Über die konvexen Körper,
die sich einem Sternkörper einbeschreiben lassen

Von
KURT MAHLER

Bezeichnungen (für nähere Einzelheiten s. den Enzyklopädie-Artikel Nr. 27 von KELLER):

\(R_n \) ist der affine Raum aller Punkte oder Vektoren \(X = (x_1, \ldots, x_n) \) mit reellen \(x_1, \ldots, x_n \). Sind \(X^{(1)}, \ldots, X^{(n)} \) irgend \(n \) linear-unabhängige Punkte in \(R_n \), so bedeute \(\{X^{(1)}, \ldots, X^{(n)}\} \) ihre Determinante. Diese Punkte erzeugen ein Gitter \(A \), welches aus allen \(u_1X^{(1)} + \cdots + u_nX^{(n)} \) mit ganzen \(u_1, \ldots, u_n \) besteht und die Determinante \(\Delta = \begin{vmatrix} X^{(1)} & \cdots & X^{(n)} \end{vmatrix} \) hat. Ist \(S \) eine beliebige Punktmengen in \(R_n \), so heißt \(A \) \(S \)-zulässig falls, außer vielleicht dem Ursprung \(O = (0, \ldots, 0) \), kein Punkt von \(A \) innerer Punkt von \(S \) ist. Unter der Gitterdeterminante \(\Delta(S) \) von \(S \) ist als dann die untere Grenze von \(\Delta(A) \), erstreckt über alle \(S \)-zulässigen Gitter, verstanden. Ein \(S \)-zulässiges Gitter \(A \) mit \(\Delta(A) = \Delta(S) \) heißt ein kritisches Gitter von \(S \).

Die Punktmengen \(S \) ist ein Strahlenkörper, falls \(O \) innerer Punkt ist und falls ferner für \(X \in S \) und \(-1 < t < 1 \) auch \(tX \) zu \(S \) gehört. Ist für \(X \in S \) und \(-1 < t < 1 \) sogar \(tX \) ein innerer Punkt von \(S \), so heißt \(S \) ein Sternkörper.

Sei \(n \geq 2 \), \(S \) ein beschränkter Sternkörper\(^1\) in \(R_n \), und \(K \) ein \(S \) einbe- schriebener konvexer Körper von größtmäßigem Inhalt \(V(K) \). (Mit Hilfe des Satzes von BLASCHKE über Folgen konvexer Körper zeigt man leicht die Existenz eines solchen Körpers \(K \).) Man kann die Frage aufwenden, ob es eine nicht-triviale positive untere Schranke für \(V(K) \) gibt, die allein von einem geeigneten Funktional von \(S \) abhängt.

Es ist leicht einzusehen, daß eine solche Schranke für \(V(K) \) nicht nur von dem Inhalt \(V(S) \) von \(S \) abhängen kann. Denn sei z.B. \(S_r \) der endliche Sternkörper

\[S_r: \quad |x_1x_2 \cdots x_n| \leq 1, \quad x_1^2 + x_2^2 + \cdots + x_n^2 \leq r^2, \]

welcher in dem unendlichen Sternkörper

\[S_\infty: \quad |x_1x_2 \cdots x_n| \leq 1 \]

enthält ist. Es ist wohlbekannt, daß \(S_\infty \) zwar eine endliche Gitterdeterminante \(\Delta(S_\infty) \) hat, daß aber sein Volumen \(V(S_\infty) \) unendlich groß ist. Man kann daher ein \(r \geq n \) so auswählen, daß

\[V(S_r) \quad \text{beliebig groß, aber} \quad \frac{1}{2} \Delta(S_\infty) \leq \Delta(S_r) \leq \Delta(S_\infty) \]

\(^1\) Alle auftretenden konvexen Körper, Sternkörper und Strahlenkörper werden als symmetrisch in bezug auf den Ursprung \(O = (0, \ldots, 0) \) angenommen, es sei denn ausdrücklich das Gegenteil gesagt.
ist. Nun ist offenbar der konvexe Körper
\[K_0 : |x_1| + |x_2| + \cdots + |x_n| \leq n \]
von Inhalt
\[V(K_0) = \frac{(2n)^n}{n!} \]
eine Teilmenge von \(S \), und stellt zugleich den größten konvexen Körper dieser Art dar. Für diesen Körper kann \(V(K_0) / V(S) \) beliebig klein gemacht werden; dagegen bleibt \(V(K_0) / \Delta(S) \) für alle \(r \geq n \) größer als eine gewisse, nur von \(n \) abhängige positive Zahl.

Dieses Beispiel legt die Vermutung nahe, daß man auch im allgemeinen Falle \(V(K) \) mit \(\Delta(S) \) vergleichen muß und daß immer \(V(K) / \Delta(S) \geq c \) ist, wo die Konstante \(c > 0 \) nur von \(n \) abhängt. Merkwürdigerweise ist diese Vermutung jedoch falsch und gilt das folgende Ergebnis:

Satz. Sei \(\varepsilon > 0 \) beliebig klein. Dann gibt es einen beschränkten Sternkörper \(S \) in \(R_n \) mit der Eigenschaft \(V(K) < \varepsilon \Delta(S) \) für jeden in \(S \) enthaltenen konvexen Körper \(K \).

Der Beweis besteht aus zwei Teilen. Zuerst wird ein Strahlenkörper \(\Sigma^* \) konstruiert, welcher der Ungleichung
\[V(K) < \frac{\varepsilon}{2} \Delta(\Sigma^*) \]
für jeden konvexen Körper \(K \subseteq \Sigma^* \) genügt. Danach wird in \(\Sigma^* \) ein Sternkörper \(S \) mit der Eigenschaft
\[\Delta(S) > \frac{1}{2} \Delta(\Sigma^*) \]
einbeschrieben. Da aus \(K \subseteq S \) auch \(K \subseteq \Sigma^* \) folgt, so ist die Behauptung eine unmittelbare Folge von (a) und (b).

1. Der Mengenlehre entnehmen wir ohne Beweis den folgenden Hilfssatz:

Lemma 1. Es gibt eine unendliche Menge \(M \) reeller Zahlen, welche überall auf der reellen Achse dicht ist, derart, daß die Elemente jeder endlichen Teilmenge von \(M \) algebraisch unabhängig über dem Körper der rationalen Zahlen sind.

2. Wir bezeichnen mit \(\delta > 0 \) eine beliebig kleine und mit \(r > 1 \) eine beliebig große Zahl, weiter mit
\[G_0 : |X| \leq \varrho \quad \text{und} \quad I_0 : |X| = \varrho \]
die Kugel vom Radius \(\varrho > 0 \) mit Mittelpunkt im Ursprung und ihre Oberfläche. Dabei bedeutet \(|X| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2} \) die Länge des Ortsvektors \(X = (x_1, x_2, \ldots, x_n) \). Im Falle der Einheitskugel lassen wir den Index \(1 \) weg und schreiben \(G \) und \(I \) anstatt \(G_1 \) und \(I_1 \).

Durch jeden Punkt \(X \pm O \) geht genau eine Gerade \(L(X) \), welche den Ursprung enthält; sie besteht aus allen Punkten \(P = tX \) mit reelem \(t \). Diese Gerade schneidet \(I' \) in zwei Punkten \(+ Q(X) \) und \(- Q(X) \), die in bezug auf \(O \)
symmetrisch liegen. Die Bezeichnung kann eindeutig gemacht werden, indem man etwa für $+Q(X)$ den Punkt mit positivem t nimmt.

Aus Lemma 1 ergibt sich nun, daß man eine genügend große natürliche Zahl N und dazu N Punkte

$$X_h = (x_{h1}, x_{h2}, \ldots, x_{hn}) \quad (h = 1, 2, \ldots, N)$$
derart auswählen kann, daß die folgenden Forderungen erfüllt sind:

1) Die nN Koordinaten x_{hk} der Punkte X_h sind verschiedene Elemente der Menge M; sie sind daher algebraisch unabhängig über dem rationalen Zahlkörper.

2) Jeder Punkt von Γ hat eine Entfernung kleiner als δ von wenigstens einem der $2N$ Punkte

$$Q_h = +Q(X_h) \quad \text{und} \quad -Q_h = -Q(X_h) \quad (h = 1, 2, \ldots, N)$$
auf Γ. 2).

Es bedeute jetzt Σ die Menge aller Punkte X der Kugel G_r, die nicht von der Form

$$X = \pm t Q_h \quad \text{mit} \quad 1 \leq t \leq r \quad (h = 1, 2, \ldots, N)$$
sind; Σ entsteht also aus G_r indem man $2N$ Strecken der Länge $r - 1$ fortläßt. Natüglich ist Σ kein Sternkörper; es ist jedoch ein Strahlenkörper. Denn wenn X zu Σ gehört, so gilt dasselbe für alle Punkte sX mit $-1 \leq s \leq +1$. Die Kugel G_ρ ist für $\rho < 1$, aber nicht für $\rho \geq 1$ in Σ enthalten, und Σ liegt seinerseits in G_r.

3. Lemma 2. Es gibt eine Zahl $c_1 > 0$, die nur von n abhängt, so daß

$$V(K) < c_1 \max \left(1, \delta r^{n-1}\right)$$

für jeden in Σ enthaltenen konvexen Körper K ist.

Beweis. Sei X_ξ ein Punkt von K, für den $|X_\xi| = \xi > 0$ ein Maximum ist. Im Falle $\xi \leq 2$ gilt die Ungleichung

$$V(K) \leq V(G_2),$$
da alsdann $K \subseteq G_2$ ist. Sei von nun an

$$\xi > 2.$$ Eine Rotation des Koordinatensystems hat keinen Einfluß auf die Behauptung. Wir dürfen daher ohne Verlust der Allgemeinheit annehmen, daß X_ξ die Koordinaten

$$X_\xi = (0, 0, \ldots, \xi)$$

hat.

2) Zwei Punkte X und Y in R^n haben die Entfernung $|X - Y|$.
Weiter bedeute K den Durchschnitt von K mit der Koordinatenebene $x_n = 0$; K ist also ein $(n-1)$-dimensionaler konvexer Körper. Es gibt einen Punkt

$$
\Xi = (\xi_1, \xi_2, \ldots, \xi_{n-1}, 0)
$$

auf der Begrenzung von K mit kleiner Entfernung

$$
d = |\Xi| > 0
$$

von O. Die $(n-1)$-dimensionale Kugel

$$
z: \ |X| \leq d, \ x_n = 0,
$$

in der Ebene $x_n = 0$ ist daher in K und so auch in K enthalten.

Wir konstruieren nun zwei Doppelkegel Φ und φ mit den Spitzen $+X_0$ und $-X_0$ bzw. über der Basis K und der Basis z. Diese zwei Körper Φ und φ sind wieder symmetrisch in bezug auf O und konvex, und es ist offenbar $\varphi \subseteq \Phi \subseteq K$.

Wie schon erwähnt, ist G nicht in K, also auch nicht in φ enthalten. Da nun O innerhalb, X_0 aber außerhalb von G liegt, so enthält der Durchschnitt von φ mit dem Teil von \varGamma, der im Halbraum $x_n \geq 0$ liegt, eine größte Kugelkappe P mit Mittelpunkt im Punkte $X^* = (0, 0, \ldots, 0, 1)$. Diese Kugelkappe P besteht aus allen Punkten $X = (x_1, x_2, \ldots, x_n)$ auf \varGamma mit der Eigenschaft

$$
\eta \leq x_n \leq 1;
$$

dabei bedeutet η eine gewisse Zahl mit $0 \leq \eta < 1$. Daher kann P auch als die Menge aller Punkte X auf \varGamma mit

$$
|X - X^*| \leq \sqrt{2(1 - \eta)}
$$

aufgefaßt werden. Andererseits liegt X^* von wenigstens einem der Punkte $\mp Q_k$ in einer Entfernung kleiner als δ, und kein Punkt $\mp Q_k$ kann zu P gehören. Daher muß

$$
\sqrt{2(1 - \eta)} < \delta, \quad \text{d.h.} \quad \eta > 1 - \frac{\delta^2}{2}
$$

sein.

Indem wir nun den Rand von P von dem Punkte X_0 aus auf die Ebene x_n projizieren, erhalten wir die Proportion

$$
d : \sqrt{1 - \eta^2} = \xi : (\xi - \eta).
$$

Hier ist

$$
|1 - \eta^2| < \sqrt{1 - \left(1 - \frac{\delta^2}{2}\right)^2} < \delta \quad \text{und} \quad \xi > 2, \ \eta \leq 1, \ \xi - \eta > \frac{1}{2} \xi, \ \frac{\xi}{\xi - \eta} < 2
$$

und daher schließlich

$$
d : \delta < 2 : 1, \ d < 2\delta.
$$
In den beiden Punkten Ξ und $-\Xi$ bringen wir nun ein Paar paralleler Stützebenen von K an. Diese Stützebenen begrenzen einen Parallelstreifen der Dicke

$$2d < 4\delta,$$

in welchem K enthalten ist. Da andererseits K auch eine Teilmenge der Kugel G_δ ist, so liegt K vollständig in einem Zylinder der Höhe 4δ und mit einem Querschnitt vom $(n-1)$-dimensionalen Inhalt

$$c_2 r^{n-1};$$

c_2 bezeichnet hier den Inhalt der $(n-1)$-dimensionalen Einheitskugel. Also ergibt sich die Abschätzung

$$V(K) < 4\delta \cdot c_2 r^{n-1}$$

und damit die Behauptung, falls

$$c_1 = \max(V(G_\delta), 4c_2)$$

gewählt wird.

4. Sei A ein beliebiges Σ-zulässiges n-dimensionales Gitter. Eine gewisse (möglichweise verschwindende) Anzahl von primitiven Punkten dieses Gitters3 liegt im Innern von G_δ; seien das genau die Punkte $\mp Y_1, \mp Y_2, \ldots, \mp Y_p$. Die Vorzeichen lassen sich so wählen, daß es zu jedem dieser Gitterpunkte Y_h einen eindeutig bestimmten Index $j = j(h)$ gibt, derart daß

$$Y_h = s_h Q_j \quad \text{und} \quad 1 \leq s_h < r$$

ist; denn Punkte nicht von dieser Form im Innern von G_δ liegen auch im Innern von Σ. Verschiedenen Punkten Y_h und Y_k kann offenbar nicht dasselbe Index j entsprechen. Es läßt sich daher die Bezeichnung ohne Beschränkung der Allgemeinheit so umändern, daß gerade

$$Y_h = s_h Q_h \quad \text{und} \quad 1 \leq s_h < r \quad (h = 1, 2, \ldots, p)$$

ist. Nach der Definition von Q_h läßt sich alsdann Y_h auch in der Form

(3)

$$Y_h = t_h X_h \quad (h = 1, 2, \ldots, p)$$

darstellen, wo jetzt t_1, t_2, \ldots, t_p gewisse von Null verschiedene reelle Zahlen sind.

5. Von den p Gitterpunkten Y_1, Y_2, \ldots, Y_p seien genau q linear unabhängig, etwa die Punkte Y_1, Y_2, \ldots, Y_q, dabei ist natürlich

$$q \leq \min(n, N, p).$$

3) $Y \in A$ heißt primitiv, falls $Y \mp O$ ist und es keinen Gitterpunkt der Form tY mit $0 < t < 1$ gibt.
Falls \(q < p \) ist, lassen sich die \(p - q \) übrigen Punkte \(Y_{q+1}, Y_{q+2}, \ldots, Y_p \) durch diese Basis in der Form

\[
Y_h = \lambda_{h1} Y_1 + \lambda_{h2} Y_2 + \cdots + \lambda_{hq} Y_q \quad (h = q + 1, q + 2, \ldots, p)
\]
ausdrücken. Dabei sind die Koeffizienten \(\lambda_{hk} \) gewisse rationale Zahlen, und wegen \(Y_h \neq 0 \) sind \(\lambda_{h1}, \lambda_{h2}, \ldots, \lambda_{hq} \) für keinen Index \(h \) alle gleichzeitig Null.

Aus (3) folgen nun die äquivalenten Beziehungen

\[
t_h X_h = \lambda_{h1} t_1 X_1 + \lambda_{h2} t_2 X_2 + \cdots + \lambda_{hq} t_q X_q \quad (h = q + 1, q + 2, \ldots, p).
\]

Nachdem hier die Koordinaten

\[
X_h = (x_{h1}, x_{h2}, \ldots, x_{hn})
\]
eingesetzt worden sind, erhalten wir daher das System von \(n(p-q) \) homogenen linearen Gleichungen

(4) \[
t_h x_{hk} = \lambda_{h1} t_1 x_{1k} + \lambda_{h2} t_2 x_{2k} + \cdots + \lambda_{hq} t_q x_{qk} \quad (h = q + 1, q + 2, \ldots, p; \quad k = 1, 2, \ldots, n)
\]
für die \(p \) Größen \(t_h \neq 0 \).

Lemma 3. Es ist entweder \(q = p \) oder \(q = p - 1 \).

Beweis. Sei die Behauptung falsch und daher \(q \leq p - 2 \), so daß die Gln. (4) wenigstens für \(h = q + 1 \) und \(h = q + 2 \) erfüllt sind. Keiner der hier auftretenden Koeffizienten

\[
\lambda_{hk} \quad (h = q + 1, q + 2; \quad k = 1, 2, \ldots, n)
\]
kann gleich Null sein. Denn sei etwa \(1 \leq r < n \) und

\[
\lambda_{q+1,k} \neq 0 \quad \text{für} \quad k = 1, 2, \ldots, v; \quad \lambda_{q+1,k} = 0 \quad \text{für} \quad k = v + 1, v + 2, \ldots, n.
\]

Die \(v + 1 \) aus (4) entspringenden Gleichungen

\[
t_{q+1} x_{q+1,k} = \lambda_{q+1,1} t_1 x_{1k} + \lambda_{q+1,2} t_2 x_{2k} + \cdots + \lambda_{q+1,v} t_v x_{vk} \quad (k = 1, 2, \ldots, v + 1)
\]
für die nicht-verschwindenden Zahlen \(t_1, t_2, \ldots, t_v, t_{q+1} \) verlangen, daß ihre Determinante

\[
\left| x_{q+1,k}, \lambda_{q+1,1} x_{1k}, \lambda_{q+1,2} x_{2k}, \ldots, \lambda_{q+1,v} x_{vk} \right|_{k=1,2,\ldots,v+1}
\]
gleich Null ist. Aber dann sind, gegen die Voraussetzung, nicht alle \(nN \) Koordinaten \(x_{hk} \) algebraisch unabhängig über dem rationalen Körper.

Für die Werte \(h = q + 1 \) und \(h = q + 2 \) erhalten wir also aus (4) ein System von \(2n \) homogenen linearen Gleichungen für die \(q + 2 \) Größen \(t_1, t_2, \ldots, t_{q+2} \), die wieder alle von Null verschieden sind. Wegen \(n \geq 2 \) und \(q \leq n \) ist jedoch \(2n \geq q + 2 \). Die Koeffizientenmatrix hat daher höchstens den Rang \(q + 1 \), und es ergibt sich erneut der Widerspruch, daß die in ihr auftretenden Koordinaten \(x_{hk} \) einer nicht-trivialen algebraischen Gleichung mit rationalen Koeffizienten genügen.
6. Lemma 4. Es gibt eine nur von \(n \) abhängige Konstante \(c_3 > 0 \), derart, daß
\[
\Lambda(\Sigma) \geq c_3 r^{n-1}.
\]

Beweis. Nach dem letzten Hilfssatz kann, von einem Proportionalitätsfaktor abgesehen, höchstens eine Gleichung
\[
z_h Y_h + z_k Y_k + z_l Y_l = 0
\]
mit von Null verschiedenen rationalen Koeffizienten gelten; dabei sind \(h, k, l \) irgend drei verschiedene der Indizes \(1, 2, \ldots, \hat{p} \). Demnach ist für \(h \neq k \) immer nur höchstens einer der beiden Gitterpunkte \(Y_h + Y_k \) und \(Y_h - Y_k \) zu einem weiteren Gitterpunkt \(Y \) proportional. Nach der Definition dieser Punkte bedeutet dies, daß höchstens einer der beiden Punkte \(Y_h + Y_k \) und \(Y_h - Y_k \) im Innern von \(G \) liegen kann. Anders ausgedrückt, es muß wenigstens eine der beiden Ungleichungen
\[
|Y_h + Y_k| \geq r \quad \text{oder} \quad |Y_h - Y_k| \geq r
\]
gelten.

Sei jetzt etwa
\[
|Y_1| = \min(|Y_1|, |Y_2|, \ldots, |Y_p|).
\]
Es folgt dann für \(h = 2, 3, \ldots, \hat{p} \), daß
\[
r \leq |Y_1 + Y_h| \leq |Y_1| + |Y_h| \leq 2|Y_h|, \quad |Y_h| \geq \frac{r}{2}.
\]

Bedeutet jetzt \(E \) das Rotationsellipsoid in \(R_n \) mit einer Halbachse der Länge \(1 \) in der Richtung \(OY_1 \), und mit \(n - 1 \) Halbachsen der Länge \(r/2 \) in Richtungen senkrecht zu \(OE_1 \). Das Innere von \(E \) enthält dann keinen der Punkte \(Y_1, Y_2, \ldots, Y_p \) und folglich überhaupt keinen von \(O \) verschiedenen Punkt von \(\Lambda \); d.h., \(\Lambda \) ist \(E \)-zulässig. Es ist also
\[
d(\Lambda) \geq \Lambda(E),
\]
und da dies für jedes \(\Sigma \)-zulässige Gitter gilt, so ist auch
\[
\Lambda(\Sigma) \geq \Lambda(E).
\]

Das Ellipsoid \(E \) hat den Inhalt
\[
V(E) = c_4 \cdot 1 \cdot \left(\frac{r}{2} \right)^{n-1},
\]
wobei \(c_4 = V(G) \) gesetzt wurde. Nach MINKOWSKIS Gitterpunktssatz ist andererseits
\[
\Lambda(E) \geq 2^{-n} V(E) = c_4 2^{-(2n-1)} r^{n-1}.
\]
Also erhalten wir die Ungleichung
\[
\Lambda(\Sigma) \geq c_4 2^{-(2n-1)} r^{n-1}
\]
und damit die Behauptung, falls \(c_3 = c_4 2^{-(2n-1)} \) gesetzt wird.
7. Aus Lemma 2 und 4 ergibt sich nun für jeden in \(\Sigma \) enthaltenen konvexen Körper \(K \), daß

\[
\frac{V(K)}{A(\Sigma)} < \frac{c_1 \max(1, \delta r^{n-1})}{c_3 r^{n-1}} = \frac{c_1}{c_3} \max(r^{-(n-1)}, \delta)
\]

ist. Genügen also \(\delta \) und \(r \) den Bedingungen

\[
\frac{c_1}{c_3} \delta < \frac{\varepsilon}{2}, \quad \frac{c_1}{c_3} r^{-(n-1)} < \frac{\varepsilon}{2},
\]

so folgt die Ungleichung

\[
(5) \quad V(K) < \frac{\varepsilon}{2} A(\Sigma).
\]

Es ist jetzt zweckmäßig, \(\Sigma \) durch einen neuen Strahlenkörper \(\Sigma^* \) zu ersetzen; man erhält diesen, indem man zu \(\Sigma \) die \(2N \) Punkte \(\pm Q_1, \pm Q_2, \ldots, \pm Q_N \) hinzufügt. Ein \(\Sigma\)-zulässiges Gitter ist offenbar auch \(\Sigma^*\)-zulässig, und umgekehrt; darum gilt

\[
A(\Sigma^*) = A(\Sigma).
\]

Ist ferner \(K^* \) irgendein \(\Sigma^* \) einbeschriebener konvexer Körper und liegt ein zweiter konvexer Körper \(K \) ganz im Innern von \(K^* \), so ist \(K \) auch im Innern von \(\Sigma \) enthalten. Es folgt daher leicht, daß die Ungleichung (5) bestehen bleibt, falls in ihr \(\Sigma \) durch \(\Sigma^* \) ersetzt wird. Also erfüllt \(\Sigma^* \) die Forderung (a) der Einleitung.

8. Sei \(\sigma > 0 \) eine sehr kleine Zahl, und bedeute \(T_h \) die Menge aller Punkte \(X \) der Form

\[
X = s Q_h + (s - 1) \sigma Y, \text{ wo } s > 1 \text{ und } |Y| < 1
\]

ist; \(T_h \) stellt also einen offenen Kegel mit der Spitze \(Q_h \) dar. Weiter sei \(-T_h\) die zu \(T_h \) in bezug auf \(O \) symmetrische Menge. Endlich bezeichne \(S_\sigma \) die Menge, welche aus allen Punkten \(X \) der Form

\[
|X| \leq r, \; X \not\subseteq T_h \quad \text{für} \quad h = 1, 2, \ldots, N
\]

besteht. Offenbar ist \(S_\sigma \) eine abgeschlossene Menge und ein Sternkörper.

Aus der Definition ergibt sich sofort, daß \(S_\sigma \subseteq \Sigma^* \) und für \(\sigma < \tau \) auch \(S_\sigma \subseteq S_\tau \) ist. Dies zieht für die Gitterdeterminante die Ungleichungen

\[
A(S_\sigma) \leq A(S_\sigma) \leq A(\Sigma^*) \quad \text{für} \quad 0 < \sigma < \tau
\]

nach sich. Wenn also \(\sigma \) gegen Null strebt, so wächst \(A(S_\sigma) \) monoton gegen einen Grenzwert, der nicht größer als \(A(\Sigma^*) \) sein kann.

In der Tat ist sogar

\[
\lim_{\sigma \to 0} A(S_\sigma) = A(\Sigma^*).
\]

Denn für jede natürliche Zahl \(k \) können wir ein \(S_{1/k}\)-zulässiges Gitter \(A_k \) so auswählen, daß

\[
d(A_k) < A(S_{1/k}) + \frac{1}{k}
\]
ist. Die Gitterfolge \(\{A_1, A_2, A_3, \ldots\} \) ist offenbar beschränkt, enthält also eine konvergente Teilfolge \(\{A_{k_1}, A_{k_2}, A_{k_3}, \ldots\} \), die etwa gegen das Gitter \(A_0 \) strebt. Dieses Gitter \(A_0 \) ist nun \(\Sigma^* \)-zulässig. Denn andernfalls gibt es in \(\Sigma^* \) einen inneren Punkt \(Z_0 \neq 0 \) mit \(Z_0 \in A_0 \). Alsdann besitzt \(A_{k_i} \) für alle genügend großen \(i \) einen Punkt in einer festen, beliebig kleinen Umgebung von \(Z_0 \). Dieser Punkt ist offenbar ein innerer, von \(O \) verschiedener Punkt von \(S_{1/k_i} \), so daß sich ein Widerspruch ergibt.

Da somit \(A(S_\sigma) \) gegen \(A(\Sigma^*) \) strebt, so gibt es einen Wert \(\sigma = \sigma_0 \), derart, daß

\[
A(S_{\sigma_0}) < \frac{1}{2} A(\Sigma^*)
\]

ist. Der Sternkörper \(S = S_{\sigma_0} \) erfüllt also die in der Einleitung gestellte Bedingung (b).

Mathematics Department, The University, Manchester, England

(Eingegangen am 8. März 1956)