On the transcendency of the solutions of a special class of functional equations:

Corrigendum

Kurt Mahler

Mr V.E. Hoggatt, Jr, has pointed out an error in the examples of my paper [2]. If F_m denotes the mth Fibonacci number, these examples asserted that

$$
\sum_{n=0}^{\infty} \left(\frac{F}{2^n} \right)^{-1} = s \quad \text{say},
$$

is transcendental. This is in fact false, for by a theorem of Good [1],

$$
s = \frac{(7-\sqrt{5})}{2};
$$

for it happens that

(1)

$$
\sum_{n=0}^{\infty} z^n \frac{\left(1 - z^{n+1}\right)^{-1}}{1-z} = \frac{z}{1-z}
$$

is a rational and not a transcendental function of z, so that Theorem 1 of my paper cannot be applied. The value of s follows from (1) on putting $z = \frac{1+\sqrt{5}}{2}$.

Hence the following changes have to be made in [2].

On p. 390, lines 7 and 10, the case $k = 1$ must each time be excluded, and in Theorem 2 the two numbers r and s may not be both be 0.

Received 11 February 1976.
References

Department of Mathematics,
Institute of Advanced Studies,
Australian National University,
Canberra,
ACT.