>(-P_1)</td>
<td>(-P_2)</td>
<td>(-P_4)</td>
<td>(-P_4)</td>
<td>(a_1)</td>
<td>(\beta_1)</td>
<td>(a_2)</td>
<td>(\beta_2)</td>
<td>(-a_1)</td>
<td>(-X)</td>
<td>(-Y)</td>
<td>(-u)</td>
<td>(-v)</td>
<td>(s)</td>
</tr>
<tr>
<td>(-P_1)</td>
<td>(-P_2)</td>
<td>(-P_3)</td>
<td>(-P_3)</td>
<td>(-a_1)</td>
<td>(-\beta_1)</td>
<td>(-a_2)</td>
<td>(-\beta_2)</td>
<td>(X)</td>
<td>(Y)</td>
<td>(-u)</td>
<td>(-v)</td>
<td>(-s)</td>
<td>12</td>
</tr>
<tr>
<td>(-P_1)</td>
<td>(-P_2)</td>
<td>(P_3)</td>
<td>(P_4)</td>
<td>(a_1)</td>
<td>(\beta_1)</td>
<td>(-a_2)</td>
<td>(-\beta_2)</td>
<td>(-a_1)</td>
<td>(-X)</td>
<td>(Y)</td>
<td>(v)</td>
<td>(-u)</td>
<td>(-s)</td>
</tr>
<tr>
<td>(-P_1)</td>
<td>(-P_2)</td>
<td>(P_3)</td>
<td>(-P_4)</td>
<td>(a_2)</td>
<td>(\beta_2)</td>
<td>(-a_2)</td>
<td>(-\beta_2)</td>
<td>(-a_1)</td>
<td>(-X)</td>
<td>(Y)</td>
<td>(-u)</td>
<td>(-v)</td>
<td>(-s)</td>
</tr>
<tr>
<td>(-P_1)</td>
<td>(-P_2)</td>
<td>(-P_3)</td>
<td>(-P_4)</td>
<td>(a_1)</td>
<td>(-\beta_1)</td>
<td>(-a_2)</td>
<td>(-\beta_2)</td>
<td>(-a_1)</td>
<td>(-X)</td>
<td>(-Y)</td>
<td>(-u)</td>
<td>(-v)</td>
<td>(-s)</td>
</tr>
<tr>
<td>(-P_2)</td>
<td>(-P_1)</td>
<td>(P_4)</td>
<td>(P_4)</td>
<td>(-a_1)</td>
<td>(-\beta_1)</td>
<td>(-a_2)</td>
<td>(-\beta_2)</td>
<td>(-a_1)</td>
<td>(-X)</td>
<td>(Y)</td>
<td>(-u)</td>
<td>(-v)</td>
<td>(-s)</td>
</tr>
</tbody>
</table>
Let a new system of rectangular coordinates U, V be defined by

$$x = x_1 U - y_1 V, \quad y = y_1 U + x_1 V,$$

or conversely, since $x_1^2 + y_1^2 = 1$,

$$U = x_1 x + y_1 y, \quad V = -y_1 x + x_1 y.$$

In this system, P_1 and P_2 have the coordinates

$$U_1 = 1, \quad V_1 = 0 \quad \text{and} \quad U_2 = X = x_1 x_2 + y_1 y_2, \quad V_2 = Y = x_1 y_2 - x_2 y_1.$$

Here

$$X^2 + Y^2 = 1, \quad Y = d(\Lambda) > 0.$$

Further, by (69), the coordinates of P_3 and P_4 are given by

$$U_3 = a_1 + \beta_1 X, \quad V_3 = \beta_1 Y \quad \text{and} \quad U_4 = a_2 + \beta_2 X, \quad V_4 = \beta_2 Y.$$

Finally, if, as in §28, we introduce u, v by (62), then

$$U = (a_1 + \beta_1 X) u + (a_2 + \beta_2 X) v, \quad V = \beta_1 X u + \beta_2 Y v,$$

and so, on solving for u and v, we have

$$Y u = +\beta_2 Y U - (a_2 + \beta_2 X) V.$$

I refer to the last table for the changes of these numbers $a_1, \beta_1, a_2, \beta_2, X, Y, u, v$, when the pair of bases P_1, P_2 and P_3, P_4 is replaced by another pair in Ω.

By §28, f_2 takes the form (63) in u and v. By (64) and (72),

$$s = eX, \quad \text{where} \quad e = \pm 1.$$

An inspection of the table shows that it is always possible to choose the pair of bases P_1, P_2 and P_3, P_4 in Ω so that the following inequalities are satisfied:

$$X > 0, \quad s > 0, \quad a_1 > 0.$$

Therefore, in particular,

$$s = X.$$

Replace u and v by U and V. Then f_2 changes into

$$f_2(x, y) = F_2(U, V) = AU^2 + 2BUV + CV^2.$$
where, by (63), (73), and (76),

\[
A = \beta_1^2 - 2\beta_1 \beta_2 X + \beta_2^2,
\]

(78) \[
YB = -\beta_1(a_1 + \beta_1 X) + X(\beta_2(a_1 + \beta_1 X) + \beta_1(a_2 + \beta_2 X)) - \beta_2(a_2 + \beta_2 X),
\]

\[
Y^2C = (a_1 + \beta_1 X)^2 - 2(a_1 + \beta_1 X)(a_2 + \beta_2 X)X + (a_2 + \beta_2 X)^2.
\]

Further, since the change from \(x, y\) to \(U, V\) is an orthogonal transformation,

\[
f_1(x, y) = F_1(U, V) = U^2 + V^2.
\]

Hence the simultaneous invariant

\[
J = A + C,
\]

so that, by (72) and (78),

(79) \[
(a_1^2 + \alpha_2^2 + \beta_1^2 + \beta_2^2 - J) - 2(a_1 - \beta_2)(a_{2} - \beta_1)X
\]

\[
- \{2(a_1 \beta_2 + a_2 \beta_1) - J\} X^2 = 0.
\]

For given \(J\), this is a quadratic equation for \(X\). It does not reduce to an identity, for then

\[
a_1^2 + \alpha_2^2 + \beta_1^2 + \beta_2^2 = J, \quad 2(a_1 \beta_2 + a_2 \beta_1) = J;
\]

hence

\[
(a_1 - \beta_2)^2 + (a_2 - \beta_1)^2 = 0,
\]

and since \(a_1 \geq 0\), \(a_1 \beta_2 - a_2 \beta_1 = 1, \quad a_1 = \beta_2 = 1, \quad a_2 = \beta_1 = 0, \quad J = 2.
\]

This value of \(J\) was, however, excluded by § 25.

By the assumption \((b)\) in § 28, and by (72) and (75),

\[
0 \leq X \leq \frac{1}{4}.
\]

(80)

Suppose now, conversely, that (79) has a solution \(X\) satisfying these inequalities. Then the coefficients \(A, B, C\) of \(F\) are given by (78), with

(81)

\[
Y = |\sqrt{(1-X^2)}|.
\]

We further obtain the \((U, V)\)-coordinates of \(P_1, P_2, P_3, P_4\) from their expressions as functions of \(a_1, \beta_1, a_2, \beta_2, X, Y\). There remains the reduction of \(F_1(U, V)\) and \(F_2(U, V)\) to the normal form (54) by means of an orthogonal transformation (71); this problem is dealt with in the theory of conics. After this reduction, the \((x, y)\)-coordinates of \(P_1, P_2, P_3, P_4\) and so the lattice \(\Lambda\) are known.

Therefore, in order to construct all elements of \(S(J)\), it suffices to solve (79) with respect to \(X\). Here the coefficients \(a_1, \beta_1, a_2, \beta_2\) must take all integral values with

\[
a_1 \geq 0, \quad a_1 \beta_2 - a_2 \beta_1 = 1,
\]

for which both (79) and (80) can be satisfied.
30. The finiteness of \(S(J) \).

Theorem 26. The set \(S(J) \) has only a finite number of elements.

Proof. It suffices to show that the conditions (79) and (80) are solvable for at most a finite number of sets of integers \(a_1, \beta_1, a_2, \beta_2 \).

The equation (79) can be written as

\[
\Phi(X; a_1, \beta_1, a_2, \beta_2) = J,
\]

where

\[
\Phi(X; a_1, \beta_1, a_2, \beta_2) = \frac{(a_1^2 + \beta_1^2 + a_2^2 + \beta_2^2) - 2(a_1 - \beta_1)(a_2 - \beta_2)X - 2(a_1 \beta_2 + a_2 \beta_1)X^2}{1 - X^2}.
\]

This expression \(\Phi \) is a positive definite quadratic form in \(a_1, \beta_1, a_2, \beta_2 \); for it can be written as

\[
\Phi(X; a_1, \beta_1, a_2, \beta_2) = \frac{1}{1 - X^2} (a_1 - X^2 \beta_2 - X a_2 + X \beta_1)^2 + (1 + X^2) \left(\beta_2 + \frac{X}{1 + X^2} a_2 - \frac{X}{1 + X^2} \beta_1 \right)^2 + \frac{1}{1 + X^2} (a_2 + X^2 \beta_1)^2 + (1 - X^2) \beta_1^2.
\]

From this identity, by (80),

\[
\Phi(X; a_1, \beta_1, a_2, \beta_2) \geq (1 - X^2) \beta_1^2 \geq \frac{3}{2} \beta_1^2.
\]

Further, from the definition of \(\Phi \),

\[
\Phi(X; a_1, \beta_1, a_2, \beta_2) = \Phi(X; \beta_1, a_1, \beta_2, a_2) = \Phi(X; a_2, \beta_2, a_1, \beta_1) = \Phi(X; \beta_2, a_2, \beta_1, a_1).
\]

Hence \(\beta_1 \) may be replaced by \(a_1, \beta_1, a_2, \beta_2 \) in the last inequality, and so, by (83),

\[
\max (a_1^2, \beta_1^2, a_2^2, \beta_2^2) \leq \frac{4J}{3},
\]

which proves the assertion.

Let then \(\Lambda_\nu \) \((\nu = 1, 2, \ldots, n) \) be the elements of \(S(J) \); let

\[
a^{(\nu)}_1, \beta^{(\nu)}_1, a^{(\nu)}_2, \beta^{(\nu)}_2 \quad (\nu = 1, 2, \ldots, n)
\]

be the sets of four integers; and let

\[
\Phi_\nu(X) = \Phi(X; a^{(\nu)}_1, \beta^{(\nu)}_1, a^{(\nu)}_2, \beta^{(\nu)}_2) \quad (\nu = 1, 2, \ldots, n)
\]

be the functions belonging to these lattices. The following table contains all functions \(\Phi_\nu \) which represent at least one value of \(J \) in \(2 \leq J \leq 25 \) for an argument \(X \) in \(0 \leq X \leq \frac{1}{2} \).
Table of all functions Φ which represent J for $J \leq 25$.

<table>
<thead>
<tr>
<th>$\Phi(\xi)$</th>
<th>$(1-X^2)\Phi(X; a_1, b_1, a_2, b_2)$</th>
<th>a_1</th>
<th>β_1</th>
<th>σ_1</th>
<th>β_2</th>
<th>a_2</th>
<th>β_1</th>
<th>σ_2</th>
<th>β_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$2-2X^2$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>$-4X+2X^2$</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>$6-8X+2X^2$</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>5</td>
<td>$7-12X+6X^2$</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>6</td>
<td>$3+4X+2X^2$</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>7</td>
<td>$1-2X^2$</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>$6-6X^2$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>$11-12X+2X^2$</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>10</td>
<td>$15-24X+10X^2$</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>11</td>
<td>$18-32X+14X^2$</td>
<td>1</td>
<td>-2</td>
<td>2</td>
<td>-3</td>
<td>3</td>
<td>-2</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>12</td>
<td>$6+8X+2X^2$</td>
<td>0</td>
<td>1</td>
<td>-2</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>13</td>
<td>$11-2X^2$</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>$15-4X-10X^2$</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>$18-16X+2X^2$</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>4</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>$27-40X+14X^2$</td>
<td>1</td>
<td>-4</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>-1</td>
<td>4</td>
<td>-3</td>
</tr>
<tr>
<td>17</td>
<td>$38-72X+34X^2$</td>
<td>2</td>
<td>-3</td>
<td>3</td>
<td>-4</td>
<td>4</td>
<td>-3</td>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>18</td>
<td>$7+12X+6X^2$</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>19</td>
<td>$15+4X-10X^2$</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>$18-14X^2$</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-3</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>$34-48X+18X^2$</td>
<td>2</td>
<td>-5</td>
<td>1</td>
<td>-2</td>
<td>2</td>
<td>-1</td>
<td>5</td>
<td>-2</td>
</tr>
<tr>
<td>22</td>
<td>$39-60X+22X^2$</td>
<td>1</td>
<td>-3</td>
<td>2</td>
<td>-5</td>
<td>1</td>
<td>-2</td>
<td>3</td>
<td>-5</td>
</tr>
<tr>
<td>23</td>
<td>$47-84X+38X^2$</td>
<td>3</td>
<td>-5</td>
<td>2</td>
<td>-3</td>
<td>3</td>
<td>-2</td>
<td>5</td>
<td>-3</td>
</tr>
<tr>
<td>24</td>
<td>$11+12X+2X^2$</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>$18-2X^2$</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>$27-20X+2X^3$</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>5</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-5</td>
</tr>
<tr>
<td>27</td>
<td>$27-12X-14X^2$</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>-1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>28</td>
<td>$43-60X+18X^2$</td>
<td>1</td>
<td>-5</td>
<td>1</td>
<td>-4</td>
<td>1</td>
<td>-1</td>
<td>5</td>
<td>-4</td>
</tr>
<tr>
<td>29</td>
<td>$66-128X+62X^2$</td>
<td>3</td>
<td>-4</td>
<td>4</td>
<td>-5</td>
<td>5</td>
<td>-4</td>
<td>4</td>
<td>-3</td>
</tr>
</tbody>
</table>

Excluded case.

Singular lattices.
As this table shows, there are in general two, three, or four systems of integers \(a_1^{(\nu)}, \beta_1^{(\nu)}, a_2^{(\nu)}, \beta_2^{(\nu)}\) belonging to the same function \(\Phi_\nu\) and so also an equal number of lattices \(\Lambda_\nu\).† It is easily seen that if there are different critical lattices belonging to the same function \(\Phi_\nu\), then these are transformed into one another by the group \(G\) of order \(4\) generated by the following two affine transformations:

The symmetry in the y-axis,

A: \(x \to -x, \ y \to y\).

The interchange of \(f_1 = 1\) and \(f_2 = 1\),

B: \(x \to \lambda^{-1}y, \ y \to \lambda^1x\).

For A replaces the integers \(a_1, \beta_1, a_2, \beta_2\) by

\(\epsilon \beta_2, \ \epsilon a_2, \ \epsilon \beta_1, \ \epsilon a_1\),

where \(\epsilon = \pm 1\) is such that \(\epsilon \beta_2 \geq 0\), and B replaces them by

\(a_1, -a_2, -\beta_1, \ \beta_2\).

From now on, two critical lattices are considered as equivalent if they are related by an element of this group \(G\); equivalent lattices belong to the same function \(\Phi_\nu\).

31. The value of \(D(J)\) for \(2 \leq J \leq 25\).

By formula (66) in § 28,

\[D(J) = \min_{\nu=1, 2, \ldots, n} d(\Lambda_\nu).\]

Hence, if

\[Y = D(J), \ X = |\sqrt{(1-Y^2)}|, \text{ and } Y_\nu = d(\Lambda_\nu), \ X_\nu = |\sqrt{(1-Y_\nu^2)}|,\]

then

\[(85) \quad \Phi_\nu(X_\nu) = J, \ 0 \leq X_\nu \leq \frac{1}{2},\]

\[(86) \quad X = \max_{\nu=1, 2, \ldots, n} X_\nu.\]

† Two systems of integers

\(0, 1, -1, \beta^{(\nu)}\) and \(0, -1, 1, -\beta^{(\nu)}\)

are interchanged by elements of \(\Omega\) (§ 29) and generate the same lattice.
By a study of the last table I find that for every \(J \) in \(2 \leq J \leq 25 \) and for every \(\Phi_\ast \) there is at most one solution \(X_\ast \) of (85). Further, most of these solutions \(X_\ast \) can be ignored for the following reasons.

The rows of the table have been arranged in sets of functions

\[(1-X^2)\Phi_\ast(X)\]

so that \(\Phi_\ast(\frac{1}{2}) \) is the same in each set. It was also found possible to arrange the rows according to increasing values of these functions for variable values of \(X \); e.g., in the second set,

\[
\frac{2+2X^2}{1-X^2} < \frac{3-2X^2}{1-X^2} < \frac{6-8X+2X^2}{1-X^2} < \frac{7-12X+8X^2}{1-X^2} \quad \text{for} \quad 0 \leq X \leq \frac{1}{2}.
\]

Hence, for a given value of \(J \) in \(2 \leq J \leq 25 \), the maximum \(X = X_\ast \) belongs to one of those 11 equations

\[\Phi_\ast(X_\ast) = J\]

in which the function \(\Phi_\ast \) is either at the beginning or at the end of one of the 6 sets of rows of the table. There is no difficulty in deciding which is the largest of these solutions \(X_\ast \). The result depends on the value of \(J \), and is given in the following table. This table further contains the minimum determinant

\[D(J) = \Delta(K)\]

and the corresponding critical lattice\(^\dagger\).

In the table, the numbers \(\sigma_k \) are defined thus:

\[\sigma_0 = 2, \quad \sigma_1 = \frac{14}{2}, \quad \sigma_2 = \frac{3}{2}, \quad \sigma_3 = 14, \quad \sigma_4 = \frac{5}{2}, \quad \sigma_5 = \frac{7}{2};\]

and \(J_n \) is defined thus

\[J_1 = \frac{3}{5}, \quad J_2 = \frac{3+14\sqrt{3}}{6}, \quad J_3 = 10, \quad J_4 = \frac{178+576\sqrt{14}}{143}, \quad J_5 = \frac{63+88\sqrt{7}}{14}.
\]

\(\dagger\) If there exist several critical lattices, then they are all equivalent to the one given, except when \(J \) is one of the numbers \(\sigma_\ast \) or \(J_\ast \).
$D(J)$ and critical lattices for $2 \leq J \leq 25.$

<table>
<thead>
<tr>
<th>No.</th>
<th>Interval.</th>
<th>$(1 - X^2) Y =$</th>
<th>$X =$</th>
<th>$D(J) = Y =$</th>
<th>Critical lattice.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\sigma_6 < J < J_1$</td>
<td>$3 - 4X + 2X^2$</td>
<td>$\frac{2 - (J^2 - J - 2)}{J + 2}$</td>
<td>$\frac{(5J + 2 + 4(J^2 - J - 2)^2)}{J + 2}$</td>
<td>$P_1 = P_3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$P_4 = -P_1 + P_3$.</td>
</tr>
<tr>
<td>2</td>
<td>$J_1 < J < \sigma_1$</td>
<td>$2 + 2X^2$</td>
<td>$\frac{(J - 2)^4}{(J + 2)^4}$</td>
<td>$2(J + 2)^{-4}$</td>
<td>$P_4 = P_1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$P_3 = P_1$.</td>
</tr>
<tr>
<td>3</td>
<td>$\sigma_1 < J < J_2$</td>
<td>$7 - 12X + 6X^2$</td>
<td>$\frac{6 - (J^2 - J - 6)^4}{J + 6}$</td>
<td>$\frac{(13J + 6 + 12(J^2 - J - 6)^4)}{J + 6}$</td>
<td>$P_4 = P_1 - 2P_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$P_3 = P_1 - P_2$.</td>
</tr>
<tr>
<td>4</td>
<td>$J_2 < J < \sigma_2$</td>
<td>$3 + 4X + 2X^2$</td>
<td>$\frac{-2 + (J^2 - J - 2)^4}{J + 2}$</td>
<td>$\frac{(5J + 2 + 4(J^2 - J - 2)^2)}{J + 2}$</td>
<td>$P_3 = P_1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$P_4 = -P_1$.</td>
</tr>
<tr>
<td>5</td>
<td>$\sigma_2 < J < J_3$</td>
<td>$18 - 32X + 14X^2$</td>
<td>$\frac{J - 18}{J + 14}$</td>
<td>$8(J - 2)^4$</td>
<td>$P_3 = P_1 - 2P_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$P_4 = 2P_1 - 3P_2$.</td>
</tr>
<tr>
<td>6</td>
<td>$J_3 < J < \sigma_2$</td>
<td>$6 + 8X + 2X^2$</td>
<td>$\frac{J - 6}{J + 2}$</td>
<td>$4(J - 2)^4$</td>
<td>$P_4 = P_1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$P_3 = -P_1 - 2P_2$.</td>
</tr>
<tr>
<td>7</td>
<td>$\sigma_3 < J < J_4$</td>
<td>$38 - 72X + 34X^2$</td>
<td>$\frac{-J - 38}{J + 34}$</td>
<td>$12(J - 2)^4$</td>
<td>$P_3 = 2P_1 - 3P_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$P_4 = 3P_1 - 4P_2$.</td>
</tr>
<tr>
<td>8</td>
<td>$J_4 < J < \sigma_4$</td>
<td>$7 + 12X + 6X^2$</td>
<td>$\frac{-6 + (J^2 - J - 0)^2}{J + 6}$</td>
<td>$\frac{(13J + 6 + 12(J^2 - J - 6)^2)}{J + 6}$</td>
<td>$P_3 = P_1 + 2P_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$P_4 = -P_1 - P_2$.</td>
</tr>
<tr>
<td>9</td>
<td>$\sigma_4 < J < J_5$</td>
<td>$47 - 84X + 38X^2$</td>
<td>$\frac{42 - (J^2 - 9J - 22)^2}{J + 38}$</td>
<td>$\frac{(85J - 298 + 84(J^2 - 9J - 22)^2)}{J + 38}$</td>
<td>$P_3 = 3P_1 - 3P_3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$P_4 = 2P_1 - 3P_2$.</td>
</tr>
<tr>
<td>10</td>
<td>$J_5 < J < \sigma_5$</td>
<td>$11 + 12X + 2X^2$</td>
<td>$\frac{-6 + (J^2 - 9J + 14)^2}{J + 2}$</td>
<td>$\frac{(13J - 46 + 12(J^2 - 9J + 14)^2)}{J + 2}$</td>
<td>$P_3 = P_1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$P_4 = -P_1 - 3P_2$.</td>
</tr>
<tr>
<td>11</td>
<td>$\sigma_5 < J < 25$</td>
<td>$66 - 128X + 62X^2$</td>
<td>$\frac{-J - 66}{J + 62}$</td>
<td>$\frac{16(J - 2)^4}{J + 62}$</td>
<td>$P_3 = 3P_1 - 4P_3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$P_4 = 4P_1 - 5P_3$.</td>
</tr>
</tbody>
</table>

† Singular lattice.
‡ These values of X and Y remain true for $\sigma_6 < J < 25$.

1942. LATTICE POINTS IN STAR DOMAINS (III).
In the intervals No. 1–11 of the table, the functions $X = X(J)$ and $Y = Y(J)$ behave in the following manner:

- X is steadily increasing and Y is steadily decreasing in the intervals No. 2, 4, 6, 8, 10.
- X is steadily decreasing and Y is steadily increasing in the intervals No. 1, 3, 5, 7, 9, 11.

Further,

$$X = \frac{1}{4}, \quad Y = \frac{\sqrt{3}}{2} \quad \text{for} \quad J = \sigma_0, \sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5,$$

and

- $X = \frac{1}{2}$, $Y = \frac{\sqrt{15}}{4}$ for $J = J_1$,
- $X = 2 - \sqrt{3}$, $Y = \sqrt{\{4 \sqrt{(3)}-6\}}$ for $J = J_2$,
- $X = \frac{4}{3}$, $Y = \frac{\sqrt{2}}{3}$ for $J = J_3$,
- $X = \frac{21-4 \sqrt{14}}{14}$, $Y = \sqrt{(\frac{24 \sqrt{(14)}-67}{28})}$ for $J = J_4$,
- $X = \frac{4-\sqrt{7}}{3}$, $Y = \sqrt{(\frac{8 \sqrt{(14)}-14}{9})}$ for $J = J_5$.

The interval No. 2 is particularly interesting, since here K has only a single critical lattice, and this is singular. At the lower end $J = \frac{3}{4}$ of this interval, K has this singular lattice, and also the regular lattice

$$P_3 = P_2, \quad P_4 = -P_1 + P_2,$$

and the lattice symmetrical to it in the y-axis.

The table shows that the critical lattices of K have 2, 3, 4, 5, or 6 pairs of symmetrical points on C, depending on the value of J.

The general law of the function $D(J)$ seems to be very complicated. By the table, the graph of $Y = D(J)$ is a saw-like curve for $2 \leq J \leq 25$, and possibly for all values of J. In the intervals No. 5, 6, 7, and 11, $D(J)$ takes a surprisingly simple form.
One can show that \(\frac{\sqrt{3}}{2} \leq D(J) \leq \frac{\sqrt{15}}{4} \) for all values of \(J \), and that

\[
\lim_{J \to \infty} D(J) = \frac{\sqrt{3}}{2};
\]

this limit equation was communicated to me by P. Erdős.

I remark finally that the problem and result of this chapter can be extended to a pair of positive definite Hermitian forms; but then the proof is preferably based on the geometrical theory of Picard's group.

The University,
Manchester, 13.