A New Transfer Principle in the
Geometry of Numbers

KURT MAHLER

Mathematics Department, Australian National University,
Canberra, ACT 2601, Australia
Communicated by the Editors
Received September 20, 1983

DEDICATED TO THE MEMORY OF E. G. STRAUS

general transfer principle in the geometry of numbers which consisted of inequalities
linking the successive minima of a convex body in \(n \) dimensions with those of a
convex body in \(N \) dimensions where in general \(N > n \). This result con-
tained in particular my earlier theorem on compound convex bodies (Proc. London
Math. Soc. (3) 5 (1955), 358–379). In the present paper I apply essentially the same
method to prove a new transfer principle which connects the successive minima of a
convex body in \(m \) dimensions and those of a convex body in \(n \) dimensions with
the successive minima of a convex body in \(mn \) dimensions.

\(\copyright \) 1986 Academic Press, Inc.

1. Let \(m \geq 2 \) and \(n \geq 2 \) be integers, let \(\mathbb{R}^m \) and \(\mathbb{R}^n \) be the real
\(m \)-dimensional and \(n \)-dimensional spaces of all points or vectors
\[
x = (x_1, \ldots, x_m) \quad \text{and} \quad y = (y_1, \ldots, y_n),
\]
respectively, and let \(\mathbb{R}^{mn} \) be the real \(mn \)-dimensional space of all points or
vectors
\[
z = (z_{11}, z_{12}, \ldots, z_{mn}),
\]
where the coordinates
\[
z_{hk}, \quad (h = 1, 2, \ldots, m, k = 1, 2, \ldots, n)
\]
are arranged in lexicographical order. We denote by
\[
u_1 = (1, \ldots, 0), \ldots, u_m = (0, \ldots, 1)
\]
20
the m points in R^m with just one coordinate 1 and all others 0, by

$$v_1 = (1,\ldots,0), \ldots, v_n = (0,\ldots,1)$$

the analogous points in R^n, and by

$$w_{hk}, \quad (h = 1, 2, \ldots, m, k = 1, 2, \ldots, n)$$

the mn points in R^{mn} which have a coordinate 1 at the place h, k and 0 at all other places. With the usual notation for sums of vectors and for the product of a vector with a scalar, the points x, y, and z may then be written as

$$x = \sum_{h=1}^{m} x_h u_h, \quad y = \sum_{k=1}^{n} y_k v_k, \quad z = \sum_{h=1}^{m} \sum_{k=1}^{n} z_{hk} w_{hk}.$$

Finally, denote by L^m, L^n, and L^{mn} the lattices of all points in R^m, R^n, and R^{mn}, respectively, which have integral coordinates. Then the lattice points u_h form a basis of L^m, the lattice points v_k a basis of L^n, and the lattice points w_{hk} form a basis of L^{mn}. All three lattices have the determinant 1.

2. We introduce now the mapping $R^m \times R^n \to R^{mn}$ defined by the equations

$$z_{hk} = x_h \cdot y_k, \quad (h = 1, 2, \ldots, m, k = 1, 2, \ldots, n).$$

We write $z = x \times y$ and note that here the order of x and y may not be altered.

When x runs over the whole space R^m and y over the whole space R^n, then $z = x \times y$ describes the algebraic manifold in R^{mn}, M say, which is defined by the algebraic equations

$$z_{hk} z_{ij} = z_{ij} z_{hk}, \quad h, i = 1, 2, \ldots, m, k, j = 1, 2, \ldots, n).$$

Since $u_h \times v_k = w_{hk}$ for $h = 1, 2, \ldots, m$ and $k = 1, 2, \ldots, n$, the manifold M contains the mn unit points w_{hk} which together span the space R^{mn}.

In the equation $z = x \times y$ the coordinates of z are bilinear forms in the coordinates of x and of y and hence are continuous functions in these coordinates.

3. Denote by

$$A = (a_{hi}) \quad \text{and} \quad B = (b_{kj})$$
a real non-singular $m \times m$ matrix of determinant
\[a = \det(a_{hi}) \neq 0 \]
and a real non-singular $n \times n$ matrix of determinant
\[b = \det(b_{kj}) \neq 0. \]
We associate with A the non-singular linear transformation of \mathbb{R}^m defined by
\[X = Ax = (X_1, \ldots, X_m), \quad \text{where} \quad X_h = \sum_{i=1}^{m} a_{hi}x_i \quad (h = 1, 2, \ldots, m) \]
and with B the non-singular linear transformation of \mathbb{R}^n defined by
\[Y = By = (Y_1, \ldots, Y_n), \quad \text{where} \quad Y_k = \sum_{j=1}^{n} b_{kj}y_j \quad (k = 1, 2, \ldots, n). \]
If simultaneously A is applied to x and B to y, then $z = x \times y$ is changed into
\[Z = Ax \times By = X \times Y = (Z_{11}, Z_{12}, \ldots, Z_{mn}), \]
where the new coordinates Z_{hk} are again numbered lexicographically and have the values
\[Z_{hk} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{hi}b_{kj}z_{ij}, \quad (h = 1, 2, \ldots, m, k = 1, 2, \ldots, n). \]
This is again a linear transformation of \mathbb{R}^{mn} defined by
\[Z = Cz, \quad \text{where} \quad C = (c_{hi,kj}) \]
and \[c_{hi,kj} = a_{hi}b_{kj}, \quad (h, i = 1, 2, \ldots, m, k, j = 1, 2, \ldots, n). \]
As is well known, the $mn \times mn$ matrix C has the determinant
\[c = \det(c_{hi,kj}) = a^n b^m \neq 0, \]
so that also C is non-singular. We shall use the notation $C = A \times B$.

4. A “body” is a point set with interior points and a “convex body” a closed bounded convex body which is symmetric in the coordinate origin $o = (0, \ldots, 0)$, and for which o is an interior point.
Let K^m be any convex body in \mathbb{R}^m and K^n any convex body in \mathbb{R}^n. As the
point \(x \) runs over the whole of \(K^m \) and the point \(y \) over the whole of \(K^n \), the product point

\[z = x \times y \]

(1)

describes a certain point set, \(\Sigma \) say, which is a subset of the manifold \(M \). Denote by \(K^{mn} \) the convex hull of \(\Sigma \) so that \(K^{mn} \) is a convex point set in \(\mathbb{R}^{mn} \). We shall use the notation

\[K^{mn} = K^m \times K^n. \]

Lemma 1. The point set \(K^{mn} \) is a convex body.

Proof. Since the mapping (1) is continuous, both \(\Sigma \) and \(K^{mn} \) are bounded closed point sets; further \(K^{mn} \), as already said, is convex.

Next, if \(x \) is any point of \(K^m \), then also \(-x \) belongs to \(K^m \). Now

\[(-x) \times y = -x \times y. \]

It follows that if \(z \) is any point of \(K^{mn} \), then also \(-z \) belongs to \(K^{mn} \), and hence \(K^{mn} \) is symmetric in \(o \).

Finally, \(o \) is an interior point of \(K^{mn} \). For both \(K^m \) and \(K^n \) contain the origins of \(\mathbb{R}^m \) and of \(\mathbb{R}^n \), respectively, as interior points. This implies that there exist two positive constants \(\delta \) and \(\varepsilon \) such that \(K^m \) contains the \(2m \) points

\[\pm \delta \cdot u_h \quad (h = 1, 2, \ldots, m), \]

\(K^n \) contains the \(2n \) points

\[\pm \varepsilon \cdot v_k \quad (k = 1, 2, \ldots, n), \]

and therefore both the set \(\Sigma \) and the convex body \(K^{mn} \) contain the \(2mn \) points

\[\pm \delta \varepsilon \cdot w_{hk} \quad (h = 1, 2, \ldots, m, k = 1, 2, \ldots, n). \]

But then, by convexity, \(K^{mn} \) contains all points of the form

\[\delta \varepsilon \sum_{h=1}^{m} \sum_{k=1}^{n} t_{hk} w_{hk}, \]

where \(t_{11}, t_{12}, \ldots, t_{mn} \) denote any real numbers satisfying the inequality

\[\sum_{h=1}^{m} \sum_{k=1}^{n} |t_{hk}| \leq 1. \]
Since the mn points w_{hk} span the space R^{mn}, it follows that o is an interior point of K^{mn}. This concludes the proof.

5. Let again A, B, and C be the transformations in Section 3, and let further $K^{mn} = K^m \times K^n$. Put

$$K^{om} = AK^m, \quad K^{on} = BK^n, \quad \text{and} \quad K^{omm} = CK^{mn}.$$

Here AK^m is to consist of all points Ax, where x belongs to K^m, and similarly for BK^n and CK^{mn}. Since we are dealing with affine transformations, K^{om}, K^{on}, and K^{omm} are again convex bodies, and moreover

$$K^{omm} = K^{om} \times K^{on}.$$

Next denote by

$$J^{(m)} = \int_{K^m} \cdots \int dx_1 \cdots dx_m, \quad J^{(n)} = \int_{K^n} \cdots \int dy_1 \cdots dy_n,$$

$$J^{(m,n)} = \int_{K^{mn}} \cdots \int dz_{11} dz_{12} \cdots dz_{mn},$$

the volumes of K^m, K^n, and K^{mn} in their respective spaces and by $J^{o(m)}$, $J^{o(n)}$, and $J^{o(m,n)}$ the analogous volumes of K^{om}, K^{on}, and K^{omm}, respectively. Then evidently

$$J^{o(m)} = aJ^{(m)}, \quad J^{o(n)} = bJ^{(n)}, \quad \text{and} \quad J^{o(m,n)} = cJ^{(m,n)} = a^n b^m J^{(m,n)}.$$

Therefore

$$J^{o(m)n} J^{o(n)m} / J^{o(m,n)} = J^{(m)n} J^{(n)m} / J^{(m,n)}$$

so that this quotient of volumes is invariant under the transformations.

6. Consider first a special case. Denote by G^m and G^n the unit ball $|x| \leq 1$ in R^m and the unit ball $|y| \leq 1$ in R^n and define a convex body G^{mn} by the equation

$$G^{mn} = G^m \times G^n.$$

This body G^{mn} is rather complicated and is in fact the convex hull of the intersection of the unit ball $|z| \leq 1$ in R^{mn} with the manifold M. Let $g^{(m)}$, $g^{(n)}$, and $g^{(m,n)}$ be the volumes of G^m, G^n, and G^{mn}, respectively. These three volumes depend only on the degrees m and n.

Next let E^m be any ellipsoid in R^m and E^n any ellipsoid in R^n, both with
their centres at the origins of \mathbb{R}^m and \mathbb{R}^n, respectively, and let E^{mn} be the convex body in \mathbb{R}^{mn} defined by

$$E^{mn} = E^m \times E^n.$$

The volumes of E^m, E^n, and E^{mn} will be denoted by $e^{(m)}$, $e^{(n)}$, and $e^{(m,n)}$, respectively.

Lemma 2. There exists a positive number c_1 depending only on m and n such that

$$e^{(m,n)} = c_1 e^{(m)n} \cdot e^{(n)m}.$$

Proof. There exist two non-singular linear transformations A in \mathbb{R}^m and B in \mathbb{R}^n such that

$$E^m = AG^m \quad \text{ and } \quad E^n = BG^n$$

and therefore

$$E^{mn} = CG^{mn},$$

where C is derived from A and B as in Section 3. It follows now from Section 5 that

$$e^{(m)} = ag^{(m)}, \quad e^{(n)} = bg^{(n)}, \quad e^{(m,n)} = cg^{(m,n)} = a^n b^m g^{(m,n)},$$

whence the assertion on putting

$$c_1 = g^{(m,n)} / g^{(m)n} g^{(n)m}.$$

7. If S is any point set and $s > 0$ is a scalar, denote as usual by sS the set of all points sP where P runs over S. It is obvious that in this notation, for every convex body K^m in \mathbb{R}^m and every convex body K^n in \mathbb{R}^n and for any two positive numbers s and t, from the definition of $K^m \times K^n$,

$$sK^m \times tK^n = stK^{mn}.$$

By the same definition, if K_1^m and K_2^m are two convex bodies in \mathbb{R}^m, and K_1^n and K_2^n are two convex bodies in \mathbb{R}^n, such that

$$K_1^m \subset K_2^m \quad \text{ and } \quad K_1^n \subset K_2^n$$

and if further

$$K_1^{mn} = K_1^m \times K_1^n \quad \text{ and } \quad K_2^{mn} = K_2^m \times K_2^n,$$
then also

\[K_{1}^{mn} \subset K_{2}^{mn}. \]

Let now again \(K^{m}, K^{n}, \) and \(K^{mn} = K^{m} \times K^{n} \) be the original convex bodies in \(\mathbb{R}^{m}, \mathbb{R}^{n} \), and \(\mathbb{R}^{mn} \), respectively, and let \(J^{(m)}, J^{(n)}, \) and \(J^{(m,n)} \) be their volumes. Then the following result holds:

Theorem 1. There exist two positive constants \(c_{2} \) and \(c_{3} \) which depend only on the dimensions \(m \) and \(n \) such that

\[c_{2} J^{(m,n)} J^{(n)m} \leq J^{(m,n)} \leq c_{3} J^{(m,n)} J^{(n)m}. \]

Proof. By a theorem by John [1] there exists in \(\mathbb{R}^{m} \) an ellipsoid \(E^{m} \) and in \(\mathbb{R}^{n} \) an ellipsoid \(E^{n} \) such that

\[m^{-1/2} E^{m} \subset K^{m} \subset E^{m} \quad \text{and} \quad n^{-1/2} E^{n} \subset K^{n} \subset E^{n}, \]

hence that

\[(mn)^{-1/2} E^{mn} \subset K^{mn} \subset E^{mn}. \]

Let again \(J^{(m)}, J^{(n)}, J^{(m,n)}, e^{(m)}, e^{(n)}, e^{(m,n)} \) be the volume of \(K^{m}, K^{n}, K^{mn}, E^{m}, E^{n}, \) and \(E^{mn} \), respectively. Then \(m^{-1/2} E^{m} \) has the volume \(m^{-m/2} e^{(m)} \), \(n^{-1/2} E^{n} \) has the volume \(n^{-n/2} e^{(n)} \), and \((mn)^{-1/2} E^{mn} \) has the volume \((mn)^{-mn/2} e^{(m,n)} \). By what has already been proved,

\[m^{-m/2} e^{(m)} \leq J^{(m)} \leq e^{(m)}, \quad n^{-n/2} e^{(n)} \leq J^{(n)} \leq e^{(n)}, \]

\[(mn)^{-mn/2} e^{(m,n)} \leq J^{(m,n)} \leq e^{(m,n)}. \]

Therefore by Lemma 2,

\[J^{(m,n)} / J^{(m,n)} J^{(n)m} \leq e^{(m,n)} (m^{-m/2} e^{(m)})^{-n} (n^{-n/2} e^{(n)})^{-m} \leq c_{1} (mn)^{mn} \]

and

\[J^{(m,n)} / J^{(m,n)} J^{(n)m} \geq (mn)^{-mn/2} e^{(m,n)} / e^{(m)n} e^{(n)m} = c_{1} (mn)^{-mn/2}. \]

On putting \(c_{2} = c_{1} (mn)^{-mn/2} \) and \(c_{3} = c_{1} (mn)^{mn} \), this proves the assertion.

8. To each of the three convex bodies \(K^{m}, K^{n}, \) and \(K^{mn} \) corresponds a convex distance function, \(F^{(m)}(x) \) in \(\mathbb{R}^{m} \), \(F^{(n)}(y) \) in \(\mathbb{R}^{n} \), and \(F^{(m,n)}(z) \) in \(\mathbb{R}^{mn} \), respectively. Here, e.g., \(F^{(m)}(x) \) is defined by

\[0 \leq F^{(m)}(x) \leq 1 \quad \text{if and only if} \quad x \in K^{m}, \]
or more explicitly,
\[x \in sK^m \quad \text{if} \quad |s| \geq F^{(m)}(x) \quad \text{and} \quad x \notin sK^m \quad \text{if} \quad |s| < F^{(m)}(x). \]

Further,
\[
F^{(m)}(0) = 0, \quad F^{(m)}(x) > 0 \quad \text{if} \quad x \neq 0;
F^{(m)}(sx) = |s| F(x) \quad \text{for all real } s \text{ and } x \in \mathbb{R}^m;
F^{(m)}(x_1 + x_2) \leq F^{(m)}(x_1) + F^{(m)}(x_2).
\]

Analogous properties are satisfied by the two other distance functions \(F^{(n)}(y)\) and \(F^{(m,n)}(z)\), in particular,
\[
0 \leq F^{(n)}(y) \leq 1 \quad \text{if and only if} \quad y \in K^{(n)};
0 \leq F^{(m,n)}(z) \leq 1 \quad \text{if and only if} \quad z \in K^{mn}.
\]

Lemma 3. If \(x \in \mathbb{R}^m\) and \(y \in \mathbb{R}^n\) and therefore \(z = x \times y \in \mathbb{R}^{mn}\), then
\[
F^{(m,n)}(z) \leq F^{(m)}(x) F^{(n)}(y).
\]

Proof. The assertion is obvious if \(x = 0\) or \(y = 0\) and therefore \(z = 0\). Let therefore \(x \neq 0\) and \(y \neq 0\) so that
\[
F^{(m)}(x) > 0 \quad \text{and} \quad F^{(n)}(y) > 0.
\]

On putting
\[
x^0 = F^{(m)}(x)^{-1} x \quad \text{and} \quad y^0 = F^{(n)}(y)^{-1} y,
\]
evidently \(F^{(m)}(x^0) = 1\) and \(F^{(n)}(y^0) = 1\) and therefore \(x^0 \in K^m\) and \(y^0 \in K^n\).

On defining \(z^0\) now by \(z^0 = x^0 \times y^0\),
\[
z^0 = x^0 \times y^0 = F^{(m)}(x)^{-1} F^{(n)}(y)^{-1} x \times y = F^{(m)}(x)^{-1} F^{(n)}(y)^{-1} z.
\]
Since \(x^0 \in K^m\) and \(y^0 \in K^n\), also \(z^0 \in K^{mn}\) and therefore \(F^{(m,n)}(z^0) \leq 1\). But
\[
F^{(m,n)}(z^0) = F^{(m)}(x)^{-1} F^{(n)}(y)^{-1} F^{(m,n)}(z),
\]
whence the assertion.

9. We combine the results so far obtained with Minkowski's theorem on the successive minima of a convex body in a lattice (Minkowski [4]).

This theorem will be applied three times, to \(K^m\) relative to the lattice \(L^m\).
in \mathbb{R}^m, to K^n relative to the lattice L^n in \mathbb{R}^n, and to K^{mn} relative to the lattice L^{mn} in \mathbb{R}^{mn}. By this theorem, there exist then

m linearly independent points x^1, \ldots, x^m in L^m,

n linearly independent points y^1, \ldots, y^n in L^n,

mn linearly independent points z^1, \ldots, z^{mn} in L^{mn},

with the corresponding successive minima

$$
\mu_h^{(m)} = F^{(m)}(x^h), \quad (h = 1, 2, \ldots, m),
$$

$$
\mu_k^{(n)} = F^{(n)}(y^k), \quad (k = 1, 2, \ldots, n),
$$

$$
\mu_l^{(m,n)} = F^{(m,n)}(z^l), \quad (l = 1, 2, \ldots, mn),
$$

such that the following properties hold:

(i)

$$
0 < \mu_1^{(m)} \leq \mu_2^{(m)} \leq \cdots \leq \mu_m^{(m)}, \quad \frac{m!}{m!} \leq J^{(m)} \mu_1^{(m)} \cdots \mu_m^{(m)} \leq 2^m,
$$

$$
0 < \mu_1^{(n)} \leq \mu_2^{(n)} \leq \cdots \leq \mu_n^{(n)}, \quad \frac{n!}{n!} \leq J^{(n)} \mu_1^{(n)} \cdots \mu_n^{(n)} \leq 2^n,
$$

$$
0 < \mu_1^{(m,n)} \leq \mu_2^{(m,n)} \leq \cdots \leq \mu_{mn}^{(m,n)}, \quad \frac{mn!}{mn!} \leq J^{(m,n)} \mu_1^{(m,n)} \cdots \mu_{mn}^{(m,n)} \leq 2^{mn}.
$$

(ii) If X^1, \ldots, X^m are m linearly independent points in L^m, Y^1, \ldots, Y^n linearly independent points in L^n, and Z^1, \ldots, Z^{mn} mn linearly independent points in L^{mn}, and if these points are ordered such that

$$
F^{(m)}(X^1) \leq F^{(m)}(X^2) \leq \cdots \leq F^{(m)}(X^m),
$$

$$
F^{(n)}(Y^1) \leq F^{(n)}(Y^2) \leq \cdots \leq F^{(n)}(Y^n),
$$

$$
F^{(m,n)}(Z^1) \leq F^{(m,n)}(Z^2) \leq \cdots \leq F^{(m,n)}(Z^{mn}),
$$

then

$$
F^{(m)}(x^h) \geq \mu_h^{(m)}, \quad (h = 1, 2, \ldots, m),
$$

$$
F^{(n)}(y^k) \geq \mu_k^{(n)}, \quad (k = 1, 2, \ldots, n),
$$

$$
F^{(m,n)}(z^l) \geq \mu_l^{(m,n)}, \quad (l = 1, 2, \ldots, mn).
$$

Here, in the inequalities (i), the factors $J^{(m)}$, $J^{(n)}$, and $J^{(m,n)}$ are again the
volumes of the convex bodies K^m, K^n, and K^{mn}, respectively. We deduce from these inequalities that the quotient

$$q = \mu_1^{(m,n)} \cdots \mu_m^{(m,n)}(\mu_1^{(m)} \cdots \mu_m^{(m)})^{-n} (\mu_1^{(n)} \cdots \mu_n^{(n)})^{-m}$$

satisfies the inequalities

$$\frac{2^{mn}}{(mn)!} (2^m)^{-n} (2^n)^{-m} \leq J^{(m,n)} f^{(m)} f^{(n)} q \leq 2^{mn} \left(\frac{2^m}{m!}\right)^{-n} \left(\frac{2^n}{n!}\right)^{-m}.$$

Here apply Theorem 1 to the quotient $J^{(m,n)} f^{(m)} f^{(n)} q$ and put

$$c_4 = (c_3mn)! 2^{mn}^{-1} \quad \text{and} \quad c_5 = (m!)^n (n!)^n (c_3 2^{mn})^{-1}.$$

We obtain then the following result:

Lemma 4. There exist two positive constants c_4 and c_5 which depend only on m and n such that

$$c_4 (\mu_1^{(m)} \cdots \mu_m^{(m)})^n (\mu_1^{(n)} \cdots \mu_n^{(n)})^m \leq \mu_1^{(m,n)} \cdots \mu_m^{(m,n)} \leq c_5 (\mu_1^{(m)} \cdots \mu_m^{(m)})^n (\mu_1^{(n)} \cdots \mu_n^{(n)})^m.$$

10. Let again $x^h (h = 1, 2, \ldots, m)$ be m linearly independent points in L^m and $y^k (k = 1, 2, \ldots, n)$, n linearly independent points in L^n at which the successive minima $\mu_h^{(m)}$ and $\mu_k^{(n)}$ are attained. Then the mn product points

$$Z^{hk} = x^h \times y^k, \quad (h = 1, 2, \ldots, m, k = 1, 2, \ldots, n)$$

lie in the lattice L^{mn} and, moreover, they are linearly independent. For there are two non-singular transformations A and B as in Section 2 such that

$$x^h = Au_h \quad (h = 1, 2, \ldots, m) \quad \text{and} \quad y^k = Bv_k \quad (k = 1, 2, \ldots, n).$$

Further, $C = A \times B$ is non-singular, and

$$Z^{hk} = Cw_{hk}, \quad (h = 1, 2, \ldots, m, k = 1, 2, \ldots, n),$$

where the mn unit points w_{hk} span the space R^{mn}.

Put

$$f_{hk}^{(m,n)} = F^{(m,n)}(Z^{hk}), \quad (h = 1, 2, \ldots, m, k = 1, 2, \ldots, n)$$

and denote for $l = 1, 2, \ldots, mn$ by $f_l^{(m,n)}$ the same quantities $f_{hk}^{(m,n)}$ ordered according to size,

$$f_1^{(m,n)} \leq f_2^{(m,n)} \leq \cdots \leq f_{mn}^{(m,n)}.$$

(2)
This ordering (which will not be unique if several of the values \(f^{(m,n)}_{hk} \) are equal) establishes thus a 1-to-1 correspondence

\[
l \leftrightarrow (h, k)
\]

between the integers \(l \) in \(1 \leq l \leq mn \) and the pairs of integers \((h, k)\) with \(1 \leq h \leq m, 1 \leq k \leq n \).

From property (ii) of the successive minima \(\mu^{(m,n)}_l \) and from the ordering (2) it follows that

\[
f^{(m,n)}_l = \mu^{(m,n)}_l, \quad (l = 1, 2, \ldots, mn).
\]

On the other hand, by Lemma 3,

\[
f^{(m,n)}_l = F^{(m,n)}(Z^{hk}) \leq F^{(m)}(x^h) F^{(n)}(y^k) = \mu^{(m)}_h \mu^{(n)}_k.
\]

We obtain therefore the system of \(mn \) inequalities

\[
(\text{iii}) \quad \mu^{(m,n)}_l \leq \mu^{(m)}_h \mu^{(n)}_k \text{ for } l \leftrightarrow (h, k),
\]

from which, on multiplying over all suffixes \(l \), it follows in particular that

\[
\mu^{(m,n)}_1 \cdots \mu^{(m,n)}_{mn} \leq (\mu^{(m)}_1 \cdots \mu^{(m)}_m)(\mu^{(n)}_1 \cdots \mu^{(n)}_n)^m,
\]

which is slightly better than the right-hand inequality given by Lemma 4. A valid inequality is also obtained if on the left-hand side of this formula the factor \(\mu^{(m,n)}_l \) is omitted while the right-hand side is divided by the corresponding product \(\mu^{(m)}_h \mu^{(n)}_k \), where again \(l \leftrightarrow (h, k) \). On dividing now the left-hand formula in Lemma 4 by this new inequality, it follows that

\[
(\text{iv}) \quad \mu^{(m,n)}_l \geq c_4 \mu^{(m)}_h \mu^{(n)}_k, \text{ for } l \leftrightarrow (h, k).
\]

We have so obtained the following result:

Theorem 2. There exists a constant \(c_4 > 0 \) depending only on \(m \) and \(n \), with the following property: Denote by \(\mu^{(m)}_h \) \((h = 1, 2, \ldots, m)\), the successive minima of the convex body \(K^m \) in \(\mathbb{R}^m \), by \(\mu^{(n)}_k \) \((k = 1, 2, \ldots, n)\), the successive minima of the convex body \(K^n \) in \(\mathbb{R}^n \), and by \(\mu^{(m,n)}_l \) \((l = 1, 2, \ldots, mn)\), the successive minima of the convex body \(K^{mn} = K^m \times K^n \) in \(\mathbb{R}^{mn} \). Let further \(p^{(m,n)}_l \) \((l = 1, 2, \ldots, mn)\), be the \(mn \) products

\[
\mu^{(m,n)}_h \mu^{(n)}_k, \quad (h = 1, 2, \ldots, m, k = 1, 2, \ldots, n)
\]

numbered in order of increasing size,

\[
p^{(m,n)}_1 \leq p^{(m,n)}_2 \leq \cdots \leq p^{(m,n)}_{mn}.
\]

Then

\[
c_4 p^{(m,n)}_1 \leq \mu^{(m,n)}_l \leq p^{(m,n)}_l \quad (l = 1, 2, \ldots, mn).
\]
Hence in particular,
\[\gamma_4 \mu^{(m)}_1 \leq \mu^{(m,n)}_1 \leq \mu^{(m,n)}_1, \quad \gamma_4 \mu^{(m)}_n \leq \mu^{(m,n)}_m \leq \mu^{(m,n)}_n. \]

11. By means of Theorem 2 we shall finally prove a property of the successive minima of convex bodies defined by linear inequalities. The two special convex distance functions
\[F_0^{(m)}(x) = \max(|x_1|, \ldots, |x_m|) \quad \text{and} \quad F_0^{(n)}(y) = \max(|y_1|, \ldots, |y_n|) \]
generate the convex bodies
\[K_0^m : F_0^{(m)}(x) \leq 1 \quad \text{in } \mathbb{R}^m \quad \text{and} \quad K_0^n : F_0^{(n)}(y) \leq 1 \quad \text{in } \mathbb{R}^n, \]
which are generalized cubes of side 2 with their centres at the origin of \(\mathbb{R}^m \) and \(\mathbb{R}^n \), respectively. The product body
\[K_0^{mn} = K_0^m \times K_0^n \]
in \(\mathbb{R}^{mn} \) is rather complicated. If \(F_0^{*(m,n)}(z) \) is its distance function, then \(K_0^{mn} \) consists of the points \(z \in \mathbb{R}^{mn} \) for which
\[F_0^{*(m,n)}(z) \leq 1. \]
We introduce the further distance function
\[F_0^{(m,n)}(z) = \max(|z_{11}|, |z_{12}|, \ldots, |z_{mn}|) \]
and the corresponding convex body
\[K_0^{mn} : F_0^{(m,n)}(z) \leq 1 \quad \text{in } \mathbb{R}^{mn}, \]
which is again a generalised cube of side 2 with centre at the origin. It is easily seen that
\[K_0^{mn} \subset K_0^{mn} \]
and therefore
\[F_0^{(m,n)}(z) \leq F_0^{*(m,n)}(z) \quad \text{for all } z \in \mathbb{R}^{mn}. \quad \text{(1)} \]

Further, the origin \(o \) is an interior point of \(K_0^{mn} \). This implies that there is a constant \(\gamma_6 > 0 \) depending only on \(m \) and \(n \) such that all points \(z \) satisfying
\[F_0^{(m,n)}(z) \leq 1 / \gamma_6 \]
belong to K_{0}^{mn}, hence that

$$K_{0}^{mn} \subset c_{6} K_{0}^{mn},$$

and therefore

$$F_{0}^{*(m,n)}(z) \leq c_{6} F_{0}^{(m,n)}(z) \quad \text{for all} \quad z \in \mathbb{R}^{mn}. \quad (II)$$

12. Denote again by

$$A = (a_{hi}) \quad \text{and} \quad B = (b_{kj})$$
a real $m \times m$ matrix and a real $n \times n$ matrix, and by

$$C = A \times B = (c_{hi,kj}), \quad \text{where} \quad c_{hi,kj} = a_{hi} b_{kj},$$

the $mn \times mn$ matrix formed from A and B. It suffices to consider the case when all three matrices have the determinants 1,

$$a = 1, \quad b = 1, \quad c = a^{n} b^{m} = 1.$$

The four new distance functions

$$F^{(m)}(x) = F_{0}^{(m)}(Ax) \quad \text{in} \quad \mathbb{R}^{m}, \quad F^{(n)}(y) = F_{0}^{(n)}(By) \quad \text{in} \quad \mathbb{R}^{n},$$

and

$$F^{*(m,n)}(z) = F_{0}^{*(m,n)}(Cz) \quad \text{and} \quad F^{(m,n)}(z) = F_{0}^{(m,n)}(Cz) \quad \text{in} \quad \mathbb{R}^{mn}$$

define the convex bodies

$$K^{m}: F^{(m)}(x) \leq 1 \quad \text{in} \quad \mathbb{R}^{m}, \quad K^{n}: F^{(n)}(y) \leq 1 \quad \text{in} \quad \mathbb{R}^{n},$$

and

$$K^{*mn}: F^{*(m,n)}(z) \leq 1 \quad \text{and} \quad K^{mn}: F^{(m,n)}(z) \leq 1 \quad \text{in} \quad \mathbb{R}^{mn}.$$
be the successive minima of K^m, K^n, K^{mn}, and K^{mn} in the lattices L^m, L^n, and L^{mn}, respectively. Further denote by
\[z^*^l \quad \text{and} \quad z^l \quad (l = 1, 2, \ldots, mn) \]
two systems of mn linearly independent lattice points in L^{mn} such that
\[\mu_i^{*(m,n)} = F^{*(m,n)}(z^*^l) \quad \text{and} \quad \mu_i^{(m,n)} = F^{(m,n)}(z^l) \quad (l = 1, 2, \ldots, mn). \]
Here, by Theorem 2, if $p_i^{(m,n)}$ has the same meaning as before,
\[c_4 \ p_i^{(m,n)} \leq \mu_i^{*(m,n)} \leq p_i^{(m,n)} \quad (l = 1, 2, \ldots, mn). \]
Further, by property (ii) of the successive minima,
\[F^{*(m,n)}(z^l) \geq F^{*(m,n)}(z^*^l), \quad F^{(m,n)}(z^*^l) \geq F^{(m,n)}(z^l) \quad (l = 1, 2, \ldots, mn), \]
and therefore by (III)
\[(c_4/c_6) \ p_i^{(m,n)} \leq (1/c_6) \ \mu_i^{*(m,n)} \leq \mu_i^{(m,n)} \leq p_i^{*(m,n)} \leq p_i^{(m,n)} \quad (l = 1, 2, \ldots, mn). \]
We thus arrive at the following result:

Theorem 3. There exists a constant $c_7 > 0$ depending only on m and n, with the following property: Denote by $A = (a_{hi})$ a real $m \times m$ matrix and by $B = (b_{kj})$ a real $n \times n$ matrix, and let C be the $mn \times mn$ matrix
\[C = A \times B = (c_{hi,kj}), \quad \text{where} \quad c_{hi,kj} = a_{hi} \cdot b_{kj} \quad (h = 1, 2, \ldots, m, \ k = 1, 2, \ldots, n). \]
Without loss of generality, all three matrices have the determinant 1. Let $\mu_i^{(m)}$, $\mu_k^{(n)}$, and $\mu_i^{(m,n)}$ be the successive minima of the convex distance functions
\[F^{(m)}(x) = \max_{h = 1, 2, \ldots, m} \left| \sum_{i = 1}^{m} a_{hi} x_i \right|, \quad F^{(n)}(y) = \max_{k = 1, 2, \ldots, n} \left| \sum_{j = 1}^{n} b_{kj} y_j \right|, \]
and
\[F^{(m,n)}(z) = \max_{h = 1, 2, \ldots, m} \left| \sum_{i = 1}^{m} \sum_{j = 1}^{n} c_{hi,kj} z_{ij} \right|, \]
respectively. Denote by $p_i^{(m,n)} \ (l = 1, 2, \ldots, mn)$ the products
\[\mu_h^{(m)} \mu_k^{(n)} \quad (h = 1, 2, \ldots, m, k = 1, 2, \ldots, n), \]
numbered such that
\[p_1^{(m,n)} \leq p_2^{(m,n)} \leq \cdots \leq p_{mn}^{(m,n)}. \]

Then
\[c_7 p_l^{(m,n)} \leq \mu_i^{(m,n)} \leq p_l^{(m,n)}, \quad (l = 1, 2, \ldots, mn), \]
and in particular,
\[c_7 \mu_1^{(m)} \mu_1^{(n)} \leq \mu_1^{(m,n)} \leq \mu_1^{(m)} \mu_1^{(n)}, \quad c_7 \mu_m^{(m)} \mu_n^{(n)} \leq \mu_{mn}^{(m,n)} \leq \mu_m^{(m)} \mu_n^{(n)}. \]

REFERENCES