ON COMPOUND CONVEX BODIES (II)

By KURT MAHLER

[Received 30 June 1954.—Read 25 November 1954]

The inequality

\[0 < c_1 \leq V(K)^{-p} V(K) \leq c_2 \]

for the volume of the \(p \)th compound \(K = [K]^{(p)} \) of a single convex body, which was proved in the first part of this paper, cannot be fully extended to the compounds \(K = [K^{(1)}, K^{(2)}, \ldots, K^{(p)}] \) of several distinct convex bodies. The problem of estimates for \(V(K) \) will be investigated in the present note, and a partial result will be proved.

1. We use the same notation as in the first part. As before, let

\[K^{(1)}, K^{(2)}, \ldots, K^{(p)} \]

be any \(p \) closed, bounded, symmetric, convex bodies in \(R_n \), and let

\[K = [K^{(1)}, K^{(2)}, \ldots, K^{(p)}] \]

be their compound in \(R_N \). We wish either to find upper and lower bounds for the volume \(V(K) \) in terms of some symmetric function of

\[V(K^{(1)}), V(K^{(2)}), \ldots, V(K^{(p)}) \]

or to show that such bounds do not exist. Since, for positive \(t_1, t_2, \ldots, t_p \),

\[[t_1 K^{(1)}, t_2 K^{(2)}, \ldots, t_p K^{(p)}] = t_1 t_2 \ldots t_p K, \]

and since further

\[V(t_1 t_2 \ldots t_p K) = (t_1 t_2 \ldots t_p)^N V(K), \]

\[V(t_1 K^{(1)}) = t_1^n V(K^{(1)}), \quad \ldots, \quad V(t_p K^{(p)}) = t_p^n V(K^{(p)}), \]

it is clear, for reasons of homogeneity, that we must compare \(V(K) \) with the expression

\[\left(\prod_{\pi=1}^{P} V(K^{(\pi)}) \right)^{P/p}. \]

The question is therefore whether

\[S(K) = V(K) \left(\prod_{\pi=1}^{P} V(K^{(\pi)}) \right)^{-P/p} \]

possesses positive upper and lower bounds depending only on \(n \) and \(p \).

2. For the upper bound, the problem is solved by the following theorem.

Theorem 1. Let \(n \geq 3 \) and \(2 \leq p \leq n-1 \), and let \(c > 0 \) be arbitrary. Then there exist \(p \) closed, bounded, symmetric, convex bodies \(K^{(1)}, K^{(2)}, \ldots, K^{(p)} \) such that their compound \(K = [K^{(1)}, K^{(2)}, \ldots, K^{(p)}] \) satisfies the inequality

\[S(K) > c. \]

Thus \(S(K) \) admits of no upper bound depending only on \(n \) and \(p \).
Proof. We choose for \(K^{(1)} = K^{(2)} = ... = K^{(p-1)} \) the generalized octahedron
\[
|x_1| + |x_2| + ... + |x_n| \leq 1,
\]
and for \(K^{(p)} \) the generalized octahedron
\[
\frac{1}{a} \left(|x_1| + |x_2| + ... + |x_{n-1}| \right) + a^{n-1}|x_n| \leq 1,
\]
where \(a \) is a parameter satisfying \(0 < a \leq 1 \). Then
\[
V(K^{(1)}) = V(K^{(2)}) = ... = V(K^{(p)}) = \frac{2^n}{n!}.
\]
The first \(p-1 \) octahedra have the vertices
\[
\pm U_1, \pm U_2, ..., \pm U_n,
\]
where
\[
U_1 = (1, 0, ..., 0), \quad U_2 = (0, 1, ..., 0), \quad ..., \quad U_n = (0, 0, ..., 1)
\]
denote the \(n \) unit points on the coordinate axes in \(R_n \). Similarly the vertices of the last octahedron lie at
\[
\pm aU_1, \pm aU_2, ..., \pm aU_{n-1}, \pm a^{-(n-1)}U_n.
\]
The compound body \(K = [K^{(1)}, K^{(2)}, ..., K^{(p)}] \) contains, in particular, the convex hull \(H \) of the \(2N \) compound points
\[
\pm a_{v_p} [U_{v_1}, U_{v_2}, ..., U_{v_p}]. \tag{1}
\]
Here \(v_1, v_2, ..., v_p \) run over all \(\mathcal{N} \) distinct sets of \(p \) indices satisfying
\[
1 \leq v_1 < v_2 < ... < v_p \leq n,
\]
and we have, for shortness, put
\[
a_{v_p} = a \text{ if } v_p = 1, 2, ..., n-1, \quad \text{but} \quad a_{v_p} = a^{-(n-1)} \text{ if } v_p = n.
\]
The \(\mathcal{N} \) compounds \([U_{v_1}, U_{v_2}, ..., U_{v_p}]\) coincide with the unit points on the \(\mathcal{N} \) coordinate axes in \(R_N \); evidently exactly \(P \) of them belong to \(v_p = n \). Hence all points \((1) \) lie on the coordinate axes; just \(2P \) of them have one coordinate equal to \(\pm a^{-(n-1)} \) and the other coordinates equal to zero; and each of the remaining \(2(N-P) \) points has just one coordinate equal to \(\pm a \) and the other coordinates equal to zero. Thus, if the numbering of the coordinates \(\xi_1, \xi_2, ..., \xi_N \) of the general point \(\Xi \) in \(R_N \) is chosen suitably, then the convex hull \(H \) of the points \((1) \) becomes the generalized octahedron
\[
\frac{1}{a} \sum_{k=1}^{N-P} |\xi_k| + a^{n-1} \sum_{k=N-P+1}^{N} |\xi_k| \leq 1
\]
of volume
\[
V(H) = \frac{2^N}{N!} a^{(N-P)-(n-1)P}.
\]
Since \(H \) is a subset of \(K \), this implies that
\[
V(K) \geq \frac{2^N}{N!} a^{(N-P)-(n-1)P},
\]
and we therefore obtain the inequality
\[S(K) = V(K) \left\{ \prod_{\pi=1}^{p} V(K^{(\pi)}) \right\}^{1/P} \geq \frac{2^{N}}{N!} \left(\frac{2^{n}}{n!} \right)^{-P} a^{(N-P)-(n-1)P}. \]
Here the expression on the right-hand side can be made arbitrarily large by choosing \(a \) sufficiently small because
\[(N-P)-(n-1)P = N-nP = \binom{n}{p} n \binom{n-1}{p-1} = -\frac{n(p-1)}{p} \binom{n-1}{p-1} < 0.\]
This proves the assertion.

3. It is much more difficult to decide whether \(S(K) \) possesses any positive lower bound that depends only on \(n \) and \(p \). In this note the problem will be settled in the special case when \(n \geq 3 \), \(2 \leq p \leq n-1 \), and when \(K^{(1)}, K^{(2)}, \ldots, K^{(p)} \) are made up by repetition of just two distinct convex bodies.

To fix the notation, let \(p = r+s \), \(r \geq 1 \), \(s \geq 1 \); assume that the first \(r \) of the bodies \(K^{(1)}, K^{(2)}, \ldots, K^{(p)} \) are identical with \(K_1 \), and that the last \(s \) bodies are identical with \(K_2 \). We then write, for shortness,
\[K = [K_1^r K_2^s], \]
and the number \(S(K) \) takes the form
\[S(K) = V(K) \{V(K_1)^r V(K_2)^s\}^{-P/p}. \]
We have to show that \(S(K) \) is not smaller than a certain positive number which depends only on \(n \) and \(p \).

4. Let us begin with the simpler case when \(K_1 = E_1 \) and \(K_2 = E_2 \) are ellipsoids in \(R^N \) with centres at the origin. By the theory of reduction to principal axes for such ellipsoids, there exists a non-singular affine transformation \(X \to X' = \Omega X \) of \(R^n \) such that
\[E_1 = \Omega G_n, \quad E_2 = \Omega E. \]
Here \(G_n \) denotes the unit sphere
\[x_1^2 + x_2^2 + \ldots + x_n^2 \leq 1, \]
and \(E \) is an ellipsoid of the form
\[\frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} + \ldots + \frac{x_n^2}{a_n^2} \leq 1, \]
the semi-axes of which may be assumed to satisfy the inequalities
\[0 < a_1 \leq a_2 \leq \ldots \leq a_n. \tag{2} \]
Evidently
\[K = [E_1^r E_2^s] = \Omega^{(p)} [G_n^r E^s], \]
where \(\Omega^{(p)} \) is the \(p \)th compound of \(\Omega \). Denote by \(\omega \) the determinant of \(\Omega \); then
\[\omega^{(p)} = \omega^P. \]
is the determinant of $\Omega^{(p)}$. Let further
\[K_0 = [G_n^p E^s]; \]
hence
\[K = \Omega^{(p)} K_0. \]

The volumes of G_n and E are given by
\[V(G_n) = \kappa_n, \quad V(E) = \kappa_n a_1 a_2 \ldots a_n, \]
where κ_n is the constant
\[\kappa_n = \frac{\pi^{\frac{1}{2n}}}{\Gamma(\frac{1}{2}n + 1)}. \]
Therefore also
\[V(E_1) = \kappa_n |\omega|, \quad V(E_2) = \kappa_n a_1 a_2 \ldots a_n |\omega|. \]
On the other hand,
\[V(K) = |\omega^{(p)}| V(K_0) = |\omega|^{P} V(K_0). \]
Hence
\[S(K) = |\omega|^{P} V(K_0) \left((\kappa_n |\omega|)^r (\kappa_n a_1 a_2 \ldots a_n |\omega|)^s\right)^{-P/p}, \]
and this may be simplified to
\[S(K) = \frac{V(K_0)}{\kappa_n^{P} (a_1 a_2 \ldots a_n)^{sP/p}}. \]

Denote again by v_1, v_2, \ldots, v_p all N sets of p indices satisfying
\[1 \leq v_1 < v_2 < \ldots < v_p \leq n, \]
and, for each such set, put
\[A(v) = a_{v_1} a_{v_2} \ldots a_{v_r}, \quad B(v) = a_{v_{r+1}} a_{v_{r+2}} \ldots a_{v_{r+s}}. \]
The product
\[\prod_v (A(v)B(v)) = \prod_v (a_{v_1} a_{v_2} \ldots a_{v_p}) \]
extended over all N sets is easily seen to be equal to
\[(a_1 a_2 \ldots a_n)^P. \]
On the other hand, the hypothesis (2) gives the inequalities
\[B(v) \geq (A(v)B(v))^{s/p}, \]
and it follows therefore that
\[\prod_v B(v) \geq (a_1 a_2 \ldots a_n)^{sP/p}. \]

We can now derive a lower bound for $V(K_0)$; it would be much harder to determine the exact value of this number.

The unit sphere G_n contains the $2n$ positive and negative unit points
\[\pm U_1, \pm U_2, \ldots, \pm U_n, \]
and the ellipsoid E contains the proportional points
\[\pm a_1 U_1, \pm a_2 U_2, \ldots, \pm a_n U_n. \]
Hence $K_0 = [G_n^p E^s]$ contains all the compound points
\[\pm B(v) [U_{v_1}, U_{v_2}, \ldots, U_{v_p}]. \]
Apart from the numerical factors \(\pm B(v) \), these points are just all the \(N \) distinct unit points on the coordinate axes in \(R_N \). Hence the convex hull \(H \) of the points (5) is a generalized octahedron of volume
\[
V(H) = \frac{2^N}{N!} \prod_v B(v).
\]

Since \(K_0 \supseteq H \), it follows then by (4) that
\[
V(K_0) \geq \frac{2^N}{N!} \prod_v B(v) \geq \frac{2^N}{N!} (a_1a_2 \ldots a_n)^{s/p^p}.
\]

We finally substitute this lower bound for \(V(K_0) \) in (3) and obtain the estimate
\[
S(K) \geq \frac{2^N}{\kappa^{pN} N!}.
\]
As asserted, the constant on the right-hand side depends only on \(n \) and \(p \).

5. The already asserted result can now be proved.

Theorem 2. Let \(n \geq 3 \), \(2 \leq p \leq n-1 \), \(p = r+s \), \(r \geq 1 \), \(s \geq 1 \). Let further \(K_1 \) and \(K_2 \) be two closed, bounded, symmetric, convex bodies in \(R_n \), and let \(K = [K_1^r K_2^s] \) be a mixed compound of these bodies in \(R_N \). A positive constant \(c \) depending only on \(n \) and \(p \) exists such that
\[
V(K) \geq c \{(V(K_1)^r V(K_2)^s)^{p/p^p}. \]

Proof. By the theorem of John (1) there exist two ellipsoids \(E_1 \) and \(E_2 \) in \(R_n \) with their centres at the origin such that
\[
n^{-1/2} E_1 \subseteq K_1 \subseteq E_1, \quad n^{-1/2} E_2 \subseteq K_2 \subseteq E_2.
\]
Hence, if \(K_1 \) is the compound body
\[
K_1 = [E_1^r E_2^s],
\]
then
\[
n^{-1/p} K_1 \subseteq K \subseteq K_1,
\]
and so also
\[
n^{-1/p} V(K_1) \leq V(K) \leq V(K_1).
\]

It has already been proved that
\[
V(K_1) \geq \frac{2^N}{\kappa^{pN} N!} \{V(E_1)^r V(E_2)^s \}^{p/p^p}.
\]

Hence it follows from the left-hand inequality in (6) that
\[
V(K) \geq \frac{2^N}{\kappa^{pN} N!} n^{1/p} \{V(E_1)^r V(E_2)^s \}^{p/p^p} = \frac{2^N}{\kappa^{pN} N!} n^{1/p} \{V(K_1)^r V(K_2)^s \}^{p/p^p},
\]
as was to be proved.

Reference

1. F. John, Courant anniversary volume (1948), 187–204.

Department of Mathematics,
Manchester University.