On Dyson's improvement of the Thue-Siegel theorem

BY

K. MAHLER

Reprinted from Proceedings Vol. LII, No. 10, 1949
Reprinted from Indagationes Mathematicae, Vol. XI, Fasc. 5, 1949
K. MAHLER: On Dyson’s improvement of the Thue-Siegel theorem.

(Communicated at the meeting of October 29, 1949.)

Two years ago, F. J. DYSON proved the following result 1):
“If \(\xi \) is an algebraic number of degree \(n \geq 2 \), if \(\mu \) is a positive number, and if there are infinitely many rational numbers \(\frac{p}{q} \) such that

\[
p, q \text{ are integers}, \quad q \geq 1, \quad \left| \xi - \frac{p}{q} \right| < q^{-\mu},
\]

then

\[
\mu \leq \sqrt{2n}.
\]

This result is stronger than that of C. L. SIEGEL 2), namely

\[
\mu \leq \min_{s=1,2,\ldots,n-1} \left(\frac{n}{s+1} + s \right) < 2 \sqrt{n}.
\]

DYSON obtained his improved inequality by means of a new method for studying the zero points of a polynomial in two variables. As his own proof is given in a somewhat involved form, I present in this paper a simplified proof for his main lemma (Theorem 1). Moreover, since this proof is purely algebraic, I deal always with the case of an arbitrary constant field of characteristic zero. This restriction is a natural one, since neither Theorem 1, nor the Thue–Siegel theorem, hold generally for fields of positive characteristic.

P.S. Since the time earlier this year when I wrote the present paper, a new proof of Dyson’s result has been published by TH. SCHNEIDER 3). This proof applies the deeper arithmetical properties of divisibility and may prove more powerful 4).

[1] In this paper, \(K \) denotes a fixed field of characteristic zero; \(K[x], K[y], \) and \(K[x, y] \), are the rings of all polynomials in \(x, \) in \(y, \) or in \(x \) and \(y, \) respectively, with coefficients in \(K; \) and \(K(x) \) denotes the field of all rational functions in \(x \) with coefficients in \(K. \) The terms “dependent” and “independent” always mean, “linearly dependent” and “linearly independent” over \(K. \)

4) Still another proof and a generalization of Dyson’s theorem was given by A. O. GELFOND (Vestnik MGU 9, 3 (1948)), but I have not seen his paper.
We define differentiation in $K(x)$ in the usual formal way. Let $u_0(x), u_1(x), \ldots, u_{l-1}(x)$ be a finite set of elements of $K(x)$; the determinant

$$\left| \frac{d^n u_\lambda(x)}{dx^n} \right|_{\lambda, \mu = 0, 1, \ldots, l-1}$$

is then called the Wronski determinant of these elements and is denoted by

$$\langle u_0, u_1, \ldots, u_{l-1} \rangle.$$

One easily verifies that if $\varphi(x)$ is any further element of $K(x)$, then

$$\langle \varphi u_0, \varphi u_1, \ldots, \varphi u_{l-1} \rangle = \varphi(x)^l \langle u_0, u_1, \ldots, u_{l-1} \rangle.$$

Lemma 1: The Wronski determinant of any finite number of elements of $K(x)$ vanishes identically in x if, and only if, these elements are dependent.

Proof: If

$$\sum_{\lambda = 0}^{l-1} c_\lambda u_\lambda(x) \equiv 0, \quad \text{where } c_\lambda \in K,$$

then

$$\sum_{\lambda = 0}^{l-1} c_\lambda \frac{d^n u_\lambda(x)}{dx^n} \equiv 0 \quad (\mu = 0, 1, \ldots, l-1),$$

whence $\langle u_0, u_1, \ldots, u_{l-1} \rangle \equiv 0$.

Next assume that $\langle u_0, u_1, \ldots, u_{l-1} \rangle \equiv 0$; we must show that $u_0(x), u_1(x), \ldots, u_{l-1}(x)$ are dependent. This assertion is obvious for $l = 1$; assume it has already been proved for all systems of less than l rational functions. We may exclude the case that $u_0(x) \equiv 0$ since then the Wronski determinant certainly vanishes. Hence

$$u_0(x)^{-1} \langle u_0, u_1, \ldots, u_{l-1} \rangle = \left\langle 1, \frac{u_1}{u_0}, \frac{u_2}{u_0}, \ldots, \frac{u_{l-1}}{u_0} \right\rangle =$$

$$= \left\langle \frac{d(u_1/u_0)}{dx}, \frac{d(u_2/u_0)}{dx}, \ldots, \frac{d(u_{l-1}/u_0)}{dx} \right\rangle \equiv 0.$$

Therefore, by the induction hypothesis, there exist $l-1$ elements $c_1, c_2, \ldots, c_{l-1}$ of K not all zero such that

$$c_1 \frac{d(u_1/u_0)}{dx} + c_2 \frac{d(u_2/u_0)}{dx} + \ldots + c_{l-1} \frac{d(u_{l-1}/u_0)}{dx} \equiv 0.$$

Since the characteristic of K is zero, this implies that

$$c_0 + c_1 \frac{u_1(x)}{u_0(x)} + c_2 \frac{u_2(x)}{u_0(x)} + \ldots + c_{l-1} \frac{u_{l-1}(x)}{u_0(x)} \equiv 0$$

for some element c_0 of K, whence the assertion.
Let now \(u_0(x), u_1(x), \ldots, u_{l-1}(x) \) be a finite set of independent polynomials in \(K[x] \), and assume that \(u_0(x) \) is of the highest degree amongst these, the degree \(d_0 \), say. Then constants \(c_1, c_2, \ldots, c_{l-1} \) in \(K \) can be found such that
\[
u^{(1)}_\lambda(x) = c_\lambda u_0(x) + u_\lambda(x) \quad (\lambda = 1, 2, \ldots, l-1)
\]
are all of degree less than \(d_0 \). Assume that \(u_1(x) \) is of highest degree, \(d_1 \) say, amongst these \(l - 1 \) polynomials. Then constants \(c^{(1)}_2, c^{(1)}_3, \ldots, c^{(1)}_{l-1} \) in \(K \) can be found such that the \(l - 2 \) polynomials
\[
u^{(2)}_\lambda(x) = c^{(1)}_\lambda u^{(1)}_1(x) + u^{(1)}_\lambda(x) \quad (\lambda = 2, 3, \ldots, l-1)
\]
are all of degree less than \(d_1 \). Assume that \(u^{(2)}_2(x) \) is of highest degree, \(d_2 \) say, amongst these polynomials. Then constants \(c^{(2)}_3, c^{(2)}_4, \ldots, c^{(2)}_{l-1} \) can be found such that the \(l - 3 \) polynomials
\[
u^{(3)}_\lambda(x) = c^{(2)}_\lambda u^{(2)}_2(x) + u^{(2)}_\lambda(x) \quad (\lambda = 3, 4, \ldots, l-1)
\]
are all of degree less than \(d_2 \). Continuing in this way, we obtain a set of \(l \) polynomials
\[
u_0(x), \nu^{(1)}_1(x), \nu^{(2)}_2(x), \ldots, \nu^{(l-1)}_{l-1}(x)
\]
of degrees
\[d_0, d_1, d_2, \ldots, d_{l-1}\]
respectively, where
\[d_0 > d_1 > d_2 > \ldots > d_{l-1}.
\]
By the construction, each polynomial \(\nu^{(i)}_\lambda(x) \) differs from \(\nu_\lambda(x) \) only by a linear expression in \(u_0(x), u_1(x), \ldots, u_{l-1}(x) \) with coefficients in \(K \). Hence, by a simple property of determinants, the identity
\[
\langle u_0, u_1, \ldots, u_{l-1} \rangle = \langle u_0, u^{(1)}_1, \ldots, u^{(l-1)}_{l-1} \rangle
\]
holds.

Lemma 2: Let \(u_0(x), u_1(x), \ldots, u_{l-1}(x) \) be polynomials in \(K[x] \) of degrees not greater than \(d \). Then the Wronski determinant
\[
\langle u_0, u_1, \ldots, u_{l-1} \rangle
\]
is a polynomial of degree not greater than \(l(d - l + 1) \).

Proof: It suffices to prove the assertion when the polynomials are independent. The polynomials
\[
u_0(x), \nu^{(1)}_1(x), \ldots, \nu^{(l-1)}_{l-1}(x),
\]
as just constructed, have degrees
\[d_0 \leqslant d - 0, \; d_1 \leqslant d_1 - 1, \ldots, d_{l-1} \leqslant d - (l - 1).
\]
Furthermore, the Wronskian determinant \(\langle u_0, u_1^{(l)}, \ldots, u_{l-1}^{(l-1)} \rangle \) is a sum of \(l! \) terms of the form

\[
\frac{d^{i_0} u_0 (x)}{dx^{i_0}} \frac{d^{i_1} u_1^{(l)} (x)}{dx^{i_1}} \ldots \frac{d^{i_{l-1}} u_{l-1}^{(l-1)} (x)}{dx^{i_{l-1}}},
\]

where \(i_0, i_1, \ldots, i_{l-1} \) run over all permutations of \(0, 1, \ldots, l - 1 \). Each such term is of degree

\[
\sum_{\lambda = 0}^{l-1} (d_{\lambda} - i_{\lambda}) = \sum_{\lambda = 0}^{l-1} \{d_{\lambda} - (l - \lambda - 1)\} \leq \sum_{\lambda = 0}^{l-1} \{(d - \lambda) - (l - \lambda - 1)\} = l (d - l + 1),
\]

whence the assertion.

[4] If \(P(x, y) \) is any polynomial in \(K[x, y] \), then write

\[
P_{ij} (x, y) = \frac{\partial^{i+j} P(x, y)}{i! j! \partial x^i \partial y^j} \quad (i, j = 0, 1, 2, \ldots).
\]

We denote by \(r \) and \(s \) two positive integers which will be fixed in the next section, by \(\xi \) and \(\eta \) two elements of \(K \), and by \(\vartheta \) a non-negative real number. We then say that \(P(x, y) \) is at least of index \(\vartheta \) at \((\xi, \eta) \) if

\[
P_{ij} (\xi, \eta) = 0 \text{ for } i \geq 0, j \geq 0, \frac{i}{r} + \frac{j}{s} < \vartheta;
\]

in the special case \(\vartheta = 0 \), there are no conditions.

This definition can be replaced by an equivalent one, as follows. Denote by \(z \) an indeterminate. Then

\[
P(\xi + xz^s, \eta + yz^r) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} P_{ij} (\xi, \eta) x^i y^j z^{rs \left(\frac{i}{r} + \frac{j}{s} \right)}, = P \langle z \rangle \text{ say},
\]

becomes a polynomial in \(z \) with coefficients in \(K[x, y] \). This formula shows that \(P(x, y) \) is at least of index \(\vartheta \) at \((\xi, \eta) \) if, and only if, \(P \langle z \rangle \) is divisible by \(z^{rs \vartheta} \) (i.e. all powers of \(z \) occurring in \(P \langle z \rangle \) must have exponents not less than \(rs \vartheta \)). If we multiply several such expressions

\[
P_0 \langle z \rangle, P_1 \langle z \rangle, \ldots, P_{l-1} \langle z \rangle
\]

which are divisible by

\[
z^{rs \vartheta_0}, z^{rs \vartheta_1}, \ldots, z^{rs \vartheta_{l-1}},
\]

respectively, then the product is divisible by

\[
z^{rs (\vartheta_0 + \vartheta_1 + \ldots + \vartheta_{l-1})},
\]

Therefore the following result holds:

Lemma 3: If, for \(\lambda = 0, 1, \ldots, l - 1 \), the polynomial \(P_\lambda(x, y) \) in \(K[x, y] \) is at least of index \(\vartheta_\lambda \) at \((\xi, \eta) \), then

\[
P_0 (x, y) \ P_1 (x, y) \ldots P_{l-1} (x, y)
\]
is at least of index
\[\partial_0 + \partial_1 + \ldots + \partial_{l-1} \]
at \((\xi, \eta)\).

[5] From now on,
\[R(x, y) = \sum_{h=0}^{r} \sum_{k=0}^{s} R_{hk} x^h y^k \neq 0 \]
is a fixed polynomial in \(K[x, y]\) of degrees not greater than \(r\) in \(x\) and \(s\) in \(y\); here \(r\) and \(s\) are given positive integers. We further denote by
\[\theta_0, \theta_1, \ldots, \theta_n \quad (n \geq 0) \]
a finite number of real numbers satisfying
\[0 < \theta_f \leq 1 \quad (f = 0, 1, \ldots, n), \]
and by
\[\xi_0, \xi_1, \ldots, \xi_n \quad \text{and} \quad \eta_0, \eta_1, \ldots, \eta_n \]
two sets, each of \(n + 1\) elements of \(K\), such that no two elements of the
same set are equal.

Throughout this note, we make the assumption that \(R(x, y)\) is, for
\(f = 0, 1, \ldots, n\), at least of index \(\theta_f\) at \((\xi_f, \eta_f)\), so that
\[R_{ij}(\xi_f, \eta_f) = 0 \quad \text{if} \quad i \geq 0, j \geq 0, \frac{i}{r} + \frac{j}{s} < \theta_f, f = 0, 1, \ldots, n. \]

[6] Since
\[R(x, y) = \sum_{k=0}^{s} \left(\sum_{h=0}^{r} R_{hk} x^h \right) y^k, \]
the polynomial can be written in the form
\[R(x, y) = \sum_{\lambda=0}^{l-1} u_{\lambda}(x) v_{\lambda}(y), \]
where the \(u\)'s are elements of \(K[x]\) of degrees not greater than \(r\), the \(v\)'s are polynomials in \(K[y]\) of degrees not greater than \(s\), and where
\[1 \leq l \leq \min (r, s) + 1. \]

Amongst all representations of this form, select one for which the number
\(l\) of terms is a minimum. Then both the \(l\) polynomials
\[u_0(x), u_1(x), \ldots, u_{l-1}(x), \]
and the \(l\) polynomials
\[v_0(y), v_1(y), \ldots, v_{l-1}(y), \]
are independent. For if, say, the u's are not independent, then we may assume that $u_{l-1}(x)$ can be written as
\[u_{l-1}(x) = \sum_{\lambda=0}^{l-2} a_{\lambda} u_{\lambda}(x) \]
where the coefficients a_{λ} lie in K; therefore
\[R(x, y) = \sum_{\lambda=0}^{l-2} u_{\lambda}(x) \{ v_{\lambda}(y) + a_{\lambda} v_{l-1}(y) \} \]
becomes a sum of only $l - 1$ terms, contrary to the definition of l.

We conclude therefore from Lemma 1 that neither of the two Wronskian determinants
\[U(x) = \langle u_0(x), u_1(x), \ldots, u_{l-1} (x) \rangle \quad \text{and} \quad V(y) = \langle v_0(y), v_1(y), \ldots, v_{l-1}(y) \rangle \]
vanishes identically. Moreover, by Lemma 2,
\[U(x) \text{ is at most of degree } l(r-l+1) \text{ in } x, \]
and
\[V(y) \text{ is at most of degree } l(s-l+1) \text{ in } y. \]

[7] Denote by $(x - \xi_f)^{rf}$, where $f = 0, 1, \ldots, n$, the highest power of $x - \xi_f$ dividing $U(x)$, and by $(y - \eta_f)^{sf}$, where $f = 0, 1, \ldots, n$, the highest power of $y - \eta_f$ dividing $V(y)$. Since all the ξ's and also all the η's are different, $U(x)$ is divisible by
\[\prod_{f=0}^{n} (x - \xi_f)^{rf}, \]
and $V(y)$ is divisible by
\[\prod_{f=0}^{n} (y - \eta_f)^{sf}. \]
Therefore, on comparing the degrees, we obtain the two inequalities,
\[r_0 + r_1 + \ldots + r_n \leq l(r - l + 1), \]
\[s_0 + s_1 + \ldots + s_n \leq l(s - l + 1). \]

[8] We next introduce the determinant
\[W(x, y) = |R_{x, y}(x, y)|_{x, y=0,1,\ldots,l-1}. \]
Since
\[R_{x, y}(x, y) = \frac{1}{x! \mu!} \sum_{\lambda=0}^{l-1} \frac{u^{(\lambda)}(x)}{\lambda!} v^{(\mu)}(y), \]
the product rule of determinants leads to the identity,
\[U(x) V(y) = \frac{1!2! \ldots (l-1)!}{2} W(x, y), \]
so that also $W(x, y)$ does not vanish identically.
Let f be one of the indices $0, 1, \ldots, n$. Then, by hypothesis, $R(x, y)$ is at least of index θ_f at (ξ_f, η_f); therefore $R_{x,y}(x, y)$ is at least of index

$$\max \left(0, \theta_f - \frac{\lambda}{r} - \frac{\mu}{s} \right)$$

at (ξ_f, η_f).

Now $W(x, y)$ is a sum of $l!$ terms of the form

$$\pm R_{i_0,0}(x, y) R_{i_1,1}(x, y) \ldots R_{i_{l-1},l-1}(x, y),$$

where $i_0, i_1, \ldots, i_{l-1}$ run over all permutations of $0, 1, \ldots, l-1$. By Lemma 3, such a term is at least of index

$$\sum_{\lambda=0}^{l-1} \max \left(0, \theta_f - \frac{i_\lambda}{r} - \frac{\lambda}{s} \right) \geq \sum_{\lambda=0}^{l-1} \max \left(-\frac{i_\lambda}{r}, \theta_f - \frac{i_\lambda}{r} - \frac{\lambda}{s} \right) = \sum_{\lambda=0}^{l-1} \frac{i_\lambda}{r},$$

at (ξ_f, η_f). Since

$$\sum_{\lambda=0}^{l-1} \frac{i_\lambda}{r} = \sum_{\lambda=0}^{l-1} \frac{\lambda}{r} = \frac{l(l-1)}{2r},$$

the whole determinant $W(x, y)$ is therefore also at least of index

$$\sum_{\lambda=0}^{l-1} \max \left(0, \theta_f - \frac{\lambda}{s} \right) - \frac{l(l-1)}{2r}$$

at (ξ_f, η_f).

On the other hand, $U(x)V(y)$ is divisible exactly by

$$(x-\xi_f)^{r_f} (y-\eta_f)^{s_f},$$

so that

$$\frac{\partial^{i+j}}{i! j!} \frac{\partial x^i \partial y^j}{\partial x^i \partial y^j} \frac{U(x)V(y)}{x=\xi_f, y=\eta_f} = 0 \text{ if } i \geq 0, j \geq 0, \frac{i}{r} + \frac{j}{s} < \frac{r_f}{r} + \frac{s_f}{s},$$

$$\neq 0 \text{ if } i = r_f, j = s_f.$$

From the identity

$$U(x)V(y) = \frac{1! 2! \ldots (l-1)!}{l!} W(x, y),$$

we therefore deduce the relations

$$\sum_{\lambda=0}^{l-1} \max \left(0, \theta_f - \frac{\lambda}{s} \right) - \frac{l(l-1)}{2r} \leq \frac{r_f}{r} + \frac{s_f}{s} \quad (f = 0, 1, \ldots, n).$$
On adding these $n + 1$ inequalities and the two inequalities (I), we obtain the final inequality

$$\sum_{f=0}^{n} \sum_{\lambda=0}^{l-1} \max\left(0, \theta_f - \frac{\lambda}{s}\right) \leq (n + 1) \frac{l(l-1)}{2r} + \frac{l(r-l+1)}{r} + \frac{l(s-l+1)}{s}, \quad (II)$$

where now the unknown degrees r_f and s_f no longer occur.

\[[11] \] The double sum on the left-hand side of (II) is easily replaced by a simple one. Put

$$A_f = \min\left(\lfloor \theta_f s \rfloor + 1, l\right) \quad (f = 0, 1, \ldots, n),$$

so that

$$\max\left(0, \theta_f - \frac{\lambda}{s}\right) = \begin{cases} \theta_f - \frac{\lambda}{s} & \text{if } 0 \leq \lambda \leq A_f - 1, \\ 0 & \text{if } \lambda \geq A_f. \end{cases}$$

Therefore

$$\sum_{\lambda=0}^{l-1} \max\left(0, \theta_f - \frac{\lambda}{s}\right) = \sum_{\lambda=0}^{A_f-1} \left(\theta_f - \frac{\lambda}{s}\right) = \frac{1}{2} A_f \left(2 \theta_f - \frac{A_f - 1}{s}\right),$$

so that the left-hand side of (II) may be written as

$$\frac{1}{2} \sum_{f=0}^{n} A_f \left(2 \theta_f - \frac{A_f - 1}{s}\right).$$

In order to simplify further, put

$$X = \frac{l}{s}, \quad X_f = \min\left(\theta_f, X\right) \quad (f = 0, 1, \ldots, n).$$

Then

$$sX_f = \min\left(s \theta_f, sX\right) = \min\left(s \theta_f, l\right)$$

and

$$A_f - 1 \leq sX_f \leq A_f, \text{ hence } A_f \left(2 \theta_f - \frac{A_f - 1}{s}\right) \geq sX_f \left(2 \theta_f - X_f\right).$$

Therefore (II) implies that

$$\frac{s}{2} \sum_{f=0}^{n} X_f \left(2 \theta_f - X_f\right) \leq (n + 1) \frac{l(l-1)}{2r} + \frac{l(r-l+1)}{r} + \frac{l(s-l+1)}{s}.$$

Next, the right-hand side of this inequality may be written as

$$+ \left(\frac{l}{s} + (n-1) \frac{l(l-1)}{2r}\right) = s(2X - X^2) \left(1 + \frac{1}{2-X} \left(\frac{1}{s} + \frac{(n-1)(l-1)}{2r}\right)\right).$$
Because, by \[6\],
\[l \leq \min (r, s) + 1 \leq s + 1, \]
the inequality becomes therefore
\[
\sum_{f=0}^{n} X_f (2 \theta_f - X_f) \leq 2 \left\{ 1 - (1 - X)^2 \right\} \left(1 + \frac{1}{2 - X} \left(\frac{1}{s} + \frac{(n-1)}{2r} \right) \right);
\]

[12] So far, \(r \) and \(s \) have been left arbitrary. Let now \(\delta \) be a number satisfying
\[0 < \delta \leq 1, \]
and restrict \(r \) and \(s \) by the conditions,
\[s \geq \frac{5}{\delta} \geq 5, \quad r \geq \frac{5(n-1)}{2\delta}. \]

Then
\[X = \frac{1}{s} \leq \frac{s+1}{s} \leq 1 + \frac{1}{s}, \quad 2 - X \geq \frac{0}{\delta}, \quad \frac{1}{s} \leq \frac{\delta}{5}, \quad \frac{5}{2r} \leq \frac{\delta}{5}, \]
so that
\[\frac{1}{2 - X} \left(\frac{1}{s} + \frac{(n-1)}{2r} \right) \leq \frac{5}{4} \left(\frac{\delta}{5} + \frac{\delta}{5} \right) = \frac{\delta}{2}, \]
and our inequality takes the simple form
\[\sum_{f=0}^{n} X_f (2 \theta_f - X_f) \leq (2 + \delta) \left\{ 1 - (1 - X)^2 \right\}. \]

But, for \(f = 0, 1, \ldots, n, \)
\[X_f (2 \theta_f - X_f) - \theta_f^2 \left\{ 1 - (1 - X)^2 \right\} \equiv \theta_f^2 (1 - X)^2 - (\theta_f - X_f)^2 \]
is not negative, since either \(X \geq \theta_f, \) when \(X_f = \theta_f \) and
\[\theta_f^2 (1 - X)^2 - (\theta_f - X_f)^2 = \theta_f^2 (1 - X)^2 \geq 0; \]
or \(X < \theta_f, \) when \(X_f = X \) and \(X \leq 1 \) and therefore
\[\theta_f^2 (1 - X)^2 - (\theta_f - X_f)^2 \equiv X (1 - \theta_f) \left\{ \theta_f (1 - X) + (\theta_f - X) \right\} \geq 0. \]
Hence
\[\left\{ 1 - (1 - X)^2 \right\} \sum_{f=0}^{n} \theta_f^2 \leq \sum_{f=0}^{n} X_f (2 \theta_f - X_f) \leq (2 + \delta) \left\{ 1 - (1 - X)^2 \right\}, \]
and since \((1 - X)^2 \leq 1 \), we obtain finally the result,
\[\sum_{f=0}^{n} \theta_f^2 \leq 2 + \delta. \]
Our discussion has thus led us to the following theorem:

Theorem 1: Let \(\delta, \theta_0, \theta_1, \ldots, \theta_n \) be \(n + 2 \) real numbers satisfying
\[
0 < \delta \leq 1, \ 0 < \theta_0 \leq 1, \ 0 < \theta_1 \leq 1, \ldots, \ 0 < \theta_n \leq 1,
\]
and let \(r \) and \(s \) be two integers satisfying
\[
s \geq \frac{5}{\delta}, \quad r \geq \frac{5(n-1)s}{2 \delta}.
\]

Let
\[
R(x, y) \neq 0
\]
be a polynomial of degrees not greater than \(r \) in \(x \) and \(s \) in \(y \), with coefficients in a field \(K \) of characteristic zero; write
\[
R_{ij}(x, y) = \frac{\partial^{i+j} R(x, y)}{i! j! \partial x^i \partial y^j} \quad (i, j = 0, 1, 2, \ldots).
\]

Further let
\[
\xi_0, \xi_1, \ldots, \xi_n \quad \text{and} \quad \eta_0, \eta_1, \ldots, \eta_n
\]
be two sets, each of \(n + 1 \) elements of \(K \), such that no two elements of the same set are equal. If now
\[
R_{ij}(\xi_f, \eta_f) = 0 \quad \text{for} \quad i \geq 0, \ j \geq 0, \ \frac{i}{r} + \frac{j}{s} < \theta_f, \quad f = 0, 1, \ldots, n,
\]
then
\[
\theta_0^2 + \theta_1^2 + \ldots + \theta_n^2 \leq 2 + \delta.
\]

In a second paper, I shall prove an analogous theorem for polynomials of the form
\[
\Sigma \Sigma R_{hk} x^h y^k \quad \left(h \geq 0, k \geq 0, \frac{h}{r} + \frac{k}{s} \leq 1 \right),
\]
and apply this result to the study of the continued fractions of algebraic numbers.

Institute for Advanced Study, Princeton, N.J., U.S.A.

July 16, 1949.