ON THE GENERATING FUNCTION OF THE INTEGERS WITH A MISSING DIGIT

By K. MAHLER

Let n be a positive integer such that no digit in its decimal representation is equal to zero, and let \mathcal{N} be the set of all such integers n. It is well known that the series

$$\sigma = \sum_{n \in \mathcal{N}} \frac{1}{n}$$

converges. Whether its value σ is a transcendental number, or whether it can be expressed by means of elementary transcendental functions, is, however, a difficult question. In this note, I shall discuss the related series

$$f(z) = \sum_{n \in \mathcal{N}} z^n$$

with which σ is connected by the relation

$$\sigma = \int_0^1 \frac{f(z)}{z} \, dz.$$

I shall prove that if z is an algebraic number such that

$$0 < |z| < 1,$$

then $f(z)$ is a transcendental number; and a similar result holds for infinitely many similar functions.

1. The problem. Let $q \geq 2$ be a fixed positive integer. Every non-negative integer n can be written in a unique way as a q-adic sum

$$n = h_0 + h_1 q + \ldots + h_r, \quad q^r = (h_0, h, \ldots, h_r),$$

where h_0, h_1, \ldots, h_r are integers $0, 1, \ldots, q - 1$, and where, in particular, $h_r \neq 0$. For $n = 0$, we write $0 = (0)$. Let

This paper is the translation of one which appeared originally in the Chinese journal K’o Hsueh (Science), Vol. 29, (1947), p. 265-267, under the title 'Mou Chung T’e Pieh Cheng Shu Jih Ch’an Sheng Han Shu'.

Received January 3, 1951.
Let \(k \) be a fixed one of the integers 0, 1, ..., \(q-1 \), and let \(\mathcal{N}(k) \) be the set of all those integers \(n \geq 0 \) whose digits \(h_p \) are all different from \(k \),
\[
n = (h_0, h_1, ..., h_r) \geq 0, \ 0 \leq h_p \leq q-1, \ h_p \neq k \ (p = 0, 1, ..., r).
\]
We shall study here the properties of the generating function
\[
f_k(z) = \sum_{n \in \mathcal{N}(k)} z^n
\]
of \(\mathcal{N}(k) \).

2. The functional equation for \(f_k(z) \). It is clear that \(f_k(z) \) is majorized by the series \(1 + z + z^2 + ... = (1 - z)^{-1} \) and so converges absolutely for \(|z| < 1 \).

There exists a functional equation between \(f_k(z) \) and \(f_k(z^q) \) which takes different forms for \(k = 0 \) and for \(k \neq 0 \).

I. \(k = 0 \). If \(n = (h_0, h_1, ..., h_r) \) belongs to \(\mathcal{N}(0) \), then the following two cases arise:

(i) \(r = 0 \), \(n = h_0 \), so that \(n \) is one of the integers \(1, 2, ..., q-1 \).

(ii) \(r \geq 1 \), so that \(n \) can be written as \(n = h_0 + qn' \) where \(1 \leq h_0 \leq q-1 \), \(n' = (h_1, h_2, ..., h_r) \in \mathcal{N}(0) \).

Therefore
\[
f_0(z) = \sum_{h_0=1}^{q-1} \left\{ z^{h_0} + \sum_{n' \in \mathcal{N}(0)} z^{h_0+qn'} \right\},
\]
so that
\[
f_0(z) = \frac{z-z^q}{1-z} (1+f_0(z^q)). \quad (I)
\]

II. \(k = 1, 2, ..., q-1 \). If \(n \) belongs to \(\mathcal{N}(k) \), then we can write
\[
n = (h_0, h_1, ..., h_r) = h_0 + qn'
\]
where \(h_0 \) is one of the integers 0, 1, 2, ..., \(k-1, k+1, ..., q-1 \), and where
\[
n' = (h_1, h_2, ..., h_r) \in \mathcal{N}(k).
\]
It is now clear that
\[f_k(z) = \sum_{h_0=0}^{q-1} \sum_{n', e \in N(k)} z^{h_0 + qn'}, \]
whence
\[f_k(z) = \left(\frac{1 - z^q}{1 - z} - z^k \right) f_k(z^q). \] (II)

The functional equations (I) and (II) may be combined into the one equation
\[f_k(z) = \left(\frac{1 - z^q}{1 - z} - z^k \right) (\varepsilon_k + f_k(z^q)) \quad (k = 0, 1, \ldots, q-1), \] (I)
where \(\varepsilon_k = 1 \) if \(k = 0 \), and \(\varepsilon_k = 0 \) if \(k = 1, 2, \ldots, q-1 \).

In the simplest case \(q = 2 \), we have
\[f_0(z) = \sum_{\nu=1}^{\infty} z^{2\nu-1}, \quad f_0(z) = z + zf_0(z^2), \]
\[f_1(z) = 1, \quad f_1(z) = f_1(z^2). \]

3. The analytic behaviour of \(f_k(z) \). It is clear from the definition that
\[f_0(z) = z + z^2 + \ldots + z^{q-1} + \ldots, \]
\[f_k(z) = 1 + z + \ldots + z^{k-1} + z^{k+1} + \ldots \quad (k = 1, \ldots, q-1), \]
whence, for \(|z| < 1 \),
\[\lim_{\nu \to \infty} f_k(z^{q^\nu}) = 1 - \varepsilon_k \quad (k = 0, 1, \ldots, q-1). \] (2)

We further deduce from the functional equations (I) and (II) that
\[f_0(z) = \frac{z - z^q}{1 - z} + \frac{z - z^q}{1 - z} \frac{z^q - z^{q^2}}{1 - z^q} + \ldots \]
\[+ \frac{z - z^q}{1 - z} \frac{z^q - z^{q^2}}{1 - z^q} \ldots \frac{z^{q^{\nu-1}} - z^{q^\nu}}{1 - z^{q^{\nu-1}}} (1 + f_0(z^{q^\nu})), \] (3)
and
\[f_k(z) = \left(\frac{1 - z^q}{1 - z} - z^k \right) \left(\frac{1 - z^{q^2}}{1 - z^q} - z^{kq} \right) \ldots \]
\[\times \left(\frac{1 - z^{q^\nu}}{1 - z^{q^{\nu-1}}} - z^{kq^{\nu-1}} \right) f_k(z^{q^\nu}), \quad (k = 1, 2, \ldots, q-1). \] (4)
Theorem 1. If the special case \(q = 2, k = 1 \) is excluded, then \(f_k(z) \) is regular inside the unit circle and has this circle as its natural boundary.

Proof. Let \(\kappa \) and \(\lambda \) be two non-negative integers; put

\[
\theta = e^{\frac{2\pi i \kappa}{q^\lambda}}.
\]

Assume that \(\kappa \) is prime to \(q \) so that \(\theta \) is a primitive \(q^\lambda \)-th root of unity. It is obvious that for \(\lambda \geq 1 \) none of the polynomials

\[
\frac{z^{q^\nu - 1} - z^\nu}{1 - z^{q^\nu - 1}}, \quad \frac{1 - z^{q^\nu}}{1 - z^{q^\nu - 1} - z^{q^\nu - 1}} \quad (v = 1, 2, \ldots, \lambda)
\]

in \(z \) vanishes if \(z = \theta \). On the other hand, if the case \(q = 2, k = 1 \) is excluded, then evidently

\[
\lim_{r \to 1} f_k(r) = +\infty \quad (5)
\]

as \(r \) tends to 1 along the real interval \(0 \leq r < 1 \). But then, by \(\theta^{q^\lambda} = 1 \), from (3), (4), and (5), also

\[
\lim_{r \to 1} f_k(\theta r) = \infty.
\]

Now the points \(\theta \) are everywhere dense on the unit circle, and the assertion follows at once.

Corollary. Except for the case \(q = 2, k = 1 \), \(f_k(z) \) is a transcendental function of \(z \).

4. The arithmetic behaviour of \(f_k(z) \). Some twenty years ago, I proved a result in which the following theorem is contained as a special case [Mathematische Annalen, 101 (1929), 332-366].

Theorem 2. Let \(q \geq 2 \) be a fixed integer, and let

\[
F(z) = \sum_{\nu=0}^{\infty} a_{\nu} z^\nu
\]

be a power series with the following properties:
(i) All a_v are rational numbers.
(ii) $F(z)$ converges in a neighbourhood of $z = 0$.
(iii) $F(z)$ is not an algebraic function of z.
(iv) $F(z)$ satisfies a functional equation of the form

$$F(z^q) = \frac{a(z)F(z) + b(z)}{c(z)F(z) + d(z)},$$

where $a(z)$, $b(z)$, $c(z)$, $d(z)$ are polynomials with rational coefficients such that $\triangle(z) = a(z)d(z) - b(z)c(z)$ does not vanish identically in z. Then if z is an algebraic number satisfying

$$0 < |z| < 1, \quad \triangle(z^q) \neq 0 \quad (v = 0, 1, 2, \ldots),$$

$F(z)$ is a transcendental number, but not a Liouville number.

If we apply this theorem to $F(z) = f_k(z)$, then

$$a(z) = 1, \quad b(z) = -\frac{z - z^q}{1 - z}, \quad c(z) = 0, \quad d(z) = \frac{z - z^q}{1 - z},$$
or

$$a(z) = 1, \quad b(z) = c(z) = 0, \quad d(z) = \frac{1 - z^q}{1 - z} - z^k,$$

according as to whether $k = 0$ or $1 \leq k \leq q - 1$. We therefore obtain the following result.

Theorem 3. Let the case $q = 2$, $k = 1$ be excluded. If z is an algebraic number which satisfies the inequality

$$0 < |z| < 1 \quad \text{for } k = 0,$$

and the inequalities

$$0 < |z| < 1, \quad \frac{1 - z^q}{1 - z^q - 1} - z^{kq-1} = o(v = 1, 2, \ldots) \quad \text{for } 1 \leq k \leq q - 1,$$

then $f_k(z)$ is a transcendental number, but not a Liouville number. Furthermore

$$f_k(0) = 1 - \varepsilon_k \quad (k = 0, 1, \ldots, q - 1),$$

and if $k = 1, 2, \ldots, q - 1$, $0 < |z| < 1$ and there is a $v = 1, 2, \ldots$, such that
\[
\frac{1 - z^{q^\nu}}{1 - z^{q^\nu-1}} - z^{kq^\nu-1} = 0,
\]
then \(f_k(z) = 0. \)

5. **The zeros of \(f_k(z) \).** The polynomials

\[
\phi_k(z) = \frac{1 - z^d}{1 - z} - z^k \quad (k = 1, 2, \ldots, q-1)
\]
satisfy the functional equations

\[
\phi_k(1/z) = z^{-(q-1)}\phi_{q-k-1}(z). \tag{6}
\]

Let us assume that \(\phi_k(z) \) has \(\mu(k) \) zeros of absolute value less than 1, and \(\nu(k) \) zeros of absolute value equal to 1. From

\[
\begin{align*}
\phi_{q-1}(z) &= 1 + z + z^2 + \cdots + z^{q-2} \quad (q \text{ arbitrary}), \\
\phi_{(q-1)/2}(z) &= (1 + z + \cdots + z^{(q-3)/2})(1 + z^{(q+1)/2}) \quad (q \text{ odd}),
\end{align*}
\]

it is clear that

\[
\mu(k) = 0 \text{ if } k = q-1, \text{ or if } k = (q-1)/2.
\]

Further from (6),

\[
\nu(k) = \nu(q-k-1). \tag{7}
\]

Theorem 4. Let \(1 \leq k \leq q-2 \) and \(k \neq (q-1)/2 \). Then \(\mu(k) > 0 \).

Proof. The polynomial \(\phi_k(z) \) is of exact degree \(q-1 \); it suffices therefore to prove that \(\nu(k) < q-1 \). For the product of the zeros of \(\phi_k(z) \) is evidently equal to \(1 \): hence if at least one zero is of absolute value different from 1, then there is also at least one zero of absolute value less than 1.

Since \(k \neq (q-1)/2 \), it suffices to prove this inequality for \(\nu(k) \) if

\[
k = 1, 2, \ldots, [(q-2)/2].
\]

We first note that \(\phi'_k(z) \) has no multiple zeros on the unit circle. For at such zeros,
\[1 - z^q - z^k + z^{k+1} = 0, \quad qz^{q-1} + kz^{k-1} - (k+1)z^k = 0, \]

therefore

\[(q-k)z^q = z^{k+1} - k, \]

whence, by \(|z| = 1,\)

\[q-k \leq k+1, \quad k \geq (q-1)/2, \]

contrary to hypothesis.

Denote by

\[\zeta = e^{\alpha i}, \] where \(0 < \alpha < 2 \pi, \]
a zero, hence a simple zero, of

\[\phi_k(z) = 1 + z + \ldots + z^{q-1} - z^k \]
on the unit circle. Since

\[z^{-q-1/2} \phi_k(z) = \frac{z^q - z^{q/2} - \ldots - z^{q/2} - z^{q-2k-1/2}}{z^{q/2} - \ldots - z^{q/2} - z^{q-2k-1}}, \]

necessarily

\[\frac{\sin q\alpha/2}{\sin \alpha/2} = \cos \frac{q - 2k - 1}{2} \alpha - i \sin \frac{q - 2k - 1}{2} \alpha, \]

and so

\[\sin \frac{q - 2k - 1}{2} \alpha = 0. \]

Hence

\[\alpha = \frac{2n\pi}{q - 2k - 1}, \]

where \(n \) is one of the integers \(1, 2, \ldots, q - 2k - 1 < q - 1. \)

From this the assertion \(v(k) < q - 1 \) follows at once.

Let us combine the last results. We have found:
Theorem 5. If \(k = q - 1 \), or \(k = (q - 1)/2 \), then \(f_k(z) \) has no zeros inside the unit circle. If \(k = 0 \), then \(f_0(z) \) has the algebraic zero \(z = 0 \), and all its possible other zeros are transcendental. In all other cases, the zeros of \(f_k(z) \) are algebraic numbers, and there are an infinity of them inside the unit circle.

In a similar way, the generating function of integers with more than one missing digit, or with a missing sequence of digits can be investigated.

Manchester University, England.